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The standard approach of no-arbitrage pricing

Identify an “instantaneous” rate as the basis, fully specify the dynamics and
pricing of this basis, and represent the value of actual contracts as some
expectation of this basis over some periods.

Options: Choose the instantaneous variance rate as the basis, and
fully specify its dynamics/pricing.

Interest rates: Choose the instantaneous interest rate as the basis,
and fully specify its dynamics/pricing.

The challenge: One needs to think far far into the future.

Under this approach, to price a 60-year option or bond, one needs to
specify how the instantaneous rate moves and how the market prices
its risk over the next 60 years.

The market has a much better idea about how the prices of many traded
securities move over the next day.
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A new approach: Work with what the market knows better

Model what the market knows better — the next move of many traded securities.

1 Find commonalities of traded securities via some transformation:

B(yt(C ), t,Xt ;C ) = price

yt(C ) — transformation of security prices that are similar and move
together across securities with different contract details (C )

Xt — some dependence on other observables (such as the underlying
security price for derivatives)

The market is reasonably good at finding this transformation

2 Specify how the transformations move together

dyt(C ) = µt(C ) + ωt(C )dZt

One Borwnian motion drives all yt(C )

The levels of (µt(C ), ωt(C )) are known, but not their dynamics.

3 The new no-arbitrage pricing relation: What we assume about their next
move dictates how their values (yt(C )) compare right now.
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I. Options market: Model BMS implied volatility

Transform the option price via the Black-Merton-Scholes (BMS) formula

B(It(K ,T ), t,St ;K ,T ) ≡ StN(d1)− KN(d2)

Zero rates for notional clarity.

BMS implied vol It(K ,T ) is the commonality of the options market.

The implied volatilities of different option contracts (underlying the
same security) share similar magnitudes and move together.

A positive quote excludes arbitrage against cash and the underlying.

It is the industry standard for quoting/managing options.

Diffusion stock price dynamics: dSt/St =
√
vtdWt .

Leave the dynamics of vt unspecified; instead, model the near-future
dynamics of the BMS implied volatility under the risk-neutral (Q) measure,

dIt(K ,T ) = µtdt + ωtdZt , for all K > 0 and T > t.

The drift (µt) and volvol (ωt) processes can depend on K , T , and It .
Correlation between implied volatility and return is ρtdt = E[dWtdZt ].
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From NDA to the fundamental PDE

We require that no dynamic arbitrage (NDA) be allowed between any option at
(K ,T ) and a basis option at (K0,T0) and the stock.

The three assets can be combined to neutralize exposure to dW or dZ .

By Ito’s lemma, each option in this portfolio has risk-neutral drift given by:

Bt + µtBσ +
vt
2
S2
t BSS + ρtωt

√
vtStBSσ +

ω2
t

2
Bσσ.

No arbitrage and no rates imply that both option drifts must vanish, leading
to the fundamental “PDE:”

−Bt = µtBσ +
vt
2
S2
t BSS + ρtωt

√
vtStBSσ +

ω2
t

2
Bσσ.

When µt and ωt are independent of (K ,T ), the “PDE” defines a linear
relation between the theta (Bt) of the option and its vega (Bσ), dollar
gamma (S2

t BSS), dollar vanna (StBSσ), and volga (Bσσ).

We call the class of BMS implied volatility surfaces defined by the above
fundamental PDE as the Vega-Gamma-Vanna-Volga (VGVV) model.
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Our PDE is NOT a PDE in the traditional sense

−Bt = µtBσ +
vt
2
S2
t BSS + ρtωt

√
vtStBSσ +

ω2
t

2
Bσσ.

Traditionally, PDE is specified to solve the value function. In our case, the
value function B(It , t,St) is definitional and it is simply the BMS formula
that we use the transform the option price into implied volatility.

The coefficients on traditional PDEs are deterministic; they are stochastic
processes in our “PDE.”

Our “PDE” is not derived to solve the value function, but rather it is used
to show that the various stochastic quantities have to satisfy this particular
relation to exclude NDA.

⇒ Our “PDE” defines an NDA constraint on how the different stochastic
quantities should relate to each other.
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From the “PDE” to an algebraic restriction

−Bt = µtBσ +
vt
2
S2
t BSS + ρtωt

√
vtStBSσ +

ω2
t

2
Bσσ.

The value function B is well known, so are its various partial derivatives:

Bt = −σ
2

2 S
2BSS , Bσ = στS2BSS ,

SBσS = −d2
√
τS2BSS , Bσσ = d1d2τS

2BSS ,

where dollar gamma is the common denominator of all the partial
derivatives, a nice feature of the BMS formula as a transformation.

The “PDE” constraint on B is reduced to an algebraic restriction on the
shape of the implied volatility surface It(K ,T ),

I 2t
2
− µt Itτ −

[
vt
2
− ρtωt

√
vtτd2 +

ω2
t

2
d1d2τ

]
= 0.

If (µt , ωt) do not depend on It(K ,T ), we can solve the whole implied
volatility surface as the solution to a quadratic equation.
We just need to know the current values of the processes
(µt , ωt , ρt , vt), which dictate the next move of the implied volatility
surface, but we do not need to specify their future dynamics.
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Proportional volatility dynamics, as an example

(µt , ωt) are just generic representations of the drift and diffusion processes
of the implied volatility, we can be more specific if we think we know more.

As an example,

dIt(K ,T )/It(K ,T ) = e−ηt(T−t) (mtdt + wtdZt) ,

with ηt ,wt > 0 and (ηt ,mt ,wt) independent of K ,T .

A proportional specification has more empirical support than a
square-root variance specification.

The exponential dampening makes long-term implied volatility less
volatile and more persistent.

(mt ,wt) just specify our views on the trend and uncertainty over the
next instant.

We can re-cast the implied volatility surface in terms of log relative strike
and time to maturity, It(k , τ) ≡ It(K ,T ), with k = lnK/St and τ = T − t.

The implied variance surface (I 2t (k , τ)) solves a quadratic equation:

0 = 1
4e

−2ηtτw2
t τ

2I 4t (k , τ) +
(
1− 2e−ηtτmtτ − e−ηtτwtρt

√
vtτ
)
I 2t (k, τ)

−
(
vt + 2e−ηtτwtρt

√
vtk + e−2ηtτw2

t k
2
)
.
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Unspanned dynamics

0 = 1
4e

−2ηtτw2
t τ

2I 4t (k , τ) +
(
1− 2e−ηtτmtτ − e−ηtτwtρt

√
vtτ
)
I 2t (k, τ)

−
(
vt + 2e−ηtτwtρt

√
vtk + e−2ηtτw2

t k
2
)
.

Given the current levels of the five stochastic processes (ρt , vt ,mt , ηt ,wt),
the current shape of the implied volatility surface must satisfy the above
quadratic equation to exclude dynamic arbitrage.

The current shape of the surface does NOT depend on the exact dynamics
of five stochastic processes.

The dynamics of the five processes are not spanned by the current
shape of the implied volatility surface.
The current volatility surface shape is only linked to the near-future
dynamics of the security return and implied volatility.

The dynamics of the five processes will affect the future dynamics of the
surface, but not its current shape.

The current shape of the implied volatility surface is determined by 5 state
variables, but with no parameters!
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The implied volatility smile and the term structure

At a fixed maturity, the implied variance smile can be solved as

I 2(k , τ) = at +
2

τ

√(
k +

ρ
√
vt

e−ηtτwt

)2

+ ct .

In the limit of τ = 0, I 2t (k , 0) = vt + 2ρt
√
vtwk + w2k2.

The smile is driven by vol of vol (convexity), and the skew is driven by
the return-vol correlation.

At d2 = 0, the at-the-money implied variance term structure is given by,

A2
t (τ) =

vt
1− 2e−ηtτmtτ

.

The slope of the term structure is dictated by the drift of the dynamics.

The Heston (1993) model generates the implied vol surface as a function of
1 state variable (vt) and 4 parameters (κ, θ, ω, ρ). Performing daily
calibration on Heston would result in the same degrees of freedom, but the
calculation is much more complicated and the process is inconsistent.
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Sequential multi-layer valuation

Suppose you have generated valuations on these option contracts based on
either the “instantaneous rate” approach or some other method (including
the earlier example of our VGVV models).

One way to gauge the virtue of a valuation model is to assess how fast
market prices converge to the model value when the two deviate.

One can specify a co-integrating relation between the market price and the
model value,

dIt(K ,T ) = κt (Vt(K ,T )− I (K ,T )) dt + wt I (K ,T )dZt ,

where V (K ,T ) denotes the model valuation for the option contract,
represented in the implied vol space.

κt measures how fast the market converges to the model value.

A similar quadratic relation holds: The valuation Vt(K ,T ) is regarded as a
number that the market price converges to, regardless of its source.

Our approach can be integrated with the traditional approach by
providing a second layer of valuation on top of the standard valuation.

It can also be used to perform sequential self-improving valuations!
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Applications

1 Implied volatility surface interpolation and extrapolation:

Much faster, much easier, much more numerically stable than any
existing stochastic volatility models.

Performs better than lower-dimensional stochastic volatility models,
without the traditional parameter identification issues associated with
high-dimensional models.

Reaps the benefits of both worlds: First estimate a low-dimensional
stochastic vol model, with which one can perform long-run simulations,
and add the layers of VGVV structure on top of it.

2 Extracting variance risks and risk premiums:

The unspanned nature allows us to extract the levels of the 5 states
from the implied volatility surface without fully specifying the dynamics.

One can also extract variance risk premiums by estimating an
analogous contract-specific option expected volatility surface ...
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Extensions

1 Non-zero financing rates: Treat S and B as the forward values of the
underlying and the option, respectively.

2 Options on single names with potential defaults, upon which stock price
drops to zero (Merton (1976))

The BMS implied volatility transformation is no longer as tractable:

0 = Bt + µtBσ +
vt
2
S2
t BSS + ρtωt

√
vtStBSσ +

ω2
t

2
Bσσ + λKN(d2).

The last term induced by default does not cancel.

We can choose the transformation through the Merton (1976) model:
Let Mt (Merton implied volatility) as the σ input in the Merton model
to match the market price, conditional on λ being known:

B(St , t,Mt) = StN(d1)−e−λτKN(d2), d1/2 =
lnSt/K + λτ ± 1

2M
2
t τ

Mt
√
τ

.

Bt = −σ
2

2 S
2BSS − λe−λτKN(d2) has an extra term that cancels out

the default-induced term
3 It is a matter of choosing the right transformation...
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Contract versus instantaneous specification

Traditional modeling strives to identify an instantaneous rate as the basis for
all traded securities.

The consistency is naturally guaranteed relative to this basis if all securities
are priced from it.

The challenge is to fully specify the instantaneous rate dynamics that can
reasonably price short-term as well as long-term contracts, with reasonable
tractability and stability in parameter identification.

Our approach directly models contract-specific quantities (such as the
implied volatility of an option contract) and link the contract values together
without going through the basis dynamics.

We can focus on what we know better: the near-term moves of market
contracts instead of the dynamics of some unobservable instantaneous
rate over the next few decades.

The derived no-arbitrage relation shows up in extremely simple terms.

No parameters need to be estimated, only states need to be extracted.
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II. Bonds market: Model YTM

For bond pricing, standard approach starts with the full dynamics and
pricing of the instantaneous interest rate.

We directly model the yield to maturity (yt) of each bond as the
commonality transformation of the bond price,

B(t, yt) ≡
∑
j

Cje
ytτj

where Cj denotes the cash flow (coupon or principal) at time t + τj .

Assume the following risk-neutral dynamics for the yields of bond m,

dym
t = µm

t dt + σm
t dWt

where we use the superscript m to denote the potentially bond-specific
nature of the yield and its dynamics.

Again, (µt , σt) is just a generic representation, one can be more specific in
terms of which process is global and which is contract-specific...
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Dynamic no-arbitrage constraints on the yield curve

Assume dynamic no-arbitrage between bonds and the money market
account, we obtain the following PDE,

rtB = Bt + Byµt +
1

2
Byyσ

2
t ,

With the solution to B(t, y) known, the PDE can be reduced to a simple
algebraic relation on yield:

ym
t − rt = µm

t τm −
1

2
(σm

t )2τ 2m,

where τm and τ 2m denote cash-flow weighted average maturity and maturity
squared, respectively,

τm =
∑
j

Cje
−ytτj

Bm
τj , τ 2m =

∑
j

Cje
−ytτj

Bm
τ 2j .

The relation is simple and intuitive: The yield curve goes up with its
risk-neutral drift, but comes down due to convexity.
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Applications

1 Decomposing the yield curve:

Assume a mean-reverting square-root dynamics on the YTM:

dym
t = κt(θt − ym

t )dt + σt
√
ym
t dWt

⇒ The no-arbitrage yield curve

ym
t =

rt + κtθtτm

1 + κtτm + 1
2σ

2
t τ

2
m

The yield curve starts at rt at τm = 0 and moves toward its risk-neutral
target θt as average maturity increases, subject to a convexity effect
that drives the yield curve downward in the very long run.

The target θt is a combination of expectation and risk premium.

No fixed parameters to be estimated, only the current states of some
stochastic processes to be extracted.
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Applications

1 Decomposing the yield curve:

2 Extracting risk premium from long bonds:

Assuming long-dated bonds move like a random walk under P, the
risk-neutral dynamics become

dym
t = γtσ

m
t dt + σm

t dWt ,

with γt denoting the market price of bond risk.

The no-arbitrage relation is:

rt = ym
t − γtσm

t τm +
1

2
(σm

t )2τ 2m,

Based on the observed yield-to-maturity of each bond and a volatility
estimator for each bond, we can infer the market price of bond risk as

γ̂mt =
ym
t − rt + 1

2 (σm
t )2τ 2m

σm
t τm

To the extent that the market price estimator γ̂mt differs across
different bonds, the difference represents relative value opportunities.
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III. Defaultable bonds

For corporate bonds, directly modeling yield to maturity should work the
same as for default-free bonds.

rtB = Bt + Byµt +
1

2
Byyσ

2
t + (R − 1)Bλ.

The PDE can be reduced to an algebraic equation that defines the
defaultable yield term structure:

ym
t − (r + (1− R)λ) = µm

t τm −
1

2
(σm

t )2τ 2m.

One can also directly model the credit spread if one is willing to assume
deterministic interest rates...
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Conclusion: Choose the right representation

At the end of the day, we are choosing some transformation of the prices of traded
securities to obtain a better understanding of where the valuation comes from.

Academics often try to go bottom up in search for the “building blocks”
that can be used to value anything and everything.

Arrow-Debrew securities, state prices, instantaneous rates...

Practitioners tend to be more defensive-minded, often trying to reduce the
dimensionality of the problem via localization and facilitate
management/monitoring via stabilization

Most transformations, such as implied volatility, YTM, CDS are
contract-specific — very localized.

They also stabilize the movements, standardize the value for
cross-contract comparison, and preclude some arbitrage possibilities.

We start with these contract-specific transformations, and derive
cross-contract linkages by assuming how these transformed quantities
move together in the next instant, but nothing further.
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Summary: Nice features and future efforts

Nice features

We obtain no-arbitrage cross-contract constraints while only specifying
what we know better.

The relations we obtain are extremely simple.

Empirical work only involves state extraction, no parameter estimation.

If you have built well-performing models with full dynamics, we can
embed them into our framework by letting market prices reverting to
the model value.

We can also build several layers of models sequentially that are
consistent with each other, and satisfy the conflicting needs of different
groups: Market makers v. prop. traders targeting different horizons.

Future efforts:

Theoretical efforts: General representation across markets, multiple
source of shocks, non-diffusion shocks.

Empirical work: lots to be done.

Liuren Wu (Baruch) Dynamic Relative Valuation 10/11/2013 21 / 21


