Aggregate Unemployment and Household Unsecured Credit

Zach Bethune University of California - Santa Barbara

> Guillaume Rocheteau University of California - Irvine

Peter Rupert
University of California - Santa Barbara

Conference in honor of Tom Cooley

October 4-5, 2013

What this paper is about

Broad Question:

How do credit frictions influence the aggregate labor market?

- Empirical evidence that credit to households matters for employment changes, through consumer spending.
- Household unsecured credit
 - tripled from 1978 to 2008 (10% of annual consumption)

Objective:

1 Provide a model that links:

• labor market

• goods market

household unsecured credit

Objective:

1 Provide a model that links:

• labor market: Mortensen-Pissarides

• goods market

· household unsecured credit

Objective:

1 Provide a model that links:

• labor market: Mortensen-Pissarides

• goods market: Shi (1995), Trejos-Wright (1995)

household unsecured credit.

Objective:

1 Provide a model that links:

• labor market: Mortensen-Pissarides

• goods market: Shi (1995), Trejos-Wright (1995)

household unsecured credit: Kehoe-Levine (1993)

What we do Objective:

2 Calibrate: How much of the decline in unemployment can be accounted for by the expansion of unsecured debt?

Unsecured debt = revolving debt outstanding / consumption

What we do Objective:

2 Calibrate: How much of the decline in unemployment can be accounted for by the expansion of unsecured debt?

- Unsecured debt = revolving debt outstanding / consumption
- Liquid assets = M2 + treasuries / total assets

Objective:

2 Calibrate: How much of the decline in unemployment can be accounted for by the expansion of unsecured debt?

- Unsecured debt = revolving debt outstanding / annual consumption
- Liquid assets = M2 + treasuries / total assets

Key Mechanism

- Credit affects job creation through firm productivity
 - higher credit limits and more borrowing increase firm's expected revenue from trade in the goods market
- (Aggregate) unemployment affects credit limit through incentive constraints
 - low unemployment leads to more sellers in the goods market, more costly for the household to default

Literature

Unemployment & Money

 Shi (1998), Berensten, Menzio, Wright (2011), Rocheteau, Rupert, Wright (2007)

Unemployment & Firm Financial Frictions

 Wasmer & Weil (2004), Petrosky-Nadeau & Wasmer (2012), Petrosky-Nadeau (2012)

Credit, Limited Commitment & Incentive Constrained Debt

Diamond (1982, 1987, 1990), Kehoe & Levine (1993, 2001),
 Telyukova & Wright (2007), Sanches & Williamson (2010), Gu,
 Mattesini, Monnet, Wright (2012)

What's new:

- 1 consider labor, credit, and goods markets together.
- 2 credit is to households; limited commitment
- 3 punishment from default is not autarky, can still use liquid assets

Environment

- Discrete time, infinite horizon, $\beta = \frac{1}{1+r}$
- Agents
 - Unit measure of households
 - Large measure of firms
- Each period is divided into 3 sub-periods
 - 1 Frictional Labor Market (LM)
 - matching of workers and firms
 - ② Decentralized Retail Market (DM)
 - households and firms meet, trade y_t for assets or debt
 - 3 Centralized Settlement (CM)
 - consume/produce general good c_t , pay back debt

Households

Quasi-linear Utility

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}[\ell(1-e_{t})+\upsilon(y_{t})+c_{t}]$$

- LM value of leisure, ℓ ; employment status: $e_t \in \{0,1\}$
- DM consumption good: y_t
- CM consumption good: c_t
- Assets (numeraire) are storable: a_t
 - storage technology, Ra_t , with R < 1 + r
 - fraction ν can be used for payment in DM (partially liquid)

Firms

- Firms enter labor market at cost: k
- Production of firm/worker match: \bar{z}
 - firm sell $y_t \in [0, \bar{z}]$ in DM
 - inventories $x_t = \bar{z} y_t$ in CM
- Exogenous separation rate: δ

Frictions

- Labor market
 - matching rate of workers and job openings: $m(u_t, o_t)$
 - labor market tightness: $\theta_t = o_t/u_t$
- DM Goods Market
 - all households search
 - sellers are the measure of filled (productive) firms: $n_t = 1 u_t$
 - matching: $\alpha(n_t)$
- Lack of commitment to repay debt in CM
 - Incentive constrained debt (no equilibrium default)
 - Monitoring technology
 - ullet ω fraction of households monitored
 - ullet ho probability that default is recorded publicly

Timing

Equilibrium

- Focus on steady state equilibria
- Upon a recorded default, household loses access to credit
- Solution approach: solve backward
 - ① CM problem
 - 2 Trade in DM
 - 3 Labor market outcomes

Household with debt d, assets a, and no default record

$$W_e(d, a) = \max_{c, a' \ge 0} \{c + (1 - e)\ell + \beta U_e(a')\}$$

s.t. $c + d + a' = ew + (1 - e)b + Ra + \Delta$

Household with debt d, assets a, and no default record

$$W_{\mathrm{e}}(d,a) = \underbrace{Ra - d + \mathrm{e}w + (1-\mathrm{e})(\ell+b) + \Delta}_{\text{linear in wealth}} + \underbrace{\max_{a' \geq 0} \left[-a' + \beta \, U_{\mathrm{e}}(a') \right]}_{\text{independent of current assets}}$$

Household with debt d, assets a, and no default record

$$W_{\rm e}(d,a) = \underbrace{Ra - d + ew + (1-e)(\ell+b) + \Delta}_{\text{linear in wealth}} + \underbrace{\max_{\substack{a' \geq 0 \\ \text{independent of current assets}}} [-a' + \beta U_{\rm e}(a')]$$

those with no access to credit

$$ilde{W}_{e}(a) = \mathit{Ra} + \mathit{ew} + (1-e)(\ell+b) + \Delta + \max_{a' \geq 0} \left\{ -a' + eta ilde{U}_{e}(a')
ight\}$$

Household with debt d, assets a, and no default record

$$W_{\rm e}(d,a) = \underbrace{Ra - d + ew + (1-e)(\ell+b) + \Delta}_{\text{linear in wealth}} + \underbrace{\max_{\substack{a' \geq 0 \\ \text{independent of current assets}}} [-a' + \beta U_{\rm e}(a')]$$

those with no access to credit

$$ilde{W}_{e}(a) = Ra + ew + (1-e)(\ell+b) + \Delta + \max_{a' \geq 0} \left\{ -a' + eta ilde{U}_{e}(a')
ight\}$$

 Firm with x inventories, d units of debt, a assets, and w wage promises

$$\Pi(x, d, a, w) = \underbrace{x + d + Ra}_{\text{total revenue}} - \underbrace{w}_{\text{wages}} + \underbrace{\beta(1 - \delta)J}_{\text{value next LM}}$$

Terms of trade in DM

- Contract is a triple (y, τ, d)
 - y: DM output transferred to household
 - τ : transfer of liquid assets to firm
 - d: unsecured credit
- Proportional bargaining solution (Kalai)
 - μ : household's share
- Feasibility
 - $d \leq \bar{d}$
 - $\tau \leq \nu a$
- y is a function of household's total payment capacity $\bar{d} + R \nu a$

Trade depends on household's total payment capacity

DM output depends on total payment capacity

- y only depends on payment capacity $y(\bar{d}+R\nu a)$
- If payment capacity is high enough, trade $y = y^*$
- Otherwise, trade is constrained

$$(1-\mu)\upsilon(y) + \mu y = \bar{d} + R\nu a$$

• note: The price of one unit of DM output is

$$1 + \underbrace{(1-\mu)\left[\upsilon(y) - y\right]/y}_{\text{average markup}}$$

Labor Market - Households

Household with no default record, employment status $e \in \{0,1\}$, assets a

$$U_1(a) = \overbrace{\alpha(n)\mu[v(y)-y]}^{\text{expected surplus in DM}} + (1-\delta)W_1(0,a) + \delta W_0(0,a)$$

$$U_0(a) = \alpha(n)\mu[v(y) - y] + pW_1(0, a) + (1 - p)W_0(0, a)$$

Job Creation - Firms

Value of a filled job in DM

$$J = \frac{z - w}{1 - \beta(1 - \delta)}$$

Productivity depends endogenously on credit limit through y

$$z = \bar{z} + \frac{\alpha(n)}{n} (1 - \mu) \left\{ \omega \left[\upsilon \left(y \right) - y \right] + (1 - \omega) \left[\upsilon \left(\tilde{y} \right) - \tilde{y} \right] \right\}$$

- Rest is as in Mortensen-Pissarides
 - free entry $\Rightarrow k = \beta fJ$
 - wages are determined by Nash Bargaining

Credit affects unemployment through firm productivity

Beveridge Curve

$$u = \frac{\delta}{m(1,\theta) + \delta}$$

Job creation condition

$$\frac{(r+\delta)k}{m(\frac{1}{\theta},1)} + \beta\lambda\theta k = (1-\lambda)\Big\{z-\ell-b\Big\}$$

• Unemployment u is decreasing in trade $y(\bar{d}, a)$ and $\tilde{y}(\tilde{a})$ through productivity.

Need to determine payment capacity

- Asset accumulation
- Debt constraint

Asset accumulation

• Given $y(\bar{d} + R\nu a)$, households solve

$$\max_{a \ge 0} \underbrace{\alpha(n)\mu[\upsilon(y) - y]}_{\text{expected surplus}} - \underbrace{(1 + r - R)a}_{\text{cost of holding } a}$$

Asset accumulation

• Given $y(\bar{d} + R\nu a)$, households solve

$$\max_{a \ge 0} \quad \underbrace{\alpha(n)\mu[\upsilon(y) - y]}_{\text{expected surplus}} - \underbrace{(1 + r - R)a}_{\text{cost of holding } a}$$

FOC

$$\underbrace{\alpha(\textit{n})\mu\nu R\Big[\frac{\upsilon'(\textit{y})-1}{(1-\mu)\upsilon'(\textit{y})+\mu}\Big]}_{\text{liquidity premium}} -\underbrace{(1+r-R)}_{\text{mc of holding a}} \leq 0$$

• Asset choice depends on \bar{d} through y

Debt Limit

- Debt limit = lifetime cost of losing access to credit
- Two components

$$\bar{d} = \frac{\rho}{r} \left\{ \underbrace{\alpha(n)\mu \Big[[\upsilon(y) - y] - [\upsilon(\tilde{y}) - \tilde{y}] \Big]}_{\text{net change in surplus}} + \underbrace{(1 + r - R)(\tilde{a} - a)}_{\text{portfolio adjustment cost}} \right\} = \Gamma(\bar{d})$$

- ullet Cost of losing access to credit is increasing in debt limit $ar{d}$
- Forms a fixed point problem

If there is a positive debt limit, HH hold no assets

Credit and liquid assets depend positively on employment

As employment *n* increases:

- Liquidity premium rises \Rightarrow \tilde{a} increases
- Cost of default rises $\Rightarrow \bar{d}$ increases

GE: Multiple Steady States

- Debt limit is decreasing with unemployment
- Unemployment decreasing with debt limit
- Strategic complementarity leads to multiple equilibria
 - credit and unemployment are negatively correlated across equilibria

Calibration

- Model period is one month, $\beta = 0.997$
- Benchmark: US 2000-2008
- Experiment: Consider an exogenous change in financial technology
 - change (ω, ρ) to match unsecured debt outstanding in:
 - **1978-1986**
 - 2011
- Compare steady state unemployment

Labor Market

• Match labor flows, unemployment, vacancy rate

Description	Value	Source/Target
Labor Market		
Directly Match		
Unemployment benefits, b	0.53	b = .5w
Value of leisure, ℓ	0.48	$b+\ell=.95w$, Hagedorn & Manovskii (2008)
Elasticity of LM matching, $\boldsymbol{\eta}$	0.50	Petrolongo & Pissarides (2001)
Jointly Match		
LM matching efficiency, A	0.50	Vacancy rate, JOLTS
LM bargaining, λ	0.50	Hosios condition
Job destruction rate, δ	0.019	Unemployment rate, CPS
Vacancy cost, k	0.10	Job finding probability, CPS

Credit and Goods Market

• Survey of Consumer Finance (SCF): credit & charge cards

Description		Source/Target		
Credit & Goods Market				
Directly Match				
DM production, \bar{z}	1	Normalization		
Access to unsecured credit, $\boldsymbol{\omega}$		% with at least 1 cc (SCF)		
Elasticity of DM matching function, $\boldsymbol{\psi}$	0.50	Equal contribution in matching		
Return on Liquid Assets, R	1.0025	Real user cost of M2 (SL Fed.)		
Jointly Match				
Detection Rate, ρ	0.30	Debt financed consumption		
DM matching efficiency, ϵ	0.24	Average cc utilization rate		
DM bargaining, μ	0.13	Retail Markup 30%		
Utility level parameter, v_{0}	1.42	M2 to consumption		
Utility elasticity, γ	0.03	Elasticity of M2 to cost (0.17)		
Liquidity measure, $ u$	0.05	Middle range for coexistence		

Experiment: Tighten Credit

- Consider exogenous changes in financial technology
 - **1** Access to unsecured credit ω
 - **2** Monitoring technology ρ

1978-1986

- Change ω from 73% to 65%
- Adjust ho to match fall in unsecured credit of 16 percentage points

• 2011

- Change ω from 73% to 68%
- Adjust ρ to match fall in unsecured credit of 5 percentage points
- Compare steady state unemployment

Unemployment and Credit, 1978-1986

	Bench.	Bench. Exp. Diff.		Data	
	2000-2008			1978-1986	
Credit & Goods Market					
Credit to Con., $\alpha(n)\omega \bar{d}/C$	0.23	0.07	-0.16	-0.16	
M2 to Cons., $(1-\omega)R\tilde{a}/C$	0.74	0.93	0.19	0.14	
Agg. productivity, z	1.07	1.06	-4.45%	-	
Labor Market					
Unemployment rate (%)	5.13	6.82	1.69	2.39	

Unemployment and Credit, 2011

	Bench.	Exp.	Diff.	Data		
	2000-2008	2000-2008				
Credit & Goods Market						
Credit to Con., $\alpha(n)\omega\bar{d}/C$	0.23	0.18	-0.05	-0.05		
M2 to Cons., $(1-\omega)R\tilde{a}/C$	0.74	0.92	0.18	0.08		
Agg. productivity, z	1.07	1.06	-1.44%	-		
Labor Market						
Unemployment rate (%)	5.13	5.53	0.40	3.80		

Credit - Amplification Channel

- Change exogenous component of productivity, z̄
- Decompose changes in unemployment into
 - Mortensen-Pissarides channel
 - Credit & goods market channel

Credit amplifies exogenous productivity changes

Conclusion

- Tractable model linking labor and household credit markets.
- Complementarities between job creation and credit limits.
- Coexistence of liquid assets and unsecured debt
- Calibrated the model to asses the effect of a credit crunch: potentially large, but mitigated by the availability of liquidity.
- More work to do: dynamics.

Credit Card Limits

Source: Mian and Sufi (2012) Pack