Asset Pricing with Heterogeneous Agents (Preliminary)

Yili Chien, Harold Cole and Hanno Lustig

September 20, 2013

Yili Chien, Harold Cole and Hanno Lustig Asset Pricing with Heterogeneous Agents

Puzzles

Asset pricing

- High, volatile and counter-cyclical risk premia
- Low and stable risk-free rate
- Hard to account for with standard macro models
- Asset markets
 - Rich asset markets
 - Poor consumption smoothing
 - Skewed wealth distribution
- Can portfolio behavior help explain all this?

Heterogeneity of Portfolio Behavior

- No participation
 - Many households do not participate equity markets, 50% in US, 70% in Europe.
 - Many who hold equities only do so in a small way

Among participants: many still deviate from optimal portfolios

- Make only very infrequent adjustments inertia
- Adjust but based on past returns (miss market timing)
- "Sophisticated" investors earn higher return by increasing risk
- Want to include these different investors in our model.

Heterogeneity of Preferences and Beliefs

Heterogeneity in portfolio behavior could result from

- Heterogeneity in preferences
 - Survey data: a wide dispersion in attitudes towards risk
 - Risk attitudes can be influenced by wealth, education, gender, experiences, and personality.
- Heterogeneity in beliefs
 - Survey data : a significant heterogeneity in beliefs on asset return and volatility
 - Different forecasts also reflect heterogeneity in beliefs
- Can this explain why those who trade, trade differently?

What We Do

- Extend our methodology to compute the equilibria of economies with more heterogeneities
 - In addition to heterogeneity in trading technologies
 - Now includes heterogeneity in preferences and beliefs
- One quantitative experiment
 - Focus on heterogeneity in beliefs
 - Introduce recency bias: volatile beliefs

Environment

- Aggregate endowment $Y_t = \exp(z_t) Y_{t-1}$ comes in two forms
 - tradeable output $(1 \gamma) Y_t$ depends on z^t
 - non-tradeable output $\gamma Y_t \eta_t$ depends on η_t too
- Idiosyncratic shocks
 - η are i.i.d. across households and $E\{\eta_t|z^t\}=1$
 - $\pi(z^t, \eta^t)$ is probability of observing event (z^t, η^t)
- For now, assume a continuum of ex ante identical households with CRRA utility
- Our methodology builds on Arrow-Debreu environment

Arrow-Debreu Economy

With standard Arrow-Debreu economy, household *i* chooses consumption sequence $c_t^i(z^t, \eta^t)$ to

$$\max_{\left\{c_t^i\right\}} \sum_t \sum_{(z^t,\eta^t)} \beta^t \frac{c_t^i(z^t,\eta^t)^{1-\alpha}}{1-\alpha} \pi(z^t,\eta^t)$$

s.t.
$$\sum_{t} \sum_{(z^t,\eta^t)} \left\{ \gamma Y(z^t) \eta_t - c_t^i(z^t,\eta^t) \right\} \widetilde{P}(z^t,\eta^t) + \omega_0 \ge 0.$$

- subject to present-value budget constraint
- $\widetilde{P}(z^t, \eta^t) = P_t(z^t)\pi(z^t, \eta^t)$ is the time zero state price.
- ω_0 is the initial wealth.
- $\gamma Y(z^t) \eta_t$ is risky "labor" income

Add Trading Technologies

- Trading Technologies: restrictions on asset holdings over time
- How to impose restrictions on asset holding in time zero trading problem?
 - Remember that "Arrow" = "Arrow-Debreu"
 - Net assets $(a_t(z^t, \eta^t)) = \text{net savings}$
 - $a_t(z^t, \eta^t)$ must be consistent with their consumption plan

 $S^{i}(z^{t},\eta^{t}) = \sum_{\tau \geq t} \sum_{(z^{\tau},\eta^{\tau})} \widetilde{P}(z^{\tau},\eta^{\tau}) \left(\gamma Y(z^{\tau})\eta_{\tau} - c(z^{\tau},\eta^{\tau})\right)$

$$= -a_t(z^t, \eta^t)\widetilde{P}(z^t, \eta^t)$$

• Hence, any restriction on $a_t(z^t, \eta^t)$ will also limit [·].

Examples on Trading Technologies

Debt bounds

$$a_t(z^t, \eta^t) \geq \underline{D}(z^t),$$

No contingent claim on idiosyncratic shocks (Z-com traders)

$$a_t(z^t, \widehat{\eta}^t) = a_t(z^t, \eta^t)$$
, for all $\widehat{\eta}^t$ and η^t

Fix portfolio

$$\frac{a_t(z^t,\eta^t)}{R^p(z^t)} = \frac{a_t(\hat{z}^t,\hat{\eta}^t)}{R^p(\hat{z}^t)} = \hat{a}_{t-1}(z^{t-1},\eta^{t-1})$$

where R^{p} is the return on the fix portfolio

Lagrangian Example

Take a household *i* with debt bounds and subject to fix portfolio restrictions as an example:

$$L = \max_{\{c,\hat{a}\}} \min_{\{\chi,\nu,\varphi\}} \sum_{t=1}^{\infty} \beta^{t} \sum_{(z^{t},\eta^{t})} \frac{c_{t}^{i}(z^{t},\eta^{t})^{1-\alpha}}{1-\alpha} \pi(z^{t},\eta^{t}) + \chi^{i} \left\{ \sum_{t\geq 1} \sum_{(z^{t},\eta^{t})} \widetilde{P}(z^{t},\eta^{t}) \left[\gamma Y(z^{t})\eta_{t} - c^{i}(z^{t},\eta^{t}) \right] + \mathcal{O}(z^{0}) \right\} + \sum_{t\geq 1} \sum_{(z^{t},\eta^{t})} \nu^{i}(z^{t},\eta^{t}) \left\{ \begin{array}{c} S^{i}(z^{t},\eta^{t}) \\ -\widetilde{P}(z^{t},\eta^{t})\hat{a}(z^{t-1},\eta^{t-1})R^{p}(z^{t}) \end{array} \right\} + \sum_{t\geq 1} \sum_{(z^{t},\eta^{t})} \varphi^{i}(z^{t},\eta^{t}) \left\{ \frac{D_{t}^{i}(z^{t})\widetilde{P}(z^{t},\eta^{t}) - S^{i}(z^{t},\eta^{t})}{2} \right\}.$$

where

$$S^{i}(z^{t},\eta^{t}) = \sum_{\tau \geq t} \sum_{(z^{\tau},\eta^{\tau})} \widetilde{P}(z^{\tau},\eta^{\tau}) (\gamma Y(z^{\tau})\eta_{\tau} - c(z^{\tau},\eta^{\tau})).$$

Time and State Varied Multiplier

Recursive multiplier (Marcet and Marimon(1998))

 $\zeta^{i}(z^{t},\eta^{t}) = \zeta^{i}(z^{t-1},\eta^{t-1}) + \nu^{i}\left(z^{t},\eta^{t}\right) - \varphi^{i}(z^{t},\eta^{t})$

All traders have first-order conditions

$$\beta^t u'(c_t^i(z^t,\eta^t)) = \zeta^i(z^t,\eta^t) P_t(z^t).$$

where $\zeta^{i}(z^{t}, \eta^{t})$ varies to satisfy constraints on net savings and $P_{t}(z^{t})$ is the state price.

 Law of motion on multiplier + FOC in consumption ⇒ Euler equations

Consumption Allocations

The FOCs with respect to consumption for all traders:

$$\beta^t c_t^i(z^t, \eta^t)^{-\alpha} = \zeta^i(z^t, \eta^t) P_t(z^t)$$

► together with resource constraints $C_t(z^t) = \sum_i c_t^i(z^t, \eta^t) \mu_i$

imply the consumption share rules

$$c_t^i(z^t,\eta^t) = \left(\frac{\zeta^i(z^t,\eta^t)^{-1/\alpha}}{\sum_i \zeta^i(z^t,\eta^t)^{-1/\alpha}\mu_i}\right) C(z^t) \,.$$

• $h_t(z^t) \equiv \sum_i \zeta^i(z^t, \eta^t)^{-1/\alpha} \mu_i$ is the one key moment

Price Aggregation

FOCs and consumption share rules imply that

$$P_t(z^t) = \beta^t C(z^t)^{-\alpha} h_t(z^t)^{+\alpha}.$$

Perturbed version of Breeden-Lucas stochastic discount factor

$$m_{t+1} \equiv \frac{P_{t+1}(z^{t+1})}{P_t(z^t)} = \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\alpha} \left(\frac{h_{t+1}}{h_t}\right)^{+\alpha}$$

- standard part from a representative CRRA agent
- this is the new part
- Depends on common homogeneous preferences

Computation

Stochastic discount factor

$$m_{t+1} \equiv \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\alpha} \left(\frac{h_{t+1}}{h_t}\right)^{+\alpha}$$

How to compute?

- Conjecture on state contingent prices, h_{t+1}/h_t
- Use individual multiplier ζ^i as state variable
- Compute the law of motion on ζⁱ for each individual
- Update h_{t+1}/h_t : moments of multiplier distribution
- Equilibrium is fixed point $F[h_{t+1}/h_t] = [h_{t+1}/h_t]$.

Heterogeneity in Preferences and Beliefs

Previously, all households had same CRRA preferences, discount rates and beliefs. Now agent of type i has preferences

$$\sum_{\geq 1,(z^t,\eta^t)}^{\infty} (\beta_i)^t u^i (c_t^i(z^t,\eta^t)) \tilde{\pi}^i(z^t,\eta^t),$$

- $u^i(c_t^i(z^t, \eta^t))$ is strictly concave
- own discount rate β_i

t

• $\tilde{\pi}^i(z^t, \eta^t)$ subjective probability of agent *i* on event (z^t, η^t) .

New Trick to Get Aggregation

How can we apply the price aggregation result without common homogeneous preferences?

Answer: Create reference economy

Reference economy has

- fraternal twin for each trader with nice preferences+beliefs
- has given (same) state prices
- uses social planning weights to allocate consumptions
- choose weights so consumptions are the same between twins.

$$\sum_{i} \left\{ \beta^{t} \sum_{(z^{t},\eta^{t})} \frac{1}{\bar{\zeta}^{i}(z^{t},\eta^{t})} \bar{u}(\bar{c}(z^{t},\eta^{t})) - P(z^{t})\bar{c}(z^{t},\eta^{t}) \right\} \mu_{i}.$$

Mapping to Reference Trader

The FOC for a type i household

 $\beta_i^t u'(c_t(z^t,\eta^t))\tilde{\pi}^i(z^t,\eta^t) = \zeta^i(z^t,\eta^t) P_t(z^t)\pi(z^t,\eta^t)$

 Consider a reference trader, who has standard CRRA preference and correct belief.

$$\beta^t \bar{c}^i(z^t, \eta^t)^{-\bar{\alpha}} = \bar{\zeta}^i(z^t, \eta^t) P_t(z^t),$$

• Define an **adjusted multiplier**, $\bar{\zeta}^i(z^t, \eta^t)$ such that $c^i = \bar{c}^i$

$$\left(\frac{\bar{\zeta}^{i}(z^{t},\eta^{t})P_{t}(z^{t})}{\beta^{t}}\right)^{-1/\bar{\alpha}} \equiv u'^{-1}\left(\frac{\zeta^{i}(z^{t},\eta^{t})\pi(z^{t},\eta^{t})P_{t}(z^{t})}{\beta^{t}_{i}\tilde{\pi}^{i}(z^{t},\eta^{t})}\right)$$

Mapping to Reference Trader

- With these **adjusted multiplier** for the reference traders:
 - If markets clear in the economy with reference traders, they do in the original one too.
 - The same price aggregation applies in reference economy
 - Need law of motion for individual multipliers from original economy
 - Need (change of variable) reference trader multipliers to compute new h
- Also works on recursive utility or robust utility
- Simple mapping trick with a wide range of applications

Computation

Stochastic discount factor

$$m_{t+1} \equiv \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\alpha} \left(\frac{\bar{h}_{t+1}}{\bar{h}_t}\right)^{+\alpha}.$$

- How to compute?
 - Conjecture on state contingent prices, \bar{h}_{t+1}/\bar{h}_t
 - Use ζⁱ as state variable
 - Compute the law of motion on ζⁱ for each individual
 - Map ζⁱ into ζ̄ⁱ
 - Update \bar{h}_{t+1}/\bar{h}_t : moments of adjusted multiplier distribution
 - Equilibrium is fixed point $F[\bar{h}_{t+1}/\bar{h}_t] = [\bar{h}_{t+1}/\bar{h}_t]$.

Some Remarks

- Key to our methodology: price aggregation
- Compute via simple iterative method
- No need to find prices to each market
- Allow rich asset markets
- Price aggregation applies to finite agent case

Quantitative Exercise: Heterogeneity in Beliefs

Why beliefs?

- Counter-cyclical market price of risk
- Survey evidence: Greenwood and Shleifer (2012)
 - expectations of returns are
 - positively correlated with past stock market returns and
 - negatively correlated with future returns
- Adjust portfolio based on past returns (miss market timing)

Quantitative Exercise: Heterogeneity in Beliefs

Evidence on missed market timing: US equity mutual funds

Volatile beliefs

- ▶ Volatile beliefs: traders form their belief $\tilde{\pi}(z^t, \eta^t)$
 - with probability κ on the ergodic transition $\pi(z_{t+1}|z_t)$ and
 - with probability 1κ by the observed transition frequencies during the past 4 periods.
- Consistent with forecasting in a non-stationary world
 - Agent who thinks that the transition matrix might have changed a fixed number of periods ago.
 - Similar strategies are followed by many forecasting models which truncate the data or overweight recent observations.
- (Standard trader has $\kappa = 1$).

Bayesian Regime Switching

Bayesian regime-switching belief traders believe that

- There is high and a low regime
- In high regime more likely to get high growth rate.
- Regime switching governed by Markov transition matrix
- Regime cannot be observed so infer from past history
- Recursive relationship for probability of high regime.
 - \blacktriangleright Use past history to update beliefs that regime is high, ω
 - High growth rates raise this probability.
- (Standard trader has $\pi^h = 1$, $\pi^l = 0$, and no persistence).

Calibration

- Preferences: CRRA with $\alpha = 5$ and $\beta = .95$
- Endowments:
 - Aggregate shock
 - iid version of Merha-Prescott
 - Two state Markov process
 - Idiosyncratic risk calibrated to Storeslatten et al (no CCV)
 - Two state Markov process
- Assets: equity, bond and aggregate-state contingent claim
- Non-negative net saving constraints for all agents

Calibration

- Fraction of traders
 - ▶ 50% does not participate equity market. (bond only)
 - 40% holds the market
 - 10% aggregate-complete (Z-com traders)
- Among the 10% of Z-com traders
 - Case 1: all of them have correct belief, $\kappa = 1$
 - Case 2: 1/2 have **volatile beliefs** with $\kappa = 0.75$
 - ► Case 3: 1/2 have Bayesian regime-switching beliefs.

Variation in Beliefs Results

	Baseline	Volatile	R-S
$\frac{\sigma(m)}{E(m)}$	0.41	0.41	0.42
Std $\left\{ \frac{\sigma(m)}{E(m)} \right\}$	2.78	8.07	9.28
$E(R_f)$	1.93	2.04	2.04
$E(\omega_z)$	0.79	0.89	0.88
$E\left(\omega_{\tilde{z}} ight)$	-	0.69	0.70
$Corr(\omega_z, SR)$	0.93	0.98	0.98
Corr $(\omega_{\tilde{z}}, SR)$	-	-0.93	-0.87
$E(W_z/W)$	2.15	2.33	2.36
$E(W_{\tilde{z}}/W)$	-	1.91	1.86

 ω : equity share of portfolio, W: value of wealth

Variation in Beliefs Results

	Baseline	Volatile	R-S
$\frac{\sigma(\triangle \log(c_z))}{\sigma(\triangle \log(C))}$	2.99	2.92	2.92
$\frac{\sigma(\triangle \log(c_{\tilde{z}}))}{\sigma(\triangle \log(C))}$	-	3.07	3.12
$\frac{\sigma(\triangle \log(c_{cap}))}{\sigma(\triangle \log(C))}$	3.38	3.37	3.37
$\frac{\sigma(\triangle \log(c_{bond}))}{\sigma(\triangle \log(C))}$	3.59	3.57	3.57
$\frac{\sigma(\triangle \log(C_z))}{\sigma(\triangle \log(C))}$	6.98	7.08	7.12
$\frac{\sigma(\triangle \log(C_{\tilde{z}}))}{\sigma(\triangle \log(C))}$	-	7.02	7.00
$\frac{\sigma(\triangle \log(c_{cap}))}{\sigma(\triangle \log(C))}$	1.00	1.00	1.00
$\frac{\sigma(\triangle \log(c_{bond}))}{\sigma(\triangle \log(C))}$	0.91	0.92	0.92

 c_i is individual consumption and C_i is group average

Volatile Beliefs

Yili Chien, Harold Cole and Hanno Lustig

Asset Pricing with Heterogeneous Agents

Regime-Switching Beliefs

Yili Chien, Harold Cole and Hanno Lustig

Asset Pricing with Heterogeneous Agents

Tentative Conclusion

- New methodology
 - Compute a G.E. model with a rich degree of heterogeneity
 - Heterogeneity in trading technologies, preferences and beliefs
- Volatile and R-S belief active traders
 - Volatility of market price of risk up a lot
 - Missed market timing
- Disciplined by trading behavior + belief survey data.

Can also report on risk aversion and discount differences.