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ABSTRACT. Time-to-pregnancy (TTP) is the duration from the time a couple starts trying
to become pregnant until they succeed. It is considered one of the most direct methods to measure
natural fecundity in humans. Statistical tools for designing and analysing time to pregnancy studies
belong to survival analysis, but several features require special attention. Prospective designs are
difficult to carry out and retrospective (pregnancy-based) designs, being widely used in this area,
do not allow efficiently including couples remaining childless. A third possible design starts from
a cross-sectional sample of couples currently trying to become pregnant, using current duration
(backward recurrence time) as basis for the estimation of TTP. Regression analysis is then most
conveniently carried out in the accelerated failure time model. This paper surveys some practical
and technical-statistical issues in implementing this approach in a large telephone-based survey, the
Epidemiological Observatory of Fecundity in France (Obseff).
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1. Introduction

TTP is the duration from the time a couple starts attempting to become pregnant until they
succeed. It is considered one of the most direct methods to measure natural (biological) fecun-
dity in humans. The tools for designing and analysing TTP-studies form a special subfield
of reproductive epidemiology, relying on careful use of survival analysis techniques, for a
review, see Scheike & Keiding (2006).

As is usual in epidemiology, prospective (follow-up) designs are the easiest to analyse, but
a purely incident cohort study is difficult to organize, primarily because of the fact that some
couples may not plan to start a pregnancy attempt long in advance.

There are variants of the prospective design in which recruitment is easier. A particular
version is the historically prospective design, in which couples (in fact, usually women) are
asked to recall how long they attempted to become pregnant for well-defined occasions, and
how each of these attempts ended. Such surveys may be influenced by recall biases, but may,
in principle, be analysed as prospective follow-up studies.

The most common retrospective design is based on asking women who have become pregnant,
how long it took them. This is easier to conduct, but hard to analyse, because it condi-
tions not only on success of the attempt (hence excluding infertile and underrepresenting
sub-fertile), but also on couples not having given up, a somewhat under-emphasized feature
which can seriously distort effect estimates for determinants (such as the age of the woman) that
may affect both fecundity and the risk of giving up trying (Basso et al., 2000; Juul et al., 2000).
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In view of the practical difficulties with the prospective design and the interpretative prob-
lems with the pregnancy-based design Keiding et al. (2002) described the possibility of basing
the design on a cross-sectional survey of couples (women) who are asked whether they are
currently attempting to get pregnant, and if so, for how long have they attempted. Based on
the distribution of this current duration it is in principle possible to derive the distribution of
TTP. This idea had earlier been proposed by Weinberg & Gladen (1986).

Epidemiologically the current duration design shares with the prospective design the abil-
ity to include infertile and subfertile couples, as well as the inability to register accidental
pregnancies. These are pregnancies without a TTP, which are sometimes considered to cor-
respond to a TTP of zero, a probably very strong assumption. But like the pregnancy-based
design, the survey will only identify those who have not given up trying.

The purpose of this paper is to discuss the statistical aspects of the current duration design.
We base the exposition on experiences primarily gathered around the design and analysis
of the Observatoire Épidémiologique de la Fertilité en France (Observatory of Fecundity in
France, Obseff) (Slama et al., in press).

The idea of inferring the distribution of a duration variable from the distribution of incom-
plete durations until a given time has been discussed for many years, particularly in social
science and demography contexts. A prominent example is the ‘open birth intervals’ – the
duration between the last birth and the time of a survey. In an important paper Allison (1985)
summarized these developments and focused on the connection to survival analysis, as we
shall also do here.

Other examples of the modelling problem include the study by Ali et al. (2001) of cur-
rent duration of use of contraceptive pills. Yamaguchi (2003), working on residential
mobility, proposed using a generalized Gamma model for the ‘last episode’ duration since the
last move before a survey. He then went on to introduce the accelerated failure time (AFT)
regression model which allows direct inference on the regression coefficients in the under-
lying mobility model from a fit to the durations. Cristóbal et al. (2007) used local poly-
nomial smoothing to develop non-parametric regression estimators based on current
duration data.

In sections 2–4 we introduce the two classical designs of TTP studies: prospective and
retrospective (pregnancy-based) as well as the proposed current duration design. We focus
throughout on concrete details such as adequate statistical modelling of the fact that many
couples give up before they succeed in getting pregnant and how to handle couples who ini-
tiate fertility treatment. We outline non-parametric and parametric statistical modelling of
current duration data in sections 5 and 6, emphasizing the sensitivity of the estimated den-
sities of current duration near zero. Following Yamaguchi (2003), we describe in section 7,
AFT models for regression analysis of current duration data; section 8 is devoted to a survey
of censoring problems for the current duration approach; section 9 illustrates the developed
methods with our experience from the French Observatory of Fecundity, and section 10 con-
tains a brief discussion of the current duration approach in this context, with a few references
to other recent applications of the approach.

2. Classical designs for TTP analysis: prospective design

We start the exposition with the prospective cohort design, following a group of couples from
initiation until conception

initiation
�(t)−→ conception (1)

with t = duration since initiation and �(t) the hazard rate of conception.

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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This is a simple survival analysis problem where some durations may be ‘administratively’
censored because conception had not yet happened at the end of study.

However, the attempt to become pregnant may be discontinued before conception
happens. Discontinuation can have many explanations: the couple may split or one of them
may die, they may give up after waiting very long, the woman may become too old. (A
special role is played by various types of initiating fertility treatment, to which we return
later).

The simple survival analysis (1) is then modified to the competing risks situation

π(t) conception 
initiation

φ(t) giving up 

(2)

where administrative censoring may again happen.
Most discussions of the prospective design in the literature (e.g. Buck et al., 2004; Tingen

et al., 2004) seem to aim for an estimate of the partial survival function exp(−∫ t
0 �(s) ds),

that is, regarding ‘giving up’ as independent censoring of the biologically determined TTP
distribution in a world where nobody gives up.

One will however expect that both intensities �(t) and �(t) will often be affected by the
same covariates (e.g. age of the woman), so that a necessary condition for independent cen-
soring will be that these covariates are included in the statistical model in which case
censoring may be considered conditionally independent given these covariates. See Andersen
& Keiding (2012) for a recent exposition of interpretations in competing risks analysis.

Another possibility is to take a strict competing risks point of view, focusing on the cumu-
lative incidence, that is, the probability

∫ t

0
exp

(
−
∫ s

0
(�(u)+�(u)) du

)
�(s) ds

that conception happens before duration t among all who started at duration 0. This quan-
tity is not used much in practice (if at all), perhaps because it has lost the desired property of
the ‘pure’ TTP of depending mainly on biological, as opposed to behavioural, determinants.

The main problem with the prospective design is the difficulty of recruiting participants,
particularly if these are intended to be representative of a well-defined population (Joffe et al.,
2005). As a result, prospective studies in the pure sense are usually quite small (a few hundred
participants), see Bonde et al. (1998) and Buck et al. (2004).

2.1. Alternative prospective designs

A modification of the prospective design is the historically prospective design where couples
(in practice usually women) are asked to recall a specific pregnancy attempt (such as the first,
or the most recent, possibly still ongoing) and report how long they tried and if and how the
attempt ended. For an example see Karmaus & Juul (1999).

Another modification could be termed a prevalent cohort design where couples identified
at a cross-sectional sample as currently trying (with known initiation time) are followed up.
An interesting web-based version of this design is currently running in Denmark (Mikkelsen
et al., 2009; Wise et al., 2011).

Analytically both of these modifications are analogous to the ‘simple’ or ‘pure’ prospective
design above, using proper delayed entry techniques.

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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2.2. Prospective design and fertility treatment

Couples who have waited for some time to conceive will often seek medical help to become
pregnant. This can take various forms, from medical consultation leading to prescriptions of
hormones or other drugs, to full-fledged assisted reproduction procedures.

In the present study we focus on the formal problems around including decisions to seek
medical help by restricting attention to one general action ‘fertility treatment’, the precise
practical interpretation of which will vary according to context.

We then have the multi-state model

conception

π(t) ρ(t)

initiation              (t)τ fertility treatment 

φ(t) γ(t)
giving up 

(3)

where �(t) and �(t) may of course also depend on duration since start of fertility treatment.
Two issues have arisen here: first, the original purpose of TTP studies was to approximate

a direct study of couples’ natural biological fecundity. One may argue that it is difficult to
maintain this interpretation if medical intervention is allowed, even though such intervention
may be increasingly common in today’s world. On the other hand, it is not without problems
either to consider fertility treatment as censoring or as competing risk.

If one regards fertility treatment as censoring, typically a hypothesis of conditionally inde-
pendent censoring needs to be justified. In this case, the statistical model must contain those
relevant risk factors (age of the woman being again a generic example) that may affect both
the chance of conception and the inclination to seek fertility treatment.

Another possibility would be to focus on a cumulative incidence-type measure such as
probability of (conceiving before t, before giving up and before starting fertility treatment)

=
∫ t

0
exp

(
−
∫ s

0
(�(u)+�(u)+ �(u)) du

)
�(s) ds

but we would then get even further away from the original intention of interpreting TTP as
a reasonably pure indicator of biological fecundity.

2.3. Time to fertility treatment

A variant of the above analysis considers time to fertility treatment in the prospective design.
In the framework of model (3) Moreau et al. (2010) essentially interpreted conception and
giving up as censorings, focusing on the partial survival function exp(−∫ t

0 �(s) ds). This has
the worrisome interpretation of describing waiting time to initiating fertility treatment in a
world where conceptions (and giving up) never occur.

Here, an interesting cumulative incidence-type quantity may be the probability of initiating
fertility treatment before time t among all couples starting an attempt to become pregnant:

∫ t

0
exp

(
−
∫ s

0
(�(u)+�(u)+ �(u)) du

)
�(s) ds.

This is being studied by Duron-Martinaud et al. (submitted), using a prevalent cohort
design.

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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3. Classical designs for TTP analysis: retrospective design

The typical retrospective design is based on pregnant women, interviewed at a maternity clinic
or around birth of the child. Statistically this means that we condition on ending in concep-
tion in model (2):

π (t) conception

initiation

ϕ(t) giving up.

Although most sources on retrospective TTP are surprisingly implicit about this, the in-
tended target distribution is presumably again the partial density

�(t) exp
(

−
∫ t

0
�(s) ds

)

generated by the hazard �(t). This is TTP in a world where nobody gives up.
However, the retrospective design estimates the distribution of conception given that it

happens before giving up, with density

�(t) exp
(

−
∫ t

0
[�(s)+�(s)] ds

)
∫ ∞

0
�(t) exp

(
−
∫ t

0
[�(s)+�(s)] ds

)
dt

(4)

where there is usually no direct information on the distribution of time to giving up.
The consequences were exemplified by Scheike & Keiding (2006); for a simple example,

assume that �a(t) and �a(t) are both constant in t but depend on the woman’s age a at
initiation. This corresponds to assuming that the model (2) is generated from independent
exponential waiting times to conception (T ) and giving up (U ) with hazards �a and �a

(we omit the subscript a for ease of notation). The joint distribution (T, U ) has density

�� e−�t−�u

giving the conditional distribution (T , U |T < U ) the density

(�+�)� e−�t−�u

and the density (4) of the observed distribution T |T < U reduces to

(�+�) e−(�+�)t.

Compared to the partial density

� e−�t

we see that we get an exponential distribution with a higher hazard: �+� rather than �.
There is a solid biological evidence that the conception rate �a decreases with age a, partic-

ularly for a > 35 years (Fédératíon CECOS et al., 1982; Dunson et al., 2004). However, if the
hazard �a of giving up increases sufficiently fast with age a, this may well outweigh the de-
crease in �a, yielding an apparent, counter-intuitive increase with age of the conception rate, as
often empirically observed (e.g. Jensen et al., 2000) and illustrated in a Monte-Carlo simulation
assuming a heterogeneous fecundity pattern in the population (Juul et al., 2000). Independently
of Jensen et al. (2000), Basso et al. (2000) gave a mathematical analysis in discrete time similar to
the one in continuous time above as well as a Monte-Carlo simulation assuming heterogeneous
but age-independent fecundabilities across the population. Basso et al. (2000) also analysed

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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data from a European study, showing that the hazard of giving up was strongly increasing with
age in Denmark but age-independent in Northern Italy.

3.1. Censoring

In addition to the special character of the event of giving up trying, there are other, less
controversial types of censoring in TTP studies.

Purely administrative censoring (end of study), so well known from prospective follow-up,
is in principle absent from the retrospective approach. However, it is quite common to focus
on the beginning of the estimated TTP distribution and artificially censor it after about one
or two years, motivated partly by lack of confidence in the precision of large retrospectively
recalled TTPs, partly by the less interesting nature and validity of the right tail of the TTP
distribution. Finally, by focusing on the first year of the TTP distribution, most of the inter-
ference of fertility treatment will be avoided.

4. Current duration design

In the current duration design a sample of women (formally: couples) are asked whether they
are currently trying to become pregnant, and if so, for how long they have tried. This design
was first proposed by Weinberg & Gladen (1986) who used discrete time models. We follow
here the continuous time derivations by Keiding et al. (2002), see van Es et al. (2000).

In the simplest model (2) the survey will reach those who are currently trying because they
have not had a conception and they have not given up. Using again T for time to conception
and U for time to giving up we hence focus on the underlying distribution of X =T ∧U .

(Note that in the simple example of independent exponentials X has density (�+�) e−(�+�)x;
exactly the same as the imposed target distribution in the retrospective design. In section 8,
we return to the discussion of other censoring problems, such as how to handle fertility treat-
ment).

In the current duration design one observes Y, the time elapsed since initiation, in re-
newal process contexts termed backward recurrence time. If initiations happen in calendar
time according to a non-homogeneous Poisson process with intensity �(t), then the den-
sity g(y, t0) of the current durations at time t0 is proportional to �(t0 −y)S(y), where S(x)=∫ ∞

x f (u) du is the survival function of X =T ∧U corresponding to the density function f (x).
We assume finite mean of X : E(X )=∫∞

0 S(x) dx <∞.
Over the short time spans usually under study it will be reasonable to assume steady state

with �(t)=� constant, in which case the density

g(y, t0)=g(y)=S(y)/E(X )

is decreasing in y and finite at 0 :0 <g(0) <∞. The survival function S(x) may thus be directly
obtained from an estimate ĝ of g as

Ŝ(x)= ĝ(x)/ĝ(0).

5. Non-parametric estimation in the current duration design

As surveyed by Keiding et al. (2002) non-parametric maximum likelihood estimation (NPMLE)
of the decreasing density g(x), finite at 0, has been studied carefully since Grenander (1956).
The key problem identified by Woodroofe & Sun (1993) is that the NPMLE ĝ(x) is incon-
sistent at 0: the probability limit for large samples of ĝ(0+) is larger than g(0).

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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Balabdaoui et al. (2011) offered the interesting intuitive explanation of this inconsistency
that since the NPMLE does not know whether or not g(0) is finite, it overshoots.

Sun & Woodroofe (1996) proposed a penalized NPMLE consistent at 0 with an intricate
evaluation of the necessary calibration constants.

Another possibility is to note that since ĝ(	) is consistent for 	> 0, we always have the con-
sistent estimator ĝ(x)/ĝ(	) of the conditional survival function S(x)/S(x)S(	) of X given that
X > 	. This was suggested by Hans van Houwelingen (see Keiding et al., 2002) and carried
through mathematically by Kulikov & Lopuhaä (2006). Keiding et al. (2002) illustrated the
consistency problems on simulated data as well as on data from a large European TTP study;
see the next section for further graphical illustrations.

Finally, Pal (2009) combined the above approaches with that of Banerjee & Wellner (2001)
to obtain a parameter-free limit distribution of the penalized likelihood ratio.

6. Parametric estimation in the current duration design

The non-parametric approach in the previous section is not yet quite ready for routine practi-
cal use, and we have explored possible parametric models suitable for this purpose: remember
that the density g(y) of current duration needs to be decreasing and finite at 0. This rules out
the log-normal and almost all Weibull models.

Keiding et al. (2002) noted that if Y is Pareto (
, �), that is, with density

g(y)= 
�
(1+�y)
+1

and with survival function (1+�y)−
, then the survival function of X is

S(x)=g(x)/g(0)= (1+�x)−
−1

or Pareto (
+1, �).
Observe that the Pareto distribution may be interpreted as a Gamma-mixture of exponen-

tial distributions: if Y |� is exponential, g(y |�)= e−�y, and � is Gamma (
, �), then Y is Pareto
(
, �). Hence, this choice corresponds to Weinberg and Gladen’s (1986) discrete-time choice
of a beta-mixture of geometric distributions.

Yamaguchi (2003) parameterized the distribution of log X by the more flexible location-
scale family of generalized Gamma distributions earlier studied by Farewell & Prentice (1977).
In addition to location and scale, there is a shape parameter 
, giving the underlying density
for W = (log X −�)/
, as

h(w)= |
|
�(
−2)

(
−2)

−2

exp[
−2(
w− e
w)], 
 /=0

= 1√
2�

exp(−w2/2), 
=0.

See Yamaguchi (2003) for explicit expressions for the density g of Y.
Maximum likelihood estimation is directly feasible for these parametric models; because of

the complexity of the generalized Gamma likelihood we calculate confidence bounds using a
bootstrap approach.

6.1. Illustrations of NPMLE

Figure 1 shows the true density function g of current durations (black curve) distributed
according to a generalized Gamma distribution with realistic parameter values (
=0.7,

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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�=0.6, 
=2.2). Ten data sets (n=1000) of current durations were simulated from this distri-
bution and fitted by maximum likelihood (red curves). The blue curves are the (unpenalized)
NPMLE. The values of ĝ(0) are indicated by tick-marks; the true value g(0)=0.17, the esti-
mated ĝ(0):

Simulation

1 2 3 4 5 6 7 8 9 10

Gen. Gamma fit 0.15 0.17 0.19 0.19 0.17 0.20 0.14 0.15 0.12 0.16

NPMLE 0.18 0.45 1.58 0.42 0.14 0.32 0.13 0.19 0.44 5.11

Figure 2 shows the corresponding true survival function of TTP (black curve). The corres-
ponding estimated generalized Gamma-based survival functions for TTP are the red curves,
which fit nicely. The blue curves are ĝ(x)/ĝ(0) with ĝ the unpenalized NPMLE. The overshoot
of ĝ(0) implies that some of the curves are too low.

Figure 3 shows the same curves, conditional on T ≥1 and now fitting well.
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Fig. 1. Generalized Gamma density function (‘true’, black) from which ten samples (n=1000) were
simulated. Generalized Gamma fits (red) and NPMLE fits (blue). True g(0)=0.17, estimated g(0) indi-
cated by tick marks and in the legend if outside the graph.
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Fig. 2. Generalized Gamma distribution survival function of TTP (‘true survival’, black curve) with
estimated (red, blue) derived from the densities of current duration in Fig. 1.

6.2. Comparison of parametric models and sensitivity to data precision

As we shall see in the practical application, it is difficult to distinguish the fit of the above
two classes of parametric models based on usual goodness-of-fit methods. A further prob-
lem, illustrated primarily for the non-parametric approach but also relevant for parametric
modelling, is the sensitivity of the estimation algorithms to observations close to 0. By the
nature of current duration data, it is unrealistic to believe that the survey data are precise
down to days, so we found it useful to evaluate how much the parameter estimates changed
if observations were grouped into realistic intervals.

We simulated data to imitate realistic distributions (sample size: 1000) of current durations
from our practical experience, to be presented below. Besides Pareto and generalized Gamma
distributions, we also simulated from a truncated normal distribution, a Gamma distribution and
a t distribution. Maximum likelihood estimation was then performed on the directly simulated
continuous data as well as on data grouped according to the following schedules, all in months:

(i) [0, 1), [1, 2), [2, 3), . . .;
(ii) [0, 1.5), [1.5, 3), [3, 4.5), . . .;
(iii) [0, 0.5), [0.5, 1.5), [1.5, 2.5), . . .;
(iv) [0, 1.5), [1.5, 2.5), [2.5, 3.5), . . .; and
(v) [0, 0.5), [0.5, 1), [1, 1.5), . . ..

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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Fig. 3. Generalized Gamma distribution survival function of TTP (‘true survival’, black curve) with
estimated (red, blue) derived from the densities of current duration in Fig. 1 but, conditioned on T ≥1.

The most important results were:
For data simulated from the generalized Gamma distribution, we first used the same distri-

bution for the fit. The closest fit to the true values was obtained with schedule (v), followed by
the ‘Raw’ (i.e. continuous) data, see Fig. 4, upper panel. It was remarkable that the different
fits to the TTP distribution were almost coinciding on the ‘observed’ current duration data,
even though they yielded quite different estimated TTP.

Using instead the Pareto distribution provided almost exactly the same fit using raw data
and any of the grouping schedules, but the fit was quite different from the true distribution
(Fig. 4, middle panel).

If data were simulated from the Pareto distribution, the estimates based on the Pareto dis-
tribution fitted very nicely under all schedules. The generalized Gamma distribution fitted
well under grouping schedule (v) and reasonably under the other schedules, including raw
data (Fig. 4, lower panel).

The generalized Gamma distribution (but not the Pareto distribution) was also flexible
enough to fit the three additional distributions listed above.

Our general conclusions, based on these simulations as well as on our experience in fitting
actual data from the Obseff, are that

• the Pareto distribution is not sufficiently flexible for fitting realistic distributions, but
on the other hand robust against the grouping schedule; and

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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Fig. 4. Simulated current duration (n=1000) from parametric models fitted using the same or a differ-
ent parametric model, using various grouping schedules.

• the generalized Gamma distribution has a suitable balance between robustness and
flexibility. Concerning bias versus possible gains in robustness from different grouping
schedules, only schedule (v) would be a candidate, but there would be at most a minor
gain compared to analysing the ‘raw’ (continuous time) data.

In practice, it seems to be justified to use the ‘raw’ data.

7. Regression models for the current duration design

The transformation from current duration to underlying TTP distribution turns out to favour
accelerated failure time models, see Keiding et al. (2011) for a brief historical sketch.

If Y satisfies an accelerated failure time model with survival function

P(Y > y | z)=S0(y e�z)

where the baseline survival function S0 can belong to a parametric or more general model,
then

g(y | z)=g0(y e�z) e�z

with g0 the density of S0, and

S(x | z)=P(X > x | z)= g(x | z)
g(0 | z)

= g0(x e�z)
g0(0)

again satisfying an AFT model, this time with baseline survival function g0(·)/g0(0). As indi-
cated in section 1, this seems to have been first observed explicitly by Yamaguchi (2003).

© 2012 Board of the Foundation of the Scandinavian Journal of Statistics.
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We see that the AFT model for Y needs to satisfy that g0 is decreasing and that 0 <g0(0)
<∞ for all g0; the restriction for the AFT model for X is that all baseline distributions must
have finite expectation. The practical consequence of this simple relationship is that effects
of co-variates on time-acceleration in the underlying survival distribution X can be directly
estimated from an AFT model for Y. Full parametric specification is possible, and it is directly
seen that in the Pareto class of models discussed above, � is a scale parameter, so that a spec-
ification �= e�z would allow routine maximum likelihood estimation. Yamaguchi (2003) used
the location parameter of the generalized Gamma distribution of log X as specified above.

There have been several approaches to semi-parametric modelling in this context. Thus
Mokveld (2007), following up on preliminary work by van Es et al. (2000, 2006) derived
semi-parametric efficient estimators of the Euclidean regression parameters � with minimal
restrictions on the underlying distribution while Mukherjee (2006), in an unpublished Ph.D.
dissertation, derived a spline-based semi-parametric estimator in the spirit of Cosslett (2004).

In the present situation we have in principle full observation of all backward recurrence
times, hence the AFT model is to be fitted to uncensored data, which is just linear regression
of − log Y on z, the specification of the baseline model family (S0) essentially only affecting
the weights in this regression analysis. Therefore analysis may be performed using standard
software, an obvious initial possibility being unweighted least squares. Note that this is equiv-
alent to assuming log-normal baseline for the current durations but since the log-normal den-
sity is not everywhere decreasing, this choice has no interpretation in the above framework.

In practice, however, we prefer to work on current durations censored at some fixed time
(such as 36 months), and AFT algorithms for censored data are required. A convenient pos-
sibility is the published lss algorithm (Jin et al., 2006; Huang & Jin, 2007) which generalizes
the Buckley & James (1979) approach to AFT time models, thereby furnishing an explicitly
implemented semiparametric AFT algorithm. For uncensored data, the lss algorithm yields
rather similar results as the unweighted least squares approach.

We have noted an appealing invariance of the AFT structure when going from backward
recurrence time or current duration to underlying survival distribution. A similarly simple
structure does not in general exist for proportional hazards, for which the survival function
of Y given z is

P(Y > y | z)=S0(y)exp(�z)

with density

g(y | z)= exp(�z)S0(y)exp(�z)−1g0(y)

so that the survival function of X given z becomes

S(x | z)=P(X > x | z)= g(x | z)
g(0 | z)

=S0(x)exp(�z)−1 g0(x)
g0(0)

and this is usually not of proportional hazards form, a notable exception being if S0 is Weibull.

8. Censoring problems in analyses based on the current duration design

In the beginning of section 4 we emphasized that the current duration design necessarily
covers only those couples still trying, that is, they have neither become pregnant nor given
up trying. We had however already noted in section 3 that this feature also applies to preg-
nancy-based retrospective TTP studies.

There are two other ‘censoring’ issues common to TTP studies in general but particularly
important for the current duration design: problematic interpretability of very long reported
TTP or current durations; and how to handle fertility treatment.
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First, most formulations of the central question ‘how long have you tried’ may give equiv-
ocal answers if sexual frequency is low or contraception practices lenient (e.g. because of
recognized subfertility). It is common to restrict attention to the first year(s) of attempt, either
disregarding (truncating) long reported durations, or at least censoring them. The following
lemma is useful in this context.

Let g(y) and G(y) be the density and distribution function of current duration Y. Then the
current duration methodology is based on the fact that the survival function of the under-
lying distribution of X (= TTP∧U ) is

S(x)=g(x)/g(0).

Lemma. Consider the distribution of Y right-truncated at y0, with density

g0(y)=g(y)/G(y0)

Then for x < y0

g0(x)
g0(0)

= g(x)/G(y0)
g(0)G(y0)

=S(x)

so that for 0 < x < y0 the survival function of X is correctly recovered from the truncated dis-
tribution of Y given Y < y0.

The lemma invites the routine use of the truncation at y0 (i.e. discarding all individuals with
reported current durations larger than y0). Another possibility is to estimate S(x) from the dis-
tribution of Y censored at y0, but here the long current durations will still be playing some role.

Secondly, couples may initiate fertility treatment. As mentioned above, there are in prac-
tice various stages: contacting medical expertise, receiving hormonal treatment, various kinds
of assisted reproduction techniques; but in this exposition we simplify the situation to one
generic action ‘starting fertility treatment’. We are then in the multi-state model (3) and our
survey may hit the eligible couple either before or after starting fertility treatment, or before
conception or before giving up.

The methodology for analysis of current duration data will be directly relevant for either

(i) couples who have not become pregnant, not given up and not yet started fertility treat-
ment, corresponding to targeting the time T ∧U ∧F , F = time from initiation to fertility
treatment, in effect treating fertility treatment initiation in the same way as giving up; or

(ii) couples who have not become pregnant and not given up, disregarding the informa-
tion on fertility treatment. The interpretation here is difficult in the light of the original
ambition of studying natural biological fecundity, unless one takes the radical view
that fertility treatment is useless. However, this approach can make sense if one aims
to characterize the waiting time of couples in a ‘real life’ situation taking into account
the fact that persistency in trying is not infinite and that treatments exist, with a cer-
tain degree of efficiency.

There is of course the third possibility: for those who have started fertility treatment but not
yet become pregnant and not yet given up, one will in principle have retrospective informa-
tion on the complete waiting time from initiation to fertility treatment, as well as the duration
on fertility treatment. We have not attempted to derive the necessary methodology for anal-
ysis of this information, and we suspect that it may not be defendable to proceed along this
course in practical cases.

9. The Observatory of Fecundity in France

The current duration approach was used in a large French telephone survey on TTP. See
Slama et al. (2006) for a detailed feasibility study and Slama et al. (to appear) for the full
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study. Women were eligible if they were aged 18–44 years, were currently living with a male
partner, and neither woman nor man used any method to avoid pregnancy. Women who did
not have a sexual intercourse in the last two months before interview were excluded, as were
women who had delivered in the last three months before the interview. For the purpose of
the present illustration, we exclude women who had initiated fertility treatment. The prin-
cipal response variable, current duration of unprotected intercourse (CDUI) was defined as
the time elapsed between the start of the period of unprotected intercourse and the interview,
see Slama et al. (2006) for details. It follows from the exposition above that the underlying
estimand ‘TTP’ then is to be interpreted as time from initiation to the minimum of (dis-
covered) pregnancy, end of attempt for other reasons, and initiation of fertility treatment.
For full details of the main study, see Slama et al. (to appear).

We illustrate here the above methodology on the 268 eligible women with no previous chil-
dren and no missing values for the covariates of interest.

There were some very large ‘current durations of unprotected intercourse’. Since the inter-
pretation of these responses could be doubtful (did the couples really intend to become preg-
nant?) we decided to artificially censor all reported current durations at 36 months. This also
reduced the dependence of the fit on the tail of the generalized Gamma distribution.

We first fit Pareto and generalized Gamma distributions to the observed distribution of
CDUI, see Fig. 5 which indicates very similar fit for these two classes of distribution. How-
ever, as seen from Fig. 6, and Table 1, the estimated distributions of TTP differ, even in
view of the estimation uncertainty expressed by the pointwise bootstrap confidence limits.
Our informal simulation studies and general experience with the models make us believe that
the greater flexibility of the generalized Gamma distribution family makes that fit the more
credible one; but this cannot be judged from the comparison of fits in Fig. 5.

Current duration of unprotected intercourse (months)
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Fig. 5. Women with no previous children in the Obseff study. Observed current durations and fitted
generalized Gamma and Pareto densities (based on data censored at 36 months). The NPMLE (based
on all data) is also fitted.
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Fig. 6. Women with no previous children in the Obseff study. Estimated survival functions for time to
pregnancy based on the fits in Fig. 5. The fits based on truncating the observed data at 36 months are
also included.

Table 1. Women with no previous children in the Obseff study. Estimation characteristics (with 95
per cent bootstrap confidence limits) for distribution of TTP using generalized Gamma and Pareto
distributions, censored or truncated at 36 months

Generalized Gamma Generalized Gamma Pareto (based on
TTP in months (based on censored data) (based on truncated data) censored data)

Lower quartile 2.87 (0.79, 5.2) 3.89 (1.74, 5.3) 1.42 (1.03, 1.98)
Median 5.29 (2.36, 7.7) 5.77 (3.42, 7.4) 3.75 (2.76, 5.1)
Upper quartile 10.4 (6.74, 13.6) 10.4 (7.3, 13.3) 8.84 (6.7, 11.6)

The NPMLE is seen (Fig. 5) to overshoot at 0, leading to a lower estimated survival curve
in Fig. 6 than the parametric models.

Though the inconsistency of the non-parametric maximum likelihood estimator at 0 does
not directly generalize to the parametric fits studied here, the difficulty remains, and we there-
fore add information on the result of conditioning on CDUI≥1 month. Figure 7 shows that
the conditional densities given TTP≥1 month are now very similar for Pareto and general-
ized Gamma as well as for the NPMLE. Note that the estimated distributions of TTP using
current durations censored at 36 months and truncated at 36 months are not the same, since
observations larger than 36 do count in the fit for censored but not for truncated data. Table
1 shows that the difference is modest.

Table 2 illustrates the multivariate accelerated failure time regression of the observed cur-
rent durations of unprotected intercourse on four important covariates using generalized
Gamma distribution, Pareto distribution, the lss algorithm and ordinary least squares (OLS).
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Fig. 7. Women with no previous children in the Obseff study. Estimated conditional survival functions
for TTP, given TTP > 1 month, based on the fits in Fig. 5 as well as those based on truncating the
data at 36 months.

Rather similar estimates are obtained for all four choices despite the fact, explained above,
that lss and OLS do not have a direct interpretation in this framework. In particular, lss
and OLS give very similar estimates.

10. Discussion

10.1. Heterogeneity of fecundability

The early literature on TTP was focused on heterogeneity in ability to conceive (fecunda-
bility) within and between couples, see Ecochard (2006) for a comprehensive survey. In the
present study we ignore this important issue, essentially focusing on describing a snapshot
of a population’s fecundity from one or a sequence of cross-sectional surveys. We should of
course acknowledge the mixture interpretation of the beta-geometric and Pareto models, but
our focus here has been on estimating fecundity and identifying observable determinants.

Similarly, we have disregarded the interesting intra-couple (or intra-woman) correlation
deriving from couples having several children, see e.g. Scheike et al. (1999) for models for
the pregnancy-based design.

10.2. Discrete versus continuous time

The early literature on TTP, including Weinberg & Gladen (1986), was mostly formulated in
discrete time, one argument being that conception can only occur once per menstrual cycle,
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Table 2. Women with no previous children in the Obseff study. AFT regression of CDUI using generalized
Gamma distribution, Pareto distribution, ordinary least squares and LSS regression. Time ratios and 95
per cent bootstrap based confidence intervals

Generalized Gamma Pareto OLS LSS

Covariate No. Time ratio Time ratio Time ratio Time ratio

Tobacco consumption at recruitment
Non-smokers 167 1 1 1 1
Smokers 101 1.19 (0.79, 1.84) 1.20 (0.83, 1.80) 1.08 (0.76, 1.64) 1.08 (0.71, 1.63)

Age at recruitment
0–17 4 11.54 (0.61, *) 12.05 (0.83, *) 9.35 (1.06, *) 8.52 (0.50, *)
18–24 53 1.95 (1.20, 3.51) 1.94 (1.23, 3.27) 2.14 (1.24, 3.52) 2.21 (1.34, 3.37)
25–29 100 1 1 1 1
30–34 64 1.11 (0.61, 2.01) 1.13 (0.69, 1.93) 1.12 (0.66, 1.89) 1.08 (0.67, 1.76)
35–39 44 1.06 (0.58, 1.95) 1.03 (0.58, 1.69) 0.95 (0.46, 1.63) 0.95 (0.53, 1.73)
40–44 3 0.21 (0.02, 0.98) 0.20 (0.02, 0.65) 0.19 (0.03, 1.00) 0.19 (0.05, 0.76)

Frequency of sexual intercourse
< 1 per month 11 0.98 (0.27, 3.06) 1.03 (0.34, 2.61) 0.94 (0.33, 2.68) 0.95 (0.39, 2.34)
1–3 per month 45 2.08 (1.17, 3.81) 2.09 (1.26, 3.55) 1.85 (1.05, 3.36) 1.81 (1.01, 3.25)
1–2 per week 98 1.17 (0.71, 1.81) 1.20 (0.82, 1.81) 1.18 (0.78, 1.76) 1.16 (0.78, 1.72)
≥3 per week 114 1 1 1 1

Menstrual cycle length
< 27 days 61 1 1 1 1
27–29 days 114 0.87 (0.49, 1.47) 0.91 (0.54, 1.48) 0.85 (0.50, 1.38) 0.86 (0.52, 1.40)
≥30 days 93 1.08 (0.64, 1.90) 1.08 (0.65, 1.75) 1.04 (0.55, 1.71) 1.05 (0.65, 1.71)

*large value, >100.

which is therefore the natural discrete time unit. However, our impression is that most practical
applications approximated a menstrual cycle to equal a month, getting back to chronological
time. Moreover, there is within-woman (between two successive cycles) and between-woman
variability in the cycle day of ovulation, which is unobserved, in addition to recall and
declaration errors, so that actual declared durations often correspond to non-integer number
of months. Our choice of continuous time is mostly for practical and mathematical convenience.

10.3. Applicability of the current duration approach

Our experience so far with the current duration approach to TTP studies is that it is in fact
possible to obtain estimates of the distribution of the target variable

time to conception or giving up

where initiation of fertility treatment in our view should preferably be viewed analogously to
giving up.

The composite nature of this target variable may worry practitioners, but it should be
remembered that the ubiquitous pregnancy-based design suffers the same restrictions, in addi-
tion to its biased sampling of infertile and subfertile, usually excluded. However, accidental
pregnancies escape attention from the current duration design, but can be identified in preg-
nancy-based TTP studies (with the open question of deciding which value of TTP might be
attributed to these pregnancies).

Technically, parametric inference using the generalized Gamma distribution seems at the
moment to be the primary recommendation. It would be desirable to develop portable soft-
ware for the calculations using the parametric approach as well as for the non-parametric
maximum likelihood approach.
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For identification of observed determinants, the AFT models form an easily applicable
tool, and our experience is that the form of the underlying distribution has little influence
on the results.

10.4. The Observatory of Fecundity in France

For this particular study the two follow-up surveys will present unique opportunities for addi-
tional prospective and prevalent cohort-type follow-up analyses which will allow concrete
empirical validation of the estimates obtained from the current duration approach.

10.5. Other applications of the current duration approach

We mentioned in section 1 that there is a long history in the analysis of ‘open birth inter-
vals’ in demography, and ‘last episode data’ in survey analysis. In particular, Ali et al. (2001)
studied the current duration of use of contraceptive pills. Their study used two parametric
classes of distribution in parallel: the Weibull and the log-logistic, and fitted linear models to
the log (true ‘survival time’) using maximum quasi-likelihood. Though both of these distri-
butions are AFT, leading to models

S(x | z)= exp
[−(x e�z)�

]
and

S(x | z)= (1+ (x e�z)�)−1

for the underlying time X , these authors did not take advantage of the AFT interpretation
of their models.

A recent application directly inspired by the present work was the study by McLaughlin
et al. (2010) on the influence of childhood adversities on adult psychiatric disorders, based
on a cross-sectional survey with information on age at onset and (if relevant) offset of the
most recent episode of the disorder.

10.6. Prevalent cohort studies

We conclude by noting that because of the equivalence between backward and forward recur-
rence time distributions, accelerated failure time models would be similarly useful in situa-
tions where forward recurrence times are modelled under stationarity. An important class of
such problems are follow-up data from prevalent cohort studies with unknown initiation date
(Brookmeyer & Gail, 1987; Keiding, 1992).
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