Market Liquidity, Funding Liquidity, and TED Spread: A Two-Regime Model

Kris Boudt1 Ellen C.S. Paulus2 Dale W.R. Rosenthal3

NYU-Stern Volatility Institute

25 April 2014

1VU Amsterdam, VU Brussel
2London Business School
3University of Illinois at Chicago, daler@uic.edu
Liquidity is a key idea in markets:

- **Market liquidity**: ease of trading an asset without moving price.
- **Funding liquidity**: ease of obtaining funds (usu. w/collateral).

These different liquidities are endogenous:

- Funding for intermediaries, investors affects market liquidity.
- Market liquidity improves value of funding collateral.

Theory: two equilibria (spirals) for market, funding liquidity.

- Peacetime: one liquidity decreases \implies other increases
- Crises: one liquidity decreases \implies other decreases

Theory and evidence for bad equilibrium in recent crisis.

Few empirical studies of interaction b/w these liquidities.
How Market Liquidity Affects Funding Liquidity

- Question: how does market liquidity affect funding liquidity?
- Find a proxy for equity-collateralized funding liquidity; and,
- Use that to study funding, market liquidity in equity markets.
- Lets us test important features of the theorized relation:
 - Two regimes (stabilizing vs destabilizing)
 - Feedback b/w funding liquidity vs market liquidity, volatility
Data \implies two regimes in funding, market liquidity dynamics.

May separate regimes using a TED spread threshold: 48 bp.

TED spread \leq 48bp \implies stabilizing funding cycle:
- Bid-ask spreads \uparrow 10% \implies funding illiquidity \downarrow 25%–36%.
- First empirical verification of stabilizing cycle.

TED spread > 48bp \implies destabilizing funding cycle:
- Bid-ask spreads \uparrow 10% \implies funding illiquidity \uparrow 16%–26%?

Handling endogeneity: crucial to analyzing funding cycles.
Related Literature

- **Theory:** Funding Liquidity \iff Market Liquidity
 - Sophisticated investors/arbitrageurs supply market liquidity.
 - Must finance positions, usu. by collateralized lending.
 - Pay loan fees/margins, budget constrained in crises.
 - So expect to see two regimes of liquidity provision.
 - Brunnermeier and Pedersen (2009)

- **Empirical Studies**
 - Funding Liquidity \implies Market Liquidity
 - Mitchel, Pedersen and Pulvino (2009)
 - Comerton-Forde et al. (2010)
 - Funding Liquidity \iff Market Liquidity
 - Drehmann and Nikolaou (2013)
 - Does not account for endogeneity, two regimes.
Theory of Market, Funding Liquidity: Destabilizing

Theory for destabilizing market, funding liquidity interactions:

- Cost of collateralized borrowing: increases w/asset volatility.
- Drop in market liquidity may increase borrowing costs
 - Financiers don’t know fundamental value of assets, and
 - Worry about lower liquidity of collateral, increase loan fees.
 - Budget constraint binds, unwinding positions moves prices
 - Prices further from fundamentals, market liquidity ↓
 - → Destabilizing Funding Cycle
- Destabilizing funding → flight-to-quality.
Theory for stabilizing market, funding liquidity interactions:

- Drop in market liquidity may decrease borrowing costs
 - Financiers believe prices will return to fundamental value,
 - \(\implies\) arb positions more profitable, decrease loan fees
 - Budget constraint relaxes, positions grow moving prices
 - Prices move closer to fundamentals, market liquidity \(\uparrow\)
 - \(\implies\) **Stabilizing Funding Cycle**

- Agrees with most ideas on self-healing nature of markets.
Funding Liquidity: Equity-Collateralized Loans

- Best measure of collateralized funding: repo rates.
- Unfortunately, we could not find good repo rates source.
- However, believe stock loan data is a good proxy:
 - Traders borrow stock (usu for shorting) via stock loans.
 - Fees increase when more demand to borrow.
 - Lender also holds back *haircut* of deposited cash.
 - Haircut, fees rise when stock more likely to decline.
 - Thus haircut, fees proxy for perceived collateral quality.
- Loan fee data available; haircut data not (but correlated).
Stock Loan Fees

- Consider demand for borrowing stock (usually: to short)
 - Curve shift out/in \implies more/less capital betting on price fall
 - Isolated outward shifts of stock loan demand curves
 - \implies Significant negative abnormal next-month returns
 - \implies Stock loans reveal private information about stock
- Demand curve shifts in/out: stock is worse/better collateral.
- Use daily S&P 500 stock loan data, 200607–201105:
 - Volume-Weighted Average stock loan Fee (VWAF)
 - Total Balance Quantities (TBQ) = qty of stock on loan
 - # loan transactions: stock i, day t ($Trades_{it}$)

4 We thank Data Explorers for these data.
Funding Illiquidity: Average Stock Loan Fees

• Isolate shifts in stock loan (shorting) demand curve:

\[\mathbb{1}_{DS, it} = \begin{cases}
1 & \Delta \text{VWAF}_{i,t} > 0 \cap \Delta \text{TBQ}_{i,t} > 0; \\
1 & \Delta \text{VWAF}_{i,t} < 0 \cap \Delta \text{TBQ}_{i,t} < 0; \\
0 & \text{else.}
\end{cases} \]

(1)

• Measure of funding illiquidity, \(\text{fundilliq}_t \):

\[\text{fundilliq}_t = \log \left(\frac{\sum_{i=1}^{N} \text{Trades}_{it} \times \text{VWAF}_{it} \times \mathbb{1}_{DS, it}}{\sum_{i=1}^{N} \text{Trades}_{it} \times \mathbb{1}_{DS, it}} \right). \]

(2)
Figure: Log(Trade-Weighted Average Fee on S&P 500 Stock Loans). Light gray: $ted_t > 50\text{bp}$; dark gray: $ted_t > 80\text{bp}$; black bar: PDCF (03/2008–02/2010)
Market Illiquidity: Bid-Ask Spreads

- Market illiquidity: Mean % bid-ask spreads of S&P 500 stocks
- N.B. From CBOE calculation, changed in late-May 2011.\(^5\)
- Take logarithm to reduce influence of skewness

\(^5\)This change limits our ability to extend the study.

Figure: Log(Bid-Ask Spread for S&P 500 Stocks). Light gray: \(ted_t >50\text{bp}\); dark gray: \(ted_t >80\text{bp}\)
Volatility

- Market volatility proxy: CBOE Implied Volatility Index (VIX)

Figure: CBOE Implied Volatility Index. Light gray: \(ted_t > 50 \text{bp} \); dark gray: \(ted_t > 80 \text{bp} \)
TED Spread

- TED Spread: Treasury vs EuroDollar Deposits
- Spread between LIBOR and 3M US T-bill rates
- Used to separate stabilizing, destabilizing funding regimes

Figure: TED Spread. lower dashed line: $ted_t > 50$bp; upper dashed line: $ted_t > 80$bp
Instruments

1. Inter-trade duration trend: driven by exogenous tech shocks
 - Trade activity \implies mkt liquidity (George and Longstaff, 1993)

2. AAA liquidity: $aaaliq = \Delta y_{AAA} - \Delta LIBOR$
 - Bond liquidity \implies stock liquidity: Chordia, Sarkar, Subrahmanyam (2005)
 - Change in AAA yields due to bond (il)liquidity
 - Exogenous to credit risk which affects stock loan fees

3. Lagged volatility: ‘internal’ instrument for stock volatility
cf Bloom et al. (2007)
Instrument: Inter-trade Duration Trend

Figure: Inter-trade Duration Trend for US stocks (in years). Gray line: inter-trade duration; black line: trend pre-/post-NYSE decimalization in Jan 2001
Instrument: AAA Liquidity

Figure: Difference b/w ΔYields(1Y AAA Corporates), ΔLIBOR: Mar 1998–Dec 2011
Two-Regime Specification

- Allow for regime change if credit spread crosses threshold κ.
- Define market stress indicator, specify linear threshold model:

$$stress_t(\kappa) = \begin{cases}
1 & \text{if } ted_t > \kappa \\
0 & \text{else}
\end{cases}$$ (3)

$$fundilliq_t = \beta_0 + \beta_1 mktilliq_t + \beta_2 vol_t + \beta_3 volsq_t + \beta_4 ted_t + \beta_5 stressmktilliq_t + \beta_6 stressvol_t + \beta_7 stressted_t + \varepsilon_t$$ (4)

where $stress$ variables have interaction with $stress_t(\kappa)$.

- For threshold $\hat{\kappa}$, estimate other coefficients by 2SLS.
First-Stage Regressions

- First-stage regressions for linear, two-regime IV.
- **durtrend**: less trading = less liquid, less volatile markets.
 - Agrees with George and Longstaff (1993).
 - Except **ted > 48bp**: less trading *increases* mkt liquidity.
 - Perhaps reduces panic trading?
- **aaaliq**: bond illiquidity ↑ ⇒ equity illiquidity ↓.
 - Agrees w/Chordia, Sarkar, Subrahmanyam (2005).
 - However, less effect when **ted > 48bp**.
- *F*-tests indicate relevance of instruments at 99% level
Second-Stage: Funding Liquidity vs Market Liquidity

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Linear Model</th>
<th>Two-Regime Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>IV</td>
</tr>
<tr>
<td>(intercept)</td>
<td>4.732</td>
<td>8.399</td>
</tr>
<tr>
<td></td>
<td>(0.516)</td>
<td>(2.746)</td>
</tr>
<tr>
<td>mktilliqt</td>
<td>0.323</td>
<td>0.790</td>
</tr>
<tr>
<td></td>
<td>(0.065)</td>
<td>(0.348)</td>
</tr>
<tr>
<td>volt</td>
<td>6.263</td>
<td>4.953</td>
</tr>
<tr>
<td></td>
<td>(0.655)</td>
<td>(1.290)</td>
</tr>
<tr>
<td>volsqt</td>
<td>-4.550</td>
<td>-3.627</td>
</tr>
<tr>
<td></td>
<td>(0.894)</td>
<td>(1.206)</td>
</tr>
<tr>
<td>tedt</td>
<td>0.012</td>
<td>-0.174</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.134)</td>
</tr>
<tr>
<td>stresst</td>
<td>2.466</td>
<td>40.553</td>
</tr>
<tr>
<td></td>
<td>(0.977)</td>
<td>(13.222)</td>
</tr>
<tr>
<td>stressmktilliqt</td>
<td>0.382</td>
<td>5.210</td>
</tr>
<tr>
<td></td>
<td>(0.124)</td>
<td>(1.685)</td>
</tr>
<tr>
<td>stressvolt</td>
<td>4.824</td>
<td>-6.267</td>
</tr>
<tr>
<td></td>
<td>(0.649)</td>
<td>(4.853)</td>
</tr>
<tr>
<td>stresstedt</td>
<td>-1.055</td>
<td>-4.599</td>
</tr>
<tr>
<td></td>
<td>(0.296)</td>
<td>(1.617)</td>
</tr>
<tr>
<td>Threshold κ</td>
<td>0.43</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>[0.42, 0.44]</td>
<td>[0.44, 0.49]</td>
</tr>
</tbody>
</table>
Relationship b/w funding, market liquidity has two regimes:

1. Stable markets ($ted \leq 48$bp): significant at 90% level.
 - Bid-ask spreads $\uparrow 10\% \implies$ funding illiquidity $\downarrow 36\%$.
 - \implies stabilizing funding cycle.

2. Unstable markets ($ted > 48$bp): not significant
 - Bid-ask spreads $\uparrow 10\% \implies$ funding illiquidity $\uparrow 16\%$.
 - Weak evidence of destabilizing funding cycle.

Volatility $\uparrow \implies$ funding illiquidity \uparrow. (stronger in peacetime)

Results are likely stronger: IV 2SLS inflates std errors.

Naive approaches miss liquidity, volatility significance.
 - Signs off, magnitudes much smaller.
Robustness: Adding an Autoregressive Term

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Linear Model</th>
<th>Two-Regime Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>IV</td>
</tr>
<tr>
<td>(intercept)</td>
<td>1.953</td>
<td>-0.111</td>
</tr>
<tr>
<td></td>
<td>(0.193)</td>
<td>(0.061)</td>
</tr>
<tr>
<td>mktilliq<sub>t</sub></td>
<td>0.129</td>
<td>-0.014</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>fundilliq<sub>t−1</sub></td>
<td>0.574</td>
<td>1.002</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>vol<sub>t</sub></td>
<td>2.665</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>(0.313)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>volsq<sub>t</sub></td>
<td>-1.918</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>(0.539)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>ted<sub>t</sub></td>
<td>0.010</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>stress<sub>t</sub></td>
<td>0.312</td>
<td>20.706</td>
</tr>
<tr>
<td>stressmktilliq<sub>t</sub></td>
<td>0.107</td>
<td>2.631</td>
</tr>
<tr>
<td>stressfundilliq<sub>t−1</sub></td>
<td>0.107</td>
<td>0.010</td>
</tr>
<tr>
<td>stressvol<sub>t</sub></td>
<td>2.109</td>
<td>3.169</td>
</tr>
<tr>
<td>stressted<sub>t</sub></td>
<td>-0.523</td>
<td>-2.809</td>
</tr>
<tr>
<td>Threshold κ</td>
<td>0.44</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Robustness Check: Autoregressive Term

- Relationship b/w funding, market liquidity again two regimes:
 1. Stable markets ($ted \leq 48bp$): not significant but right sign.
 - Bid-ask spreads \uparrow 10\% \implies funding illiquidity \downarrow 25\%.
 - weak evidence of stabilizing funding cycle.
 2. Unstable markets ($ted > 48bp$): significant at 90\% level.
 - Bid-ask spreads \uparrow 10\% \implies funding illiquidity \uparrow 26\%.
 - \implies destabilizing funding cycle.

- Volatility \uparrow \implies funding illiquidity \uparrow. (stronger in crisis?)
- Threshold again 48 bp.
- Naive approaches miss liquidity, volatility significance.
 - Signs off and/or magnitudes much smaller.
Robustness Check: Stock Loan Data

- Look at full/filtered size-weighted stock loan data.
- Look at shifts in demand curve or all shifts.
- Weight average fees by loan sizes, not by # loans.
- These changes expose us to more noise, outliers.
- Find significant threshold of 47 bp (vs 48 bp) in both cases.
- However, coefficients not significant in either case.
Robustness Check: Another Funding Measure

- Second check: another funding measure (Broker Call Rate).
- Charged by commercial banks to broker-dealers.
 - Rate is charged on short-term margin loans
 - Problem #1: rate is rarely-changing spread over Fed Funds.
 - Problem #2: No information on volume transacted.
- Modeled spread over 3M US T-bills; may need to be changed.
- Find two regimes, TED spread threshold of 77 bp:
 - $ted < 77bp$: market illiquidity \uparrow 10% \implies $fundilliq \downarrow$ 3%
 \implies stabilizing funding cycle
 - $ted \geq 77bp$: stabilizing cycle is weakened.
 \implies no destabilizing relationship
- Sensible: don’t expect policy-makers to destabilize market.
- Need more work to decide if measure is useful/informative.
Conclusion

- Introduce stock-loan proxy for equity-collateralized funding.
- Use a two-regime 2SLS estimation to reveal:
 - Relationship b/w funding, market liquidity has two regimes.
 - May separate regimes using a TED-spread threshold.
 - Improper estimation cannot detect these funding cycles.
- Stable markets \((ted \leq 48bp)\):
 - Bid-ask spread \(\uparrow 10\%) \implies\) funding illiquidity \(\downarrow 25\%–36\%\).
 - Stabilizing funding cycle arises. (First evidence!)
- Unstable markets \((ted > 48bp)\):
 - Bid-ask spread \(\uparrow 10\%) \implies\) funding illiquidity \(\uparrow 16\%–26\%\).
 - Destabilizing funding cycle arises.
- Funding liquidity based on volatility.
- Two regimes may exist in other funding measures.