Market Liquidity, Funding Liquidity, and TED Spread: A Two-Regime Model

Kris Boudt¹ Ellen C.S. Paulus² Dale W.R. Rosenthal³

NYU-Stern Volatility Institute

25 April 2014

¹VU Amsterdam, VU Brussel
 ²London Business School
 ³University of Illinois at Chicago, daler@uic.edu

Introduction	Data	Robustness	Conclusion
Liquidity			

- Liquidity is a key idea in markets:
 - Market liquidity: ease of trading an asset without moving price.
 - Funding liquidity: ease of obtaining funds (usu. w/collateral).
- These different liquidities are endogenous:
 - Funding for intermediaries, investors affects market liquidity.
 - Market liquidity improves value of funding collateral.
- Theory: two equilibria (spirals) for market, funding liquidity.
 - ${\scriptstyle \bullet}$ Peacetime: one liquidity decreases \implies other increases
 - ${\, \bullet \,}$ Crises: one liquidity decreases \implies other decreases
- Theory and evidence for bad equilibrium in recent crisis.
- Few empirical studies of interaction b/w these liquidities.

How Market Liquidity Affects Funding Liquidity

- Question: how does market liquidity affect funding liquidity?
- Find a proxy for equity-collateralized funding liquidity; and,
- Use that to study funding, market liquidity in equity markets.
- Lets us test important features of the theorized relation:
 - Two regimes (stabilizing vs destabilizing)
 - $\bullet\,$ Feedback b/w funding liquidity vs market liquidity, volatility

Introduction	Data	Robustness	Conclusion
Results Pr	review		

- Data \implies two regimes in funding, market liquidity dynamics.
- May separate regimes using a TED spread threshold: 48 bp.
- TED spread \leq 48bp \implies stabilizing funding cycle:
 - Bid-ask spreads $\uparrow 10\% \implies$ funding illiquidity $\downarrow 25\%$ -36%.
 - First empirical verification of stabilizing cycle.
- TED spread > 48bp \implies destabilizing funding cycle:
 - Bid-ask spreads $\uparrow 10\% \implies$ funding illiquidity $\uparrow 16\%$ -26%?
- Handling endogeneity: crucial to analyzing funding cycles.

Introduction	Data	Robustness	Conclusion
Related Li	terature		

- Theory: Funding Liquidity \iff Market Liquidity
 - Sophisticated investors/arbitrageurs supply market liquidity.
 - Must finance positions, usu. by collateralized lending.
 - Pay loan fees/margins, budget constrained in crises.
 - So expect to see two regimes of liquidity provision.
 - Gromb and Vayanos (2002, 2010)
 - Brunnermeier and Pedersen (2009)
- Empirical Studies
 - Funding Liquidity \implies Market Liquidity
 - Mitchel, Pedersen and Pulvino (2009)
 - Comerton-Forde et al. (2010)
 - Funding Liquidity \iff Market Liquidity
 - Drehmann and Nikolaou (2013)
 - Does not account for endogeneity, two regimes.

Theory for destabilizing market, funding liquidity interactions:

- Cost of collateralized borrowing: increases w/asset volatility.
- Drop in market liquidity may increase borrowing costs
 - Financiers don't know fundamental value of assets, and
 - Worry about lower liquidity of collateral, increase loan fees.
 - Budget constraint binds, unwinding positions moves prices
 - $\bullet\,$ Prices further from fundamentals, market liquidity $\downarrow\,$
 - \implies Destabilizing Funding Cycle
- Destabilizing funding \implies flight-to-quality.

Theory for stabilizing market, funding liquidity interactions:

• Drop in market liquidity may decrease borrowing costs

- Financiers believe prices will return to fundamental value,
- ullet \implies arb positions more profitable, decrease loan fees
- Budget constraint relaxes, positions grow moving prices
- $\bullet\,$ Prices move closer to fundamentals, market liquidity $\uparrow\,$
- $\bullet \implies {\sf Stabilizing \ Funding \ Cycle}$
- Agrees with most ideas on self-healing nature of markets.

- Best measure of collateralized funding: repo rates.
- Unfortunately, we could not find good repo rates source.
- However, believe stock loan data is a good proxy:
 - Traders borrow stock (usu for shorting) via stock loans.
 - Fees increase when more demand to borrow.
 - Lender also holds back *haircut* of deposited cash.
 - Haircut, fees rise when stock more likely to decline.
 - Thus haircut, fees proxy for perceived collateral quality.
- Loan fee data available; haircut data not (but correlated).

	Data	Robustness	Conclusion
Stock Loan	Fees		

- Consider demand for borrowing stock (usually: to short)
 - $\, \bullet \,$ Curve shift out/in $\, \Longrightarrow \,$ more/less capital betting on price fall
- Cohen, Diether, and Malloy (2007) studied stock loan fees.
 - Isolated outward shifts of stock loan demand curves
 - $\bullet \implies {\sf Significant negative abnormal next-month returns}$
 - $\bullet \implies {\sf Stock \ loans \ reveal \ private \ information \ about \ stock}$
- Demand curve shifts in/out: stock is worse/better collateral.
- Use daily S&P 500 stock loan data, 200607-201105⁴:
 - Volume-Weighted Average stock loan Fee (VWAF)
 - Total Balance Quantities (TBQ) = qty of stock on loan
 - # loan transactions: stock i, day t (Trades_{it})

⁴We thank Data Explorers for these data.

• Isolate shifts in stock loan (shorting) demand curve:

 \circ

$$\mathbb{1}_{DS,it} = \begin{cases} 1 & \Delta VWAF_{i,t} > 0 \cap \Delta TBQ_{i,t} > 0; \\ 1 & \Delta VWAF_{i,t} < 0 \cap \Delta TBQ_{i,t} < 0; \\ 0 & \text{else.} \end{cases}$$
(1)

• Measure of funding illiquidity, *fundilliq_t*:

 \circ

$$fundilliq_{t} = \log\left(\frac{\sum_{i=1}^{N} Trades_{it} \times VWAF_{it} \times \mathbb{1}_{DS,it}}{\sum_{i=1}^{N} Trades_{it} \times \mathbb{1}_{DS,it}}\right). \quad (2)$$

Estimation

Robustness

Conclusion

Funding Illiquidity: Plot

Figure: Log(Trade-Weighted Average Fee on S&P 500 Stock Loans). Light gray: $ted_t > 50$ bp; dark gray: $ted_t > 80$ bp; black bar: PDCF (03/2008–02/2010)

Introduction Data Estimation Robustness Conclusion
Market Illiquidity: Bid-Ask Spreads

- Market illiquidity: Mean % bid-ask spreads of S&P 500 stocks
- N.B. From CBOE calculation, changed in late-May 2011.⁵
- Take logarithm to reduce influence of skewness

Figure: Log(Bid-Ask Spread for S&P 500 Stocks). Light gray: $ted_t > 50$ bp; dark gray: $ted_t > 80$ bp

⁵This change limits our ability to extend the study.

	Data	Robustness	Conclusion
Volatility			

• Market volatility proxy: CBOE Implied Volatility Index (VIX)

Figure: CBOE Implied Volatility Index. Light gray: $ted_t > 50$ bp; dark gray: $ted_t > 80$ bp

	Data	Robustness	Conclusion
TED Spread			

- TED Spread: <u>Treasury vs EuroDollar Deposits</u>
- Spread between LIBOR and 3M US T-bill rates
- Used to separate stabilizing, destabilizing funding regimes

Figure: TED Spread. lower dashed line: $ted_t > 50$ bp; upper dashed line: $ted_t > 80$ bp UIC BUSINESS

	Data	Robustness	Conclusion
Instruments			

- Inter-trade duration trend: driven by exogenous tech shocks
 - Trade activity \implies mkt liquidity (George and Longstaff, 1993)
- **2** AAA liquidity: $aaaliq = \Delta y_{AAA} \Delta LIBOR$
 - Bond liquidity \implies stock liquidity: Chordia, Sarkar, Subrahmanyam (2005)
 - Change in AAA yields due to bond (il)liquidity
 - Exogenous to credit risk which affects stock loan fees
- Lagged volatility: 'internal' instrument for stock volatility cf Bloom et al. (2007)

Instrument: Inter-trade Duration Trend

Figure: Inter-trade Duration Trend for US stocks (in years). Gray line: inter-trade duration; black line: trend pre-/post-NYSE decimalization in Jan 2001 UIC BUSINESS

Figure: Difference b/w Δ Yields(1Y AAA Corporates), Δ LIBOR: Mar 1998–Dec 2011

	Data	Estimation	Robustness	Conclusion
Two-Regim	e Specifica	ation		

- Allow for regime change if credit spread crosses threshold κ .
- Define market stress indicator, specify linear threshold model:

$$stress_{t}(\kappa) = \begin{cases} 1 & ted_{t} > \kappa \\ 0 & else \end{cases}$$
(3)
$$fundilliq_{t} = \beta_{0} + \beta_{1}mktilliq_{t} + \beta_{2}vol_{t} + \beta_{3}volsq_{t} \\ + \beta_{4}ted_{t} + \beta_{5}stressmktilliq_{t} + \beta_{6}stressvol_{t} \\ + \beta_{7}stressted_{t} + \varepsilon_{t} \end{cases}$$

where stress variables have interaction with $stress_t(\kappa)$.

- Estimation via Hansen (2000), Caner and Hansen (2004).
- For threshold $\hat{\kappa}$, estimate other coefficients by 2SLS.

First-Stage Regressions

- First-stage regressions for linear, two-regime IV.
- *durtrend*: less trading = less liquid, less volatile markets.
 - Agrees with George and Longstaff (1993).
 - Except ted > 48bp: less trading increases mkt liquidity.
 - Perhaps reduces panic trading?
- *aaaliq*: bond illiquidity $\uparrow \implies$ equity illiquidity \downarrow .
 - Agrees w/Chordia, Sarkar, Subrahmanyam (2005).
 - However, less effect when ted > 48bp.
- F-tests indicate relevance of instruments at 99% level

Data	Estimation	Robustness	Conclusion

Second-Stage: Funding Liquidity vs Market Liquidity

	Linear Model		Two-Regime Model	
Covariates	OLS	IV	OLS	IV
(intercept)	4.732	8.399	2.594	-26.327
	(0.516)	(2.746)	(0.665)	(18.332)
mktilliq _t	0.323	0.790	0.014	-3.612
	(0.065)	(0.348)	(0.082)	(2.283)
volt	6.263	4.953	5.192	13.093
	(0.655)	(1.290)	(0.652)	(7.240)
volsqt	-4.550	-3.627	-8.303	-6.818
	(0.894)	(1.206)	(0.924)	(6.712)
tedt	0.012	-0.174	0.717	3.965
	(0.042)	(0.134)	(0.292)	(1.962)
stress _t			2.466	40.553
			(0.977)	(13.222)
stressmktilliq _t			0.382	5.210
			(0.124)	(1.685)
stressvolt			4.824	-6.267
			(0.649)	(4.853)
$stressted_t$			-1.055	-4.599
			(0.296)	(1.617)
Threshold κ			0.43	0.48
			[0.42, 0.44]	[0.44, 0.49]

	Data	Estimation	Robustness	Conclusion
Second-Stage	Regression	Results:	Commentary	

- Relationship b/w funding, market liquidity has two regimes:
 - Stable markets ($ted \leq 48bp$): significant at 90% level.
 - Bid-ask spreads \uparrow 10% \implies funding illiquidity \downarrow 36%.
 - \implies stabilizing funding cycle.
 - Unstable markets (ted > 48bp): not significant
 - Bid-ask spreads \uparrow 10% $\stackrel{?}{\Longrightarrow}$ funding illiquidity \uparrow 16%.
 - Weak evidence of destabilizing funding cycle.
- Volatility $\uparrow \implies$ funding illiquidity \uparrow . (stronger in peacetime)
- Results are likely stronger: IV 2SLS inflates std errors.
- Naive approaches miss liquidity, volatility significance.
 - Signs off, magnitudes much smaller.

	Data				Robustness	Conclusion
Robustness:	Adding a		~	ressive	Term	
			Model	Two-Regi		
	Covariates	OLS	IV	OLS	IV	
	(intercept)	1.953	-0.111	1.574	-19.440	
		(0.193)	(0.061)	(0.581)	(14.204)	
	mktilliq _t	0.129	-0.014	0.024	-2.573	
		(0.003)	(0.008)	(0.070)	(1.747)	
	$fundilliq_{t-1}$	0.574	1.002	0.449	0.528	
		(0.001)	(0.001)	(0.037)	(0.071)	
	volt	2.665	0.021	2.585	8.887	
		(0.313)	(0.026)	(0.574)	(5.221)	
	volsqt	-1.918	-0.009	-3.893	-4.804	
		(0.539)	(0.025)	(0.858)	(3.721)	
	tedt	0.010	0.005	0.382	2.669	
		(0.001)	(0.003)	(0.239)	(1.532)	
	stress _t			0.312	20.706	
				(0.879)	(8.448)	
	stressmktilliq _t			0.107	2.631	
				(0.108)	(1.086)	
	$stressfundilliq_{t-1}$			0.107	0.010	
				(0.051)	(0.074)	
	stressvolt			2.109	3.169	
				(0.600)	(2.554)	
	stressted _t			-0.523	-2.809	
				(0.243)	(1.171)	
	Threshold κ			0.44	0.48	
				[0.21, 0.47]	[0.46, 0.49]	JIC BUSINESS

	Data		Robustness	Conclusion
Robustness	Check:	Autoregressive	Term	

- Relationship b/w funding, market liquidity again two regimes:
 - Stable markets ($ted \leq 48$ bp): not significant but right sign.
 - Bid-ask spreads \uparrow 10% \implies funding illiquidity \downarrow 25%.
 - weak evidence of stabilizing funding cycle.
 - 2 Unstable markets (ted > 48bp): significant at 90% level.
 - Bid-ask spreads \uparrow 10% $\stackrel{?}{\Longrightarrow}$ funding illiquidity \uparrow 26%.
 - \implies destabilizing funding cycle.
- Volatility $\uparrow \implies$ funding illiquidity \uparrow . (stronger in crisis?)
- Threshold again 48 bp.
- Naive approaches miss liquidity, volatility significance.
 - Signs off and/or magnitudes much smaller.

Robustness Check: Stock Loan Data

- Look at full/filtered size-weighted stock loan data.
- Look at shifts in demand curve or all shifts.
- \bullet Weight average fees by loan sizes, not by # loans.
- These changes expose us to more noise, outliers.
- Find significant threshold of 47 bp (vs 48 bp) in both cases.
- However, coefficients not significant in either case.

Introduction	Data	Estimation	Robustness	Conclusion
Robustness	Check: An	other Funding	Measure	

- Second check: another funding measure (Broker Call Rate).
- Charged by commercial banks to broker-dealers.
 - Rate is charged on short-term margin loans
 - Problem #1: rate is rarely-changing spread over Fed Funds.
 - Problem #2: No information on volume transacted.
- Modeled spread over 3M US T-bills; may need to be changed.
- Find two regimes, TED spread threshold of 77 bp:
 - ted < 77bp: market illiquidity ↑ 10% ⇒ fundilliq ↓ 3%
 ⇒ stabilizing funding cycle
 - $ted \ge 77$ bp: stabilizing cycle is weakened.
 - \implies no destabilizing relationship
- Sensible: don't expect policy-makers to destabilize market.
- Need more work to decide if measure is useful/informative.

	Data	Robustness	Conclusion
Conclusion			

- Introduce stock-loan proxy for equity-collateralized funding.
- Use a two-regime 2SLS estimation to reveal:
 - Relationship b/w funding, market liquidity has two regimes.
 - May separate regimes using a TED-spread threshold.
 - Improper estimation cannot detect these funding cycles.
- Stable markets (*ted* \leq 48bp):
 - Bid-ask spread \uparrow 10% \implies funding illiquidity \downarrow 25%–36%.
 - Stabilizing funding cycle arises. (First evidence!)
- Unstable markets (*ted* > 48bp):
 - Bid-ask spread \uparrow 10% \implies funding illiquidity \uparrow 16%–26%.
 - Destabilizing funding cycle arises.
- Funding liquidity based on volatility.
- Two regimes may exist in other funding measures.