Comment of "Time series and cross-section properties of equity market liquidity" by Jeffrey Russell

Eric Jondeau

University of Lausanne

Definition of (il)liquidity

Types of Liquidity:

- Market liquidity (assets)
- Funding liquidity (investors)

Components of market liquidity:

Characteristics Measure

- Tightness
 Bid-ask spread (BAS)
- Depth Turnover/Nb of trades
- Resiliency
 Price impact of trades

Definition of (il)liquidity

Components of Bid-ask spread:

- Cost of holding inventory
- Cost of processing orders
- Cost of trading with more informed investors

The paper proposes proxies for these different costs.

Liquidity as a Risk Factor

Pástor-Stambaugh (2003); Acharya-Pedersen (2005)

- \triangleright Based on sensitivity of return to the \$-volume (γ_{it})
- Liquidity factor is the innovation in the aggregate liquidity $(\gamma_t = \Sigma_i \gamma_{it})$
- Market liquidity is an important factor for stock returns

Amihud (2014)

- Factor-mimicking ptf: IML ptfbased on ILLIQ
- > IML beta is positive and significantly priced.

Commonality in Liquidity

Hasbrouck and Seppi (2001)

Commonality in order flow explains commonality in return.

Korajczyk and Sadka (2008)

- Commonality in a risk measure across firms
- Commonality across risk measures.

This Paper: A model for Liquidity

Objective: What are the sources of commonality in liquidity across stocks?

Illiquidity (BAS) is expected to decrease as:

- Inventory cost increases
 - Volatility
 - Frequency of trades
- Adverse selection cost increases
 - Number of analysts
 - Prob. informed trading
 - Frequency of trades

Liquidity Decomposition

BAS is driven by

$$L_{i,t} = \alpha_i + \lambda' R_{i,t} + \varepsilon_{i,t}$$

Individual drivers are $R_{i,t} = B_i R_t + \eta_{i,t}$

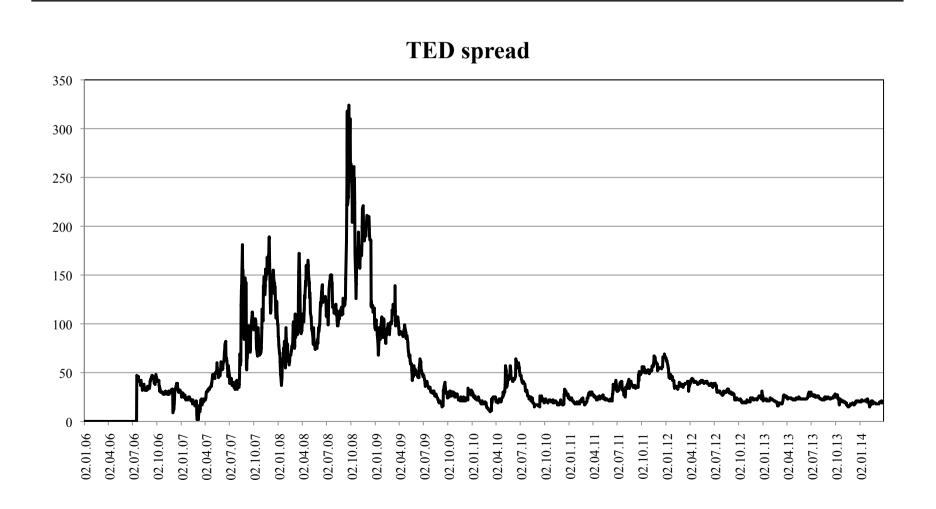
$$R_{i,t} = B_i R_t + \eta_{i,t}$$

so that

$$L_{i,t} = \underbrace{\lambda_i' R_t}_{\text{systematic component}} + \underbrace{\alpha_i + \lambda' \eta_{i,t} + \varepsilon_{i,t}}_{\text{idiosyncratic component}}$$

with
$$\lambda_i' = \lambda' B$$

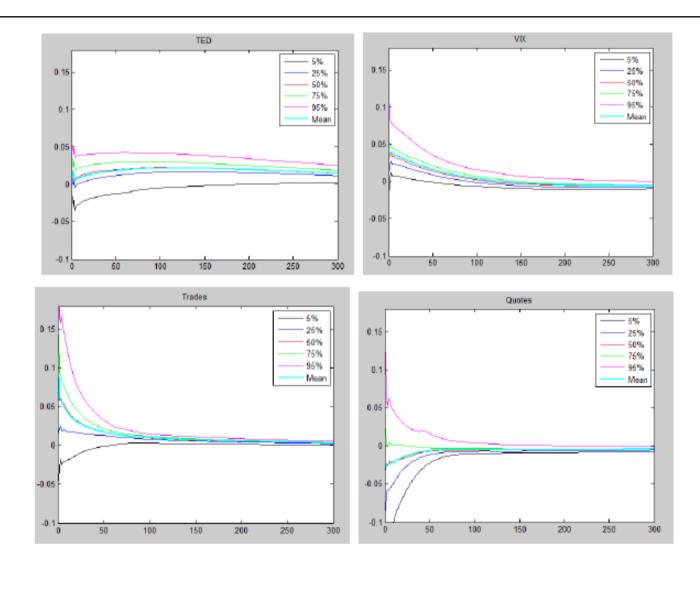
Empirical Results


- (1) PCA on BAS \rightarrow 2 to 5 factors (50%, 8%, ...)
- (2) Individual illiquidity increases as
 - > VIX (inventory cost)
 - Number of trades
 (adverse selection cost)

 - Number of quotes
 (liquidity provision, funding cost)
- (3) Impulse response analysis
 - > VAR on 4 factors then IRF for BAS
 - Main contributors: VIX and Number of trades

- (1) VIX is a risk-neutral measure of volatility
 - → What about realized volatility?
 - → How does it affect the analysis?

- (2) VIX and/or TED spread look like non-stationary
 - → What about non-stationarity?
 - → Do we have trends (cointegration?) in liquidity?



(3) There are some causal links between factors:

TED → VIX → Quotes/Trades

What about timing in causal links?

- → TED / VIX: long-run causality (macro variables)
- → Quotes/Trades: short-run causality (aggr. of micro var.)

Thank you for your attention