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Abstract

We investigate whether stock markets efficiently price risks brought on or exacerbated by
climate change. We focus on drought, the most damaging natural disaster for crops and
food-company cash flows. We show that prolonged drought in a country, measured by the
Palmer Drought Severity Index (PDSI) from climate studies, forecasts both poor stock
returns and profitability ratios for food companies in that country. A long-short portfolio
of global food stocks based on PDSI generates a 9.2% annualized return from 1985 to 2015.
This excess predictability is larger in countries having little history of droughts prior to the
1980s. Our findings support regulatory concerns of markets inexperienced with climate
change underreacting to such risks and calls for disclosing corporate exposures.
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1 Introduction

Regulators are increasingly worried about the extent to which stock markets efficiently price

climate change risks. Most notably, Mark Carney, the head of the Bank of England, recently

linked these risks to financial stability (Carney (2015)). Such risks include energy corporations’

exposure to carbon assets, which might be affected by future carbon prices or taxes. This

so-called “stranded asset issue” has attracted the most discussion in regulatory and market

circles at this point.1 But climate change risks need not be so narrowly confined to carbon

exposures. Vulnerability of corporations’ production processes to natural disasters such as

prolonged drought, which is likely to be amplified by climate change and the focus of our paper,

is also important and can impose significant damage to corporate profits (see, e.g., Trenberth,

Dai, van der Schrier, Jones, Barichivich, Briffa, and Sheffield (2014)).2 In particular, regulators

are concerned that markets have had little experience in dealing with such risks and might

not pay enough attention and underreact to them as a result. Various regulatory bodies are

promoting both voluntary and mandatory disclosures of corporations’ climate risk exposures to

address this issue.3 However, there is little systematic research on the topic of climate risks and

market efficiency up to this point.

We tackle this important question by focusing on the efficiency with which the stock prices

of food companies respond to information about drought. Our focus on drought has a few

different motivations. First, among the natural disasters that might be amplified by climate

change, including drought, heat waves, floods, and cold spells, drought is considered one of the

most devastating for economic production. A recent study (Lesk, Rowhani, and Ramankutty

(2016)) looks at 2,800 weather disasters along with data on 16 different cereals grown in over

100 countries. They found that droughts cut a country’s crop production by ten percent, and

1See, e.g., ”The elephant in the atmosphere,” Economist July 19th, 2014.
2Another recent study by Williams, Seager, Abatzoglou, Cook, Smerdon, and Cook (2015) argues that global

warming caused by human emissions has most likely intensified the drought in California by 15 to 20 percent.
3Examples of the more prominent voluntary disclosure initiatives include the Carbon Standards Disclosure

Board, Integrated Reporting, the Carbon Disclosure Project, and the UN Principles for Responsible Investment.
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heat waves by nine percent, but floods and cold spells had no effects on agricultural production

levels.4

Second, a number of water engineering studies find that the food industry is the most

reliant on water and hence the most sensitive to drought risk (Blackhurst, Hendrickson, and

Vidal (2010)).5 Indeed, there are an increasing number of reports of dramatic short-falls in

earnings and compressed profitability ratios or margins due to drought for agribusinesses such

as Cargill, Tyson Foods, and Campbell Soup.6 For instance, Tyson Foods, a large multinational

food processor, suffered steep profit drops due to the 2012 droughts in the main US agricultural

states.7

Third, drought is easy to quantify by using the Palmer Drought Severity Index (PDSI), a

widely used metric in climate studies (Palmer (1965)). PDSI combines information such as

temperature and the amount of moisture in the soil to create an index that does an accurate job

of measuring drought intensity. Less positive values of PDSI are associated with more drought-

like conditions. While not perfect, it is by far the most widely used in climate studies and the

most readily available (Alley (1984)). This data is available in the US by state going back to

the 1890s. Globally, it is available at the country level and goes back to the 1870s. PDSI is

available at a monthly frequency and hence we can for each month calculate a moving average

of PDSI from a horizon of a few months to years back.

We can then forecast the stock returns of food and agricultural companies using this moving-

average PDSI variable, which captures both the intensity and duration of the drought. Our

4This is distinct from whether a warming climate is good or bad for crop yields (Mendelsohn, Nordhaus,
and Shaw (1994)).

5The other major industry perhaps comparable to food companies in terms of water use is the power industry,
but utilities are regulated and their profitability is largely unaffected by drought. The only other industry that
also consumes a significant amount of water in its production process is the automative industry but its reliance
on water is much less than that of the food industry.

6See ”Feeding Ourselves Thirsty: How the Food Sector is Managing Global Water Risks”, A Ceres Report,
May 2015.

7See, e.g., ”Meat Stocks Fall Tyson 8% As Drought Hits Earnings”, Investor’s Business Daily August 6,
2012. Grain price is the main input cost for raising livestocks. The higher grain prices squeezed profit margins.
Additionally, extreme reductions in output can also hurt food businesses relying on turnover as well as margins.
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dependent variable of interest is the return of the FOOD industry portfolio from the Fama and

French (1997) 17-industry classification, where FOOD combines food processing and agricultural

companies. We focus on this aggregated industry portfolio as opposed to the finer industry

classifications, which separate FOOD into smaller components. The reason is that drought is

likely to have a direct impact on the profits of both food processing and agricultural companies.8

Under the efficient market null hypothesis, we expect the coefficient on our independent

variable of interest, the moving-average PDSI, to be zero (assuming there is no risk premium for

drought) or negative (if there is a risk premium for drought).9 Yet to the extent that the market

is underreacting to drought risk, as hypothesized by regulators, we expect the coefficient on the

moving-average PDSI to be positive and that this same variable predicts a lower profitability of

the FOOD portfolio.

Our study assumes that even if the PDSI metric is not widely used until the 1970s producers

and investors have always had access to temperature and other related information to form

expectations of drought severity. Importantly, the long time series of PDSI across countries will

allow us to get at the mechanism behind regulatory worries—namely that stock markets are

more likely to underreact to climate risks which are new.

We begin with a study of the US, where we have the most extensive data. We focus on

a monthly weighted-average (using cropland areas) of PDSI across the states (PDSIWA). Our

focus is on the top 10 agricultural producing states (based on crop receipts). Our main predictor

variable will be a moving average of this series, averaged over horizons of anywhere from 12

months to 36 months (PDSIWA12m to PDSIWA36m). Droughts are considered economically

worrisome should the PDSI be elevated for a prolonged period. For short durations, drought

has a negligible effect as production can adjust. It might even be helpful depending on when it

8Drought also creates water shortages which impact agricultural companies. While some of these cost in-
creases can be temporarily passed onto consumers, prolonged drought ultimately also severely impacts agriculture
as well.

9A lower PDSI level is associated with more uncertainty regarding future cash flows and hence should
compensate investors with higher expected returns.
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occurs (before or after a harvest). But long periods of drought, running into years such as what

is happening in California, unambiguously have negative consequences.

As our baseline, we focus on a 36-month moving average (PDSIWA36m). We want to use

this variable to forecast industry returns to FOOD while controlling for returns to the market.

That is, our hypothesis is that drought predicts returns due to news about food industry specific

cashflows. However, we cannot simply net the market portfolio returns from FOOD since the

FOOD sector is a sizeable portion of the market.

As such, we extract the food industry specific returns in two ways. The first is that we control

in our predictive regressions, where the dependent variable is the FOOD portfolio return net of

the risk-free rate, for a host of variables that are known to predict aggregate market returns,

including lagged values of inflation (INF), aggregate market returns (MRET), dividend yield

(D/P), net equity issuance (NTIS), default spreads (DSPR), and term spreads (TSPR). The

second is that we can calculate the market portfolio net of FOOD stocks and then subtract

from the FOOD returns the returns of the market portfolio purged of the FOOD sector. We

will focus on the first method, though both sets of analyses yield similar results.

To start with, in our sample from 1927 to 2014, the standard market predictor variables all

come in with the expected signs from the literature in terms of predicting the next 12-month

returns of FOOD since FOOD returns contain an important market return component. We

then also control for past 12-month returns of the FOOD portfolio and the book-to-market

ratio of the FOOD portfolio. The idea is that this adjusts for potential momentum and book-

to-market effects unique to the industry portfolio (Moskowitz and Grinblatt (1999)). With these

conservative controls and using non-overlapping 12-month returns, the coefficient on the lagged

36-month moving-average of PDSI (PDSIWA36m) is 2 with a t-statistic of 2.53. The t-statistic

is Newey and West (1987) adjusted with 36 lags. A one standard deviation drop in PDSIWA36m

is associated with a lower future return of FOOD, by around 2.5% over the next twelve months.

The mean excess FOOD portfolio return over 12 months is 7.16% with a standard deviation of
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17.45%. Hence the implied economic effect is nearly 35% of the mean food portfolio return and

15% of its standard deviation.

We then consider a number of extensions and robustness checks of our baseline specification,

including (1) looking at short-horizon return predictability (1-month, 3-month and 6-month), (2)

seeing if our t-statistics are inflated due to persistent predictor variables since our PDSIWA36m

is highly persistent (close to a random walk) by implementing the Campbell and Yogo (2006)

test, and (3) trying different measures of PDSI including a PDSI measure averaged across all

states. We find that our relationships are robust, which will be particularly helpful in our

international analysis below where we only have data of PDSI at the country level.

Moreover, the PDSI index strongly predicts changes in FOOD industry profitability ratios, as

measured by industry net income over assets, confirming our hypothesis that the industry return

predictability is due to the market underreacting to this link between drought and industry

profitability. We have focused on the returns of the FOOD industry since it is the most directly

linked to drought and our prior is that drought ought to have less explanatory power for other

industries. We show that this is indeed the case.

Finally, we study the effect of drought on expected returns in an international sample of

countries excluding the US. However, the time series of these countries are much shorter than

that of the US. The earliest start date is 1975 and much of our sample only begins in the early

1990s.10 We consider a sample of 30 countries with at least 10 food companies during the entire

period. We pool together all the countries to run our regressions and control for country fixed

effect. Consistent with the US results, the coefficient in front of our 36-month moving average

drought measure for our international sample is 3.61 for the 12-month future returns with a

t-statistic of 2.18. The economic and statistical significance for our international sample are

similar to those of the US results obtained from the long time series. The consistency of these

results across countries and also across short and long horizons is comforting.

10However, the data for international markets includes 2015 in contrast to the US data which is only available
up to 2014.
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One additional benefit from employing the international sample is that we can exploit ex-

ogenous variation in historical PDSI across countries to get at the experience mechanism behind

regulatory concerns about market underreaction to climate change risks. Some countries in our

sample have very high PDSI scores in the past, while others have very low PDSI scores and

little history with droughts. The main reason why regulators are worried that markets might

be underreacting to climate change risks is that climate change represents a new phenomenon

that markets do not have experience with. This scenario corresponds to the countries in our

sample with high past PDSI scores. We find that the degree of underreaction for this subset of

countries is more than twice that of other countries, consistent with regulatory concerns.

Another benefit of exploiting the international cross-section is that we can construct an

alternative measure of the excess return predictability through creating portfolio strategies that

condition on the PDSI information. For instance, a strategy that longs the food industry

portfolios of countries with high PDSI and shorts those with low PDSI in any given month and

holds for one year generates an excess return of 0.77% per month with a t-statistic of 2.74. The

Sharpe Ratio is 0.50.11 The results are similar whether we adjust the return spread using the

global Sharpe (1964) CAPM, Fama and French (1993) three factor or Carhart (1997) four factor

model as our long/short portfolio has little exposure to these common factors.

Our findings are similar in spirit to the recent literature on attention and return predictability

(see, e.g., Hong, Torous, and Valkanov (2007), DellaVigna and Pollet (2007), Cohen and Frazzini

(2008)), whereby the market underreacts to many types of value relevant information such as

industry news, demographic shifts, and upstream-downstream relationships. Even for these

types of obviously relevant news, the market can be inattentive. Our analysis points to a similar

underreaction to information on climate risks. In such a world, disclosures properly constructed

can improve market efficiency (Hirshleifer and Teoh (2003)), supporting recent proposals by

central banks and regulators on this issue.

11Our portfolio analysis in contrast to our international sample regressions includes the US food stocks for
purposes of investability.
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Climate risk variables can be quantified and have been used successfully in the pricing of

weather derivatives.12 However, the broader question of the extent to which information on

such risks is appropriately discounted in stock markets has not received much attention to date.

Our study of climate risks and market efficiency helps characterize the nature of the potential

inefficiencies, which might inform regulatory responses and be useful for practitioners interested

in the construction of quantitative risk-management models (Shiller (1994)).

There is a large literature on the economic analysis of how to design government policies

to deal with climate change (see, e.g., Stern (2007), Nordhaus (1994)), be it through emissions

trading (Montgomery (1972)) or taxes (Golosov, Hassler, Krusell, and Tsyvinski (2014)). In

contrast, our analysis highlights the role of markets in potentially mitigating the risks brought

on or exacerbated by climate change. Understanding the role of financial markets in pricing

climate risks is a natural one, though work is limited at this point with some notable exceptions.

Bansal, Kiku, and Ochoa (2014) argue that long-run climate risks as captured by temperature

are priced into the market. Daniel, Litterman, and Wagner (2015) show stock markets might

help guide government policies assuming markets efficiently incorporate such climate risks. Our

analysis suggests that such climate risk information, at least when it comes to natural disasters,

is not efficiently priced.

Our paper proceeds as follows. We discuss the PDSI metric and present our data in Section

2. In Section 3, we present the US results. In Section 4, we present the international results.

We conclude in Section 5.

12See, e.g., Campbell and Diebold (2005).
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2 Data, Variables and Summary Statistics

2.1 US Drought Measures

All of our US data start in 1927 and end in 2014. Our PDSI data for the US comes from

the National Centers for Environmental Information (NCEI) of the US National Oceanic and

Atmospheric Administration (NOAA). The PDSI is updated monthly on the NOAA’s website,

and the index value extends back to January 1895. The index is a measurement of drought

intensity based on a supply-and-demand model of soil moisture developed by Palmer (1965).

The index takes into account not only temperature and the amount of moisture in the soil, but

also hard-to-calibrate factors such as evapotranspiration and recharge rates. It is a widely used

metric in climate studies. The index grades drought and moisture conditions in the following

scale: -4 and below is extreme drought, -3.9 to -3 is severe drought, -2.9 to -2 is moderate

drought, -1.9 to 1.9 is mid-range (normal), 2 to 2.9 is moderately moist, 3 to 3.9 is very moist,

4 and above is extremely moist. The extreme values for PDSI are -10 and 10.

We obtain the monthly PDSI data of all 48 contiguous states in the US (excluding Alaska

and Hawaii because there is no data) from January 1927 to December 2014 as well as the

aggregated US drought measure produced by US NOAA (PDSIUSA). PDSIUSA is essentially

a land-area weighted average of the PDSI values from all climate divisions in the US. This

is not the ideal measure for us since we are interested in the effects of drought on food and

agricultural companies and as such we will focus on states that have a substantial farming

sector. Nonetheless, it is instructive to start by plotting out this standard NOAA measure.

Figure 1 illustrates the historical evolution of this drought measure from January 1927 to

December 2014, with its value shown on the vertical axis. The PDSIUSA measure identifies some

of the most recognizable droughts in the US history. For example, we can see the infamous “Dust

Bowl” period of prolonged droughts in the 1930s, and an extended period of severe droughts

in the 1950s, with the PDSI value falling frequently below -2 and even breaking -8. From
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the 1960s to the 1980s, the US experienced several spells of relatively shorter yet significant

droughts. Since the turn of the 21st century, the US has been bombarded by various droughts

that include the current ongoing drought in California. This might suggest that the climate

risk due to global warming has intensified, as the droughts in the 1930s and 1950s could be (at

least) partly attributed to bad soil management and exploitative farming techniques.

To go a bit further, we present the geography of droughts in the US history by showing the

PDSI values of two top food-producing states, California and Texas. Figures 2 and 3 illustrate

California’s and Texas’ historical PDSI values respectively. We observe that the two states

coincide well in certain spells of droughts historically, such as the Dust Bowl in the 1930s and

the drought around 2008. However, the two states can be very asynchronous in other periods

of severe droughts. For instance, Texas had a persistent and severe drought between 1950 and

1957 but California had little, whereas California has been experiencing a prolonged, ongoing

drought since 2013 but Texas has not.

Because not every state in the US has significant croplands or an agricultural sector, we

construct our own aggregated measures of drought for the US. The first one, PDSIWA, is

the weighted average of the PDSI values from the top 10 food-producing states (in terms of

gross cash income of the state’s farm sector), using cropland area as weight. Data for both

the cropland area and the gross cash income of the farm sector in each state are obtainable

from the US Department of Agriculture. The top 10 food-producing states are (in alphabetic

order): California, Illinois, Indiana, Iowa, Kansas, Minnesota, North Carolina, Nebraska, Texas,

Wisconsin. This is our main drought measure.

Our second aggregate measure (PDSIASWA) is the weighted average of the PDSI values

from all 48 contiguous states based on cropland area. We focus on the top 10 food producing

states but a number of states have some croplands, and so we also consider this measure. Our

third aggregate measure is PDSIASCAWA, which is simply the weighted average PDSI of the

48 states using gross cash income of the farm sector as weights.
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Since droughts that last for a few months are unlikely to do any harm to the food industry

(and under certain circumstances might even be helpful depending on whether it occurs before

or after a harvest), we consider a moving average of these monthly drought measures, where

the average is over years. As we discussed in the Introduction, prolonged droughts that last

years are likely to substantially impair food industry cashflows and hence their stock prices.

The idea is that by shortening or lengthening the window over which we do the average, we

pick up more prolonged periods of drought. For our main baseline measure PDSIWA, using the

top 10 states, we consider moving averages from 12 months to 36 months (e.g. PDSIWA12m to

PDSIWA36m). For our other three drought measures, we will just consider a 36-month moving

average. In theory, we could average over much longer periods of time. The trade-off is that

we then lose time series variation in our drought measure. As such, we consider 36-month (a

3 year drought) as a reasonable length to focus on and assess the sensitivity of our findings to

differing lengths.

Panel A of Table 1 shows the summary statistics for our various drought measures. Our

main drought measure PDSIWA36m has a mean of 0.17 and a standard deviation of 1.26.

Moreover, the four drought measures are all positively correlated, as demonstrated in Panel D

of Table 1. The PDSIUSA36m measure is less correlated not surprisingly with our other three

measures since it weighs by land mass as opposed to cropland. Nonetheless, the correlation

of PDSIUSA36m with PDSIWA36m is 0.88. As such we expect our baseline measure to be a

better predictor of food stock returns than the PDSIUSA36m measure but this standard NOAA

measure ought to still have information about food stock returns.

2.2 US Stock Market Data

Our second set of data comes from Kenneth French’s website.13 It contains the monthly value-

weighted returns for the Fama-French 17 industry portfolios from January 1927 to December

13http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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2014. The 17 industries are: (1) Food, (2) Mining and Minerals, (3) Oil and Petroleum Prod-

ucts, (4) Textiles, Apparel and Footware, (5) Consumer Durables, (6) Chemicals, (7) Drugs,

Soap, Perfumes, Tobacco, (8) Construction and Construction Materials, (9) Steel Works, (10)

Fabricated Products, (11) Machinery and Business Equipment, (12) Automobiles, (13) Trans-

portation, (14) Utilities, (15) Retail Stores, (16) Banks, Insurance Companies and Other Fi-

nancials, (17) Other. The FOOD industry includes agriculture firms, food products and food

processing firms, candy and soda-producing firms, beer and liquor-producing firms, as well as

wholesale firms that are related to all of these.

We take the raw continuously compounded monthly industry returns and net them off the

one-month T-bill return to obtain the monthly excess returns for all industries. We denote

the food industry excess return by FOODRET. We then take the FOODRET at 1-month, 3-

month, 6-month, and 12-month frequencies. Panel B of Table 1 shows the summary statistics

for FOODRET. Our baseline dependent variable of interest, FOODRET12m, has a mean of

7.16% and a standard deviation of 17.45%.

In addition to FOODRET12m, we create a FOOD industry return that nets the market

portfolio. The problem is that the FOOD industry is also a big part of the market. As such, we

create a market portfolio excluding the food stocks and then subtract the returns of this alternate

market portfolio from the FOOD industry returns. We call this variable FOODXMRET12m.

It has a mean of 1% and a standard deviation of 11.75%.

Our second data set also has the value-weighted average book-to-market ratio for each of

the industries observed at annual frequency. We take the log value for all the industry book-to-

market ratios, and we denote this value for the food industry by FOODBM. Moreover, it has

the monthly market excess returns (the CRSP value-weighted market portfolio excess return

over the Treasury-bill), and we denote this variable by MRET.

Our third set of data comes from Amit Goyal’s website.14 It contains the monthly data

14http://www.hec.unil.ch/agoyal/docs/PredictorData2014.xlsx
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for all other market predictor variables that we will use. It includes the following variables:

the inflation rate (INF), the log value of the dividend-price ratio of the S&P 500 index (DP),

the volatility of the S&P 500 index (MVOL), the net equity expansion of the NYSE stocks

(NTIS), the difference between BAA and AAA-rated corporate bond yields (DSPR), and the

difference between the long term yield on government bonds and the Treasury-bill (TSPR).

Panel C of Table 1 provides the summary statistics for all of our predictor variables (annualized

and hence the appending of 12 (denoting 12-month) to the variable names) as well MRET12

and FOODBM12. We can see that the summary statistics of our variables are consistent with

those in the literature. For instance, our market excess return MRET12 has a mean of 6% and a

standard deviation of 20% (see, e.g., Fama and French (2015)). Moreover, our annual inflation

is 2.94% that is in line with the long-run inflation rate in the US.

In Figure 4, we plot the time series of our independent variable of interest (PDSIWA36m)

along with one of our dependent variable of interest (the future 12-month return of the food

industry net of the market return, i.e. FOODXMRET12m). To the extent that the market is not

efficiently pricing in the information about prolonged droughts, we expect a positive correlation

between these two time series. This is indeed what we see. We have marked some of the main

droughts in US history. Prolonged drought episodes are typically periods when future returns

to the food portfolio is low. Similarly, periods when there is plentiful water (i.e. positive values

of PDSI) are associated with higher than average returns to the food industry portfolio. As we

will show in various ways below, the relationship between these two time series is positive and

statistically significant.

2.3 International Drought Measures

Our data for the global Palmer Drought Severity index comes from Dai, Trenberth, and

Qian (2004). The data consists of the monthly PDSI over global land areas computed using

observed or model monthly surface air temperature and precipitation. The global PDSI dataset
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is structured in terms of longitude and latitude coordinates and we extract each country’s PDSI

based on that country’s geographic coordinates. The sample period of global PDSI is from

January 1870 to December 2014. As argued by Dai, Trenberth, and Qian (2004), the global

land areas in either very dry or very wet conditions have increased from 20% to 38% since

1972, with surface warming as the primary cause after the mid-1980s. These results provide

observational evidence for the increasing risk of droughts as anthropogenic global warming

progresses and produces both increased temperatures and increased drying.

In addition, we also present the evolution of droughts in a number of countries from our

international sample. Figure 5 plots the time series of monthly PDSI values for several countries,

including Australia, India, Russia, Japan and Israel. The sample starts from 1927 and ends in

2014. We also identify some of the most severe drought episodes in the history, which correspond

closely to very negative values of PDSI in the data. For example, the Millennium drought in

Australia started from 1997 and continued for more than 10 years, which is recognized as the

worst on record since settlement in Australia.

2.4 International Stock Market Data

We obtain firm-level stock returns and accounting variables for a broad cross section of countries

(except for the U.S.) from Datastream and Worldscope, respectively. The sample includes live

as well as dead stocks, ensuring that the data are free of survivorship bias. We compute the

stock returns in local currency using the return index (which includes dividends) supplied by

Datastream and convert them to U.S. dollar returns using the conversion function built into

Datastream. In some of our tests, we also use price-to-book ratio which is directly available

from Worldscope database. Inflation rate for international countries is from the World Bank

database.

We apply the following sequence of filters that are derived from the extensive data inves-

tigations by Ince and Porter (2006), Griffin, Kelly, and Nardari (2010) and Hou, Karolyi, and
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Kho (2011) as follows. First, we require that firms selected for each country are domestically

incorporated based on their home country information (GEOGC). A single exchange with the

largest number of listed stocks is chosen for most countries, whereas multiple exchanges are

used for China (Shanghai and Shenzhen) and Japan (Tokyo and Osaka). We eliminate non-

common stocks such as preferred stocks, warrants, REITs, and ADRs. A cross-listed stock is

included only in its home country sample. If a stock has multiple share classes, only the primary

class is included. For example, we include only A-shares in the Chinese stock market and only

bearer-shares in the Swiss stock market.

To filter out suspicious stock returns, we set returns to missing for stocks that rises by

300% or more within a month and drops by 50% or more in the following month (or falls

and subsequently rises). We also treat returns as missing for stocks that rise by more than

1,000% within a month. Finally, in each month for each country, we winsorize returns at the

1st and the 99th percentiles, to reduce the impact of outliers on our results (McLean, Pontiff,

and Watanabe (2009)). Datastream classifies industries according to Industrial Classification

Benchmark (ICB). The food portfolio includes stocks in the food & beverage supersector.15

Food portfolio returns are individual stock returns weighted by lagged market capitalization. In

addition, to meaningfully identify the drought impact in our international sample, we further

exclude countries with less than 10 stocks in the food portfolio in its entire time series. The final

sample includes 30 countries, among which 15 are developed countries and 15 are developing

countries.

Table 2 Panel A reports the summary statistics of our international sample. The average

number of stocks in the food industry varies considerably across countries, from 7 in Finland to

108 in India. We also report the median firm market capitalization in the food industry within

each country as of the end of 2013 in millions of U.S. dollars, as well as the mean and standard

15ICB Supersector Level classifies industries as follows: Oil & Gas, Chemicals, Basic Resources, Construction
& Materials, Industrial Goods & Services, Automobiles & Parts, Food & Beverage, Personal & Household
Goods, Health Care, Retail, Media, Travel & Leisure, Telecommunications, Utilities, Banks, Insurance, Real
Estate, Financial Services, Equity/Non-Equity Investment Instruments, and Technology.
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deviation of the monthly PDSI values for each country.

As we can also see from Panel A, the time series of stock returns for international countries are

much shorter than for the US. As a result, we cannot conduct an individual time series exercise

for each country as we do for the US. Instead, we will pool together all the international monthly

observations and run a pooled regression. We control for country fixed effect to isolate the time

series return predictability of lagged PDSI from the cross-country effect. Panel B reports the

summary statistics for our pooled sample of international countries. Our independent variable

of interest is a 36-month moving average of the monthly PDSI in each country (PDSI36m).

Note that these PDSI values are reported by month and by country. We do not, unlike for the

US, have finer data with which to aggregate the measure to take into account cropland. The

mean PDSI36 is -0.33 with a standard deviation of 1.49.

We also do not have as many market predictor variables for the international sample as we

do for the US sample. The market predictor variables we have for the international sample

include the lagged 12-month returns of the market (MRET12), the lagged inflation rate of the

country (INF12), the dividend-to-price ratio of the country market index (DP12) and the market

volatility (MVOL12). Food industry-specific controls include the price-to-book ratio of the food

industry stocks (FOODPB12) and the 12-month food industry return (FOODRET12m). The

mean annual market return is 10.25% with a standard deviation of 40.78%. The mean annual

inflation rate is 2.63%, annual dividend-to-price ratio is 3.12% and the mean annual market

volatility is 23.12%. The mean price-to-book ratio for the food stocks is 2.58.

Finally, we report the summary statistics for the international FOOD industry portfolios

which are net of the risk-free rate in Panel C of Table 2. The mean of the 12-month return

is 12.86% with a standard deviation of 41.30%. Notice that both the mean and the standard

deviation of the FOODRET12m are larger than in the US. International food stocks have done

better over this sample and the wider standard deviation also reflects that we are pooling

together all observations.
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3 US Results

To consider the impact of droughts on food and agricultural companies, and forecast their stock

returns using our drought measures, we begin with a study of the US where we have the most

extensive data.

3.1 Food Portfolio Returns

3.1.1 Baseline Specification

In Table 3, we focus on the 36-month moving average of the PDSIWA using the top 10 food

producing states (PDSIWA36m) as our baseline drought measure. We use this variable to

forecast FOODRET12m, the excess returns of the FOOD industry portfolio (net of the risk-free

rate) FOODRET over the next 12 months. Our sample period is from 1927 to 2014. The

empirical specification is

FOODRET12mt = α + βPDSIWA36mt−1 + γ′Xt−1 + εt, (3.1)

where FOODRET12mt denotes the future non-overlapping FOOD return over the next 12

months, PDSIWA36mt−1 is the moving average of PDSIWA over the previous 36 months, and

Xt−1 includes market and food industry specific controls. In column (1), we report the coeffi-

cients using the traditional market predictor variables, including the lagged 12-month aggregate

market return MRET (see, e.g., Poterba and Summers (1988)), the inflation rate INF (see, e.g.,

Fama and Schwert (1977)), the log value of the dividend-price ratio of the aggregate market

DP (see, e.g.,Campbell and Shiller (1988)), the volatility of the aggregate market MVOL (see,

e.g., French, Schwert, and Stambaugh (1987)), the net equity expansion of the aggregate market

NTIS (see, e.g., Baker and Wurgler (2000)), a corporate bond spread (DSPR), and a treasury
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yield spread TSPR (Fama and French (1989)).16 The idea is that the FOOD industry portfolio

contains a systematic market component and these predictor variables ought to forecast FOOD

with the same sign that they forecast the market returns.

Indeed, these predictor variables come in with the expected signs, though their statistical

significance varies depending on the sample period. The coefficient on MRET12 is negative,

consistent with long-horizon mean reversion. The coefficient on INF12 is positive. A higher

dividend-price ratio forecasts higher returns. Over this sample period, this variable is highly

statistically significant. Lagged market volatility attracts a negative sign. High net equity

issuance forecasts low future returns. High default spreads and term spreads forecast high future

returns. The R2 of this time series regression is 22% with 85 yearly observations. As such, we

believe that this expected return model for the market does an adequate job of explaining the

systematic component of FOOD industry returns.

In column (2), we add in two FOOD industry specific variables in the form of the lagged past

12-month FOOD industry returns (FOODRET12m) and the book-to-market ratio of the FOOD

industry portfolio (FOOBM12). These FOOD industry specific return predictors are motivated

by momentum or positive serial correlation in industry portfolios (Moskowitz and Grinblatt

(1999), Hong, Torous, and Valkanov (2007)) and the potential conditioning information in the

cost of equity by industries (Fama and French (1997)). Both variables come in with the expected

signs. They are not individually significant in this sample period but increase the R2 from 22%

in column (1) to 24% in column (2).

In column (3), we then add in our variable of interest PDSIWA36m and find that it has

significant incremental forecasting power for the future returns of the food portfolio. The

coefficient estimate of PDSIWA36m is 2 with a t-statistic of 2.5, which is significant at the 5%

statistical significance level. It increases the R2 from 24% in column (2) to 26% in column (3).

Moreover, notice that the coefficients in front of the previous market and industry predictor

16All of these market predictor variables have a suffix of 12 to denote they are annualized values over the past
12 months.
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variables from columns (1) and (2) are largely unchanged. This is to be expected from our

discussion on Panel D of Table 1 regarding the contemporaneous correlations of the PDSIWA36m

with the standard market and industry predictor variables. Our variable of interest is not

significantly correlated with these predictors. As a result, adding our variable of interest has

little effect on the coefficients in columns (1) and (2). Hence we can be assured that our drought

variable is not picking up the traditional market predictors nor is it priced into the book-to-

market ratio of the FOOD industry. If the information in drought were priced in, we might

expect it to be captured by the FOOD past returns and book-to-market ratio in column (2).

To the extent markets are efficient, we would expect zero excess return forecastability on

the moving average of PDSIWA for the food portfolio. However, our baseline result of strong

forecastability suggests that markets are under-reacting to climate risks from droughts. More-

over, the sign on the coefficient of interest suggests that this is not a risk premium mechanism

at work. If it were risk, we would expect that more intense drought results in higher as opposed

to lower expected returns. Moreover, we might expect that if markets were efficient in pricing

drought, the information in drought would be captured by the FOOD industry book-to-market

ratio introduced in column (2).

The implied economic significance of our PDSI variable is large. It means that if the average

weighted PDSI value of the top 10 food-producing states over the previous 36 months falls by

1 standard deviation (about 1.26 from Table 1), the average excess return of the food industry

portfolio over the risk-free rate in the next 12 months (FOODRET12m) will decrease by about

2.5%. From Table 1, the mean FOODRET12m is 7.16% with a standard deviation of 17.45%.

Thus the implied economic effect is about 35% of the mean of the food portfolio return and

about 15% of the standard deviation of FOODRET12m, which are both economically significant

results.

Another way to gauge the economic significance of our drought variable is to compare it to

the predictive power of the traditional market predictors. In column (3), the two most powerful
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predictors are the net equity issuance (NTIS12) and term spread (TSPR12). A one standard

deviation increase in net equity issuance forecasts lower FOOD returns by 5.95% over the next

12 months. The corresponding magnitude for treasury spread is 3.9%. Therefore, our drought

effect is about 40% of that of the net equity issuance variable and 60% of that of the treasury

spread variable.

To visualize the regression results in Table 3, we produce a scatterplot in Figure 6 of

the FOOD returns residualized from the predictive model given in column (2) against our

PDSIWA36m measure. That is, we are plotting the FOOD returns in excess of the expected

returns as captured by the traditional market predictor and industry predictor variables with

our drought measure. We then run a simple univariate regression on these residuals. The coeffi-

cient is 1.61 with a t-statistic of 2. The coefficient is not identical to column (3) since there are

non-zero covariances between PDSIWA36m and the other variables. But since these covariances

are not too large, the coefficients are similar in magnitude. Furthermore, the appealing aspect of

this scatterplot analysis is that we can see that our drought effect is coming from both negative

values of PDSI as well as positive values of PDSI. That is, since PDSI measures the combined

moisture in soil and temperature, we expect that when there is less drought (i.e. more moist

conditions), we also get higher returns or more profits for the FOOD industry. This difference

in the mean FOOD industry returns across drought conditions is visible in the scatterplot.

One important concern is that the t-statistics of our predictability regressions are inflated

due to persistent predictor variables since our PDSIWA36m is highly persistent (close to a

random walk). To deal with this concern, we implement the Campbell and Yogo (2006) test.

For this test in our baseline case, we do the following. First, we carry out the following two

regressions:

FOODRET12mt = α + βPDSIWA36mt−1 + et, (3.2)

PDSIWA36mt = γ + ρPDSIWA36mt−1 + ut, (3.3)

19



where FOODRET12mt denotes the future non-overlapping FOOD return over the next 12

months, PDSIWA36mt−1 is the moving average of PDSIWA over the previous 36 months, and

PDSIWA36mt is the one-step ahead value of PDSIWA36mt−1 (i.e. the contemporaneous value

of PDSIWA36m corresponding to FOODRET12mt). We obtain the residuals from regressions

(3.2) and (3.3), and denote them as et and ut respectively. Then we calculate the correlation

between the residuals et and ut. The correlation turns out to be merely −0.001. As shown

in Campbell and Yogo (2006), the bias in t-statistics would be a concern if the residuals et

and ut are highly negatively correlated. This is not the case in our sample. Furthermore, as

demonstrated in their Table 4 and 5 in Campbell and Yogo (2006), when the correlation is very

close to zero as opposed to being close to −1, the confidence intervals for the standard t-test are

almost unaffected. Therefore, based on the (extremely) low correlation we find in our sample,

we are on safe ground in proceeding with the standard t-test in our analysis and not adjusting

the t-statistics values.

3.1.2 Short and Intermediate Horizon Predictability

Our focus on 12-month horizon returns for FOOD brings up the usual worries of long-horizon

excess return predictability (Valkanov (2003)). These worries are alleviated somewhat in our

setting since our t-statistic is around 2.5 and the scatterplot analysis points to a pronounced

decline in expected returns with drought. Nonetheless, to fully address such concerns, we repeat

our analysis (column (3) of Table 3) in Table 4 but now using short (1 month) to intermediate

horizon returns (3 and 6 months).

In column (1), we consider monthly returns. Our drought predictor attracts a coefficient of

.185 with a t-statistic of 1.65. A one standard deviation decrease in our drought measure predicts

a decline in next month return by .23%. The mean monthly return for FOOD is .60% with a

standard deviation of 4.8%. The economic effect is comparable to the 12-month returns case in

Table 3. It is about 40% of the mean FOOD return but a much smaller fraction of the standard

20



deviation of monthly FOOD returns (about 5%). Among the traditional predictors, net equity

issuance is the only one that is significant with a coefficient of -.237 and a t-statistic of 3. When

compared to these traditional predictors, our drought variable’s excess return predictability is

more striking at the one month horizon than at the 12-month horizon.

In columns (2) and (3), we consider intermediate horizon returns of 3 months and 6 months.

In column (2), the coefficient of interest is .558 with a t-statistic of 1.67. A one standard devia-

tion decrease in PDSIWA36m leads to a decline of .70% in next quarter returns, which is around

40% of the mean FOOD return and 7.5% of the standard deviation of FOOD returns. Among

the traditional predictors, only net equity issuance and treasury spread are more significant

than our variable.

In column (3), the coefficient of interest is 1.062 with a t-statistic of 2.26. The implied

economic effect for drought as a fraction of the mean return of FOOD is similar but as a

fraction of the standard deviation of FOOD returns, it is closer to the 12-month case (at around

10%). Overall, we conclude that the economic significance of our drought variable is there at

short, intermediate and long horizons.

3.1.3 Different Horizon Drought Measures

In Table 5, we explore the extent to which different horizons of our baseline PDSIWA (from

12-month moving average to 30-month moving average) forecast food portfolio returns over the

next 12 months. We always use the specification with the full list of control variables from

column (3) of Table 3.

In columns (1) and (2), we use a moving average of 12 months and 18 months. We can think

of this short-horizon moving average as capturing shorter episodes of drought. The coefficients

are positive as before but are not statistically significant. Take the 0.673 coefficient in column

(1). A standard deviation of PDSIWA12m is 1.6, which is as expected larger than the standard

deviation of 1.26 for our baseline PDSIWA36m measure. Thus a one standard deviation increase
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in this short-horizon drought measure translates to around a 1% increase in FOOD returns.

This economic magnitude is about 40% of that of our 36-month moving average measure. The

economic effect is smaller, as we hypothesized, since short duration droughts should have less

of an effect on the FOOD industry, all else equal. Indeed, if we took the view that information

about a prolonged 36-month drought is much more salient than a 12-month drought and ought

to be more readily priced in by the market, then the difference in the predictability generated

by the long versus the short-horizon drought measures are even more pronounced.

It is in column (3), at the 24-month moving average horizon, that we see a statistically sig-

nificant result. The coefficient of interest is 1.264 with a t-statistic of 2.25. Similarly, in column

(4), the coefficient is even larger and significant at the 1% level of significance. The implied

economic magnitudes are nonetheless smaller than our 36-month moving average baseline mea-

sure. Overall, the predictability of FOOD returns by drought information increases the more

prolonged the drought is.

3.1.4 PDSI at Different Levels of Granularity

In Table 6, we use 36-month moving averages of alternative PDSI measures as the predictor in

our baseline regression specification to forecast 12-month FOOD returns. In column (1), the

alternative measure is the PDSI using the 48 contiguous US states weighted by cropland area.

The coefficient of interest is 2.5 with a t-statistic of 2.4. In column (2), the measure is the PDSI

aggregated across the US but weighted by the food cash receipts produced by that state. The

coefficient of interest is 2.5 with a t-statistic of 1.9. In column (3), we use the PDSI measure

produced by NOAA. The coefficient is 1.26 with a t-statistic of 1.77.

All of the alternative drought measures carry comparable statistically significant forecasting

power on food portfolio returns. The implied economic effects are also comparable to our top 10

agricultural producing states measure. It is comforting that we can find predictability results

even using a coarse PDSIUSA measure since for our international analysis below we only have
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access to such a coarse measure.

3.1.5 Food Returns Net of the Market

We now use our second approach to calculate FOOD returns in excess of the market. Rather

than calculating it as a residual from a predictive market model, we simply subtract from the

returns of the FOOD portfolio the returns of a market portfolio that excludes the food industry

and is re-weighted using the other 16 industries. We present the results of a univariate regression

of this FOODXMRET on our PDSIWA36m variable in a scatterplot format in Figure 7 with the

fitted line drawn. The coefficient of interest is .862 and statistically significant with a t-statistic

of 2.14.

This method is by no means perfect and as such we still want to have our control variables to

adjust for potential flaws in our calculation. In Table 7, we do just this. From column (3), our

estimate in front of our coefficient of interest is 1.23 with a t-statistic of 3.01. A one standard

deviation increase in PDSIWA36m leads to a 1.55% higher return over the next 12 months for

FOODXMRET. The mean of FOODXMRET12m is 1% with a standard deviation of 11.75%.

The economic significance is comparable to our first method.

3.2 Drought and Profitability Ratios

We now show that the excess predictability patterns of our drought measures for FOOD industry

returns are related to more negative cash flow news associated with drought. In Table 8, we take

the specifications from Table 3 and replace the dependent variable of future 12-month FOOD

returns with the future 1-year change in the food industry profitability ratio (CP). The change

in the food industry profitability ratio in year t is defined as CPt = NIt/At−NIt−1/At−1, where

NI is the food industry net income and A is the food industry total asset. The food industry

net income and total asset are obtained respectively by aggregating the net income and the

total asset of individual firms within the food industry. We perform the following regression of
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forecasting the future 1-year change in CP:

CPt+1 = α + βPDSIWA36mt + γ′Xt + εt+1, (3.4)

where X denotes the control variables apart from PDSIWA36m. This specification is similar to

the one used in Fama and French (2000). The one modification of our control variables is that

we include in columns (2) and (3) of Table 8 the previous 1-year change in the food industry

profitability (i.e. CPt). Otherwise, the control variables are the same as before, which include

all of the controls as specified in column (3) of Table 3.

The coefficient of interest is in column (3) where we find that PDSIWA36m attracts a

coefficient of 0.10 with a t-statistic of 2.41. Drought is associated with a decline in the food

industry profitability over the next year. The standard deviation of CP is 0.77%. Hence, a one

standard deviation move in our drought measure results in a 0.12% fall in CP (the standard

deviation of PDSIWA36m in our regression (3.4) is 1.2). This is nearly 16% of the standard

deviation of CP, which is a substantial decrease.

In Figure 8, we show the scatterplot of the residual of CP generated from the predictive

regression in column (2) and our drought measure. The univariate regression through the scat-

terplot has a coefficient of 0.08 with a t-statistic of 2.47. In short, we confirm that our interpre-

tation of the excess FOOD return predictability regressions is due to the market underreacting

to the implications of drought for FOOD industry cash flow-related news.

3.3 Other Industries

We have focused on the returns of the food industry since it is the most directly linked to crops,

agricultural production and drought. Our prior is that drought should not significantly predict

returns of other industries. To see if this is the case, we run the same predictive regression

for each industry in the Fama-French 17-industry categories. Table 9 reports the coefficient
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estimates and t-statistics of PDSIWA36m for the Fama-French 17 industries and the ranking is

based on the magnitude of the t-statistics. As we can see, the Food industry is ranked 1st among

all 17 industries for return horizons over future 1 to 12 months. For convenience, we report the

coefficients and t-statistics for FOOD, which are the same as those presented earlier. Notice

for the 1-month horizon returns, no other industry is significant besides FOOD. The same is

true for the 3-month horizon returns and the 6-month horizon returns. At 12 months, Steel

is significant besides FOOD but attracts a negative sign. In short, drought only significantly

predicts FOOD, consistent with our priors.

Having said this, we are working with very aggregate portfolios. It is possible that perhaps

when we consider disaggregated industry portfolios, such as the Fama-French 48 industries

categorization, we might see different results. Drought might predict some sub-industries with

a positive sign (i.e. they are hurt by drought) and others with a negative sign (i.e. they benefit

from drought).

4 International Stock Market Results

4.1 Food Stock Return Predictability and PDSI

Finally, we examine whether droughts forecast food stock returns in international markets. We

consider an international sample of 30 countries, among which 15 are developed countries and 15

are developing countries. In Table 10, we consider how PDSI averaged over 36 months predict

future food industry returns. To increase the power of our test, we exclude countries with less

than 10 stocks in the food industry portfolio at any point in time, pool all countries together,

and run a panel regression by including a country fixed effect. Controlling for country fixed

effect helps isolate the within-country time series return predictability of lagged PDSI from the

cross-country effect. Our hypothesis is that low PDSI would predict more negative future food

returns within each country, so it is essentially a time-series relation between lagged PDSI and
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future food returns. We specify this PDSI-food return relation for a given country i as the linear

regression

FOODRET12mi,t = αi + βiPDSI36mi,t−1 + γ′iXi,t−1 + ei,t (4.1)

where FOODRET12mi,t is the future non-overlapping FOOD return over the next 12 months

for country i, PDSI36mi,t−1 is the moving average of PDSI over the previous 36 months and

Xi,t−1 is a set of lagged predictors. A positive βi means the market underreacts to drought risk.

To increase the power of our inferences in equation (4.1), we pool all countries together and

estimate a panel regression that imposes the restriction

β1 = β2 = ... = β (4.2)

γ1 = γ2 = ... = γ (4.3)

across all countries, so that β reflects only the contribution of within-country time variation in

PDSI36m. The αi in equation (4.1) corresponds to country fixed effects when the restrictions

in (4.2) and (4.3) are imposed across all countries. When we combine equation (4.1), (4.2) and

(4.3), the regression is a panel regression with country fixed effects

FOODRET12mi,t = αi + βPDSI36mi,t−1 + γ′Xi,t−1 + ei,t (4.4)

Given country fixed effects, the OLS estimate β̂ from this panel regression reflects only time-

series variations in PDSI36m and food sector returns. β̂ is a weighted-average of the slope

estimates from pure time-series regressions (Pastor, Stambaugh, and Taylor (2014)). Specifi-

cally, let β̂i denote the estimated slope from the time-series regression in equation (4.1). Then
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β̂ from equation (4.4) is given by

β̂ =
N∑
i=1

ωiβ̂i (4.5)

where the weight ωi is given by

ωi =
Tiσ

2
i∑N

i=1 Tiσ
2
i

(4.6)

Ti is the number of observations for country i, and σ2
i is the sample variance of PDSI36mi,t−1

across t. This weighting scheme places larger weights on the time-series slopes of countries with

more observations as well as countries whose PDSI fluctuates more over time.

Following Petersen (2009), we cluster the standard errors at both the country and month

dimensions. The returns are non-overlapping throughout. Similar to Table 3, we present in

column (1) the market-wide control variables, including lagged market return, lagged inflation

rate, lagged dividend-yield and lagged market volatility. In column (2), we add the lagged

12-month returns and price-to-book ratio of the food industry. In column (3), we then add our

PDSI36m, which attracts a coefficient of 3.61 with a t-statistic of 2.18. The mean return of

this portfolio is 12.86%. Hence the decrease in returns associated with a one standard deviation

increase in drought is roughly 42% of the mean. The economic magnitude from our international

sample is larger than that of our US results.

In Figure 9, we re-examine the regression results in Table 10 by plotting the residual of

FOOD returns from the predictive model in column (2) of Table 10 against our international

drought measure PDSI36m. The scatterplot depicts an upward sloping or positive relationship

between PDSI36m on the x-axis and the FOODRET12m residual on the y-axis. The coefficient

from a fitted line through the data is 2.38 with a t-statistic of 3.69 (the standard error is clustered

at the country level). This coefficient is estimated without country fixed effects unlike the case

in the tables, for the purpose of drawing the fitted line.

In Table 11, we examine the excess return predictability at shorter horizons from 1 month

to 6 months. In column (1), we consider the 1-month return results. Our market predictor
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variables MRET12 and MVOL12 are economically and statistically significant. Our coefficient

of interest is 0.183 with a t-statistic of 1.86. A one standard deviation increase in PDSI36m

(1.49) leads to a higher expected return of .27% next month. The mean 1-month return is

1.04%. This is nearly 26% of the mean. Consistent with the US results, the power of drought

to predict FOOD returns is similar as we go further out in horizon up to 6 months.

In Table 12, we use a FOOD industry portfolio return that is net of the market portfolio

of that country. The market portfolio for each country is calculated, as in the case of the US,

by excluding food industry stocks. In column (1), we show the monthly return results. The

coefficient is 0.153 with a t-statistic of 1.9. All the specifications as we go further out in horizon

are economically significant. The columns that are not statistically significant are the 3- and

6-month horizon results. The coefficients are sizeable but only attracts a t-statistic of 1.55 and

1.49, respectively.

4.2 PDSI and Profitability Ratios

Next we examine whether prolonged drought affects future food industry profitability in in-

ternational countries. We use the food industry net income (scaled by total assets) as the

profitability measure, the same as we do for our US sample. The dependent variable is the

future 1-year change in the food industry profitability ratio and the key explanatory variable is

the 36-month moving average of country-level PDSI values (PDSI36m). The regression is run

by pooling all countries together and controlling for a country fixed effect. Standard errors are

double clustered at both the country and year dimensions. The result is reported in Table 13.

Consistent with our US result, drought forecasts decreasing food industry profitability over the

next year. The coefficient on PDSI36m is 0.180, with a t-statistic of 1.75. In sum, our global

markets result provides additional evidence that climate risks, such as prolonged droughts, could

negatively impact the profitability of the food and agricultural sector and stock markets seem

to underreact to such prominent risks.
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4.3 How Excess Predictability Varies Across Countries Depending

on Experience with Droughts

Up to now, our goal has been to establish that stock markets underreact to the implications

of drought for future food industry profitability. In this section, we want to address more

directly regulatory concerns. The main reason why regulators are worried that markets might

be underreacting to climate risks is that climate change represents a new phenomenon that

markets do not have experience with. There is a literature in behavioral economics and finance

which supports a related idea, namely that investors might pay limited or not enough attention

to information that is not salient (see, e.g., Klibanoff, Lamont, and Wizman (1998)).

To this end, we exploit exogenous variation in PDSI across countries. The key for us is that

some countries in our sample have very high PDSI scores in the past, while others have very low

PDSI scores. As such, we expect that investors in countries with previously temperate climates

would underreact more to drought information in the 1975 onward sample than investors in

countries with previous experience with drought. This would be a way of testing the regula-

tory hypothesis that markets are underreacting to climate change risks that they do not have

experience with.

We take our sample of international countries with PDSI monthly values going back to

the 1900s. We can see from Panel A of Table 14 that there is significant dispersion in PDSI

(mean PDSI36m values) measured up to 1975 across countries. In Panel B of Table 14, we

then re-calculate our results from Table 10 but now split the countries into three groups: high,

medium and low past PDSI terciles (based on the past mean PDSI36m values). Recall that

our excess predictability regressions are ran from 1975 onwards. We drop the middle group

from our analysis and focus on a comparison of the high and low tercile countries. In the first

column, for the low PDSI tercile sub-sample, we see that the coefficient of PDSI36m is 3.38

and the t-statistic is 1.69. In the second column, for the high PDSI tercile sub-sample, we

find that the coefficient is 5.9 and the t-statistic is 2.54. Therefore, our findings from Table
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10 on underreaction in international markets are coming from the sub-sample of countries with

previously temperate climates and little history with droughts.

In the final column, we conduct a formal statistical test of this difference by introducing an

additional covariate PDSI36m*HighPDSI, which is an interaction term involving PDSI36m and

a dummy variable HighPDSI that equals one if a country is in the highest tercile of PDSI. The

coefficient on the interaction term is 3.6 and statistically significant. In short, we find that the

degree of under-reaction for this subset of high PDSI countries is roughly twice that of other

countries.

In Figure 10, we show a scatterplot of the relationship between residualized future 12-month

FOOD returns and PDSI for the two sub-samples: the blue dots represent the observations for

the countries in the highest PDSI tercile and the red dots represent the observations for the

countries in the lowest tercile. We also draw the fitted line for these two subsamples respectively,

with the standard errors of the coefficient estimates clustered at the country level. We can see

that there is a more pronounced upward slope for the blue dots of the highest PDSI tercile

sub-sample. The coefficients are not identical to columns (1) and (2) of Panel B in Table 14

because we do not include country fixed effects for purposes of showing the fitted lines.

4.4 Cross-Country Portfolio Strategy Based on PDSI

Our time series return predictability test shows that markets underreact to the impact of pro-

longed drought on the food industry. In this section, we further illustrate our point by utilizing

the cross-country PDSI information. Specifically, we construct a trading strategy that is long

the food portfolio in countries with high PDSI and short the food portfolio in countries with

low PDSI in any given month. The US food portfolio is included in our cross-country sample in

this test for purposes of investability.17 We expect this strategy to generate abnormal returns

if markets indeed underreact to drought contained in the PDSI.

17The results are similar if we exclude the US food portfolio from our sample.
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Our trading strategy is constructed as follows. To make the level of PDSI36m comparable

across countries, we first standardize the PDSI36m by subtracting its mean and dividing by its

standard deviation. We use the past 70 years of PDSI data to calculate a rolling mean and stan-

dard deviation of PDSI36m. This standardization uses only lagged drought information since

we have long time series of drought for all countries. Every month, we sort the food-industry

portfolios across all countries into quintiles based on the standardized PDSI36m (denoted as

PDSI36m*) at the previous month. We then hold each portfolio for K months (where K can

range anywhere from 1 month to 12 months) and returns are equally-weighted within each quin-

tile portfolio. We follow Jegadeesh and Titman (1993) to construct the overlapping portfolios.

For each quintile portfolio at month t, we have K portfolios formed from month t− 1 to t−K.

Returns on the K portfolios are then equally-weighted to get the average return for each quintile

portfolio at month t. The quintile portfolios are rebalanced monthly as we replace 1/K fraction

of the portfolio that have reached the end of its holding horizons. In addition to the mean

portfolio returns, we also report portfolio alphas adjusted using global factor models.18 Our

sample starts from January 1985 when we have at least 10 countries to do the sorting exercise.

The result is reported in Table 15.

In Panel A, we report the monthly mean excess returns and factor-adjusted alphas for quintile

portfolios with a holding horizon of K = 12 months. In the first column, we report the mean

standardized PDSI36m for each quintile portfolio. By construction, mean PDSI36m* increases

monotonically from low to high PDSI36m* countries. Interestingly, we see from column (2) that

portfolio returns also increase from low to high PDSI36m* countries. The mean excess return

for countries in the bottom quintile of PDSI36m* is 0.38% per month, and for countries in the

top quintile, the number is 1.15%. The return spread for the long/short strategy is 0.77% per

month and significant at 1% level (t=2.74). In the last column, we also report the portfolio

alphas adjusted using a global Carhart (1997) four factor model. Our results are not affected as

18The global market, size, book-to-market and momentum factors are the weighted average of the respective
country-specific factors, where the weight is the lagged total market capitalization in that country.
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the long/short strategy generates a monthly alpha of 0.83% (t=2.87). In untabulated tables, we

show that a value-weighted long/short portfolio using the lagged total market capitalization of

the food sector in that country as weight generates a monthly excess return of 0.72% (t=1.95)

and a four-factor alpha of 0.68% (t=1.82).19

In Panel B, we report the return spread as well as factor-adjusted alphas on this long/short

portfolio with holding horizons varying from K = 1 month to K = 12 months. The mean

excess returns are positive and significant across all holding horizons. Consistent with our

time-series return predictability result, the return spread becomes more pronounced when we

increase the holding horizon, indicating that it takes time for market to fully incorporate the

information about drought into stock prices. For example, the mean monthly excess return on

this long/short strategy for the 12-month holding horizon is 0.77%, with an annualized Sharpe

ratio of 0.50. The return decreases to 0.74% when we only hold the portfolio for three months,

and further decreases to 0.57% when the holding horizon is 1 month. The results are similar

whether we adjust the return spread using a global Sharpe (1964) CAPM, Fama and French

(1993) three factor or Carhart (1997) four factor model as our long/short portfolio has little

exposure to these common factors.

5 Conclusion

We show that stock markets are inefficient with respect to information about prolonged drought,

one of the most important climate risks that are brought on or exacerbated by climate change.

Using a global dataset of the widely-used Palmer Drought Severity Index (PDSI) from climate

studies, we show that prolonged drought spells in a country, as measured by a 3-year moving

average of PDSI, forecast poor returns for a portfolio comprised of food stocks in that country.

This predictability is stronger in countries with previously temperate climates and little history

19Such a value-weighted portfolio is dominated by the food sector from the US since the total market capi-
talization of the food industry is much larger in the US than in other countries.
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of droughts.

Our findings have a number of implications for policymakers and practitioners. First, our

findings confirm regulatory worries about markets underreacting to climate risks and support

the need for disclosure of corporate exposures. The question becomes what the best way is

to disclose such risks. Second, our findings show that PDSI might be a very useful metric of

drought to form portfolios and manage risks. We leave these topics for future research.
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Table 1: Summary Statistics of the US Sample

This table reports the summary statistics for the variables in our sample. The sample is from January 1927 to December 2014
and comprises monthly observations of all variables except FOODBM which is observed annually. Panel A shows PDSIWA, the
weighted average Palmer Drought Severity Index (PDSI) values for the top 10 food-producing states (in terms of cash value) in the
US. PDSIWA12m to PDSIWA36m denote, respectively, the moving average of the PDSIWA values over 12 months, 18 months, 24
months, 30 months and 36 months. It also shows the 36-month moving average of 3 alternative drought measures: PDSIASWA
is the weighted average (based on cropland areas) of the PDSI values of all 48 contiguous US states (excluding Alaska, Hawaii,
and Washington D.C. because of no data), PDSIASCA is the weighted average PDSI of all 48 states with the gross cash income
of the farm sector in each state as weight, and PDSIUSA is the PDSI of USA produced directly by the US National Oceanic and
Atmospheric Administration. Panel B shows the Fama-French 17-industry food industry portfolio non-overlapping excess returns
over various horizons. FOODRET is the monthly excess return (net of the 1-month T-bill rate), FOODRET3m to FOODRET12m
denote the excess returns over 3 months, 6 months and 12 months respectively, and FOODXMRET12m is the food portfolio return
net of the return of the market excluding food (MXF) portfolio over 12 months. Panel C shows the non-overlapping values for other
control variables over 12 months. FOODBM is the log value of the value-weighted average of the book-to-market ratios of the firms
in the food industry portfolio. MRET is the CRSP value-weighted market portfolio excess return. INF is the CPI inflation rate.
DP is the log value of the dividend-price ratio of the S&P 500 index. MVOL is the market volatility (volatility of the S&P 500
index). NTIS is the net equity expansion of the NYSE stocks. DSPR is the default yield spread, the difference between BAA and
AAA-rated corporate bond yields. TSPR is the term spread, the difference between the long term yield on government bonds and
the Treasury-bill. Panel D gives the correlations among the variables of interest in Panel (A) to (C).

Panel A: Palmer Drought Severity Index (PDSI) Values
Mean S.D. Median Min Max

PDSIWA12m 0.17 1.60 0.54 -4.25 4.10
PDSIWA18m 0.16 1.55 0.51 -3.79 3.64
PDSIWA24m 0.17 1.41 0.42 -3.40 2.99
PDSIWA30m 0.16 1.36 0.29 -3.24 2.83
PDSIWA36m 0.17 1.26 0.29 -3.12 2.53
PDSIASWA36m 0.15 1.06 0.22 -2.35 2.07
PDSIASCAWA36m 0.07 0.89 0.19 -1.95 1.77
PDSIUSA36m 0.17 1.96 0.33 -4.44 4.11

Panel B: Fama-French 17-Industry Food Portfolio Non-overlapping Returns
Mean S.D. Median Min Max

FOODRET (%) 0.60 4.80 0.87 -33.35 28.61
FOODRET3m (%) 1.79 9.37 2.51 -42.59 52.88
FOODRET6m (%) 3.58 12.78 4.51 -42.48 54.73
FOODRET12m (%) 7.16 17.45 8.68 -43.63 39.81
FOODXMRET12m (%) 1.01 11.75 1.37 -37.19 30.87

Panel C: Other Control Variables, Non-overlapping
Mean S.D. Median Min Max

FOODBM12 -0.67 0.46 -0.64 -1.77 0.26
MRET12 (%) 6.02 20.07 9.87 -59.11 45.04
INF12 (%) 2.94 3.96 2.77 -10.93 16.44
DP12 -3.36 0.47 -3.34 -4.48 -2.29
MVOL12 (%) 13.91 8.78 10.94 5.54 50.43
NTIS12 (%) 1.85 2.63 1.76 -4.19 16.35
DSPR12 (%) 1.20 0.79 0.96 0.34 5.10
TSPR12 (%) 1.61 1.42 1.64 -3.50 4.53
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Table 2: Summary Statistics of the International Sample

This table reports summary statistics of the sample of 30 international countries, including 15 developed

countries and 15 developing countries. We report the average number of stocks in the food industry, the median

firm market captitalization in US dollars, the mean and standard deviation of the PDSI value and the starting

date for each country. Countries with missing variables and less than 10 stocks in the food industry in the

whole sample are excluded. The overall sample runs from 1975 to 2015. Stock return data and accounting

information for international countries are taken from Datastream and Worldscope, respectively.

Panel A

Country Average # Median Firm Size Palmer Drought Severity Index Start
Developed Countries of Stocks (Million USD) Mean Std. date

Australia 25 37.65 -0.98 2.16 197501
Belgium 12 49.06 0.16 2.27 198601
Canada 16 266.58 -0.40 1.75 197501

Switzerland 12 163.44 -0.64 2.25 197501
Germany 15 125.31 -0.66 1.84 198410
Denmark 9 94.01 0.58 2.41 198804
Finland 7 154.74 0.87 2.07 199008
France 26 71.13 -0.58 2.15 197501

United Kingdom 56 23.70 -0.05 2.27 197501
Greece 24 33.32 -0.53 2.45 198801
Israel 23 22.93 0.00 1.78 198601
Japan 90 158.62 -0.35 2.40 197501

Netherlands 12 261.64 0.26 2.40 197501
New Zealand 10 29.25 -0.94 2.03 198801

Portugal 9 10.32 -0.60 2.45 198801

Developing Countries

Brazil 14 160.94 -1.05 1.78 199001
Chile 20 75.68 -0.46 2.06 198907
China 54 306.79 -3.08 2.18 199311

Indonesia 22 56.50 -0.41 1.35 199006
India 108 2.86 0.94 2.88 199001

South Korea 39 58.96 -0.24 2.24 198407
Mexico 9 128.17 0.21 1.85 199107

Malaysia 50 49.64 1.17 2.55 198601
Peru 19 19.67 -1.34 2.18 199112

Philippines 11 39.99 0.29 2.84 199308
Poland 22 35.22 -0.58 1.68 199410

Russian Federation 10 101.14 1.27 1.84 200601
Thailand 32 31.10 -1.23 2.10 198701
Turkey 17 24.74 2.21 3.04 199011

South Africa 15 162.98 -0.34 3.05 198703
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Summary Statistics of the International Sample, Continued

This table continues with the summary statistics for the variables in our international sample with all coun-
tries pooled together. Panel A shows the summary statistics of our main drought measure and other control
variables. PDSI36m is the 36-month moving average of the PDSI for international countries. MRET12, INF12,
FOODPB12, DP12 and MVOL12 denote respectively the market excess return, the inflation rate, the price-to-
book ratio of the food portfolio, the dividend-to-price ratio and the market volatility over 12 months. Panel B
shows the summary statistics of non-overlapping returns of the food portfolio over different horizons. FOODRET
to FOODRET12m denote, respectively, the non-overlapping return over 1 month, 3 months, 6 months and 12
months. FOODXMRET12m is the food portfolio return net of the return of the market excluding food portfolio
over 12 months.

Panel B: Drought measure and other controls

Mean S.D. Median Min Max
PDSI36m -0.33 1.49 -0.36 -4.58 5.95

MRET12 (%) 10.25 40.78 11.64 -138.26 435.48
INF12 (%) 2.63 21.09 0.42 -0.44 353.73

FOODPB12 2.58 2.53 2.03 -4.44 30.34
DP12 (%) 3.12 3.96 2.37 0.00 33.61

MVOL12 (%) 23.12 13.74 19.74 6.47 82.27

Panel C: Food Portfolio Non-overlapping Returns

Mean S.D. Median Min Max
FOODRET (%) 1.04 8.74 0.88 -105.17 143.33

FOODRET3m (%) 3.22 16.93 2.8 -87.83 237.11
FOODRET6m (%) 6.42 26.16 5.86 -108.33 420.44
FOODRET12m (%) 12.86 41.30 11.91 -132.06 528.09

FOODXMRET12m (%) 2.93 24.04 2.02 -65.53 99.91
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Table 3: Predicting 12-month Non-overlapping Food Portfolio Return with 36-month Moving
Average of PDSIWA

This table presents the results from forecasting the future non-overlapping food industry portfolio excess re-
turns (FOODRET) at the 12-month horizon, using the 36-month moving average of the weighted PDSI values
(PDSIWA). The dependent variable (forecast) is the non-overlapping food portfolio excess return (FOODRET)
over the next 12 months. The key explanatory (forecasting) variable, PDSIWA36m, is the moving average of
the weighted PDSI values (PDSIWA) over the previous 36 months. The weighted average is over the top 10
food-producing states using cropland area as weight. Other control variables, FOODRET12m, FOODBM12,
MRET12, INF12, DP12, MVOL12, NTIS12, DSPR12 and TSPR12 denote, respectively, the FOODRET, the
log of the food industry book-to-market ratio (FOODBM), the market excess return (MRET), the inflation rate
(INF), the log of the market dividend price ratio (DP), the market volatility (MVOL), the net equity expansion
ratio (NTIS), the default spread (DSPR) and the term spreads (TSPR), all over the previous 12 months. CONST
is the constant term. t-statistics based on Newey-West HAC standard errors are shown in parentheses, with a
lag order of 36 for all of the regressions. *, **, *** denote statistical significance at 10%, 5%, 1% respectively.
The R2 for each regression is also reported. N is the number of observation points in each regression. The
sample period is January 1927 to December 2014. Estimations start in December 1929 as the first 36 months
are used to obtain the first value of PDSIWA36m.

Dependent Variable: Future 12-month
FOODRET, Non-overlapping

(1) (2) (3)
PDSIWA36m 2.005**

(2.532)
FOODRET12m 0.012 -0.022

(0.118) (-0.186)
FOODBM12 14.709 16.899

(0.970) (1.016)
MRET12 -0.080 -0.224 -0.206

(-1.098) (-1.125) (-1.105)
INF12 0.189 0.199 0.031

(0.738) (0.987) (0.125)
DP12 7.782*** -4.707 -5.511

(6.537) (-0.384) (-0.411)
MVOL12 -0.463* -0.343 -0.362

(-1.805) (-1.235) (-1.373)
NTIS12 -2.376*** -2.204*** -2.263***

(-6.921) (-6.707) (-6.990)
DSPR12 1.573 -0.193 0.222

(0.686) (-0.061) (0.083)
TSPR12 2.300*** 2.926*** 2.761***

(5.937) (4.267) (3.631)
CONST 37.938*** 5.600 4.750

(5.768) (0.178) (0.137)
R2 0.22 0.24 0.26
N 85 85 85
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Table 4: Predicting Non-overlapping Food Portfolio Returns over Different Horizons with 36-
month Moving Average of PDSIWA

This table presents the results from forecasting the future non-overlapping food industry portfolio excess re-
turns (FOODRET) over different horizons, using the 36-month moving average of the weighted PDSI val-
ues (PDSIWA). The dependent variables (forecasts) are the non-overlapping food portfolio excess returns
(FOODRET) over the next 1 month, 3 months and 6 months in columns 1m, 3m and 6m respectively. The key
explanatory (forecasting) variable, PDSIWA36m, is the moving average of the weighted PDSI values (PDSIWA)
over the previous 36 months. The weighted average is over the top 10 food-producing states using cropland area
as weight. Other control variables, FOODRET12m, FOODBM12, MRET12, INF12, DP12, MVOL12, NTIS12,
DSPR12 and TSPR12 denote, respectively, the FOODRET, the log of the food industry book-to-market ratio
(FOODBM), the market excess return (MRET), the inflation rate (INF), the log of the market dividend price
ratio (DP), the market volatility (MVOL), the net equity expansion ratio (NTIS), the default spread (DSPR)
and the term spreads (TSPR), all over the previous 12 months. CONST is the constant term. t-statistics based
on Newey-West HAC standard errors are shown in parentheses, with a lag order of 36 for all of the regressions.
*, **, *** denote statistical significance at 10%, 5%, 1% respectively. The R2 for each regression is also reported.
N is the number of observation points in each regression. The sample period is January 1927 to December 2014.

Dependent Variables: Future FOODRET
over 1m, 3m and 6m, Non-overlapping

1m 3m 6m
PDSIWA36m 0.185* 0.558* 1.062**

(1.648) (1.671) (2.260)
FOODRET12m -0.001 -0.027 -0.011

(-0.038) (-0.491) (-0.125)
FOODBM12 0.488 1.929 6.604

(0.716) (0.676) (1.171)
MRET12 0.004 -0.011 -0.111

(0.235) (-0.212) (-1.371)
INF12 -0.058 -0.143 -0.340**

(-0.897) (-0.856) (-2.091)
DP12 0.428 1.135 -0.048

(0.702) (0.475) (-0.010)
MVOL12 -0.008 -0.039 -0.308***

(-0.274) (-0.613) (-2.791)
NTIS12 -0.237*** -0.877*** -1.345***

(-3.003) (-3.837) (-3.576)
DSPR12 -0.102 -0.389 -0.600

(-0.280) (-0.458) (-0.490)
TSPR12 0.139 0.456** 1.382*

(1.618) (2.134) (1.883)
CONST 2.856 9.138 14.329

(1.545) (1.422) (1.133)
R2 0.02 0.06 0.14
N 1020 340 170
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Table 5: Predicting 12-month Non-overlapping Food Portfolio Return with Moving Averages of
PDSIWA at Different Frequencies

This table shows the results from forecasting the future non-overlapping food industry portfolio excess returns
(FOODRET) at the 12-month horizon, using the moving averages of the weighted PDSI values (PDSIWA)
over different frequencies. The dependent variable (forecast) is the non-overlapping food portfolio excess re-
turn (FOODRET) over the next 12 months. The key explanatory (forecasting) variables, PDSIWA12m to
PDSIWA30m, are the moving averages of the weighted PDSI values (PDSIWA) over the previous 12 months, 18
months, 24 months and 30 months respectively. The weighted average is over the top 10 food-producing states
using cropland area as weight. Other control variables, FOODRET12m, FOODBM12, MRET12, INF12, DP12,
MVOL12, NTIS12, DSPR12 and TSPR12 denote, respectively, the FOODRET, the log of the food industry
book-to-market ratio (FOODBM), the market excess return (MRET), the inflation rate (INF), the log of the
market dividend price ratio (DP), the market volatility (MVOL), the net equity expansion ratio (NTIS), the
default spread (DSPR) and the term spreads (TSPR), all over the previous 12 months. CONST is the constant
term. t-statistics based on Newey-West HAC standard errors are shown in parentheses, with a lag order of 36
for all of the regressions. *, **, *** denote statistical significance at 10%, 5%, 1% respectively. The R2 and
the number of observations (N) in each regression are also reported. The sample period is January 1927 to
December 2014. Estimations start in December 1929 to be consistent with our baseline Table 3.

Dep. Var.: Future 12-month Non-overlapping FOODRET
(1) (2) (3) (4)

PDSIWA12m 0.673
(0.454)

PDSIWA18m 0.752
(0.907)

PDSIWA24m 1.264**
(2.245)

PDSIWA30m 1.749***
(2.719)

FOODRET12m 0.003 0.002 -0.004 -0.015
(0.025) (0.022) (-0.040) (-0.130)

FOODBM12 15.681 15.719 16.154 16.651
(0.914) (0.966) (1.012) (1.024)

MRET12 -0.224 -0.224 -0.220 -0.209
(-1.190) (-1.178) (-1.172) (-1.131)

INF12 0.110 0.099 0.051 0.018
(0.491) (0.485) (0.219) (0.074)

DP12 -5.246 -5.161 -5.273 -5.370
(-0.391) (-0.402) (-0.412) (-0.411)

MVOL12 -0.357 -0.357 -0.362 -0.355
(-1.452) (-1.375) (-1.351) (-1.326)

NTIS12 -2.233*** -2.246*** -2.265*** -2.280***
(-6.906) (-6.934) (-7.040) (-7.089)

DSPR12 -0.057 -0.064 0.019 0.072
(-0.021) (-0.022) (0.007) (0.026)

TSPR12 2.840*** 2.855*** 2.811*** 2.792***
(4.626) (4.040) (3.700) (3.649)

CONST 4.882 5.224 5.279 5.200
(0.146) (0.161) (0.161) (0.155)

R2 0.25 0.25 0.25 0.26
N 85 85 85 85
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Table 6: Predicting 12-month Non-overlapping Food Portfolio Return with Alternative PDSIWA
Measures

This table presents the results from forecasting the future non-overlapping food industry portfolio excess returns
(FOODRET) at the 12-month horizon, using the 36-month moving averages of alternative PDSIWA measures.
The dependent variable (forecast) is the non-overlapping food portfolio excess return (FOODRET) over the next
12 months. The key explanatory (forecasting) variables in columns (1) to (3) are the 36-month moving averages
of, respectively, the weighted average (based on cropland areas) of the PDSI values of all 48 contiguous US states
(PDSIASWA), the weighted average PDSI of all 48 states with the gross cash income of the farm sector in each
state as weight (PDSIASCAWA), and the PDSI of USA produced directly by the US NOAA (PDSIUSA). Other
control variables, FOODRET12m, FOODBM12, MRET12, INF12, DP12, MVOL12, NTIS12, DSPR12 and
TSPR12 denote, respectively, the FOODRET, the log of the food industry book-to-market ratio (FOODBM),
the market excess return (MRET), the inflation rate (INF), the log of the market dividend price ratio (DP),
the market volatility (MVOL), the net equity expansion ratio (NTIS), the default spread (DSPR) and the term
spreads (TSPR), all over the previous 12 months. CONST is the constant term. t-statistics based on Newey-
West HAC standard errors are shown in parentheses, with a lag order of 36 for all of the regressions. *, **, ***
denote statistical significance at 10%, 5%, 1% respectively. The R2 for each regression is also reported. N is the
number of observation points in each regression. The sample period is January 1927 to December 2014.

Dependent Variable: Future 12-month
FOODRET, Non-overlapping

(1) (2) (3)
PDSIASWA36m 2.510**

(2.392)
PDSIASCAWA36m 2.516*

(1.939)
PDSIUSA36m 1.263*

(1.774)
FOODRET12m -0.018 -0.012 -0.015

(-0.154) (-0.108) (-0.131)
FOODBM12 17.122 16.599 17.578

(1.022) (1.006) (1.061)
MRET12 -0.217 -0.220 -0.231

(-1.198) (-1.217) (-1.354)
INF12 0.022 0.024 0.015

(0.086) (0.100) (0.063)
DP12 -5.616 -5.572 -6.923

(-0.416) (-0.420) (-0.525)
MVOL12 -0.379 -0.352 -0.337

(-1.404) (-1.246) (-1.196)
NTIS12 -2.309*** -2.310*** -2.321***

(-7.351) (-7.385) (-7.498)
DSPR12 0.404 0.062 -0.008

(0.150) (0.022) (-0.003)
TSPR12 2.875*** 2.923*** 2.946***

(3.611) (3.747) (3.503)
CONST 4.516 4.445 0.471

(0.130) (0.130) (0.014)
R2 0.26 0.26 0.26
N 85 85 85
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Table 7: Predicting 12-month Non-overlapping Food Portfolio net of Market Return with 36-
month Moving Average of PDSIWA

This table presents the results from forecasting the future non-overlapping FOODXMRET, the food portfolio
return net of the return of the market excluding food (MXF) portfolio, at the 12-month horizon, using the
36-month moving average of the weighted PDSI values (PDSIWA). The dependent variable (forecast) is the
non-overlapping FOODXMRET, the food portfolio return net of the return of the market excluding food (MXF)
portfolio, over the next 12 months. The key explanatory (forecasting) variable, PDSIWA36m, is the moving aver-
age of the weighted PDSI values (PDSIWA) over the previous 36 months. The weighted average is over the top 10
food-producing states using cropland area as weight. Other control variables, FOODXMRET12m, FOODBM12,
MRET12, INF12, DP12, MVOL12, NTIS12, DSPR12 and TSPR12 denote, respectively, the FOODXMRET, the
log of the food industry book-to-market ratio (FOODBM), the market excess return (MRET), the inflation rate
(INF), the log of the market dividend price ratio (DP), the market volatility (MVOL), the net equity expansion
ratio (NTIS), the default spread (DSPR) and the term spreads (TSPR), all over the previous 12 months. CONST
is the constant term. t-statistics based on Newey-West HAC standard errors are shown in parentheses, with a
lag order of 36 for all of the regressions. *, **, *** denote statistical significance at 10%, 5%, 1% respectively.
The R2 for each regression is also reported. N is the number of observation points in each regression. The
sample period is January 1927 to December 2014.

Dependent Variable: Future 12-month
FOODXMRET, Non-overlapping
(1) (2) (3)

PDSIWA36m 1.230***
(3.013)

FOODXMRET12m 0.011 -0.008
(0.127) (-0.092)

FOODBM12 9.413*** 10.737**
(2.764) (2.601)

MRET12 -0.111** -0.194*** -0.203***
(-2.609) (-3.068) (-2.983)

INF12 0.097 0.105 0.001
(0.864) (0.732) (0.010)

DP12 -5.240 -13.237*** -13.710**
(-1.609) (-2.669) (-2.387)

MVOL12 -0.334** -0.257* -0.269*
(-2.166) (-1.688) (-1.761)

NTIS12 0.240 0.354 0.318
(0.241) (0.356) (0.319)

DSPR12 4.675*** 3.542** 3.804***
(2.890) (2.437) (2.718)

TSPR12 -0.794 -0.397 -0.499
(-1.381) (-0.756) (-1.028)

CONST -16.251 -36.973** -37.445*
(-1.139) (-2.007) (-1.821)

R2 0.07 0.09 0.10
N 85 85 85
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Table 8: Predicting 1-year Food Industry Change in Profitability (CP) with 36-month Moving
Average of PDSIWA

This table presents the results from forecasting the future 1-year CP, the change in profitability of the food
industry over the next year, using the 36-month moving average of the weighted PDSI values (PDSIWA). The
dependent variable (forecast) is the CP, the future change in the food industry profitability, over the next year.
The key explanatory (forecasting) variable, PDSIWA36m, is the moving average of the weighted PDSI values
(PDSIWA) over the previous 3 years (36 months). The weighted average is over the top 10 food-producing
states using cropland area as weight. Other control variables, CP1y, FOODRET12m, FOODBM12, MRET12,
INF12, DP12, MVOL12, NTIS12, DSPR12 and TSPR12 denote, respectively, the change in the food industry
profitability, the food industry portfolio return (FOODRET), the log of the food industry book-to-market ratio
(FOODBM), the market excess return (MRET), the inflation rate (INF), the log of the market dividend price
ratio (DP), the market volatility (MVOL), the net equity expansion ratio (NTIS), the default spread (DSPR)
and the term spreads (TSPR), all over the previous year (12 months). CONST is the constant term. t-statistics
based on Newey-West HAC standard errors are shown in parentheses, with a lag order of 36 for all of the
regressions. *, **, *** denote statistical significance at 10%, 5%, 1% respectively. The R2 for each regression is
also reported. N is the number of observation points in each regression. The sample period is 1950 to 2014.

Dependent Variable: Future 1-year
Change in Food Industry Profitability

(1) (2) (3)
PDSIWA36m 0.100**

(2.412)
CP1y -0.101 -0.125

(-0.942) (-0.969)
FOODRET12m -0.016*** -0.017***

(-3.668) (-4.455)
FOODBM12 0.148 0.299

(0.714) (1.388)
MRET12 -0.003 0.008* 0.008

(-0.633) (1.788) (1.436)
INF12 -0.078*** -0.084*** -0.094***

(-3.101) (-3.198) (-3.480)
DP12 0.157 0.033 -0.068

(1.648) (0.142) (-0.282)
MVOL12 0.031*** 0.027*** 0.026***

(3.227) (3.761) (2.804)
NTIS12 0.119** 0.089* 0.088**

(2.518) (1.978) (2.018)
DSPR12 0.285 0.319* 0.280

(1.396) (1.796) (1.453)
TSPR12 -0.002 0.020 0.009

(-0.105) (0.666) (0.283)
CONST 0.026 -0.192 -0.361

(0.065) (-0.299) (-0.528)
R2 0.22 0.27 0.29
N 63 63 63
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Table 10: International Evidence: Predicting 12-month Non-overlapping Food Portfolio Return

This table presents the results from forecasting the food industry portfolio excess returns over future 12 months,
using the moving averages of the PDSI values over the past 36 months (PDSI36m). The regressions are run
by pooling all countries together and including a country fixed effect. The dependent variable is the food
return over the future 12 months. The returns are non-overlapping. All of the regressions include these other
forecasting variables over the past 12 months: lagged food industry return (FOODRET12m), lagged market
return (MRET12), lagged inflation rate (INF12), log of food industry price-to-book ratio (FOODPB12), the log
of the market dividend price ratio (DP12) and the market volatility (MVOL12). Standard errors are clustered at
both the country and month dimensions. *, **, *** denote statistical significance at 10%, 5%, 1% respectively.
The sample period is from January 1975 to December 2015.

Dependent Variable: Future 12-month FOODRET, Non-overlapping

(1) (2) (3)
PDSI36m 3.6134**

(2.18)
FOODRET12m -0.0989 -0.0915

(-0.97) (-0.82)
FOODPB12 -12.6849*** -12.9274***

(-2.75) (-3.07)
MRET12 0.1971 0.2388 0.2433

(0.81) (0.77) (0.79)
INF12 2.5230 3.0258 2.4513

(0.84) (1.13) (0.97)
DP12 -0.2459*** -0.3411*** -0.3513***

(-4.62) (-9.51) (-4.75)
MVOL12 2.5060** 2.4319** 2.5395**

(2.05) (2.05) (2.09)
Ave.R-sq 0.178 0.207 0.226
N.of Obs. 585 573 545
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Table 11: International Evidence: Predicting Food Industry Portfolio Non-overlapping Returns
over Different Horizons

This table presents the results from forecasting the food industry portfolio excess returns (FOODRETs) at

various horizons, using the moving averages of the PDSI values over the past 36 months (PDSI36m). The

regressions are run by pooling all countries together and including a country fixed effect. The dependent variable

1m is the food return over the next month, and those dependent variables of 3m to 6m are the food returns over

the next 3 months and 6 months, respectively. The returns are non-overlapping. All of the regressions include

these other forecasting variables over the past 12 months: lagged food industry return (FOODRET12m), lagged

market return (MRET12), lagged inflation rate (INF12), log of food industry price-to-book ratio (FOODPB12),

the log of the market dividend price ratio (DP12), the market volatility (MVOL12). Standard errors are

clustered at both the country and month dimensions. *, **, *** denote statistical significance at 10%, 5%, 1%

respectively. The sample period is from January 1975 to December 2015.

Dependent Variable: Future FOODRET over 1m, 3m and 6m, Non-overlapping

1m 3m 6m
PDSI36m 0.1829* 0.6235** 1.3708*

(1.86) (2.19) (2.02)
FOODRET12m -0.0034 0.0016 0.0357

(-0.75) (0.10) (0.88)
FOODPB12 -1.0013*** -2.9586*** -4.9692***

(-3.50) (-3.43) (-2.77)
MRET12 0.0382* 0.0916 0.1281

(1.93) (1.38) (0.86)
INF12 0.2076 0.8234 0.6561

(0.86) (1.07) (0.52)
DP12 -0.0103 -0.0264 -0.1582***

(-1.49) (-1.04) (-3.34)
MVOL12 0.1680* 0.6297* 1.3149**

(1.81) (1.76) (2.41)
Ave.R-sq 0.058 0.141 0.180
N.of Obs. 6439 2151 1075
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Table 12: International Evidence: Predicting Non-overlapping Food Portfolio net of Market
Return over Different Horizons

This table presents the results from forecasting the future non-overlapping FOODXMRET, the food portfolio
return net of the return of the market excluding food (MXF) portfolio, using the 36-month moving average of
the weighted PDSI values (PDSI36m). The dependent variable (forecast) is the non-overlapping FOODXMRET,
the food portfolio return net of the return of the market excluding food (MXF) portfolio, over the next 1 months
to 12 months. The returns are non-overlapping. All of the regressions include these other forecasting variables
over the past 12 months: lagged food industry return net of market return (FOODXMRET12m), lagged market
return (MRET12), lagged inflation rate (INF12), log of food industry price-to-book ratio (FOODPB12), the log
of the market dividend price ratio (DP12) and the market volatility (MVOL12). Standard errors are clustered at
both the country and month dimensions. *, **, *** denote statistical significance at 10%, 5%, 1% respectively.
The sample period is from January 1975 to December 2015.

Dependent Variable: Future FOODXMRET over 1m, 3m, 6m and 12m, Non-overlapping

1m 3m 6m 12m
PDSI36m 0.1525* 0.3248 0.6434 1.4493**

(1.90) (1.55) (1.49) (2.11)
FOODXMRET12m -0.0247 -0.0200 -0.0414 0.0014

(-1.51) (-0.93) (-0.80) (0.02)
FOODPB12 -0.5538* -1.2220* -2.3489 -4.0805

(-2.00) (-1.83) (-1.64) (-1.47)
MRET12 -0.0036 0.0037 0.0093 0.0352

(-0.70) (0.46) (0.46) (1.54)
INF12 0.0199 0.1495 -0.0572 -0.7591

(0.29) (0.92) (-0.16) (-1.13)
DP12 -0.0141 -0.0139 -0.0113 -0.0409

(-1.16) (-0.82) (-1.00) (-1.15)
MVOL12 0.0187 0.2167 0.1129 -0.0917

(0.49) (1.64) (0.36) (-0.18)
Ave.R-sq 0.010 0.021 0.038 0.064
N.of Obs. 6429 2131 1055 525
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Table 13: International Evidence: Predicting 1-year Food Industry Change in Profitability (CP)
with 36-month Moving Average of PDSI

This table presents the results from forecasting the future 1-year CP, the change in profitability of the food
industry over the next year, using the 36-month moving average of the PDSI values (PDSI36m). The dependent
variable (forecast) is the CP, the future change in the food industry profitability, over the next year. The key
explanatory (forecasting) variable, PDSI36m, is the moving average of the PDSI values over the previous 3
years (36 months). Other control variables, CP1y, FOODRET12m, FOODPB12, MRET12, INF12, DP12 and
MVOL12 denote, respectively, the change in the food industry profitability, the food industry portfolio return
(FOODRET), the log of the food industry price-to-book ratio (FOODPB), the market excess return (MRET),
the inflation rate (INF), the log of the market dividend price ratio (DP) and the market volatility (MVOL). We
control for country fixed effects in the regression and standard errors are double clustered along the country and
month dimensions. *, **, *** denote statistical significance at 10%, 5%, 1% respectively. The sample period is
1975 to 2015.

Dependent Variable: Future 1-year
Change in Food Industry Profitability

(1) (2) (3)
PDSI36m 0.1801*

(1.75)
CP1y -0.4609*** -0.4564***

(-12.37) (-10.41)
FOODRET12m 0.0007 0.0002

(0.10) (0.03)
FOODPB12 -0.0406 -0.1431

(-0.25) (-1.06)
MRET12 -0.0029 0.0019 0.0021

(-0.54) (0.27) (0.39)
DP12 -0.0313** -0.0376 -0.0448

(-2.60) (-1.05) (-1.13)
INF12 -0.0005** -0.0003 -0.0004

(-2.13) (-0.44) (-0.51)
MVOL12 0.0859*** 0.0483 0.0431

(3.23) (1.51) (1.61)
Ave.R-sq 0.017 0.207 0.206
N.of Obs. 703 689 651

53



Table 14: International Evidence: Predicting 12-month Non-overlapping Food Portfolio Return
in subsamples based on Past Mean PDSI36m

This table presents the results from forecasting the food industry portfolio excess returns over future 12 months,
using the moving averages of the PDSI values over the past 36 months (PDSI36m). Panel A reports the mean
PDSI36m for each country using data up to 1974. Panel B reports the return predictability of PDSI36m for
3 groups of countries based on the past mean PDSI36m. The result for countries with mean PDSI36m in the
lowest (highest) tercile is reported under Column ”Low PDSI tercile” (”High PDSI tercile”). The regressions
are run by pooling all countries within a group together and including a country fixed effect. In column (3) of
Panel B, We interact PDSI36m with a dummy HighPDSI indicating a country is in the highest past PDSI36m
tercile. We do not include countries in the middle tercile of PDSI in Column (3). The dependent variable is
the food return over the future 12 months. The returns are non-overlapping. All of the regressions include
these other forecasting variables over the past 12 months: lagged food industry return (FOODRET12m), lagged
market return (MRET12), lagged inflation rate (INF12), log of food industry price-to-book ratio (FOODPB12),
the log of the market dividend price ratio (DP12) and the market volatility (MVOL12). The sample period is
from January 1975 to December 2015. Standard errors are clustered at both the country and month dimensions.
*, **, *** denote statistical significance at 10%, 5%, 1% respectively.

Panel A: Mean PDSI36m

Country Mean PDSI36m

Israel 3.023
Peru 0.624
Chile 0.594

Thailand 0.513
Turkey 0.438
Poland 0.429

Malaysia 0.400
Finland 0.365

Netherlands 0.364
Belgium 0.364
Brazil 0.290
Japan 0.219
Greece 0.183

Philippines 0.164
Denmark 0.024

Switzerland 0.017
Germany 0.015

United Kingdom -0.014
South Africa -0.107

France -0.168
Indonesia -0.188
Norway -0.195

Russian Federation -0.273
South Korea -0.315

India -0.368
Mexico -0.697
Canada -0.712
Portugal -0.804

China -0.979
New Zealand -1.000

Australia -1.074
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Table 14 Continued

Panel B: Subsample Return Predictability of PDSI

Low PDSI tercile High PDSI tercile
PDSI36m 3.3761 5.9049** 2.0161

(1.69) (2.54) (0.86)
PDSI36m*HighPDSI 3.6072*

(1.87)
FOODRET12 0.0796 -0.2061 -0.1174

(0.46) (-1.13) (-0.72)
FOODPB12 -8.8342* -15.1159* -13.9439**

(-1.97) (-2.18) (-2.44)
MRET12 -0.2547* 0.4941 0.3134

(-1.89) (1.02) (0.73)
INF12 -55.5776 1.7356 1.9120

(-1.44) (0.60) (0.71)
DP12 -0.3917 -0.4716** -0.4183***

(-0.33) (-2.84) (-3.80)
MVOL12 1.2920 2.4168 2.6509*

(0.89) (1.69) (1.96)
Ave.R-sq 0.106 0.363 0.276
N.of Obs. 137 198 335
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Table 15: Return to Portfolio Strategies Sorted on Standardized PDSI36m

This table presents the returns and alphas (in percentage) to country food portfolios sorted on lagged PDSI36m.
PDSI36m is first standardized by substracting its mean and dividing by its standard deviation. We estimate
the rolling mean and standard deviation of PDSI36m with past 70 years of data. Each month all country food-
industry portfolios are sorted into quintiles based on their standardized PDSI36m (denoted as PDSI36m*) from
the previous month end and held for various horizons from 1 month to 12 months. In panel A, we report the
mean PDSI36m*, excess returns and Cahart four factor alphas for quintile portfolios with a holding period of
12 months. In panel B, we report the long/short return spread and factor-adjusted alphas from 1 month to 12
months. The alphas are adjusted using global Sharpe (1964) CAPM, Fama and French (1993) three factors and
Carhart (1997) four factors model following the methodology of constructing local factors. The sample period
is from January 1985 to December 2015.

Panel A: Quintile Portfolios sorted on standardized PDSI36m

Portfolio PDSI36m* Excess Return t-stat 4-factor alpha t-stat
Low PDSI -1.60 0.38 1.31 0.27 1.04

2 -0.78 0.77 2.94 0.64 2.87
3 -0.28 0.46 1.76 0.33 1.46
4 0.25 0.91 3.53 0.81 3.84

High PDSI 1.37 1.15 3.87 1.10 4.28
High - Low 2.97 0.77 2.74 0.83 2.87
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Table 15 Continued

Panel B: L/S Portfolios sorted on standardized PDSI36m for various holding horizons

12-month Holding Period
Excess Return CAPM alpha Three-factor alpha Four-factor alpha

Mean 0.77 0.76 0.80 0.83
t-stat 2.74 2.69 2.78 2.87

Std.Dev 5.34
Sharpe Ratio 0.50

No.of obs. 360

6-month Holding Period
Excess Return CAPM alpha Three-factor alpha Four-factor alpha

Mean 0.74 0.73 0.75 0.81
t-stat 2.49 2.45 2.46 2.63

Std.Dev 5.68
Sharpe Ratio 0.45

No.of obs. 360

3-month Holding Period
Excess Return CAPM alpha Three-factor alpha Four-factor alpha

Mean 0.72 0.71 0.72 0.80
t-stat 2.38 2.34 2.35 2.58

Std.Dev 5.74
Sharpe Ratio 0.43

No.of obs. 360

1-month Holding Period
Excess Return CAPM alpha Three-factor alpha Four-factor alpha

Mean 0.57 0.56 0.56 0.66
t-stat 1.84 1.81 1.79 2.09

Std.Dev 5.86
Sharpe Ratio 0.34

No.of obs. 360
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Figure 4: Future Non-overlapping 12-month Return of Food net of Market Portfolio and Past
36-month Moving Average of PDSIWA, Time-series Plot

This figure depicts the time-series plot of the future non-overlapping 12-month return of the food net of market
portfolio against our main predictor variable PDSIWA36m, the past 36-month moving average of the weighted
average (by cropland area) PDSI value of the top 10 food-producing states in the US. The sample period is
January 1927 to December 2014. The plot starts in December 1929 as the first 36 months are used to obtain
the first value of PDSIWA36m.
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Figure 6: Future Non-overlapping 12-month Food Portfolio Return Residual and Past 36-month
Moving Average of PDSIWA, Scatter Plot

This figure depicts the scatter plot of the future non-overlapping 12-month food portfolio return residual against
our main predictor variable PDSIWA36m, the past 36-month moving average of the weighted average (by
cropland area) PDSI value of the top 10 food-producing states in the US. The sample period is January 1927 to
December 2014. The plot starts in December 1929 as the first 36 months are used to obtain the first value of
PDSIWA36m.
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Figure 7: Future Non-overlapping 12-month Return of Food net of Market Portfolio and Past
36-month Moving Average of PDSIWA, Scatter Plot

This figure depicts the scatter plot of the future non-overlapping 12-month return of the food net of market
portfolio against our main predictor variable PDSIWA36m, the past 36-month moving average of the weighted
average (by cropland area) PDSI value of the top 10 food-producing states in the US. The sample period is
January 1927 to December 2014. The plot starts in December 1929 as the first 36 months are used to obtain
the first value of PDSIWA36m.
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Figure 8: Future 1-year Change in Food Industry Profitability (CP) Residual and Past 36-month
Moving Average of PDSIWA, Scatter Plot

This figure depicts the scatter plot of the future 1-year change in the food industry profitability (CP) residual
against our main predictor variable PDSIWA36m, the past 36-month (3-year) moving average of the weighted
average (by cropland area) PDSI value of the top 10 food-producing states in the US. The sample period is 1950
to 2014.
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Figure 9: International Evidence: Future Non-overlapping 12-month Food Portfolio Return
Residual and Past 36-month Moving Average of PDSI, Scatter Plot

This figure depicts the scatter plot of the future non-overlapping 12-month food portfolio return residual against
our main predictor variable PDSI36m, the past 36-month moving average of PDSI value. The sample period is
from January 1975 to December 2015.
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Figure 10: International Evidence: Future Non-overlapping 12-month Food Portfolio Re-
turn Residual and Past 36-month Moving Average of PDSI, Subsamples based on Past Mean
PDSI36m

This figure depicts the scatter plot of the future non-overlapping 12-month food portfolio return residual against
our main predictor variable PDSI36m, the past 36-month moving average of PDSI value. The blue circle indicates
countries whose past mean PDSI36m values are in the highest tercile (high tercile group), while the red diamond
indicates countries whose past mean PDSI36m values are in the lowest tercile (low tercile group). The sample
period is from January 1975 to December 2015.
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