Driven by Fear? The Tail Risk Premium in the Crude Oil Futures Market

Reinhard Ellwanger ¹

¹Bank of Canada

April 29, 2016

8th Annual Volatility Institute Conference, NYU Stern School of Business

The views expressed here are those of the author and do not represent the views of the Bank of Canada.

Introduction

Background

- ► Oil prices difficult to reconcile with observed changes in fundamentals alone → shifts in expectations / uncertainty matter (Kilian, AER, 2009; Alquist & Kilian, JAE, 2010)
- Rare disaster framework relates asset prices to expectations (Barro, QJE, 2006; Gabaix, AER, 2008; Bollerslev & Todorov, JF, 2011)

This Paper

- What role does tail risk play in the oil market?
- What is its relationship with oil price predictability?

Implications

- Macro: aggregate outcomes in oil exporting / importing countries
- Finance: commodities as an asset class

Introduction

This paper: time-varying risk premium for large jumps

- ► estimate jump probabilities using futures data → small, symmetric
- estimate risk premia using option data
 - ightarrow large, asymmetric
- oil "fear": downside upside tail risk premia (Bollerslev & Todorov, JF, 2011)

Introduction

Findings:

- large, time varying tail risk premia
- predict oil futures and spot returns
- tail premia closely connected to oil risk premium (similar to equity risk premium: Bollerslev, Todorov & Xu, JFE, 2015)
- \blacktriangleright \rightarrow time varying risk matters for oil futures / spot price variations
- \blacktriangleright \rightarrow ... to some extent also for aggregate stock returns

(Almost) model free:

results rely on non-arbitrage conditions

Risk Premium No-Arbitrage

 \rightarrow relates current futures price to expected spot price

 $\begin{aligned} F_{t,T} &= E_t^{\mathbb{P}}(S_T) - \pi_{t,T} \\ S_T \text{ spot price, } F_{t,T} \text{ futures price, } \pi_{t,T} \text{ risk premium} \end{aligned}$

Storage No-Arbitrage

 \rightarrow relates current futures price to current spot price

 $F_{t,T} = S_t - CY_{t,T}$ (note: $S_T = F_{T,T}$) convenience yield $CY_{t,T} \equiv$ net benefit from holding physical oil

"Fear" Shock (mean preserving)

Tail Risk Measures - Intution I

► Futures price dynamics under the "objective" P-distribution:

$$\frac{dF_t}{F_t-} = \underbrace{\alpha_t dt}_{Drift} + \underbrace{\sigma_t dW_t}_{Br.Motion} + \underbrace{\int_{\mathbb{R}} (e^x - 1)\tilde{\mu}(dt, dx)}_{Jumps},$$

 \blacktriangleright Absence of arbitrage \rightarrow corresponding risk-neutral distribution $\mathbb Q$

$$E_t^{\mathbb{Q}}(QV_{t+1}) > E_t^{\mathbb{P}}(QV_{t+1})$$

 VRP time varying, forecasts future SPX / crude oil futures return (Bollerslev, Tauchen & Zhou, RFS, 2009; Kang & Pan, WP, 2013)

Tail Risk Measures - Intution II

Quadratic Variation QV of log price:

 $QV_{[t,T]} = QV_{[t,T]}$ Br.Motion + $QV_{[t,T]}$ small Jumps + $QV_{[t,T]}$ large Jumps

Tail risk premia: part of the VRP that is due to large jumps

 \rightarrow difference between left and right tail premia "fear" (Bollerslev & Todorov, JF, 2011; Bollerslev, Todorov & Xu , JFE, 2015)

Fear Index FI_t = Right Tail VRP_t - Left Tail VRP_t

Details

Estimation based on Options and Futures: Intuition

Empirical Implementation

West Texas Intermediate, Cushing, OK

For NYMEX Crude Oil Options (LO) - $E_t^{\mathbb{Q}}(\cdot)$

- Sample Period: 1987 2013, pooled monthly data
- daily End-of-Day settlement prices
- Maturities 9-40 days, standard cleaning procedures
- OTM options: calls (puts) with |log-moneyness| > (-)2× at-the-money implied volatility $\rightarrow \approx 300$ obs. per month Graph
- threshold for large jumps $|k_t| = 3 \times$ at-the-money implied volatility
- For NYMEX Crude Oil Futures (CL) $E_t^{\mathbb{P}}(\cdot)$
 - 5-min intraday data for realized measures

Estimation Results

- P-measure jump variations small, symmetric
- **Q**-measure jump variations large, asymmetric

Est. Details

Realized and Risk Neutral Variation Measures

Summary statistics

(324 monthly observations, annualized, in %)

	Mean	SD	AR(1)
$LJV_{t,T}^{\mathbb{Q}}$	2.33	2.53	0.84
$RJV_{t,T}^{\mathbb{Q}}$	0.81	1.01	0.77
$LJV_{t,T}^{\mathbb{P}}$	0.01	0.01	0.67
$RJV_{t,T}^{\mathbb{P}}$	0.02	0.02	0.71
FI_t	-1.52	1.89	0.81
$OILVIX2_t$	13.53	12.93	0.84
VRP_t	2.44	7.41	0.19

- VRP in oil market attributed to tail risk
- Negative jump premium dominates positive jump premium

for different threshold

Oil Fear Index

Individual Measures

Forecasting: Intuition

Forecasting Regression Results

	(1)	(2)	(3)	(4)	
Variables	$r_{S,t+3}$	$r_{F,t+3}$	$r_{S,t+6}$	$r_{F,t+6}$	
		<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- , , , , -	7- 1 -	
L3. $RJV_{t,T}^{\mathbb{Q}}$	-7.70***	-5.27***			
- /	(2.044)	(1.872)			
$L3.LJV_{t,T}^{\mathbb{Q}}$	2.56***	1.59***			
-,-	(0.510)	(0.546)			
L6. $RJV_{t,T}^{\mathbb{Q}}$			-11.03***	-9.76**	
- /			(2.845)	(3.875)	
$L6.LJV_{t,T}^{\mathbb{Q}}$			5.27***	3.47***	
			(0.698)	(0.860)	
Adj. <i>R</i> ²	0.0877	0.0374	0.1419	0.0685	
Obs.	321	321	318	318	
Wald test (p-value)	<0.001	0.005	< 0.001	< 0.001	
Newey-West standard errors in parentheses					
*** p<0.01, ** p<0.05, * p<0.1					

Forecasting results for i = 3 and i = 6 months,

 $r_{S,...}$ spot return, $r_{F,...}$ futures return

Return Predictability: Different Forecast Horizons

Tail Risk in 2008/2009

Forecasting Regression Results: Robustness

Controls:

- Oil market specific: OILVIX2, VRP, RV, Δ Stocks, Slope of Term Structure, Open Interest Growth
- Macro-financial: D.A. Business Conditions, Real Activity Indicator, VIX, TBill Yield, Bond Spread
- Out-of-sample: Cross-Validation
- Similar results when augmenting Kilian & Murphy (JAE, 2014)
 VAR with FI_t

VAR results

Aggregate Fear / Uncertainty I

- Bollerslev, Todorov & Xu (JFE, 2015), for equity index options:
- Fl_{spx,t} captures Investors sentiment
- $VRP_{spx,t} FI_{spx,t}$ captures macroeconomic uncertainty
- high correlation, but little predictability from Fl_{spx,t}, VRP_{spx,t} for oil (futures) prices

Forecasting Regressions

Aggregate Fear / Uncertainty II

Stock Market returns:

 $(r_{Mkt,t+3} 3 \text{ months market excess return, S&P 500})$

	(1)	(2)	(3)		
Variables	$r_{Mkt,t+3}$	$r_{Mkt,t+3}$	r _{Mkt,t+3}		
Fl _{oil,t}	-0.09		1.05**		
	(0.34)		(0.52)		
FI _{spx,t}		-0.01	0.01		
		(0.02)	(0.02)		
$VRP_{spx,t}$		0.01***	0.02***		
		(0.00)	(0.01)		
Adj. <i>R</i> ²	0.00	0.04	0.07		
Observations	212	212	212		
Newey-West standard errors in parentheses					

*** p<0.01, ** p<0.05, * p<0.1

Conclusion

Oil market disaster fear has explanatory power for oil prices:

- Large and time varying tail risk premia for crude oil spot, futures
- Consistent with changes in risk attitude
- Non-arbitrage conditions: Futures and spot prices overshoot
- \rightarrow important driver of oil price and futures dynamics
- Tail risk premia for individual assets informative about risk premia