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Some Important Questions Relating to Options Markets

1. What is the expected return of an option?

2. What is the riskiness of an option?

Economic importance of these questions:

> Option returns reveal compensation investors demand for taking on
state-dependent exposures

> Needed for portfolio choice problems involving options



Motivating Example: No-arbitrage SVJ Model



Option Risk and Return in Affine No-Arbitrage Models

GVJ model under P measure )
dSe = (r+p)Sedt + Sev/VedWi (B) + Je(A", 15, o))
dVi = w(6° — Vi)dt + o,/ VedW; (P)

Q measure shifts parameters 62, )\Q7u9,09

- J

Fix parameters (from Broadie et al. 2009). For each contract,

1. Retrieve latent state V; (invert each t from ~ 90 day ATM call)

2. PP spec: Simulate S2.;, V2., b=1:B

3. Q spec: Evaluate option price (P,-‘ft“) at each simulated SZ,;, V&4
4

. Result: {PP, 1},

Model-based conditional distribution of next-period prices for each contract-day



Option Risk and Return in Affine No-Arbitrage Models

> How frequently does realized option price fall below the x* percentile of
the simulated next-day price distribution?

Target SVJ
10 218
5.0 26.6
10.0 295
25.0 35.1
50.0 41.9
75.0 483
90.0 53.4
95.0 56.2
99.0 60.8

» Model-forecasted distributions starkly inconsistent with data

» Simulated distribution too narrow: Actuals frequently below low
quantiles and above high quantiles



Overview of Method
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Overview of Method

Uncertainty about future option price comes in two layers

1. Where on the surface will the contract migrate to at t + 17
> Deterministic roll-down in time-to-maturity dimension
» Stochastic change in moneyness dimension due to underlying return
» Option return uncertainty due to “shocks to contract moneyness”

2. What will the shape of the IV surface look like at t + 17
» Option return uncertainty due to “shocks to surface shape”
» Time series factor models describe surface variation with R?
approaching 100%

> Characterize distribution of future option returns by characterizing
distribution of i1 (1) and Vit (2)



Step 1: Define the IV Surface

> S&P 500 data from 1996-2015, OTM contracts only

» Define dimensions of the surface
1. Time-to-maturity, 7, on grid [30, 60,91, 122,152,182, 273, 365]

2. Moneyness of contract, m = '°Vg|(XK\;?, on grid [-3:0.25: 1.5]

> Grid point interpolation of contract-level IV's each day



Step 2: Model of the Surface, Underlying

Gystem backbone: Factor vector X; = (r¢,log VIX;, PC's), evolves as
Xe =+ pXe—1 + Li 16 (1)
IV at grid point (m, T) obeys factor model:

log IVm,‘r,t = Bm,r(lvxt_{)/ + Ym,rt—1Umrt (2)
N\ J

Comments:

> Important to specify (2) in logs
> Panel R? in (2) is 99%, minimum R? at any grid point is 96%
» Co-variance matrices are GARCH models

A1
> & =Y, %e;, where e; are VAR errors (likewise for i)



Step 3: Bootstrap Conditional Price Distribution (t + 1|t)

1. Fix day t conditioning information. This includes
» State of the system: S;, X, ¥, 4: and model parameters (7, 5, 53, ...)
» Fix contract: 7, K, m

2. Draw sample, b = 1: B, from the empirical distribution of €; and i

3. For each draw b, feed shocks through estimated system

>

EPerl}bBl is conditional forecast of price distribution for individual contrata




Step 3: Bootstrap Conditional Price Distribution (t + 1|t)

1. Fix day t conditioning information. This includes
» State of the system: S;, X, ¥, 4: and model parameters (7, 5, 53, ...)
» Fix contract: 7, K, m
2. Draw sample, b = 1: B, from the empirical distribution of €; and i
3. For each draw b, feed shocks through estimated system
> X =4 pXe+ et = VIXA, S = Seexp(rfia)

EPerl}bBl is conditional forecast of price distribution for individual contrata
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Step 3: Bootstrap Conditional Price Distribution (t + 1|t)

1. Fix day t conditioning information. This includes

» State of the system: S;, X, ¥, 4: and model parameters (7, 5, 53, ...)
» Fix contract: 7, K, m

2. Draw sample, b = 1: B, from the empirical distribution of €; and i
3. For each draw b, feed shocks through estimated system
» XPa =0+ pXe+ ety = VIXE, SP = Seexp(rf)

b_ b _ log(K/SPy)
» 7°=7—1/365 and m° = VK, et

>

>

EPerl}bBl is conditional forecast of price distribution for individual contrata
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Step 3: Bootstrap Conditional Price Distribution (t + 1|t)

1. Fix day t conditioning information. This includes

» State of the system: S;, X, ¥, 4: and model parameters (7, 5, 53, ...)
» Fix contract: 7, K, m

2. Draw sample, b = 1: B, from the empirical distribution of €; and i
3. For each draw b, feed shocks through estimated system
» XPa =0+ pXe+ ety = VIXE, SP = Seexp(rf)

b_ b _ log(K/SPy)
» 7°=7—1/365 and m° = VK, et

A b o ~b
> |0g Ivmb,fb,t+l - me,TbXt‘Fl + Ymb rb Uty

>

EPerl}bBl is conditional forecast of price distribution for individual contrata
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Step 3: Bootstrap Conditional Price Distribution (t + 1|t)

1. Fix day t conditioning information. This includes

» State of the system: S;, X, ¥, 4: and model parameters (7, 5, 53, ...)
» Fix contract: 7, K, m

2. Draw sample, b = 1: B, from the empirical distribution of €; and i
3. For each draw b, feed shocks through estimated system
» XPa =0+ pXe+ ety = VIXE, SP = Seexp(rf)

b_ b _ log(K/SPy)
» 7°=7—1/365 and m° = VK, et

A b 2 ~b
> log IViob 15 11 = B 6 Xey1 + Ymp b 1 O¢41

> Finally, PE,; = BS(Sf,4, 1V, borb o1 Ko T by

EPerl}bBl is conditional forecast of price distribution for individual contrata
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Case Study: Aug. 28, 2015

S&P at 1989, VIX at 26
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Case Study: Aug. 28, 2015

S&P at 1989, VIX at 26
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Case Study: Aug. 28,

S&P at 1989, VIX at 26
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Case Study: Aug. 28, 2015

S&P at 1989, VIX at 26
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Case Study: Aug. 28, 2015

S&P at 1989, VIX at 26
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Case Study: Aug. 28, 2015

S&P at 1989, VIX at 26

A-Hedged P&L to Short Option Position
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Portfolio Management: Bootstrap Hedge Ratios

Delta-Neutral Risk Reversal

» Evaluating accuracy of portfolio forecast distribution

Panel A: Mean Regressions Panel B: Percentiles
IS 00Ss Target IS 00Ss

Boot Mean 1.10 0.66 1.0 1.0 0.9
(40.53) (27.92) 5.0 5.3 4.5

R% (%) 24.9 16.5 100 105 9.2
T 4946 3949 25.0 26.4 239

50.0 51.6 49.6
75.0 76.8 75.0
90.0 91.3 90.0
95.0 95.8 949
99.0 99.4 98.9

» Dynamic bootstrap hedge ratio: Out-of-sample Sharpe 1.2 (p.a.)
» Static hedge ratio: Sharpe 0.6 (p.a.)



Case Study: Aug. 28, 2015

S&P at 1989, VIX at 26
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Empirical Analysis: S&P 500 Index Options

22



Assessing Accuracy of Distribution Forecasts

» Target distributions
> Delta-hedged P&L of short option position

1
PLY .y = s, [Pr — PP+ De(SEa — Se)

» Test accuracy of forecasted conditional distributions at the
contract-level

» Mean, variance, and quantile forecasts
» Hedge ratios, optimized portfolios

> Baseline for comparison: SVJ model-based forecasts

23



Out-of-Sample Performance Evaluation

For each day t
» Use 1,000-day estimation sample ending at t
» Estimate model, form forecast t + 1 price distribution

» Form mean, std. dev., percentiles, etc., of bootstrap distribution

24



Forecasting P&L

Dependent variable: Delta-hedged option P&L

1 2 3 4 5 6 7 8

Bootstrap 0.38 0.39 0.41 0.41
(6.71) (7.03) (11.16) (10.89)

SvJ 0.01 0.00 0.01 0.00
(6.38) (1.57) (5.23) (0.14)

Money 0.00 0.00 -0.01 -0.01
(0.79) -(0.28) -(4.86) -(2.53)

TT™ 0.00 0.00 0.00 0.00
-(1.00) (2.57) (0.53) (3.84)

Gamma 0.00 0.02 -0.02 0.00
-(0.12) (1.78) -(2.46) -(0.37)

Vega 0.00 0.00 0.00 0.00
(1.34) -(0.51) -(4.59) -(2.62)

Theta 0.00 0.00 0.00 0.00
-(0.73) (0.60) (0.55) -(0.08)

|\ 0.03 0.06 0.32 0.08
(0.67) (1.62) (6.64) (1.77)

Money*Put 0.00 0.00 0.03 0.01
-(0.71) (0.25) (6.42) (3.25)

TTM*Put 0.00 0.00 0.00 0.00
(1.69) -(2.38) (0.41) -(2.75)

Gamma*Put 0.00 -0.01 0.00 0.00
(0.24) -(0.66) (0.40) -(0.49)

Vega*Put 0.00 0.00 0.00 0.00
-(1.05) -(0.42) (1.47) -(0.32)

Theta*Put 0.00 0.00 0.00 0.00
-(0.72) -(1.78) -(2.42) -(0.85)

IV¥Put -0.02 -0.03 -0.15 -0.02
-(0.60) ~(1.04) ~(5.03) -(0.71)

Date FE 'No’ 'No’ 'No’ 'No’ "Yes' "Yes' "Yes' "Yes'

R2 0.1 45 0.2 48 0.7 8.4 0.2 8.7
N 1157660 1157660 1157660 1157660 1157660 1157660 1157660 1157660

Note: Standard errors clustered by date. All Greek coefficients except those on Gamma are multiplied by 100
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Forecasting Quantiles

» For each contract, we forecast quantiles of next-period price from
the bootstrap distribution {P?}2_,

> Q« ({PP}E_,) is the price below which x% of the bootstrapped
prices lie

» Assess accuracy of quantile forecast with
1N
b\ B
S 1P < Q ((PPYEL)
i=1

where i is a contract-day and N is number of observations

» The quantile exceedence frequency should be close to x% for a good
forecast

26



Forecasting Quantiles

» Exceedence frequency at various target quantiles
» Pooling all contract-days

» Bootstrapped statistical model, simulated SVJ model

Out-of-sample
Target Bootstrap SvJ

1.0 1.5 21.8
5.0 6.2 26.6
10.0 11.5 29.5
25.0 25.6 351
50.0 50.3 41.9
75.0 74.1 48.3
90.0 89.1 53.4
95.0 94.4 56.2

99.0 98.7 60.8




Forecasting Option Return Quantiles

» Exceedence frequency in moneyness/maturity bins

Bootstrap SvJ
95 _—_— 5
75 F e e oy 75 F
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Hedging Application

Delta Hedge

> Regress Pi 111 — Piy on Aj ¢(S¢11 — St), where A comes from
1. Bootstrap
2. Simulated SVJ
3. Black-Scholes

Dependent variable: Price change

1 2 3 4 5 6 7 8
Bootstrap 0.99 0.78 0.99 0.65
(161.39) (9.75)  (194.36) (7.72)
Sv)J 0.92 -0.09 0.96 0.01
(149.87) -(4.46) (208.75) (0.80)
Black-Scholes 0.98 0.31 0.98 0.33
(164.29)  (3.69) (201.07)  (3.93)
Date FE 'No’ 'No’ 'No’ 'No’ "Yes' "Yes' "Yes' "Yes'
R? 91.8 82.4 89.1 91.9 95.0 92.3 94.1 95.1

N 1157660 1312973 1312973 1157660 1157660 1312973 1312973 1157660




Skewness
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Conclusions

We propose a simple, statistically-driven means of measuring risk and return to
options positions

| showed you
> Risk/return of state-dependent market exposures
> Hedging

> Portfolio optimization

We also study
» Empirical “Sharpe ratio surface”
» Comparison with no-arb models

» Multi-horizon forecasts
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