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Green-lighting Movie Scripts:  

Revenue Forecasting and Risk Management 

 
 

Abstract 

Major studios and independent production firms (Indies) often have to select or “green-

light” a portfolio of scripts to turn into movies. Despite the huge financial risk at stake, there is 

currently no risk management tool they can use to aid their decisions, even though such a tool is 

sorely needed. In this paper, we developed a forecasting and risk management tool, based on 

movies scripts, to aid movie studios and production firms in their green-lighting decisions. The 

methodology developed can also assist outside investors if they have access to the scripts. 

Building upon and extending the previous literature, we extracted three levels of textual 

information (genre/content, bag-of-words, and semantics) from movie scripts. We then 

incorporate these textual variables as predictors, together with the contemplated production 

budget, into a BART-QL (Bayesian Additive Regression Tree for Quasi-Linear) model to obtain 

the posterior predictive distributions, rather than point forecasts, of the box office revenues for 

the corresponding movies. We demonstrate how the predictive distributions of box office 

revenues can potentially be used to help movie producers intelligently select their movie 

production portfolios based on their risk preferences, and we describe an illustrative analysis 

performed for an independent production firm.   

 

Keywords: entertainment industry, movie production, text mining, machine learning, risk 

management, portfolio selection.
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 1. Introduction 

For movie studios and independent producers, “green-lighting” or deciding on a movie 

production portfolio is an important yet challenging task. Movie production typically involves 

three phases: development, production, and post-production. Green-lighting a movie represents a 

transition from the development to the production phase and entails enormous financial 

commitment. In making this critical decision, studios executives of all divisions evaluate a 

tentative budget that is based on shot-by-shot breakdown of the script (Epstein 2005). Usually, 

each of the major studios keeps a slate of around 100 to 400 films (or film ideas) at a time in 

development (Waterman 2005); from these potential ideas, each major studio then generates a 

portfolio of around 12 to 25 movies a year.1

For both major studios and independent production firms, the main difficulty that they are 

facing in creating the desired movies portfolio is that very little information about the ultimate 

success or failure of a movie is known before production commitments need to be made. This 

problem with the lack of information is magnified even further by the high (and rising) cost of 

producing and marketing a movie. In 2007, for instance, movie studios spend around $70M to 

produce a movie on average (MPAA 2007). As a consequence, content providers often have to 

make decisions with high financial impact to their companies without knowing precisely what 

the potential risk-payoff structure is. Not surprisingly, industry insiders often liken green-lighting 

a movie to a crapshoot and the huge variation of box office revenues across movies is consistent 

with the random nature of green-lighting movies (Walls 2005). 

 The production process is similar for independent 

production firms, albeit at a smaller scale (Marich 2005).  

                                                 
1 For instance, specified in regulatory filing in 2005, Disney released 21 films per year, while Warner Bros released 
25 films per year (Marich 2005). 
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While plenty of academic research focuses on the movie industry, very few provide 

useful guidance to the green-lighting problem. There are two main reasons why current research 

fails to provide such an adequate decision support system. First, most researchers focus on 

forecasting box office revenue after a movie has been produced and when more tangible 

predictors are available. Typically, researchers forecast box office performance based on box 

office receipts in the early weeks (e.g., Sawhney and Eliashberg 1996), or post-production/pre-

release information (e.g., Neelamegham and Chintagunta 1999; Eliashberg et al. 2000; Shugan 

and Swait 2000). These studies are helpful for movie distributors, but do not provide any direct 

guidance for producers’ (studios’) movie production decisions at the green-lighting stage as well 

as for investment decisions made by external investors. 

Second, almost all academic research studies focus on producing point estimates of box 

office revenues, but do not give a full characterization of the predictive distributions that are 

crucial for managing production portfolios. Much like equity investors who not only care about 

the expected return but also the variance and risk of a stock portfolio, studios are not only 

interested in the expected upside/downside of a movie investment (i.e., point predictions), but 

also the uncertainty in box office revenues, quantified by their full predictive distributions. 

In this paper, we propose a new methodology that tackles the two aforementioned issues 

together.  We develop an economically meaningful tool for green-lighting decisions and risk 

management at this early stage of the movie production. Two features characterize this new 

methodology.  First, we restrict ourselves to only information that is available at the point of 

green-lighting decisions, i.e., only movie scripts and their corresponding estimated production 

budgets. While there have been some previous attempts to link textual information to 

commercial performance of movies (e.g., Eliashberg, Hui and Zhang 2007), such work simulates 
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the process of adding film ideas to the development pool. This is so because these ideas are 

typically “pitched’ to the studios as ‘treatments” before the full-fledged scripts are written. To 

the best of our knowledge, no previous research has come as close to modeling the green-lighting 

practice (i.e., the transition from the development to the production phase based on the full-

fledged scripts). Towards this end, we compile and analyze a large dataset, which consists of 

actual, full-fledged movie scripts. As a script is the very foundation of a movie, a sophisticated 

analysis of the textual information and hidden story structures in the script help us better predict 

box office revenues. We discuss it in more detail in Section 2.  

Second, in our analysis, we fully characterize not only the expected return but also the 

uncertainty of box office revenues.  In addition, our analysis also recognizes and allows for 

highly nonlinear interactions among different ingredients in a movie script.  For both purposes, 

we employ a recently developed Bayesian model known as Bayesian Additive Regression Tree 

or BART for short (Chipman et al. 2007, 2008), and extend it to handle quasi-linear models 

(henceforth refer to as BART-QL) that are more appropriate for the task at hand.  

After building up our model and validating its (holdout) predictive performance on actual 

data, we demonstrate how our model can be used to aid content providers’ portfolio optimization 

decisions. Using the posterior prediction distributions of box office revenues, we illustrate how 

the mean-VaR (mean-value-at-risk) efficient frontier (e.g., Alexander and Baptista 2001) of 

movie portfolios can be derived. Using this efficient frontier, movie producers can manage their 

risk exposure based on their risk preferences and budgetary restrictions.  

To summarize, Figure 1 shows a general overview of this article. The rest of this paper 

describes each aspect of Figure 1 in detail and is organized as follows. Section 2 describes how 

we assemble our dataset, including box office revenue and budget data (Section 2.1), the 
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genre/content variables (Section 2.2), bag-of-words variables (Section 2.3), and semantic 

variables (Section 2.4). Section 3 develops the BART-QL methodology that allows us to model 

box office revenues as a function of production budget and textual variables from scripts. Section 

4 compares the predictive capabilities of our methodology vis-à-vis other benchmark models, 

and Section 5 discusses how our model can be used for portfolio optimization and risk 

management. Section 6 concludes with directions for future research.  

[Insert Figure 1 about here] 

 

2. Extracting textual information from movie scripts 

Our dataset contains a sample of 200 movies released from 1995 to 2006, whose shooting 

scripts are available online in electronic format.  Since our dataset includes only scripts that are 

already made into movies, we may run into the problem of “sample selection bias” or “covariate 

shift” (Huang et al. 2007), if the features of scripts that are made into movies are different from 

the features of scripts in general (including those that are not produced into movies). This is a 

common problem that is also shared in machine learning (Huang et al. 2007; Sugiyama et al. 

2007; Zadrozny 2004), bioinformatics (Baldi and Brunak 1998), and econometrics (Heckman 

1979). However, in our case, this is actually less of a problem given that the process of green-

lighting a few movies out of a large number of choices has not been aided by anything other than 

the readers’ intuitions, and that the variation in the distribution of box-office revenues is very 

wide. 

For each movie in our dataset, we record its domestic box office revenue and its 

production budget from the IMDB database. From each script in our sample, we extract three 

layers of textual information: genre/content variables (Section 2.2), (ii) bag-of-words variables 
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(Section 2.3), and (iii) semantic variables (Section 2.4). The complete set of variables collected 

from each script is summarized in Table 1, and described in detail in the following sub-sections.  

[Insert Table 1 about here] 

 

2.1 Box office revenue and production budget 

We collected the box office revenue and production budget for each movie in our sample. 

The histograms of box office revenue and production budget, both in absolute and in log scale, 

are shown in Figure 2. The corresponding summary statistics are shown in Table 3. We see that 

the distribution of both box office revenue and production budget appears closer to normal 

distribution in the log-scale, suggesting that a log-transform is appropriate.  

[Insert Figure 2 about here] 

Figure 3 shows a scatterplot of log-box office revenue against log-production budget. As 

can be seen, there is a significant positive relationship between box office and production budget, 

with a correlation of 0.70 (p<.001). A linear regression of (log-) box office revenue and (log-) 

production budget, as shown in Figure 3, is estimated with an intercept of 0.12 and a slope 

coefficient of 1.01 (p<.001), with a corresponding R2 value of 0.48.  

[Insert Figure 3 about here] 

The strong linear relationship between (log-) box office and (log-) production budget 

suggests that our model should incorporate (log)-production budget as a linear effect. In Section 

3, we describe how our model takes into account this relationship using a quasi-linear 

specification.  
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2.2. Genre and content variables  

The highest level of textual information in movie content can be summarized by its genre 

and its “content” variables (Eliashberg et al. 2007). The genre of a script summarizes the theme 

of the movie and helps identify the size of the target segment for the movie. The “content” 

variables measure various aspects of the storyline of a script (e.g., premise, setting, conflict, 

resolution, ending).   

We asked three independent readers, who are trained in film studies, to read each script 

and answer a questionnaire about the genre and the storyline. “Genre” is a categorical variable 

with eight possible categories (Drama, Romance, Thriller, Comedy, Horror, Scifi, Action, 

Family) that describe each movie. Note that a movie can be described by more than one category. 

For instance, a movie can belong to both “Drama” and “Romance” genre categories.  

Readers then answer a set of 23 “content” questions about the storyline for each script. 

The list of questions is shown in Table I of Appendix I. These questions are simple “yes or no” 

questions that have been identified by experts as important to writing a successful movie script 

(e.g., Monaco 2000). It is very unlikely that any of the readers provided biased answers to this 

set of questions because of their possible familiarity with a movie, since the content variables 

and the box office success do not have a linear, additive relationship. For instance, a clear or 

important premise needs not enhance the prospect of a movie’s success; instead, it may be the 

case that an important premise is helpful only for action movies that also have a “stronger 

nemesis” with “character growth”.  This is why, as it will become clear soon, we specify a model 

that allows complex nonlinear interactions among content variables.  In this context, it would be 

impossible for anyone to know what a successful movie imply about the content variables of the 
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movie’s script. In fact, when we plot each content variable against the box office, we do not find 

any discernable pattern. 

As a final step to generate content variables, we averaged the three readers’ responses for 

each question.  Note that before averaging their responses, we studied the inter-rater agreement 

on the genre and content questions; on average, we find reasonable agreement among the three 

readers using Fleiss’s kappa (Fleiss 1971). The details are shown in Appendix II.2

 

  

2.3. Bag-of-words variables 

The second layer of textual information we extract comes from the actual words used in 

the script, captured using a “bag-of-words” representation (i.e., representing a script by a list of 

words with their associated frequencies). Words used in a script and their usage frequencies are 

the building blocks of a script and indicative of a storyline. In particular, the frequencies of key 

words and phrases (e.g., love, die, sex, blood) may be indicative of the overall tone and theme of 

the movie, beyond that captured by genre and content variables alone. Reducing a document to 

its bag-of-word representation has been used successfully in natural language processing 

applications, such as document retrieval/document classification and organization (e.g., Blei et al. 

2003; Lewis 1998; Li and Jain 1998). We use the following procedure to extract bag-of-word 

information from each script so that we can reduce the dimensionality of these variables, while 

still picking up significant information. First, we use a “stemming” algorithm in a natural 

language processing package (Porter 1980) to reduce each word to its simplest form (e.g., 

“going” is reduced to “go”). We then tabulate all the unique stemmed words that occur in any 

                                                 
2 We also estimated a version of our model (Section 3) where only content variables that have Kleiss’s kappa higher 
than 0.3 are retained. The “pruned” model provides inferior holdout predictive performance compared to the model 
that uses all content variables.  This seems to suggest that disagreements among the readers (i.e., heterogeneity) may 
have some predictive value. 



 8 
 
 

document, and count the occurrence of each word in each document to produce a word-

document matrix.   

Next, we compute the “importance index” for each word; the importance index is defined 

as follows:  

i
i

i N
D
d

I ×





 −= 1         [1] 

where di denotes the number of scripts containing the i-th word, D denotes the total number of 

scripts, and Ni is the total frequency of occurrence of the i-th word across all scripts.  

We then keep only the 30 most important words to allow for a stable factor analysis 

solution (MacCallum et al. 2001). Finally, we perform factor analysis on the word-document 

matrix to further reduce its dimensionality. As shown in the screeplot in Figure 4, the factor 

analysis shows an “elbow” between factor 2 and factor 3 (Johnson and Wichern 2007). Thus, we 

keep a two-factor solution, which explains 35.6% of the variance of the word-document matrix. 

The factor loadings of each factor on the 30 words are shown in Table 2. We extract the two 

factor scores for each script and use them as predictor variables in our model.  

[Insert Figure 4 about here] 

[Insert Table 2 about here] 

 

2.4 Semantic variables  

The third layer of textual information from scripts comes from the “semantics” 

information. The way a script is organized may give us some insights into how the final movie 

will look like; for example, a script can tell us approximately how many scenes are in the movie, 

how often the characters interact in interior or exterior space, etc.. It may also carry information 
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about the way characters speak in the movie; for instance, whether characters will give long 

prose, or just short dialogues, and how evenly distributed these dialogues are among the 

characters. To capture this semantic information, we focus on scene variables (ii) and (iii) and 

dialogue variables (iv)-(vi) below.  

(i) Number of words in title (NTITLE) 

(ii) Total number of scenes in the script (NSCENE) 

(iii) Percentage of interior scenes (INTPREC) 

(iv) Total number of dialogues (NDIAG) 

(v) Average length of dialogues (AVGDIAGLEN) 

(vi) The “concentration index” of dialogues (DIAGCONC) 

To obtain the concentration index of dialogues (variable vi), we use the Herfindahl-Hirschman 

index (Hirschman 1964) of the share of dialogue that each character has in the script. Let 

]1,0[∈is   be the share of the dialogue by character i ( 1=∑
i

is ). The Herfindahl-Hirshman 

concentration index of dialogue is defined as:  

∑=
i

isDIAGCONC 2         [2] 

These variables say something about the theme and pace of a storyline and also about how the 

story is being told.  

To sum up, the summary statistics of each variable in our dataset are shown in Table 3. 

We now proceed to discuss our statistical learning procedure, which uses production budget and 

the textual information described in this section to generate the predictive distributions of box 

office revenues.  

[Insert Table 3 about here] 
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3. Bayesian additive regression tree for quasi-linear model (BART-QL) 

After we extract textual information from the scripts, we use them as covariates, together 

with production budget, in a predictive model of box office revenue. Section 3.1 describes the 

BART-QL model; in particular, it discusses how the methodology allows for a flexible semi-

parametric modeling of box office revenue while allowing for interactions among predictors. 

Such flexibility and interactions are two pre-conditions for predicting a movie’s success. Section 

3.2 outlines our computational procedure used to sample from the posterior distribution of our 

model parameters.  

  

3.1. BART-QL model 

Our BART-QL model specification is a semi-parametric model that is comprised of two 

parts. As shown in Section 2.1, (log-) production budget is linearly related to (log-) box office 

revenue. That is, the magnitude of box office revenue is controlled, to a moderate extent, by the 

size of the production budget. We add to it the other textual information extracted from the script. 

Formally,  

iiii xfzy εβα +++= )()log( )log(     ),0(~ 2σε Ni   [3]3

where yi denotes the box office revenue of the i-th movie; zi denotes the production budget of the 

i-th movie, and 

 

ix  denotes the vector of textual covariates for the i-th movie; iε is a random error 

term that is assumed to be independent and normally distributed with mean zero and variance 

2σ . α  and β  are two free parameters (estimated in our model) for intercept and slope, 

                                                 
3 Note that if the data exhibits heteroskedasticity, Equation [3] can be generalized to ),0(~ 2

ii N σε to handle the 
unequal variances across observations.  In our empirical analyses we found that this was not the case and the 
homoskedasticity assumption was a reasonable approximation for our dataset. 
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respectively; thus, the expression )log( izβα +  captures the linear effect of (log-) production 

budget on (log-) box office revenue in the first component of our model. In the second 

component of our model, the excess/under residual in box office revenue is captured by other 

covariates based on the textual information extracted from the scripts. Given the highly nonlinear 

interactions among predictors, a flexible tree-based specification is used to model the effect of 

textual covariates. The function )( ixf  (described next) denotes the effect of the other textual 

covariates.  

We model )( ixf  using a flexible BART (Bayesian Additive Regression Tree) 

specification proposed by Chipman et al. (2007, 2008). The BART specification can be explicitly 

expressed as: 

),;(),;(),;()( 2211 NN MTxgMTxgMTxgxf 



+++=    [4] 

where each ),;( MTxg   denotes a tree specification; T denotes a binary tree consisting of a set of 

interior node decision rules and a set of terminal nodes, and M denotes a set of parameter values 

associated with each of the terminal nodes of T (See Chipman et al. 2007, 2008 for details). Thus, 

the specification in Equation [4] can be viewed as a sum-of-trees model. 

The BART specification used in Equation [4] has been widely applied as a flexible 

modeling/predictive method in various settings. For instance, Zhang et al. (2007) applied a 

spatially-adjusted version of BART for data fusion and used it to analyze data on health status 

and income. Zhang and Hardle (2008) used BART to model default risk and predict corporate 

insolvency. Kourtellos et al. (2007) exploited the flexible nature of BART modeling to test 

whether the relationship between aid and economic growth is nonlinear. In biology, Zhou and 

Liu (2008) and Liu and Zhou (2007) compared different machine learning methods in an 

application designed to predict how and where transcription factors interact with DNA.  They 
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found that BART outperforms other methods (stepwise linear regression, multivariate adaptive 

regression splines, neural networks, support vector machines) both in terms of accuracy and 

robustness. In computer science, Abu-Nimeh et al. (2008) applied BART for automatic detection 

of phishing emails, and found that BART outperforms logistic regression, random forests, 

support vector machines, CART, and neural networks.  

Putting together Equation [3] and [4], our BART-QL model can be formally expressed by 

Equation [5] as follows: 

i

N

n
nniii MTxgzy εβα +++= ∑

=1
),;()log( )log(   ),0(~ 2σε Ni   [5] 

Towards our goal of predicting box office revenue from scripts, the BART-QL 

formulation specified by Equation [5] has a number of key advantages. First, given that the sum-

of-tree model is essentially an additive model with multivariate components, it can easily handle 

both additive effects (through the summation of trees), as well as interaction effects (which can 

be captured by each individual tree) of varying orders (Chipman et al. 2007). The specification in 

Equation [4] can thus be viewed as a generalization of both the multiple linear regression model 

and the single-tree model (e.g., Chipman et al. 1998); hence it allows for more flexibility, which 

is crucial for the modeling of box office revenue based on textual variables, where interactions 

are highly significant. As will be shown in Section 4, this additional flexibility allows us to 

capture the variations in box office revenue more accurately than alternative models.   

Second, unlike other machine learning methods (e.g., neural networks, support vector 

machine, lasso, MARS; see Hastie et al. 2001) which are essentially “black-box” prediction 

methods that generate only point estimates, the BART-QL model is a fully specified Bayesian 

model with a proper prior distribution and a likelihood function. Through the fully specified 

Bayesian model, we can directly obtain not only point predictions of box office revenues, but 
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also their posterior predictive distributions. As we will show in Section 5, these predictive 

distributions can be used to help manage risk and optimize movie production portfolios.  

Third, because of the sum-of-trees specification, results from BART-QL can easily be 

interpreted to obtain substantive insights. After obtaining the posterior distribution of the model 

parameters, one can generate partial dependence plots (Friedman 2001), which summarizes the 

marginal effect of a predictor on the response,4

 

 to study the relationship between each textual 

variable and box office revenue. In Section 4.2, we will study the estimates from the BART-QL 

model in detail. 

3.2. Prior specification and computational procedure 

To complete our Bayesian model, we need to specify a set of prior distributions on our 

model parameters. For the parameters of the BART model, we use the default “regularization 

priors” used in Chipman et al. (2007). The general idea is that these priors penalize larger trees 

and thus allow each tree to make a small contribution to overall fit, thereby delivering a strong 

predictive performance in the spirit of “boosting” (i.e., using many weak learners to improve 

estimation; see Hastie et al. 2001). For more technical details, readers are referred to Chipman et 

al. (2007, 2008). For the regression parameters, we apply conjugate, weakly information priors 

on α and β ; specifically, 

)100,0(~, 2Nβα .        [8] 

                                                 
4 More precisely, let ),()( cs xxfxf = where the set of predictors x has been partitioned into the predictors of 

interest, sx , and the complement sc xxx \= , the partial dependence function is defined as 

∑
=

=
n

i
icsns xxfxf

1

1 ),()(  where icx  is the i-the observation of xc in the data. (For details, refer to Friedman (2001) 

and Chipman et al. (2008)).  
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Next, we outline the MCMC procedure we used to obtain the posterior distribution of the 

BART-QL model parameters, and hence the posterior predictive distributions of the movies’ box 

office revenues.  

We initialize 00 ,βα  by running a simple linear regression of log(y) on log(z) on the 

training sample; then, with this as a starting point we start the MCMC iterations. We use a two-

stage Gibbs sampler (Casella and George 1992), which consists of two main steps: (I) 

draw (.)f and 2σ conditional on α and β , and (II) draw α and β  conditional on (.)f and 2σ .  

More specifically, in the (t+1)-th iteration, we take two steps. In the first step, we draw 

(.)f and 2σ conditional on α and β . To do that, we first subtract the linear terms, )log(ztt βα + , 

from the left side. Thus, we have εβα +=−− )()log()log( xfzy tt . Then, we draw the tree 

parameters of BART (i.e., T and M) using the MCMC backfitting procedure proposed by 

Chipman et al. (2007), which is implemented in the BART package in R. We store the resulting 

draw as (.)1+tf and 2
1+tσ .  For the second step, we draw α and β  conditional on (.)f and 2σ .  

This is done by first subtracting the (.)f  from the left-hand side. That is, 

εβα ++=− + )log()()log( 1 zxfy t . Then, given conjugate prior on α and β , the full conditional 

distribution of α and β  of standard conjugate form; we can use a Gibbs sampler to sample from 

their full conditional distribution. The resulting draws of α and β  are stored as 11, ++ tt βα . 

We then iterate these two steps for 2000 iterations, drop the first 1000 iterations as “burn-

in” iterations (Gelman et al. 2003), and store the last 1000 iterations as a sample from the 

posterior distributions of ( 2(.),,, σβα f ).  
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4. Empirical results 

In this section, we study the performance of our BART-QL approach in predicting box 

office revenues, based on the rich information available in full-fledged scripts. We begin by 

examining the in-sample fit of our model, and next assess and discuss the out-of-sample 

predictive performance of our approach in comparison to other methodologies, both in terms of 

point estimates and predictive distributions in Section 4.1. In Section 4.2, we interpret the 

coefficients and parameters of our model. Section 4.3 describes how our model results are used 

to compute the risk-adjusted profit of each movie as well as the relationship between risk 

adjusted gross profit, the genre, MPAA ratings, and the studio.  

 
4.1. Model validation (in-sample) and out-of-sample prediction 
 

We first investigate the in-sample fit (validation sample of size 200) of our model. We 

obtain the posterior distribution of our model parameters using the MCMC procedure described 

in Section 3.2, and plot the actual (log-) box office revenue versus the corresponding model-

fitted values in Figure 5.  

[Insert Figure 5 about here] 

Given the flexibility of our BART-QL approach, our model should be able to describe the 

data very well. As can be seen, our model provides an excellent within-sample fit of the box 

office revenues. The R2 value is 0.663, which is much higher than the R2 value (0.480) obtained 

by a simple linear regression with only (log-) production budget as the independent variable, as 

shown in Section 2.1. This indicates that the textual variables extracted from the movie scripts do 

provide additional information about box office revenues, above and beyond the information 

provided by production budget alone.  
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Next, we study the out-of-sample predictive ability of our model, using ten-fold cross 

validation (Hastie et al. 2001), which provide an unbiased assessment of out-of-sample mean 

squared prediction error. To perform ten-fold cross validation, we randomly divide the 200 

movies in our dataset into ten subgroups, each group with 20 movies. Our model then cycles 

through the data ten times; in each pass, a different subgroup of movies is used as the holdout 

sample, and the rest is used as training data to estimate the model.  

Using the above procedure, we compare the out-of-sample prediction of our BART-QL 

model with all variables (i.e., genre/content, words, and semantics) versus six reduced models 

that use only a subset of the variables (i.e., (i) content and words, (ii) content and semantics, (iii) 

words and semantics, (iv) content only, (v) words only, (vi) semantics only), as well as a 

regression model that uses only production budget as predictor variables. We compare the 

accuracy of the point estimates across model using MSE (Mean Square Error) and MAE (Mean 

Absolute Error) criteria, and we compare the accuracy of the predictive densities using predictive 

log-likelihood (e.g., Bjornstad 1990). Predictive log-likelihood refers to the log-likelihood of the 

observed box office revenue under the posterior predictive distribution. The results are 

summarized in Table 4 below; the predicted box office revenues under the full data-based model 

(along with 95% posterior intervals5

[Insert Table 4 about here] 

) are plotted against the actual box office revenues in Figure 

6. As can be seen, most of the actual box office revenues are covered by the 95% posterior 

intervals. 

[Insert Figure 6 about here] 

                                                 
5 We plot the 95% posterior highest probability density (HPD) intervals (Chen and Shao 1999), defined as the 
narrowest interval that covers 95% posterior probability; it is appropriate to consider HPD intervals given that the 
predictive distribution is not symmetric.  
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From Table 4, we find that the all variables-based model (content, word, and semantics 

variables) outperforms all of the seven alternative (reduced) models, both in terms of point 

estimates and predictive distributions. Our full model has the lowest MSE and MAE compared to 

all seven reduced models. In addition, the predictive log-likelihood of the full model, -267.27, is 

much higher than that of the regression model with production budget as covariates (-284.80); 

this corresponds to a Bayes factor of 17.53, which indicates very strong posterior evidence in 

support of our model (Berger 1985). Thus, our model not only provides more accurate point 

predictions of box office revenue, but also more accurate predictive densities, which is crucial 

for making portfolio optimization and risk management decisions.  

Furthermore, we compare the out-of-sample predictive performance of the BART-QL 

model (with all variables) against other statistical learning methodologies, again using ten-fold 

cross validation. We include the following list of benchmark models for comparison: (i) the Bag-

CART model used in Eliashberg et al. (2007), (ii) the naïve projection method used in Eliashberg 

et al. (2007) as a benchmark, (iii) linear regression with only production budget as a covariate, 

(iv) linear regression with all variables, and (v) stepwise regression. The results are shown in 

Table 5 below. As can be seen, the proposed BART-QL model outperforms all the benchmark 

methods.  

[Insert Table 5 about here] 

4.2 Parameter interpretation  
 

Having validated both the in-sample fit and out-of-sample predictive ability of our model, 

we now move on to interpret the model parameters.  

First, we examine the posterior estimates that correspond to the intercept (α ) and slope 

estimates ( β ) for the (log-) production budget in Equation [5]. The posterior mean of α is -2.60, 
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with a 95% confidence interval of (-4.12, 0.94). The posterior mean of β  is 0.908, with a 95% 

posterior interval of (0.719, 1.113). This confirms, as expected, that there is a strong positive 

correlation between (log-) box office revenue and (log-) production budget. Further, since the 

posterior mean of beta is less than 1, the box office revenue exhibits a diminishing return to scale 

with respect to production budget, which provides support for the need to incorporate and 

estimate β  in our model framework.  

Next, we turn our attention to the estimates from the textual information part of the model.  

As we stated earlier, a main advantage of the BART-QL approach, in addition to excellent 

predictive performance, is its interpretability. We focus on interpreting the relative importance 

and marginal effects (Chipman et al. 2008) of the textual variables. For interpretation purposes, 

we fix the estimates of α and β  at their posterior means and focusing on the posterior 

distribution of the trees.  

We examine the relative importance of each textual variable by looking at the number of 

times it is used in the trees across all iterations. If a variable is included in a higher percentage of 

iterations, it is more important in predicting box office revenue (Chipman et al. 2008). The 

relative importance of the top 10 textual variables, based on the percentage of iterations (out of 

1000 iterations) that use each variable, is shown in Table 6. The results indicate that the most 

important textual variable is GENRE_ACT (Genre: Action), which are used in all of the 

iterations, followed by BUILD (Conflict build up) and MULCONF (Multidimensional conflict), 

which are used in 82.4% and 72.4% of the iterations, respectively. However, this does not mean 

that these three variables are the most important among the textual variables in contributing to a 

movie’s box office success. What it does mean is that they are the three most relevant variables 

in predicting a movie’s box office performance, good or bad. We also see that the top 10 
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variables include variables from each of the three types (content, word, semantics), as indicated 

in Table 6, providing additional evidence that all three types of variables are important in 

prediction box office revenues accurately.  

[Insert Table 6 about here] 

We study the effects of these top 10 variables in more detail by looking at their marginal 

effects on box office, through the partial dependence plot (Chipman et al. 2008), shown in Figure 

7.  

 [Insert Figure 7 about here]  

Note that when interpreting partial dependence plots, one should keep in mind that these 

plots only describes the marginal effect of a variable, without taking into account interactions 

among variables. If a variable exerts its effect on box office mainly through interactions, the 

partial dependence plot may not provide much insight into the effect of such variable.  With this 

important caveat in mind, Figure 7 offers some interesting insights on the marginal effects of our 

textual variables. First, we see that movies that belong to the action genre have, on average, 

lower box office revenues (see first row, left panel). Second, movies with longer titles tend to do 

better in the box office (see second row, left panel). Third, the content variable “familiar setting” 

has an important marginal effect: movies that take place in familiar setting tend to have higher 

box office revenues than ones that do not. For the other variables, the partial dependence plots 

are mostly flat, indicating that their effect is mainly through the interactions among different 

variables. 

 

4.3 Risk adjusted profit analysis 
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As we mentioned in Section 3, the BART-QL approach allows us to not only obtain point 

estimates on box office performance, but also the entire predictive distribution of box office 

revenue associated with the script under consideration. This enables us to compute a measure of 

the excess return (or Risk Premium) per unit of “risk” (defined below) in each script. One of the 

most commonly used metric of risk-adjusted return is the Risk-Adjusted Return on Capital 

(RAROC), defined as the excess return divided by the value-at-risk (Jorion 2006). The larger the 

RAROC metric, the more attractive is the risky asset. For a major studio, the RAROC metric 

associated with any given script can be written as follows:  

RAROC = 
VaR

R ,        [9] 

where  R denotes the studio’s (actual) return from a movie, calculated as R = 0.55 * box office – 

production budget, where the 0.55 is the studio’s share of the box office revenues net of the 

exhibitor’s share of the revenues (Eliashberg et al. 2007). VaR denotes the value-at-risk of 

producing a movie (Holton 2003; Jorion 2006; McNeil et al. 2005). It is a metric that is widely 

used in economics and finance to measure risk (e.g., Jorion 2006). It goes beyond the first- and 

second- moments of the predictive distribution to quantify financial risk, which is appropriate 

because the distributions of box office revenues are highly skewed and non-Gaussian.  The VaR 

(with confidence level α) of a portfolio P (denoted as VaRα(P)) is defined by the smallest number 

l , such that the probability that the loss L exceeds l is not larger than (1-α) (see McNeil et al. 

2005). Formally, the value at risk of a portfolio P (with confidence level α) is defined by the 

following equation: 

}1)(Prob:inf{)( αα −≤>∈= lLRlPVaR       [10]  

Conceptually, having a portfolio with VaRα(P) = V means that the manager is (1-α)% 

confident that his/her loss from the portfolio will be lower than V. Usually, α is set to be 0.05 or 
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0.01, which corresponds to confidence level of 95% and 99%, respectively (Pearson 2002). 

Throughout this paper, we set α = 0.05.  

Using the predictive distributions of box office from our model, we obtain an estimate for 

VaR (α = 0.05) for each movie in our dataset. We use the calculated RAROC metrics for 

different evaluations of the movies in our dataset. In the analysis below, we divide our movies 

into different subsets based on (i) genre, (ii) MPAA rating, and (iii) production studio, and study 

the general relationship between these subsets and their associated RAROC metrics. 

Figure 8 shows the RAROC metrics for movies in different genres. Across the eight 

different genres, “family” movies have the highest median RAROC metric of 0.0726, 

presumably because those movies appeal to a large pool of audiences of any age, and also movie 

going is a favorite family activity. The genre with second highest metric is “comedy” movies 

with a median of -0.0404. At the other end of the spectrum, “horror” movies have the lowest 

metrics with median of -0.550.  

[Insert Figure 8 about here] 

Next, we look at the distribution of the RAROC metric for movies with different MPAA 

ratings. We note that 58% of the movies in our dataset are R movies, which is consistent with the 

population proportion of R movies made over the last 10 years (MPAA 2007). Thus, we divide 

our movies into two groups: R movies, and PG-13/PG/G movies, and study whether there are 

any differences between the two groups. As we can see in the boxplot in Figure 9, non-R movies 

(PG-13/PG/G) has a higher median RAROC of -0.226 compared to R-rated movies (-0.432); this 

is consistent with the findings in De Vany and Walls (2002).  

[Insert Figure 9 about here] 
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We take a step further and divide movies into different groups depending on the studio 

that produced the movie. We compare the eight major studios (Warner Bros, Walt Disney 

Motion Pictures Group, Sony Pictures Entertainment, Fox Entertainment Group, NBC Universal, 

Paramount Motion Pictures Group, MGM, and Dreamworks) with respect to the RAROC metrics 

of their movies (in our sample) that they made. The results, shown in Figure 10, offer some 

interesting insights into how studios compared in terms of the metric. Dreamworks has the 

highest median (0.529), followed by NBC Universal (-0.100). The studios with the lowest 

median RAROC metrics are Paramount Motion Pictures Group (-0.703) and Warner Bros (-

0.453). 

[Insert Figure 10 about here] 

Thus, to sum up, our analyses suggest that the attractiveness of the movies in terms of 

their risk/return differs across genre, MPAA rating, and the production studio. Family movies 

and non-R rated movies are, in general, more attractive and some studios seem to be better at 

identifying and producing movies that have higher RAROC metric. In the next section, we 

discuss how studios can improve their movie production portfolio decisions using our 

methodology.  

 

5. Portfolio optimization and risk management 

 A key property of our proposed methodology is that it generates the predictive 

distributions of box office revenues based on the scripts. In Section 5.1 and Section 5.2, we 

return to the risk management problem we stated in the introduction, and demonstrate how our 

model can be used by producers (Section 5.1) and investors (Section 5.2) to optimize their 

production portfolios and adequately manage financial risk, subject to various constraints.  
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5.1. Optimization of production portfolio from a producer’s perspective 

In this subsection we illustrate how a producer can optimally choose a movie production 

portfolio. For the sake of illustration, we assume that the producer (e.g., an Indie or a major 

studio) is considering a set of ten movie scripts (randomly selected for illustrative purpose), 

shown in Table 7.6  The goal is to invest and produce a subset of them. Further, we assume that 

the cost ci, of turning script i into a movie, is known and fixed in advance.7

[Insert Table 7 about here] 

 As discussed earlier, 

we assume that the studio’ share of the box office revenue is 55%.  

Using the BART-QL model, we obtain the posterior predictive distribution of the box 

office revenue for each movie. We let the (untransformed) box office revenue of the i-th movie 

(a random variable) be yi, and the predictive distribution of yi be fi(yi), i.e., yi ~ fi(yi). From the 

predictive distribution of yi, we can compute the expected return iii cyERE −= )(55.0)(  for each 

movie in the consideration set. The title, production cost, expected return, and the value-at-risk 

for each movie are listed in Table 7.  

Given a portfolio P = },...,,,{ 10321 pppp , where pi = 1 if movie i is chosen and pi = 0 

otherwise, we can easily compute the expected return of portfolio P by summing over the 

expected return from each movies in the portfolio. That is,  

∑∑
∈∈

−==Π
Pi

ii
Pi

i cyERiEP ))(55.0(][)( .     [11] 

                                                 
6 We have held various discussions with independent producers and verified that a slate of ten movie scripts is 
roughly the average size of their consideration set. For much larger consideration sets, other optimization tools such 
as genetic algorithm (Tsao and Liu 2006) are required. 
7 Discussions we had with several movie makers suggest that it is a common practice to have a contemplated budget 
for a movie, even before any casting and other productions-related decisions have been made. If there are any 
uncertainties in production costs, it is straightforward to incorporate that uncertainty into the predictive distributions 
of profit.  
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The value-at-risk of each portfolio is then computed by simulating the box office 

revenues of the selected movies using their predictive distributions (details available upon 

request). We then exhaustively solve for the expected return and value-at-risk (VaR, α = 0.05) 

for each of the 210 – 1 = 1023 possible movie portfolios, hence derive and plot the “mean-VaR 

efficient frontier” (Alexander and Baptista 2001) of movie portfolios that are not “dominated” 

(i.e., have a lower expected profit and a higher value-at-risk) by another portfolio. The efficient 

frontier is shown as solid points in Figure 11. The small gray points denote all other possible 

portfolios that can be chosen, but they are not on the efficient frontier and hence inferior. 

[Insert Figure 11 about here] 

 One way to assess the practical value of our forecasting methodology is to compare the 

“optimal” movie portfolios identified using our methodology (i.e., the portfolios that are on the 

efficient frontier) with those identified using the predictive distributions generated by a simple 

linear regression of (log-) box office vs. (log-) budget. If the two sets of “optimal” movie 

portfolios are exactly the same (or very similar), the value of our approach is minimal because 

even without our approach, producers would have arrived at the same set of movie production 

decisions.  

Our result in Figure 11 shows that this is not the case. The trianglar points on Figure 11 

denote the portfolios that are on the efficient frontier if a box-office/budget-regression model is 

used as a forecasting tool. As can be seen, some of the portfolios that are recommended by the 

simple regression approach do not lie on the efficient frontier but in fact below it. For instance, 

the portfolio that is circled in Figure 11 can be improved by moving it towards the upper-left 

direction, resulting in a movie portfolio that has a higher expected return and, at the same time, a 

lower value-at-risk (α = 0.05). More generally, since for the same expected return, the portfolio 
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generated by our forecasting methodology involves less risk than the one generated by the box-

office/budget regression model, the former is said to be second-order stochastically dominating 

the latter, and it implies that all risk-averse expected-utility maximizers prefer it (Bawa 1975). 

So far, for the efficient frontier in Figure 11 we have assumed that the producer does not 

have a strict budgetary constraint in mind, which would be the case where financing is easy to 

obtain and thus the producer is only concerned about the expected return versus value-at-risk 

tradeoff. In reality, however, the producer may have limits on the maximum amount of capital 

he/she can access, which causes some movie portfolios to be infeasible, if the total cost exceeds 

the amount of accessible capital. Starting from Figure 11, the efficient frontier under budgetary 

constraints can easily be solved by simply excluding the portfolios on Figure 11 whose total 

costs exceed the budget constraints. The result is shown in Figure 12; we demonstrate how to 

address such a problem by solving for the efficient frontiers with budgetary restrictions of 

varying from $400M (upper left panel), $300M (upper right panel), $200M (lower left panel), 

and $100M (lower right panel). As can be seen, our tool can be easily tailored to fit the specific 

needs and budgetary restrictions for producers.  

[Insert Figure 12 about here] 

 

5.2. Optimization of capital allocation from an investor’s perspective 

In the previous section, we study a producer’s portfolio choice as a binary 0-1 problem; 

i.e., the producer has to either pay the full cost of a movie to produce it, or not produce the movie 

at all. More recently, Indies, hedge fund managers, and external financiers (and soon movie fans) 

are able to invest in movie productions or trade shares of movies that are still in production 

(Plambeck 2010).Typically, such investors provide some capital to partially fund x% of a 
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movie’s production cost (in return of x% of the movie’s box office revenue).8

The company we collaborated with is an independent movie production firm, headed by 

two producers with solid track record who decided to make independent movies, and provided us 

with two actual, full-fledge scripts that they are planning to produce. They have limited access to 

capital at this point and thus seeking external investment from financiers. For confidentiality 

purpose, we henceforth refer to these two actual scripts as “script A” and “script B.” To produce 

script A and script B it was estimated that their costs would be $15M and $50M, respectively. 

Following the methodology proposed and described in this paper, we extracted the textual 

variables (as shown in Table 1) from the two scripts, and applied BART-QL model to obtain the 

predictive distributions of box office revenues; the predictive distributions of the two movies are 

shown in Figure 13. The mean (median) predictive box office revenues for script A and script B 

are $19.4M ($11.9M) and $87.2M ($54.3M), respectively. The 90% posterior highest probability 

density (HPD) intervals (Chen and Shao 1999) are ($0.6M, $39.1M) and ($2.8M, $182.9M) for 

script A and script B, respectively.   

 Having an 

opportunity to collaborate with one such entity, we discuss and demonstrate below how it can 

use our model to derive the efficient frontier for its capital allocation decision.  

[Insert Figure 13 about here] 

We presented the predictive results to the management of the production firm and they 

were in agreement with their relative estimates. Again, for confidentiality, we cannot disclose the 

budgetary constraint they face and we will analyze their capital allocation problem assuming that 

they are planning to invest a total of $10M into both movies. Unlike the integer problem 

discussed in Section 5.1, the $10M can be allocated to produce both script A and B and the 

balance will be raised from external investors. Figure 14 plots the expected return vs. value-at-
                                                 
8 We make this assumption for illustrative purpose. In practice, other types of arrangements are possible. 
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risk (VaR, α = 0.05) for each of the different capital allocations, in increments of $0.5M. As can 

be seen, the minimum VaR portfolio is at the point {$4.5M, $5.5M} (i.e., investing $4.5M in the 

script A and $5.5M in script B). Figure 14 also shows that portfolios that lie below the point 

{$4.5M, $5.5M} are dominated by the minimum VaR portfolio; i.e., those portfolios have higher 

risk yet lower expected return than the {$4.5M, $5.5M} portfolio. The efficient frontier is, 

therefore, the arc between {$4.5M, $5.5M} and {$0M, $10M}. Thus, from a risk-return 

standpoint, our analysis suggests that the production firm should allocate at least $5.5M to script 

B to ensure that they choose a capital allocation that is on the efficient frontier.  

[Insert Figure 14 about here] 

So far, we have assumed that the box office performances of different movies in the 

portfolio of interest are a priori independent from each other. In reality, however, box office 

performance of a movie slate can be dependent across movies. Box office performance can be 

positively correlated (e.g., if a movie that uses 3D effects did well in the box office, one may 

believe that another movies that also uses 3D effect will perform well too); or they could be 

negatively correlated (e.g., if two movies are “too similar”, consumers may not want to see the 

other one after they see the first one). It would therefore be useful to conduct sensitivity analysis 

with respect to the independence assumption in order to test how the portfolio decision would 

change if the performance of script A and script B are likely to be correlated. 

Here, we briefly demonstrate how correlations can be introduced to solve for the efficient 

frontier in the two-movie capital allocation problem. Correlations between the box office returns 

of the two movies can be incorporated using copulas (Nelson 1999). A copula is a mathematical 

device that allows us to form a multivariate distribution (with a certain dependence structure), 

from the marginal distributions of several random variables. Here, we use a Gaussian copula 
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(e.g., Anderson and Sidenius 2004) that has been widely used in the finance literature to 

introduce correlations into the performance of the two scripts, and solve for the efficient frontier 

given different correlation coefficients. The details of our simulation procedure using copulas are 

described in Appendix III. 

Using copulas, we can experiment how the minimum VaR portfolio (and hence the 

efficient frontier) will change with different degrees of dependence between the movies, 

captured by the correlation coefficient ρ . Specifically, we experimented with three values of ρ :  

-.5 (negatively correlated), 0.0 (independent, as assumed in our previous analysis), and .5 

(positively correlated). Figure 15 shows the simulated bivariate distributions, generated using the 

simulation procedure in Appendix III, of the box office revenues of the two scripts under 

different values of ρ . (The plots are shown in log- scale to highlight the dependence). As can be 

seen, the resulting simulations capture the potential correlations across the two scripts. 

[Insert Figure 15 about here] 

Figure 16 shows how the efficient frontiers vary as a function of the correlation 

coefficient. As may be expected, value-at-risk is reduced if the box office revenues have a 

negative correlation; the minimum VaR portfolio {$4.5M, $5.5M} is the same as the 

independent case. When box office revenues are positively correlated ( 5.0+=ρ ), the effect of 

diversification is attenuated, and hence value-at-risks of the production portfolios increase. The 

minimum VaR portfolio becomes {$3.5M, $6.5M}; i.e., more resources should be allocated to 

the script with the higher expected return, given that diversification benefits are reduced due to 

the positive correlation.  

[Insert Figure 16 about here] 
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Together, the illustrative scenario in Section 5.1 and the quasi-implementation described 

in Section 5.2 above serve mainly to demonstrate the kinds of problems that our methodology 

can provide valuable insights for movie producers. By taking into account their own risk 

preferences, budgetary constraints, and their particular financial objectives, movie producers can 

use our predictive distributions to derive their own optimal portfolios effectively.  

 
6. Conclusion  

In this paper, we developed a methodology to forecast the entire predictive distribution of 

box office revenue, based only on the textual information from movie scripts and the production 

budget of a movie. We extracted three layers of textual information from full-fledged scripts: 

genre/content, words, and semantics, and used them as predictors in a BART-QL model 

(Bayesian Additive Regression Tree for Quasi-Linear model), a semi-parametric statistical 

learning technique recently developed in the statistics literature (Chipman et al. 2008). Being a 

fully specified Bayesian model, with BART-QL we can obtain not only accurate point 

predictions but also the predictive distributions of box office revenues. We compared our 

approach to other benchmark models, and found that our approach has the most accurate 

predictive performance. 

Most importantly, our model’s capability to generate predictive distribution of the box 

office revenue not only allows a studio to assess the risk associated with a point forecast, but also 

opens new doors for a studio to optimize its portfolio choice and manage its risk exposures. 

Based on our interactions with industry executives, forecasting and risk management are the two 

capabilities that are sorely needed in the movie industry in order to transform it from an intuition 

and experience-based decision making into a more science-based decision making. In this paper, 

we have shown that a science-based approach can pay off handsomely. We demonstrated, 
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through two illustrative portfolio optimization problems, how the predictive distributions from 

our model can be used to aid studio’s risk management and movie production decisions. To the 

best of our knowledge, our paper is the first to introduce such tools that enable the movie 

industry to acquire those two capabilities.  

By applying this new methodology to a database of 200 movies, we have also generated 

some interesting insights about the factors that are conducive to a movie’s success. Our analysis 

shows that for the movies compiled in our dataset, a higher movie budget tend to increase the 

movie’s box office, but at a diminishing rate. Thus, throwing money at a script does not always 

generate a blockbuster movie. How a movie will turn out at the box office will critically depend, 

among other things, on what the genre of the movie is, how the main conflict in the movie is 

built up, and how different conflicts are structured. Finally, our model suggests that family 

movies and comedies tend to generate highest risk-adjusted gross profits, whereas horror movies 

tend to perform the worst; non-R rated movies generate higher risk-adjusted gross profits than R-

rated movies. This means that a movie production firm with different portfolio of movies can 

deliver different risk adjusted gross profits.  For that reason, the portfolio choice is an important 

management decision. 

 For the future research, we can extend our model to rationalize the movie budgeting 

process.  At this point, a studio sets its movie budget through many processes of negotiations 

among diverse stakeholders. For that reason, the budget for a movie is taken as given in our 

model. However, it is conceivable that budgeting can be done in the framework of our model 

based on the box office potential of a script.  We will leave this exploration to a future study.
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Variable name Description 
Dependent variable 
LNBOX (log) Box office revenue  

Budget variable 
LNBUDGET (log) Production budget 

Genre and content variables 
GENRE Categorical variable describing the genre of the movie. A movie may 

belong to any number of the following categories: 
• GENRE_DRA: Drama 
• GENRE_ROM: Romance 
• GENRE_THR: Thriller 
• GENRE_COM: Comedy 
• GENRE_HOR: Horror 
• GENRE_SCI: Sci-fi 
• GENRE_ACT: Action 
• GENRE_FAM: Family 

Other content 
variables 

For the other content variables, please refer to Table I 

Word variables 
WF1 Factor score 1 for bag-of-words variables 
WF2 Factor score 2 for bag-of-words variables 

Semantic variables 
NTITLE Number of words in title 
NSCENE Total number of scenes 
INTPREC Percentage of interior scenes 
NDIAG Number of dialogues 
AVGDIAGLEN Average length of dialogues 
DIAGCONC Concentration index of dialogues 
 
Table 1. Summary description of variables extracted from each script.
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Word Loadings 1 (WF1) Loadings 2 (WF2) 
Man 0.19 0.04 
Fuck 0.38 -0.07 
Sword -0.35 0.13 
Phone 0.31 -0.09 
Ship -0.25 0.74 
Gun 0.23 0.04 
Car 0.52 -0.15 
Girl 0.24 -0.07 
Office 0.16 -0.07 
Boat 0.13 0.30 
Corridor -0.32 0.09 
Plane 0.02 0.27 
Truck 0.34 0.00 
Hotel 0.11 -0.04 
Dad 0.20 -0.10 
Mom 0.24 -0.10 
Beach -0.03 0.13 
Woman 0.00 0.01 
Police 0.34 -0.07 
Tunnel -0.16 -0.07 
Van 0.25 -0.08 
Deck -0.07 0.89 
Japanese -0.14 -0.03 
Gonna 0.60 0.03 
Head -0.06 -0.01 
Kid 0.35 -0.10 
Fucking 0.30 -0.05 
Monitor -0.09 -0.05 
TV 0.15 -0.11 
Chamber -0.29 -0.02 
 
Table 2. Factor loadings of the two-factor solution on bag-of-word variables.  
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Variable Mean SD Min Max 

LNBOX 3.72 1.33 -3.66 6.05 
LNBUDGET 3.58 0.92 1.10 5.42 
GENRE_DRA 0.53 0.43 0.00 1.00 
GENRE_ROM 0.28 0.34 0.00 1.00 
GENRE_THR 0.24 0.36 0.00 1.00 
GENRE_COM 0.23 0.37 0.00 1.00 
GENRE_HOR 0.13 0.31 0.00 1.00 
GENRE_SCI 0.17 0.32 0.00 1.00 
GENRE_ACT 0.45 0.44 0.00 1.00 
GENRE_FAM 0.06 0.20 0.00 1.00 
CLRPREM 0.93 0.20 0.00 1.00 
IMPPREM 0.73 0.26 0.00 1.00 
FAMSET 0.76 0.31 0.00 1.00 
EAREXP 0.92 0.20 0.00 1.00 
COAVOID 0.90 0.22 0.00 1.00 
INTCON 0.87 0.23 0.00 1.00 
SURP 0.96 0.14 0.33 1.00 
ANTICI 0.89 0.21 0.33 1.00 
FLHBACK 0.45 0.43 0.00 1.00 
CLRMOT 0.90 0.25 0.00 1.00 
MULDIM 0.86 0.26 0.00 1.00 
HEROW 0.54 0.33 0.00 1.00 
STRNEM 0.58 0.46 0.00 1.00 
SYMHERO 0.98 0.11 0.33 1.00 
LOGIC 0.99 0.07 0.33 1.00 
CHARGROW 0.66 0.30 0.00 1.00 
IMP 0.93 0.20 0.00 1.00 
MULCONF 0.81 0.29 0.00 1.00 
INTENSITY 0.98 0.09 0.33 1.00 
BUILD 0.85 0.26 0.00 1.00 
LOCKIN 0.89 0.23 0.00 1.00 
RESOLUT 0.59 0.39 0.00 1.00 
BELIEVE 0.92 0.19 0.00 1.00 
SURPEND 0.52 0.41 0.00 1.00 
WF1 0.00 0.85 -2.13 2.62 
WF2 0.00 0.91 -0.80 7.33 
NTITLE 2.73 1.83 1.00 10.00 
NSCENE 157.03 58.50 33.00 354.00 
INTPREC 0.63 0.15 0.03 1.00 
NDIAG 832.71 207.60 356.00 1541.00 
AVGDIAGLEN 10.45 1.91 6.57 18.52 
DIAGCONC 0.16 0.06 0.04 0.41 
Table 3. Summary statistics of all variables. 



 34 
 
 

 
 
Data subset Mean Sq. Error Mean Abs. Error Predictive Log-

Likelihood 
All variables 0.8698 0.6815 -267.2729 
Word x Semantics  0.9226 0.6848 -282.9272 
Content x Semantics 0.8774 0.6843 -270.4336 
Content x Word 0.9257 0.7125 -273.0631 
Content Only 0.9232 0.7138 -272.6515 
Word Only 0.9614 0.7210 -284.1746 
Semantics Only 0.9246 0.6857 -282.2958 
Regression on Budget 0.9406 0.7091 -284.7976 
 
Table 4. Out-of-sample predictive performance of our model (all variables vs. subsets of 
variables). 
 
 
Methodology Mean Sq. Error Mean Abs. Error 
BART-QL 0.8698 0.6815 
Bag-CART (Eliashberg et al. 2007) 0.9464 0.7170 
Naïve Projection (benchmark used in Eliashberg et al. 
2007) 

0.9270 0.6988 

Linear Regression with production budget only 0.9406 0.7091 
Linear Regression with all variables 1.0708 0.7868 
Stepwise Regression 1.0440 0.7790 
 
Table 5. Holdout performance of BART-QL model versus other methodologies. 
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Variable Type Relative 

Importance 
GENRE_ACT Content 100.0% 
BUILD Content 84.4% 
MULCONF Content 72.4% 
NTITLE Semantics 65.8% 
GENRE_COM Content 49.5% 
CHARGROW Content 33.3% 
GENRE_ROM Content 31.8% 
WF1 Word 29.7% 
FAMSET Content 26.9% 
AVGDIAGLEN Semantics 24.3% 
 
Table 6. Relative importance of the top 10 textual variables. 
 
 
Title Cost ($M) Expected box 

office($M) 
Expected gross 
profit ($M) 

Value-at-risk 
($M) 

Boogie Nights 15.0 35.3 4.4 11.9 
Bruce Almighty 81.0 168.5 11.7 65.8 
Enemy of the State 90.0 160.3 -1.8 75.4 
Harry Potter and the 
Chamber of Secrets 

100.0 303.5 66.9 74.8 

I am Sam 22.0 47.7 4.2 17.6 
I Know What You Did 
Last Summer 

17.0 64.9 18.7 12.5 

Jay and Silent Bob 
Strike Back 

22.0 58.8 10.4 17.9 

Kate and Leopold 48.0 91.1 2.1 39.8 
Panic Room 48.0 92.1 2.6 39.3 
Thirteen Ghost 42.0 73.7 -1.5 36.2 
 
Table 7. Ten movies used to illustrate the portfolio optimization problems.  
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Figure 1. Overview of our approach. 
 

 
 

Figure 2. Histograms of box office revenue and production budget. 
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Figure 3. Scatteplot of (log-) box office revenue vs. production budget. The solid line shows a 
regression line estimated using simple linear regression.  
 

 
 
Figure 4. Screeplot from the factor analysis of the bag-of-word variables. 
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Figure 5. Actual log-box office revenue versus model-fitted log-box office revenue.  
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Figure 6. (Out-of-sample) predicted box office revenues vs. actual box office revenues; the 95% 
posterior highest probability density (HPD) intervals are also plotted.  
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Figure 7. Partial dependence plots for the top 10 textual variables (in relative importance).  
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Figure 8. Boxplots of the RAROC metrics for movies grouped by their genres.  
 

 
 
Figure 9. Boxplots of the RAROC metrics for movies grouped by MPAA ratings.  
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Figure 10. Boxplots of the RAROC metrics for movies grouped by production studio.   
 

 
 
Figure 11. Mean-VaR efficient frontier of movie portfolios.   
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Figure 12. Mean-VaR efficient frontier under budgetary restrictions of $400M (upper left panel), 
$300M (upper right panel), $200M (lower left panel), and $100M (lower right panel). 
 
 

  
 
Figure 13. Predictive distribution of box office revenues for script A and script B, respectively.  
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Figure 14. Expected return vs. value-at-risk for different capital allocation.  
 
 

Figure 15. Simulated bi-variate distribution of the box office revenues for the two scripts under 
different values of ρ , using a Gaussian Copula (see Appendix III). Log-box office revenue of 
script A is plotted on the x-axis, while log- box office revenue of script B is plotted on the y-axis. 
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Figure 16. Efficient frontier based on different values of .ρ  Solid line: 0=ρ ; broken line: 

5.0−=ρ ; dotted line: 5.0+=ρ . 
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Appendix 
 
I. List of storyline questions (Eliashberg et al. 2007) 
 
The storyline questions are listed in Table I below.  
 
Variable Description 
CLRPREM Clear Premise: The story has a clear premise 
IMPPREM Important Premise: The story has a premise that is important to audiences. 
FAMSET Familiar Setting: The setting of the story is familiar to audiences. 
EAREXP Early Exposition: Information about characters comes very early in the 

story.  
COAVOID Coincidence Avoidance: The story follows a logical and causal 

relationship; coincidences are avoided.  
INTCON Inter-Connected: Each scene description advances the plot and is closely 

connected to the central conflict.  
SURP Surprise: The story contains elements of surprise, but is logical within 

context and within its own rules.  
ANTICI The story keeps readers trying to anticipate what would happen next.  
FLHBACK The story contains flashback sequences.  
CLRMOT Clear Motivation: The hero of the story has a clear outer motivation (what 

he/she wants to achieve by the end of the movie).  
MULDIM Multi-dimensional Hero: Many dimensions of the hero are explored.  
HEROW Hero Weakness: Hero has an inherent weakness.  
STRNEM Strong Nemesis: There is a strong nemesis in the story.  
SYMHERO Sympathetic Hero: The hero attracts your sympathy.  
LOGIC Logical Characters: The actions of the main characters are logical 

considering their characteristics. They sometimes hold surprises but are 
believable.  

CHARGROW Character Growth: Hero changes because of the conflict in the story.  
IMP Important Conflict: The story has a very clear conflict that involves high 

emotional stakes.  
MULCONF Multi-Dimensional Conflict: The central conflict has multiple dimensions.  
INTENSITY Intensity of Conflict: Parties to the central conflict have strong 

convictions in what they do.  
BUILD Conflict Build-up: The hero faces a series of hurdles. Each successive 

hurdle is greater and more provocative than the previous ones.  
LOCKIN Conflict Lock-in: The hero is locked into the conflict very early in the 

movie.  
RESOLUT Unambiguous Resolution: Conflict is unambiguously resolved through 

confrontation between the hero and the nemesis at the end.  
BELIEVE Believable Ending: The ending is believable.  
SURPEND Surprise Ending: The ending carries surprise and is unexpected.  
 
Table I. List of storyline questions.  
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II. Inter-rater agreement on storyline questions 
 
The genre/content questions are rated on a 0/1 scale (yes/no). Thus, we measure inter-rater 
agreement using coefficient kappa as defined in Fleiss (1971), which measures the agreement 
between three or more judges beyond that expected purely by chance. The Fleiss’s kappa across 
our three readers in each question is shown in the Table II below.  
 
Variable Fleiss’s κ  Variable Fleiss’s κ  
GENRE_DRA 0.60 FLHBACK 0.61 
GENRE_ROM 0.35 CLRMOT 0.52 
GENRE_THR 0.57 MULDIM 0.31 
GENRE_COM 0.64 HEROW 0.15 
GENRE_HOR 0.74 STRNEM 0.79 
GENRE_SCI 0.60 SYMHERO 0.41 
GENRE_ACT 0.66 LOGIC 0.33 
GENRE_FAM 0.58 CHARGROW 0.10 
CLRPREM 0.34 IMP 0.35 
IMPPREM 0.01 MULCONF 0.32 
FAMSET 0.30 INTENSITY 0.17 
EAREXP 0.33 BUILD 0.28 
COAVOID 0.35 LOCKIN 0.34 
INTCON 0.20 RESOLUT 0.45 
SURP 0.28 BELIEVE 0.25 
ANTICI 0.20 SURPEND 0.51 
 
Table II. Inter-rater agreement measured using kappa coefficient Fleiss (1971). 
 
On average, the three readers show reasonable agreement on the set of genre/content questions, 
with an overall average kappa of around 0.4, indicating “moderate agreement” among raters 
(Landis and Koch 1977).  
 
III. Simulation of correlated box office revenues using a Gaussian copula 
 
We use the simulation procedure in Nelson (1999).  
 

(a) From our BART-QL model, we obtain the predictive distribution of y1 and y2 (the box 
office revenue of script A and script B, respectively), and hence the estimated CDF, 

)(ˆ
1
⋅yF   and )(ˆ

2
⋅yF .  

(b) For each simulation, we simulate two random variates 



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Steps (b) and (c) are repeated to attain the number of simulated draws needed. For details about 
copula and related simulated techniques, readers can refer to Nelson (1999).  
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