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Confidence Risk and Asset Prices

Abstract

In the data, asset prices exhibit large negative moves at frequencies of about
18 months. These large moves are puzzling as they do not coincide, nor are they
followed by any significant moves in the real side of the economy. On the other
hand, we find that measures of investor’s uncertainty about their estimate of
future growth have significant information about large moves in returns. We
set-up a recursive-utility based model in which investors learn about the latent
expected growth using the cross-section of signals. To model the learning of
the agents about the unobserved expected growth, we specify a belief-updating
model (Kalman Filter is a special case) which incorporates the recency bias of
investors in forecast formation. The uncertainty (confidence measure) about
investor’s growth expectations, as in the data, is time-varying and subject to
large moves. In the confidence risks model, recency bias in conjunction with
confidence risk fluctuations lead to large moves in asset prices. In calibrations
we show that the model can account for the large return move evidence in the
data, distribution of asset prices, predictability of excess returns and other key
asset market facts.



1 Introduction

We highlight two puzzling data features which help isolate the economic risks that
drive asset prices. First, in the data there is a strong evidence for large and predom-
inantly negative moves in returns, which occur on average once every 18 months.1

Consistent with these large negative moves, the distribution of asset prices in the
data is non-Gaussian and exhibits negative skewness and heavy tails. Second, av-
eraging across all the large asset-price moves, there is no persuasive evidence in the
data for large contemporaneous or subsequent moves in the real side of the economy
(consumption). That is, the once-in-18-month jumps in asset prices on average do
not coincide, and nor are they followed by any significant large moves in the real side
of the economy2. The apparent lack of close connection between the asset prices and
the real side of the economy indicates that the reasons for large asset-price moves
can not be hardwired or built-in as large moves in the real side of the economy. This
evidence begs the question, what risks can explain these large moves in asset prices?
What is the compensation, in equilibrium, for these risks? Can we account for these
large asset-price moves alongside the equity premium and the risk-free rate puzzles?

In this paper we present an equilibrium model that provides insights regarding
these questions. Our model set-up follows a standard long-run risks specification of
Bansal and Yaron (2004), which features Gaussian dynamics for consumption growth
with time-varying expected growth and volatility; there are no large moves or jumps
in the underlying consumption and dividend dynamics. A key feature of our model
is that unlike the standard long-run risks specification, the expected growth is not
directly observable, and investors learn about it using past history of the data and
recent information in the cross-section of signals about expected growth. The cross-
sectional standard deviation (the quality of the signals), referred to as the confidence
measure, determines the uncertainty that investors face about future growth. In
our model, fluctuations in confidence risk in conjunction with behaviorally motivated
recency-biased expectations are responsible for triggering asset market jumps. In
essence, our paper highlights non-Bayesian mechanisms for large moves in the financial
markets.

To model the learning of agents about the unobserved expected growth, we specify
a belief-updating model which incorporates the recency bias in forecast formation by
investors — the optimal Kalman Filter is a special case of this belief-updating model.
The recency bias specification is motivated by the evidence in Hogarth and Einhorn
(1992), De Bondt and Thaler (1990), Kahneman and Tversky (1973) which suggests

1Recent work featuring jump risks in asset prices includes Pan (2002), Andersen, Benzoni, and
Lund (2002), Eraker, Johannes, and Polson (2003), Broadie, Chernov, and Johannes (2007).

2 Both the frequency (18 months) and the magnitude of the jumps that we focus on are quite
distinct from once in 600 months disaster states discussed in Gabaix (2007), Barro (2006) and Rietz
(1988).

1



that the agents have a tendency to overweigh recent information and under-weight
less salient data such as long-term averages. Such overweighing patterns are pre-
cluded in the standard optimal learning settings as agents optimally put less weight
on recent information when its quality is low. Our specification of recency bias speci-
fication captures the intuition that as the information quality worsens, agents do not
decrease the weight attached to the new signals, as in the Bayesian approach, and
therefore overweigh the impact of recent information on their forecasts. Therefore,
in equilibrium, asset prices decline more sharply (i.e. overreact) when confidence risk
rises relative to the case of Bayesian learning. Our calibration and specification of
the recency-biased expectation formation is consistent with the empirical findings in
De Bondt and Thaler (1990) in that investors overweigh recent information more in
states of high uncertainty.

In our model, investors have preference for the timing of resolution of uncertainty
and demand compensation for short-run, long-run, consumption volatility and confi-
dence risks. Our confidence risks specification includes large positive jumps. This is
motivated by the empirical data and the theoretical model of Veldkamp (2006). We
show that the confidence risks shocks receive quantitatively large risk compensation
when investors’ expectations are recency-biased. Hence, our approach to learning and
confidence jump-risk channel can explain key features of returns data. Large positive
shocks in the confidence measure endogenously translate into large negative jumps
in returns. This can account for negatively skewed and heavy-tailed distribution of
returns, even though consumption growth is Gaussian. Further, in the model both
the expected excess returns and the price-dividend ratios can be predicted by the
confidence measure, which can account for the predictability of excess returns by the
price-dividend ratio in the data.

Our learning model features non-Bayesian, recency-biased expectation formation
for predicting future consumption growth. A different approach to learning is pre-
sented in Hansen and Sargent (2006), who specify model-selection rules which capture
investors’ concerns about robustness and potential model misspecification in their ex-
pectation formations. A more commonly used approach is Bayesian Kalman-Filter
learning which is featured in David (1997), Veronesi (1999),Veronesi (2000), Ai (2007),
Bansal and Shaliastovich (2009)3. Our behaviorally-based approach for expectation
formation, we show, is quantitatively important to match key asset market data,
particularly regarding asset-price jumps.

The main target in this paper is to quantitatively explain the key non-Gaussian
features of asset prices and at the same time account for the key dimensions of con-
sumption and a confidence measure in the data. To give quantitative content to the
model, we directly measure confidence using survey data. More specifically, we rely

3Rational learning is also featured in Detemple (1986), Gennotte (1986), Brennan (1998), Brennan
and Xia (2001), David and Veronesi (2008), Croce, Lettau, and Ludvigson (2006).
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on the cross-section of forecasts from the Survey of Professional Forecasters to con-
struct the confidence measure as a cross-sectional variance of the average forecast in
the data. These calculations are consistent with the theoretical setup of the model.
We show that the average (consensus) forecast based on real GDP and industrial
production data is persistent and very informative about future economy, even con-
trolling for the history of the data. Next, we find that confidence measure in the data
is quite small and on average equals about 1/15 of the volatility of the underlying
macroeconomic series. Further, confidence measure exhibits substantial variation in
time with occasional large positive spikes (high uncertainty). We find that the half-
life of confidence shocks is about 6 months, so that the confidence shocks in the data
are fairly short-lived. Our confidence risk measure highly correlates with the investor
sentiment measure of ?. In general, our model provides a well-articulated equilibrium
framework to analyze and interpret behaviorally-motivated investor sentiment.

We show that confidence measure contains important information about financial
markets data. We provide strong statistical support for the large moves in the con-
fidence measure in the data. In particular, large moves in the confidence measure
are significantly related to contemporaneous large moves in returns, while there is
no persuasive link in the data between large moves in real consumption and large
moves in returns at the considered frequencies. Indeed, we show that the correla-
tions of large move indicators in returns and in consumption are close to zero, both
contemporaneously and in the future. On the other hand, the correlations of large
move indicators in returns and confidence measure are about 35%. Our confidence
measure also has significant information about asset valuations, even controlling for
the aggregate volatility in the economy. We also consider the predictability of implied
variance of returns by the confidence and macroeconomic volatility measures. Using
the conditional quantile regressions, we find that large upward moves in the variance
of returns are related to the fluctuations in confidence measure, rather than to the
conditional volatility of the fundamentals in the economy. This indicates that large
moves in asset prices are closely tied to the confidence risk that we feature in our
model.

We calibrate the model to evaluate its quantitative implications for the equity
markets. The calibration of consumption dynamics is standard and is designed to
match the key features of the historical data. Parameters of confidence dynamics
are calibrated to match unconditional moments of the series in the data, as well as
its conditional distribution. In simulations we verify that the model can match well
the key features of the confidence measure in the data, and in particular, along non-
Gaussian dimensions. Based on the calibration of the model, we show that the model
with fluctuating confidence risks can explain the negatively skewed and heavy-tailed
distribution of returns, even though the consumption dynamics is Gaussian. In the
model, as in the data, large moves in the confidence measure lead to large moves in
asset prices and returns, though they are not mirrored in consumption growth rate.
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For this reason, the model is also able to capture near zero correlation between the
large moves in the real side of the economy and in returns, and significant correlation
between large moves in the confidence measure and in returns, as found in the data.

Our model of confidence risks, which features recency bias and time-varying con-
fidence of investors, provides a new channel for the variation in equity risk premium.
In principle, in our model the variations in expected excess returns are driven by fluc-
tuations in consumption volatility risks and confidence risks, however, quantitatively,
almost all of the variation is due to fluctuations in confidence risks. Exploiting the
fluctuations in confidence risks, we show that the model is capable of capturing short
and long horizon predictability of future excess returns by price-dividend ratios. At
the same time, the model is consistent with the general lack of predictability of future
consumption growth rate by price-dividend ratios.

With learning, the full model generates an unconditional equity premium of about
5.3%. The key risk channels in the model come from confidence risks and long-run
risks, which contribute about 1.7% each to the total premium. The compensations for
short-run consumption shocks and volatility shocks are 1.2% and 0.8%, respectively.
Using the empirical confidence measure and aggregate volatility in the data, we also
construct the estimates of the conditional equity premium and show its decomposition
into the sources of risk in the economy. The magnitudes of the risk compensation in
the data are similar to those in the model. As the confidence risks are mostly jump
risks, the model implies that the compensation for the jump risks in market returns
is about 1/3 of the overall equity premium, which highlights the importance of the
confidence risk channel for the asset markets.

The rest of the paper is organized as follows. In the next section we set up the
model and discuss preferences of the representative agent and dynamics of the econ-
omy given the information set of investors. In Section 3 we solve for the asset prices
and discount factor in the economy. Section 4 contains the empirical description of the
confidence measure in the data, while the calibrations and asset-pricing implications
of the economy are discussed in Section 5. The conclusion follows.
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2 Model Setup

2.1 Preferences

We consider a discrete-time real endowment economy. The investors preferences over
the uncertain consumption stream Ct can be described by the Kreps and Porteus
(1978) recursive utility function of Epstein and Zin (1989):

Ut =
{

(1− δ)C
1−γ
θ

t + δ(Et[U
1−γ
t+1 ])

1/θ
}

θ
1−γ

, (2.1)

where γ is a measure of a local risk aversion of the agent, ψ is the intertemporal
elasticity of substitution and δ ∈ (0, 1) is the subjective discount factor. The condi-
tional expectation is taken with respect to the date-t information set of the agent.
For notational simplicity, we define

θ =
1− γ

1− 1

ψ

. (2.2)

Note that when θ = 1, that is, γ = 1/ψ, the above recursive preferences collapse to
the standard case of expected utility. As is pointed out in Epstein and Zin (1989), in
this case the agent is indifferent to the timing of the resolution of uncertainty of the
consumption path. When the risk-aversion exceeds the reciprocal of IES, the agent
prefers early resolution of uncertainty of consumption path, otherwise the agent has
preference for late resolution of uncertainty. In the long-run risk model agents prefer
early resolution of uncertainty.

As shown in Epstein and Zin (1989), the logarithm of the Intertemporal Marginal
Rate of Substitution (IMRS) for these preferences is given by

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1, (2.3)

where ∆ct+1 = log(Ct+1/Ct) is the log growth rate of aggregate consumption and rc,t+1

is the log of the return (i.e., continuous return) on the asset which delivers aggregate
consumption as its dividends each time period. This return is not observable in
the data. It is different from the observed return on the market portfolio as the
levels of market dividends and consumption are not equal: aggregate consumption is
much larger than aggregate dividends. Therefore, we assume exogenous process for
consumption growth and use a standard asset-pricing restriction,

Et[exp(mt+1 + rt+1)] = 1, (2.4)
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which holds for any continuous return rt+1 = log(Rt+1) including the one on the wealth
portfolio, to solve for the unobserved wealth-to-consumption ratio in the model. This
enables us to express the discount factor in terms of the underlying state variables
and shocks in the economy. We can then use the solution to the discount factor and
the Euler equation (2.4) to price any asset in the economy.

We describe the dynamics of the real economy and the information set of the agent
in the next section.

2.2 Consumption Process

The log consumption growth ∆ct+1 process incorporates a time-varying mean xt and
stochastic volatility σ2

t :

∆ct+1 = µ+ xt + σtηt+1, (2.5)

xt+1 = ρxt + ϕeσtǫt+1, (2.6)

σ2

t+1 = σ2 + νc(σ
2

t − σ2) + ϕwσtwc,t+1. (2.7)

where ηt, ǫt and wc,t are independent standard Normal shocks which capture short-
run, long-run and volatility risks in consumption, respectively. Parameters ρ and νc
determine the persistence of the conditional mean and variance of the consumption
growth rate, while ϕe and ϕw govern their scale. Notably, short-run, long-run and
consumption volatility shocks are Gaussian – there are no large moves (jumps) hard-
wired into the underlying consumption process. The empirical motivation for the
time-variation in the conditional moments of the consumption process comes from
the long-run risks literature, see e.g. Bansal and Yaron (2004), Hansen, Heaton, and
Li (2008) and Bansal, Kiku, and Yaron (2007b).

The agent knows the structure and parameters of the model and observes con-
sumption volatility σ2

t , however, the true expected growth factor xt is not directly
observable and has to be inferred from the data. Investors form an estimate of the
current state based on the past history of the data and recent information from the
signals. Investors’ estimate of the unobserved expected growth is subject to a learn-
ing error and is necessarily imprecise, and the amount of imprecision reflects the
confidence of the investors about future economic growth. The time-variation in the
quality of information about the future economy gives rise to fluctuating confidence
and confidence risks, which we show have important asset-pricing implications in the
economy.
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2.3 Confidence About Growth

We consider a specification where in addition to observing current consumption,
agents also receive n signals about the expected growth of the economy xi,t, for
i = 1, 2, . . . n. These signals together with consumption data provide all the informa-
tion about the expected growth state.

We assume that each signal deviates from the true state xt by a random noise ξi,t,

xi,t = xt + ξi,t, (2.8)

where the errors ξi,t are randomly drawn from Normal distribution and are uncorre-
lated with fundamental shocks in the economy.

The date-t imprecision in signal i is captured by Vi,t :

ξi,t ∼ N(0, Vi,t). (2.9)

In general, the imprecision in the signal can be different across signals and can vary
across time, hence subscripts i and t. However, we further assume that all signals i
are ex-ante identical and come from the same distribution at each date t. Then, the
precision of each signal is the same, and we denote V0,t ≡ Vi,t for all i.

As all the signals come from the same distribution and are ex-ante equally in-
formative, the investor assigns same weight to each of them. That is, in the end
the average signal is a sufficient statistic for the cross-section of all the individual
ones. Define the average signal x̄t, which corresponds to the sample average of the
individual signals. Then, using (2.8),

x̄t ≡
1

n

∑

xi,t = xt + ξt, (2.10)

where the uncertainty in average signal Vt and the average signal error are given by

Vt =
1

n
V0,t, ξt =

1

n

∑

ξi,t, (2.11)

so that
ξt ∼ N(0, Vt). (2.12)

The uncertainty Vt determines the confidence of investors about their estimate of
expected growth and is referred to it as confidence measure. In the model, confidence
measure is assumed to be observable to investors. It can be estimated in the data
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from the cross-section of the individual signals xi,t. Indeed, the signal equation (2.8)
implies that

E

(

1

n− 1

n
∑

i=1

(xi,t − x̄t)
2

)

= E

(

1

n− 1

n
∑

i=1

(ξi,t − ξt)
2

)

= V0,t, (2.13)

so that the cross-sectional variance of the signals adjusted by the number of signals
n can provide an estimate of the confidence measure Vt in the data.

The confidence measure in the model captures the uncertainty that the agents have
about their estimate of future growth. The variation in the confidence measure across
time reflects the fluctuations in the quality of information in the economy, so that at
times when information is poor, signals are less precise and the uncertainty is high
(Vt increases). The time-variation in the confidence measure and ensuing confidence
risks, which become quantitatively important due to recency bias in investors’ forecast
formation, are the novel contribution of the model. Standard learning models, see for
example David (1997), Veronesi (2000) and Brennan and Xia (2001), feature constant
imprecision in observed signals, while Hansen and Sargent (2006) specify alternative
learning rules robust to model misspecification. We discuss the specification of the
confidence measure dynamics in the next section.

2.4 Confidence Dynamics

As discussed in the previous section, the confidence measure Vt reflects the uncertainty
of investors about future growth. Our objective is to specify a model where the
confidence measure is time-varying, and is subject to occasional large increases. Our
specification for Vt is motivated by theoretical literature on this issue and the empirical
work. In terms of theoretical work, Veldkamp (2006) and Van Nieuwerburgh and
Veldkamp (2006) present a model with endogenous learning, which features large
discrete moves in the information about the future economy. These moves are broadly
consistent with our model specification for confidence dynamics. The large, discrete
moves in investors’ uncertainty about future economy also obtain in the costly learning
models due to lumpy information, as shown in Bansal and Shaliastovich (2009). Our
time-series model is further motivated by strong empirical evidence for large positive
moves in the confidence measure in the data, as discussed in Section 4.

Based on these arguments, we specify a following discrete-time jump-diffusion
model for the confidence measure, which features persistence in the series and both
Gaussian and jump-like innovations:

Vt+1 = σ2

v + ν(Vt − σ2

v) + σw
√

Vtwt+1 +Qt+1. (2.14)
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The parameters σ2
v is the mean value of Vt, ν captures its persistence while σw deter-

mines the volatility of the smooth Gaussian shock wt+1. The non-Gaussian innovation
in the variance process is denoted by Qt+1.We model it as a compound Poisson jump,

Qt+1 =

Nt+1
∑

i=1

Ji,t+1 − µjλt,

where Nt+1 is the Poisson process, whose intensity λt ≡ EtNt+1 corresponds to the
probability of having one jump in continuous-time model, while Ji,t+1 determines
the distribution of the size of the jump. Parameter µj is the mean of jump size, so
subtracting µjλt on the right-hand side of the above equation ensures that the jump
innovation Qt+1 is conditionally mean zero4. In continuous time, it is possible to
guarantee that Vt never falls below zero by placing an upper bound on the volatility
parameter σw and considering only positive jumps. In the simulations, we consider
positive jumps drawn from an exponential distribution, and verify that the conditions
for non-negativity of Vt are satisfied.

To capture the dependence of jump probability on the level of variance, we assume
that the arrival intensity λt is linear in Vt,

λt = λ0 + λ1Vt. (2.15)

Positive value of the loading λ1 implies that confidence jumps are more likely when
the level of confidence measure Vt is high.

This specification of the dynamics of confidence measure is very similar to the
models Broadie et al. (2007) and Eraker and Shaliastovich (2008) for the variance
process in continuous time. Such model specification facilitates the analytical solution
of the model.

2.5 Recency-Biased Expectation Formation

An important dimension of our model is that the investors do not observe the true
expected growth and thus have to learn about it using the past history of the data
and current information. To model a belief-updating process of the agents, let us
consider a general specification, discussed in Hogarth and Einhorn (1992), where the
prior estimate of investors is linearly adjusted by the impact of the recent news:

x̂t = ρx̂t−1 +Kt(x̄t − ρx̂t−1). (2.16)

4Indeed,
Et(Qt+1) = Et(Et(Qt+1|Nt+1)) = Et(µjNt+1)− µjλt = 0.
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In this updating equation, x̂t is the investors’ estimate of the true expected growth
xt, ρx̂t−1 corresponds to the agents’ prior belief about the expected state as of the
last period, and Kt denotes the adjustment weight which measures the sensitivity of
agents’ expectations to the recent information in the average signal5. Special cases
of this belief-updating setup, which correspond to different choices of Kt, include
the Bayesian Kalman Filter case as well as the behaviorally motivated recency-biased
expectation formation discussed in Kahneman and Tversky (1973) and De Bondt and
Thaler (1990). For a broader survey of the behavioral literature, see Barberis and
Thaler (2003).

For a particular choice ofKt, the learning specification corresponds to the Bayesian
Kalman Filter. When confidence risk Vt is fluctuating, a Kalman Filter weight
0 < Kt < 1 is time-varying and depends on the model parameters and the confi-
dence measure Vt. In particular, as shown in the Appendix, the Kalman weight given
to news today declines as V rises. In the model this weight would on average be 0.5,
and vary from 0.2 to 0.75; Bayesian investors optimally choose to put less weight to
the recent information when its quality is low (cross-sectional variance is high). It
is worth noting that in high confidence risk states investors continue to put positive
weight on the signals they receive, however, the Bayesian learning would quantita-
tively suppress the effects of the recent information and of confidence risks on asset
prices by substantially decreasing Kt in periods of high confidence risk (high Vt). In
contrast, recency-biased expectations overweigh recently received information. More
precisely, empirical evidence in De Bondt and Thaler (1990) highlights two features
about recency-biased expectation formation. First, expectations are extreme, that is,
more recent information is overweighed by investors; this in our case corresponds to
a weight K that is larger than the Kalman filter weight. Second, when uncertainty
is high, the over-weighting of recent news increases; this in our case corresponds to
significantly more overweighing news in times when V is high. We operationalize
the De Bondt and Thaler (1990) recency-bias expectation formation by setting the
weight that investors give to recent news to a constant K equal to 0.5 in equation
(2.16). This calibration implies that investors considerably overweigh recent news in
periods when confidence risk V is high, as the Bayesian weight in these periods is 0.2.
In equilibrium, this overweighing of recent news leads to overreaction of asset prices
and asset price volatility to confidence risk fluctuations. It is worth emphasizing that
quantitatively, equilibrium asset prices would not react considerably to fluctuations
in V if learning were Bayesian.

5In principle, agents can also use the history of consumption data in their update. However, as
discussed in Appendix, at economically reasonable parameter values signals are much more informa-
tive about expected growth than consumption, so in our application we can safely disregard learning
from consumption.
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Under the recency bias specification, investor’s expectation formation can be ex-
pressed in the following way:

∆ct+1 = µ+ x̂t + ac,t+1, (2.17)

x̄t+1 = ρx̂t + ax,t+1, (2.18)

x̂t+1 = ρx̂t +Kax,t+1. (2.19)

We emphasize here that unlike the optimal learning case, the weight K is now
constant. In particular, the closer K is to one, the bigger is the role of the recency
bias in expectation formation — in the limit when K = 1, the agents solely rely on
recent information and entirely disregard past information. In our application, we
set K to be 0.5; which also corresponds to the average value of the weight under the
Kalman Filter and at the same time allows for a significant role of the recency bias
for expectation formation.

Note that ac and ax in equations (2.17)-(2.19) correspond to short-run and long-
run shocks, and satisfy the following equations:

ac,t+1 = xt − x̂t + σtηt+1,

ax,t+1 = ρ(xt − x̂t) + ϕeσtǫt+1 + (x̄t+1 − xt).
(2.20)

Notably, these short and long-run shocks depend on the prediction error of the in-
vestors (xt − x̂t). Further, as shown in the Appendix, the variance of the prediction
error, denoted ω2

t , is directly related to the confidence measure:

ω2

t = KVt. (2.21)

The variance of the prediction error increases when confidence risk goes up. It is
critical to note that the recency bias expectation formation ensures that the variance
of the prediction error sharply increases with Vt, as shown in the above equation.
In contrast, under Bayesian learning, periods of high confidence risks are associated
with lower Kt, which would dampen the role of confidence risks.

The equations (2.17) - (2.19), together with the time-series model for the confi-
dence measure in (2.14) and consumption volatility in (2.7) fully describe the evolution
of economy. In the next section, we incorporate preferences of the agents to solve for
the equilibrium asset prices in the economy.
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3 Model Solution

3.1 Discount Factor

We use the Euler equation of the agent in (2.4) to solve the model.

The equilibrium asset prices in the economy are derived using standard log-
linearization of returns, discussed in Campbell and Shiller (1988). In Appendix we
show that the equilibrium price-consumption ratio is linear in the expected growth
state, consumption volatility and the confidence measure of the investors:

pct = B0 +Bxx̂t +BvVt +Bσσ
2

t ,

where the expressions for the loadings are provided in Appendix.

The loading Bx measures the sensitivity of price-consumption ratio to the ex-
pected growth prospects. It is positive for ψ > 1, so that when the substitution effect
dominates the income effect, prices rise following positive news about the expected
growth rates. The sign of the loading Bv depends on the preference of the agent
for the timing of the resolution of uncertainty. When the agent has a preference for
early resolution of uncertainty (γ > 1/ψ), this loading is negative, so that lack of
confidence of investors, i.e. high Vt, leads to a decline in equilibrium asset valua-
tions. Similarly, as in a standard long-run risks model, positive news to consumption
volatility decrease equilibrium price-consumption ratio (Bσ < 0), when agents have
preference for early resolution of uncertainty. The magnitude of the consumption
volatility loading, however, is smaller in absolute value in the model with confidence
risks. Indeed, in the complete information case when true expected growth state is
known, consumption volatility σ2

t explains all the conditional variation in short-run
and long-run consumption shocks. On the other hand, with learning, the volatility
of future consumption given investors’ information also depends on the investors’
confidence measure Vt, as shown in (2.20). Consequently, the contribution of the
consumption volatility channel diminishes relative to standard models.

The equilibrium log discount factor can be expressed in terms of the underlying
state variables and shocks in the economy:

mt+1 = m0 +mxx̂t +mvVt +mσσ
2

t

− γac,t+1 − λxKax,t+1 − λv

(

σw
√

Vtwt+1 +Qt+1

)

− λσϕwσtwc,t+1.
(3.1)

The solutions for the discount factor loadings and prices of risks are pinned down by
the model and preference parameters of the investors. Their expressions are provided
in Appendix.
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The innovations into the discount factor are important as they highlight the risks
that investors face in the economy. The risk compensation for the immediate con-
sumption risks ac,t+1 is equal to the risk aversion coefficient γ. The price of the long-run
risks ax,t+1 is given by λxK. As in the standard long-run risks model, the risk compen-
sations for these shocks continue to be positive6. The novel dimension of our paper is
that the confidence risks (σw

√
Vtwt+1 + Qt+1) are priced. Notably, confidence jump

shocks Qt+1 are the source of the jump risk in the economy, even though there are no
jump risks in the underlying consumption. When agents have preference for early res-
olution of uncertainty, the price of confidence risks λv is negative, as investors dislike
positive shocks in the confidence measure (high uncertainty). It is worth noting that
our specification of recency bias expectation formation affects the equilibrium market
prices of risk; in particular, the market price of confidence risks is much smaller if
investors use Bayesian learning. On the other hand, when investors have recency
bias, they overreact to the current news in the average signal and do not reduce the
weight to recent information, which enhances the role of confidence risks for the level
and variation of the risk premium in the economy. Finally, the price of consumption
volatility risks ϕwσtwc,t+1 is given by λσ. It is negative as in a standard long-run
risks model; however, due to learning, the magnitude of the risk compensation for
consumption volatility risks decreases in absolute value, as discussed above.

Using the solution to the discount factor, we can derive the expressions for the
equilibrium risk-free rates in the economy. Interest rates are linear in the expected
growth state, the confidence level of the investors and consumption variance, where
the expressions for price of zero coupon bonds with n months to maturity are given
in the Appendix:

pt,n = F0,n + Fx,nx̂t + Fv,nVt + Fσ,nσ
2

t . (3.2)

In particular, real yields rf,t increase in the expected growth state, and decrease when
the confidence of investors drops or consumption volatility increases.

3.2 Equity Prices

To obtain implications for the equity prices, we consider a dividend process of the
form

∆dt+1 = µd + φ(∆ct+1 − µ) + ϕdσtηd,t+1, (3.3)

where ηd,t+1 is a dividend shock independent from all other innovations in the econ-
omy. We continue to maintain the assumption that the average signal data is much
more informative about the expected growth than consumption or dividend data, so

6Note that as investors cannot separate true short-run and long-run consumption innovations,
the price of long-run risks decreases while the price of short-run risks goes up relative to complete
information case; this is consistent with Croce et al. (2006).
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investors learn about the expected state only from the average signals (see specifica-
tion (2.17)-(2.19)).

The equilibrium price-dividend ratio is linear in the expected growth state and
the confidence level of the investors:

pdt = H0 +Hxx̂t +HvVt +Hσσ
2

t , (3.4)

where the solutions for the loadings are provided in the Appendix. Similar to the
valuation of consumption asset, equity prices increase in expected growth factor and
decrease when the confidence measure is high or the consumption volatility is high.
In particular, large positive moves in Vt endogenously translate into large jumps in
asset valuations and returns. Indeed, the equilibrium log return on the dividend asset
satisfies

rd,t+1 = µr + bxx̂t + bvVt + bσσ
2

t + φac,t+1 + κd,1Hxax,t+1

+ κd,1Hv

(

σw
√

Vtwt+1 +Qt+1

)

+ κd,1Hσϕwσtwc,t+1 + ϕdσeηd,t+1.
(3.5)

As the return beta to confidence measure is negative (Hv < 0) when investors lose
confidence about their estimate of expected growth, changes in the confidence measure
are substantially magnified due to investors’ concerns about the long-run growth, and
can have large negative impacts on the equilibrium asset prices.

The recency bias and fluctuating confidence of investors channel can account for
the large moves in asset prices in the data. Notably, the large negative moves in equi-
librium returns obtain even though there are no corresponding large moves in the real
consumption. Further, the conditional variance of returns is linear in consumption
volatility and confidence measure, so that jumps in confidence measure also translate
into simultaneous jumps in market variance.

The expected excess returns given the information of the agent depend on the
consumption volatility and confidence measure states:

E(rt+1| It)− rf,t = r0 + rvVt + rσσ
2

t , (3.6)

where the loadings r0, rv and rσ are determined by the model parameters. The total
equity premium can be further decomposed into the compensations for confidence
risks and short-run, long-run and consumption volatility risks. The fluctuations in
confidence risk drive variation in the risk premium. Hence, recency-biased expectation
formation and confidence risk jumps will lead to the corresponding jumps in the risk
premium, which enhances the time-variation in expected returns.

Notably, the confidence measure drives both the expected returns and the price-
dividend ratio in (3.4), even if consumption volatility is constant. Hence, in the model,
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as in the data, asset valuations predict future returns. We examine the quantitative
implications of return predictability in Section 5.

4 Data

4.1 Evidence on Large Return Moves

The data on market returns and the risk-free rate correspond to monthly observations
of broad value-weighted portfolio returns and average 1 month yields from CRSP from
1927 to 2007. Return data is adjusted by inflation to convert to a real series. Real
consumption data come from the BEA tables of real expenditures on non-durable
goods and services; the quarterly consumption data is available from mid 1947 to end
of 2007, while monthly data are from 1959 to 2007. Real GDP series also comes from
the BEA tables from 1947 to 2007, quarterly, while the index of industrial production
series is taken from the FRED dataset from 1927 to end of 2007, monthly.

Table 1 presents summary statistics for market returns and the risk-free rate.
The average equity premium in the sample is 6%, and the level of the real risk-free
rate is about 0.6%. The magnitudes of the equity premium and the risk-free rate
constitute the well-known equity premium and risk-free rate puzzles (see e.g. Mehra
and Prescott, 1985). Further, the market return is very volatile, as its standard
deviation is almost 19%, while the volatility of the risk-free rate in the sample is
about 1%. The risk-free rate series is very persistent, with an autoregressive coefficient
of 0.98. Summary statistics for the consumption growth rate are shown in the first
column of Table 8. Over the long historical sample, consumption growth rate averages
2%, its volatility is 2% and it is mildly persistent with an autoregressive coefficient
of 0.4.

The evidence from the higher-order moments of returns suggest that the distribu-
tion of market returns exhibits substantial heavy tails and negative skewness. Table
1 shows that the kurtosis of market returns is 9.7, while its skewness is −0.44. The
kurtosis and skewness of Normal distribution are 3 and 0, respectively, so that the
excess kurtosis and negative skewness in the return series are indicative of abnormal
and predominantly negative moves which thicken the left tail of the distribution of
returns.

For a direct empirical evidence on large return moves in the data, we identify two
standard deviation or above innovations in the series.7 Table 2 shows the number
of identified large moves in returns, as well as the average magnitude of returns in
those periods. On a monthly frequency, we observe 54 two standard deviation or

7Calculation of standardized innovations are based on AR(1)-GARCH(1,1) fit to the data.
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above return moves over 80-year time-period. This translates into large moves at a
frequency of once every 18 months. Further, 70% of these moves are negative, which
explains the reasons for a negative skewness of returns in the data. The frequency of
large negative moves below two standard deviations is almost two times higher than
under the Normality assumption, which goes a long way to explain the heavy tails
of returns in the data relative to the Normal distribution.8 Figure 1 show the time-
series of monthly returns from 1927 to 2007 and identified periods with large return
moves. Most prominent large move occurred in October 1987, when the monthly
return dropped 6 standard deviations below its mean. Other examples include large
moves in the beginning of 1930s, and a series of negative moves in the 1960s.

4.2 Confidence Data

In the model, investors can observe the confidence measure in the economy. To
give quantitative content to the model, we directly measure investors’ confidence
using survey data. More specifically, we rely on the cross-section of forecasts from
the Survey of Professional Forecasters (SPF) and construct confidence measure as
a cross-sectional variance of the average forecast in the data. These calculations
are consistent with the theoretical setup of the model and follow equation (2.13),
assuming that each forecaster reports an individual expectation of the next-period
series, so that the forecasts correspond to the signals in the model.

The Survey of Professional Forecasts started in the last quarter of 1968 as a joint
project of the American Statistical Association and the National Bureau of Economic
Research; in 1990 it was taken by the Federal Reserve Bank of Philadelphia. The data
set contains quarterly forecasts on a variety of macroeconomic and financial variables
made by the professional forecasters, who largely come from the business world and
Wall Street, see Croushore (1993) for details and Zarnowitz and Braun (1993) for a
comprehensive study of the survey.

We use the cross-section of individual forecasts from the SPF to calculate the
average (consensus) forecast and the confidence measure for real GDP series for the
period of 1968 Q4 to 2008 Q19. As we observe the identification codes for each
forecaster, we can pair the forecasts of the price index and nominal GDP to back out
the implied forecast for the corresponding real series. Specifically, for each quarter t
let NGDPi,t denote the next quarter forecasts of nominal GDP made by the forecaster
i, while Pi,t stand for the next quarter forecast of the price level. If nt is the number

8It is worth noting that as one moves from monthly to quarterly and annual frequency, returns
are smoothed out due to time-aggregation, and the frequency of large moves declines.

9Prior 1992, the GDP forecasts are for nominal GNP and GDP price index forecasts are for GNP
deflator. In the data, the growth rates for the realized real GDP and GNP are very close to each
other, with correlation in excess of 0.99.
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of forecasts, then we calculate the average forecast for the log real GDP (RGDP )
growth rate as

∆ log(RGDP )t =
1

nt

nt
∑

i=1

(

log
NGDPi,t
NGDPt

− log
Pi,t
Pt

)

, (4.1)

where NGDPt and Pt are the current values of the series known to the forecasters10.

We can further calculate the cross-sectional variance of the forecasts at each point
in time, and compute the estimate of the uncertainty in the average forecasts, which
corresponds to the confidence measure in the model. That is, based on the real GDP
forecasts,

Vt =
1

nt
V ar

(

log
RGDPi,t
RGDPt

)

=
1

nt

(

1

nt − 1

nt
∑

i=1

(

log
NGDPi,t
NGDPt

− log
Pi,t
Pt

−∆ log(RGDP )t

)2
)

.

(4.2)

To make the inference robust to possible outliers and errors, we delete observations
which are more than two standard deviations from the sample mean. We use a similar
approach to construct the empirical confidence measures based on the forecasts of
industrial production index.

David and Veronesi (2008) and Buraschi and Jitsov (2006) use very similar com-
putations to obtain the uncertainty and disagreement measures in the economy, which
rely on the cross-sectional dispersion in forecasts from the SPF. Anderson, Ghysels,
and Juergens (2007) also associate the uncertainty with the dispersion in professional
forecasters, and assign different weights across forecasts.

In the data, we find that the SPF average forecasts are persistent and very infor-
mative about future economy, even controlling for the past history of the data. The
persistence of the average forecast of next-quarter real GDP growth is 0.72, relative
to 0.25 in the underlying real GDP growth. Further, we assess the predictability of
future macroeconomic series by the Kalman Filter estimate of the expected growth
from the history of the series, and the SPF average forecast. We find that the ad-
dition of the survey forecast doubles the adjusted R2 and makes the Kalman Filter
estimate insignificant at 1 quarter horizon, while the R2 increases from 4% to 26% as
we add the survey average forecast to predict the real GDP growth 4 quarters ahead.
The results for the other macroeconomic series, such as industrial production and
corporate profit growth rates, are very similar.

10In the data, the average number of forecasts is 34.
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In the top panel of Table 7 we report summary statistics for the square-root
of the confidence measure scaled by the average volatility of the underlying series,
based on the next quarter forecasts of real GDP and industrial production. These
statistics are very similar for the two series. The level of the confidence measure in
the data is about 1/15th of the volatility of the underlying series. This implies that
the uncertainty of investors regarding their estimate of expected growth is on average
quite small. Indeed, at the calibrated consumption parameters, the two standard
deviation band for the investors’ estimate of the expected growth is [1.8%, 2.2%],
assuming the expected consumption growth of 2%. Our confidence measure is related
to the sentiment indexes considered in the literature. For example, the correlation of
the confidence measure based on real GDP forecasts with the University of Michigan
consumer confidence index and the investment confidence index constructed in ? is
about -50%. In general, our model provides a well-articulated equilibrium framework
to analyze and interpret behaviorally-motivated investor sentiment.

Confidence measure fluctuates in time, and the standard deviation of the confi-
dence measure scaled by the volatility of the underlying series is about 4%. We show
the plot of the time-series of confidence measure on Figure 2. It is important to note
on the graph that confidence measure in the data exhibits large, positive moves. We
discuss the connection between the large moves in the confidence measure and returns
in the next section, and statistically evaluate the evidence on fluctuations and large
moves in the confidence measure in Section 5.

4.3 Predictability Evidence

In this section, we empirically evaluate the connection between large moves in returns
and all the relevant macroeconomic variables, such as consumption and confidence
measure. To do so, we construct a two standard deviation or above move indicators
in returns and the corresponding macroeconomic series. We compute the dynamic
relationship between these large move indicators in the data, which is summarized in
Table 3. We also consider the link between the fluctuations in the confidence measure
and the level and variation in asset prices and report our empirical findings in Table
4.

In the left panel of Table 3 we document the correlations between the large move
indicators (zero-one variables) in returns and contemporaneous or future large move
indicators in the macroeconomic series. The Table suggests that the contemporaneous
correlation between large move indicators in returns and in consumption is essentially
zero: the magnitudes of the correlations are -0.02 and -0.03 at monthly and quarterly
frequency, respectively, and are statistically insignificant. Further, large moves in
returns today do not anticipate jumps in future consumption, as the correlations of
jump indicators in returns and jump indicators in future consumption 6 and 12 months

18



ahead are economically and statistically insignificant. This evidence indicates that
large moves in returns do not reflect jumps in consumption contemporaneously or in
the future. Very similar conclusions obtain when we consider industrial production or
real GDP data; we omit the results to save space. On the other hand, the empirical
evidence suggests that the large moves in the confidence measure in the data are
significantly related to contemporaneous large moves in returns. It is important to
note that the contemporaneous correlation of large move indicators in returns and in
the confidence measure is 34% and is statistically significant. This evidence highlights
the importance of confidence risks in asset prices. Further, the large moves in returns
are not correlated with large moves in the confidence measure in the future, indicating
that the large moves in the confidence measure are relatively short-lived. It is our
objective to replicate this empirical correlation pattern in the model.

In the middle panel of Table 3 we report the correlation between the jump in-
dicators in macroeconomic variables and the level of returns. In particular, we find
that the correlations of returns with contemporaneous or future jump indicators in
consumption are essentially zero; using industrial production or real GDP measures
produces similar results. This evidence implies that periods with large moves in
macro variables do not correspond to any systematic moves in returns. However, the
contemporaneous correlation between the jump indicator in the confidence measure
and the level of returns is equal to −0.32 and is highly significant. That is, returns
are significantly lower in periods when the confidence measure experiences a large
positive shock.

The right panel of Table 3 presents some evidence for a negative contemporaneous
correlation between large return move indicators and the contemporaneous level of
consumption growth, though, the correlation is close to zero for future consumption
growth. This evidence suggests that large moves in returns are more likely when
consumption growth is relatively low; however, it does not imply that jumps in returns
are driven by large moves in consumption, as we discussed above.

Our main empirical findings is that in the data, there is no persuasive link between
the large moves in real consumption and large moves in returns at the considered fre-
quencies; however, the large moves in the confidence measure are significantly related
to contemporaneous large moves in returns. In Table 4 we further show that the
confidence measure has significant information about the asset valuations and the
variation in asset prices. In the first panel of Table 4 we consider contemporaneous
projections of the quarterly price-dividend ratio on the confidence measure and the
conditional variance of real GDP. The loadings on the conditional variance and con-
fidence measure are negative and statistically significant, which provides empirical
support for the economic risk channels featured in our model. The results further im-
ply that the fluctuations in the confidence measure have additional information about
prices beyond the standard time-series volatility; we also verify that the confidence
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measure has significant information about the future price-dividend ratio for several
years ahead. Hence, the confidence risk is a potentially important channel that drives
asset prices in the data.

We also consider the predictability of the variance of returns based on the implied
volatility (VIX) index by the the confidence and volatility measures. To highlight the
tail properties of the return variance, we run the conditional quantile regression of
the variance of returns on the confidence and GDP volatility measures. The results
reported in second panel of Table 4 suggest that the confidence measure has important
information about the right tale of the conditional distribution of variance of returns,
while macroeconomic variance does not. That is, large upward moves in the variance
of returns are related to the fluctuations in the confidence measure, rather than to the
conditional volatility of the fundamentals of the economy. This evidence is consistent
with Buraschi and Jitsov (2006), who show that the cross-sectional dispersion of
forecasts from the survey data has information about the level and slope of the option
smile and realized volatility of returns.

Overall, our empirical results indicate that fluctuations and large moves in the
confidence measure contain important information for the asset prices in the data.
We further discuss the important features of the confidence dynamics in the data,
and present strong statistical support for the fluctuations and jump-like shocks in the
confidence measure in the next Section.

5 Estimation of Confidence Dynamics

In this section, we focus on the empirical evidence for the confidence measure in the
data, and present statistical support for the key features of our model specification
of the confidence measure dynamics.

To quantitatively evaluate the evidence on fluctuation and large moves in the con-
fidence measure, we fit the jump-diffusion model for the confidence measure presented
in Section 2.4:

Vt+1 = σ2

v + ν(Vt − σ2

v) + σw
√

Vtwt+1 +Qt+1.

The shock wt+1 is the Gaussian innovation into the confidence measure, while Qt+1

is Poisson jump-like shock. The confidence measure jumps come from exponential
distribution with mean µj. To capture the predictability of jumps, we allow the jump
probability (intensity) to depend on the level of confidence, λt = λ0 + λ1Vt. Positive
estimate of λ1 then suggests that large moves in the confidence measure are more
likely to occur when the confidence measure Vt is high. For comparison, we also
estimate a restricted model for the confidence measure where we shut off the jump
channel, that is, where we set µj , λ0 and λ1 to zero. With these restrictions imposed,
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there are no jumps in the confidence measure, so that the confidence measure follows
a standard square-root process driven by Gaussian innovations wt+1.

Table 5 shows the estimation results for the considered series. The unconditional
mean of the confidence measure is quite small; indeed, σv is estimated at 0.12%, annu-
alized, for real GDP and 0.18% for industrial production, which corresponds to 1/15
of the volatility of the underlying series (see also Table 7). The estimated persistence
of the confidence measure is 0.7, so that the half-life of confidence shocks is about 6
months. This evidence suggests that the fluctuations in the confidence measure are
very different from the variations in the aggregate volatility in the economy – the
shocks to real GDP volatility are much more persistent, with the half life of 3 years.
Hence, the confidence risk channel is distinct from the macroeconomic volatility risks
in the economy.

The estimation results of the full model with confidence jumps suggest that Pois-
son jumps capture above 80% of the variation in the the confidence measure. The
mean jump size is quite large: its estimated value is close to an unconditional level
of confidence σ2

v . Further, we find that the probability of confidence jumps strongly
depends on the level of the confidence measure: the jump intensity loading λ1 is pos-
itive in the data and significant for both series. The fluctuations in the confidence
measure are hard to explain using Gaussian model. The estimation of the square-
root specification of the confidence measure dynamics suggests that, to capture a
sizeable variation in the confidence measure, the scale parameter σw increases four-
fold, relative to the model with confidence jumps. Nevertheless, the Gaussian model
is misspecified, as it fails to capture the spikes and the variation in the confidence
measures. The distribution of the extracted confidence shocks ŵt+1 is heavy-tailed
and positively-skewed: the sample kurtosis for these shocks is 20 for real GDP and 14
for industrial production, and sample skewness is 3 for both series. We additionally
do a likelihood ratio test where the jump parameters µj, λ0 and λ1 are jointly equal to
zero. As shown in the Table 5, the p-value for the test is indistinguishable from zero.
This result suggests that the Gaussian model for the confidence measure is strongly
rejected in favor of the model with confidence jumps.

Overall, the empirical evidence in the data provides a strong support for our
model specification of the confidence measure dynamics, which features large positive
moves in the series. We also show that these confidence jumps are more likely to
happen when Vt is high. We match these key empirical features in the calibration of
the confidence measure in the data, and discuss the asset-pricing implications of the
confidence risks in the next Section.
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6 Asset-Pricing Implications

6.1 Calibration

The model is calibrated on a monthly frequency. The baseline calibration values for
the preference and endowment dynamics parameters, which are reported in Table
6, are very similar to the ones used in standard long-run risks literature (see e.g.
Bansal and Yaron, 2004). Specifically, we let the subjective discount factor δ equal
0.9992. The risk aversion parameter is set at 10, and the intertemporal elasticity of
substitution at 1.5. This configuration implies that the agent has a preference for early
resolution of uncertainty, which has important implications for equilibrium prices, as
we discussed in Section 3. As for the consumption dynamics, we set the persistence
in the expected growth ρ at 0.975. The choice of ϕe and σ ensures that the model
matches the historic volatility and persistence of consumption growth. Similar to
Bansal, Kiku, and Yaron (2007a), we set the persistence of the consumption variance
to νc = 0.995, and calibrate the volatility of volatility parameter ϕw = 5.19e− 04. To
calibrate dividend dynamics, we set the leverage parameter of the corporate sector φ
to 2.75 and ϕd to 3 to match the properties of dividend growth rates in the data. We
calibrate the model on monthly frequency and then time-aggregate to annual horizon.
Table 8 shows that we can successfully match the mean, volatility, auto-correlations
and variance ratios of the consumption dynamics in the data.

We calibrate confidence dynamics to match its unconditional moments in the data,
as well as its conditional distribution. Consistent with the empirical evidence, we set
the level of the confidence measure σv to be 1/15 of the volatility of consumption
growth. The calibrated persistence coefficient ν = 0.91 implies that the half-life of
confidence shocks is 7 months, which is consistent with the estimated half-life of shocks
to empirical confidence measure in the data (see Table 5). In the estimation of the
confidence measure dynamics we found that most of the variation in the confidence
measure in the data is coming from non-Gaussian shocks. Then, for parsimony of
parameters, we set the volatility scale parameter σw to 0, so that the confidence
measure in the model is driven purely by Poisson jumps. To calibrate the intensity
of jumps λ0 + λ1Vt, we set λ0 to 0.18, as in the data, and divide it by 3 to convert
to monthly frequency. Similarly, we calibrate the parameter λ1 = 20 in the middle of
range in the data and multiply by 40000 to adjust for the scaling of the confidence
measure used in the estimation of the model. At the calibrated parameter values,
the model-implied average frequency of jumps is one every 5 months. Finally, the
jump size is set to match the distribution of the confidence measures in the data.
Specifically, we set the mean jump µj to twice the unconditional level of confidence
measure σ2

v to target skewness and kurtosis of the confidence measure in the data.
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In simulations, we verify that the calibrated distribution of the confidence measure
in the model can match the key features of the confidence measure in the data. We
summarize the results in Table 7, where we report the moments of the square-root
of confidence measure Vt scaled by the average volatility of the underlying series in
the data and in the model. Such a normalization facilitates the comparison of the
confidence measures based on different macroeconomic series; indeed, as the first
panel of the Table suggests, the moments of the confidence measure based on real
GDP and industrial production forecasts are very similar. The Table 7 shows that
we can match well the unconditional distribution of the series in the data, as all the
statistics in the data are close to their counterparts in the model, and are within the
5%−95% confidence band. In particular, the calibration of the jump component can
realistically match the non-Gaussian dimension of the distribution, as the skewness
and kurtosis of confidence measure in simulations are close to the values in the data.

6.2 Jumps and Distribution of Returns

In our model, due to learning, the investors’ confidence about their estimate of ex-
pected growth impacts their beliefs about future consumption, which influences equi-
librium asset valuations and the risk premia in the economy. We illustrate this channel
on Figure 3, where we show the distribution of the true expected growth given the
information of the agents. In the standard long-run risks model (left panel), the
true expected growth is observable by investors, so its distribution is degenerate and
centered at the true value. On the other hand, in our model with learning and fluc-
tuating confidence risks (right panel), the distribution of the true expected growth
depends on investors’ confidence measure, so that when the quality of signals is low,
the confidence measure increases and the agents face high uncertainty about the true
state. The fluctuations in confidence, magnified by the recency bias of investors, lead
to the time-variation in agents’ uncertainty about future consumption, even if the
fundamental consumption volatility is constant.

Fluctuating confidence risks play an important role in accounting for the key
features of the return distribution in the data. For illustration, we first shut off
the conditional volatility of consumption growth, and focus on the implications of the
fluctuations in investors’ confidence for the asset prices. On Figure 4 we first show the
unconditional distribution of consumption growth, which is Gaussian. On the middle
panel, we plot the unconditional distribution of returns when the confidence measure
is set constant, that is, when the fluctuating confidence risks are absent. As the
consumption volatility is constant, the distribution of returns in this case is Gaussian
as well. On the other hand, when the confidence measure fluctuates, large positive
moves in the confidence measure endogenously translate into large negative jumps in
returns, which can explain negative skewness and heavy-tails of the distribution of
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returns in the data, even though consumption growth is Gaussian. The unconditional
distribution of returns in this case, shown on the right panel of Figure 4, exhibits heavy
tails and negative skewness, as in the data.

We summarize the model output for the return distribution in Table 9. As shown
in the Table, in the full model with confidence risks and time-varying consumption
volatility, the average return is 6.7%, and its volatility is almost 20%, which match
the statistics in the data (see Table 1). The distribution of returns is heavy-tailed and
negatively skewed. The kurtosis of market returns is 8.6, and its skewness is equal to
-0.85; these values are close to the estimates in the data. Notably, the non-Gaussian
features of the return distribution are due to the fluctuations and large moves in
the confidence measure. Indeed, we verify that the magnitudes of the kurtosis and
skewness of market returns are very similar even if the consumption volatility is set
constant. Naturally, if both the confidence measure and consumption volatility are
constant, the returns are Gaussian, as shown in Table 7. For comparison, we also
report the model output for the return distribution in the standard long-run risks
model. In this case, the true expected growth is known, so that the confidence
risk channel is absent. The Table 9 suggests that in the standard model, even though
returns exhibit somewhat heavier tails than Normal due to time-varying consumption
volatility, the magnitude of the kurtosis of return distribution (4) is too small relative
to the data (10). In addition, this specification cannot capture negative skewness
of market returns in the data. These results provide additional evidence for the
importance of confidence risks channel for the asset prices.

We verify that the model can broadly match the moments of the risk-free rate in
the data. The mean risk-free rate is about 1% in the data and in the model. It is
very persistent, with an autocorrelation coefficient of 0.98 in the data, and 0.91 in
the model, respectively. The model-implied standard deviation of the risk-free rate is
somewhat less than in the data, 0.4 relative to 1.1. The skewness and kurtosis of the
risk-free rate distribution implied by the model are −1.4 and 6.8, which are close to
the estimates in the data.

In our model, asset prices exhibit negative jumps due to large positive moves in
the confidence measure, while there are no jumps in consumption. Thus, our model
can explain the puzzling evidence in the data for significant contemporaneous link
between large moves in returns and in the confidence measure, and lack of connection
between large move in returns and large moves in consumption, documented in Section
4.3. We present the quantitative results from the model in Table 10. Using the same
large move identification approach, we find that the large moves in returns occur
about once every 18 months in the model, which matches the frequency of large asset
price moves in the data. Further, the model-implied correlation between large move
indicators in returns and in consumption is 0, both contemporaneously and in the
future. On the other hand, the correlation between large move indicators in returns
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and in the confidence measure is 45%, which is close to the estimate of 34% in the
data. The magnitudes of the correlation of large return move indicators with future
large move indicators in confidence measure 6 and 12 month ahead are all zero, as in
the data, as the confidence jump shocks are relatively short-lived. Next, our model
can replicate zero correlation of consumption jump indicator and the level of returns
in the data, both contemporaneously and in the future. Further, the correlation of
returns with the jump indicator in confidence measure is −45% in the model, which
is close to −32% in the data. As in the data, this correlation drops to zero using
future confidence measure 6 and 12 months ahead. Finally, our model implies zero
correlation of the jump indicator in returns and the level of consumption growth. As
we discussed in Section 4.3, these correlations are somewhat negative in the data,
though, they are close to zero for the future consumption. The correlation of large
move indicators with the level of the confidence measure is also somewhat high in the
model (38%), relative to 11% in the data.

Overall, the results suggest that our model with fluctuating confidence risks can
account for the key features of the return distribution, and explain the connection
between large moves in returns and macroeconomic series in the data. In the next
section, we discuss the implications of the confidence risks for the risk compensation
in the economy.

6.3 Predictability and Risk Compensation

As in a standard long-run risks specification, in our model short-run, long-run and
consumption volatility risks are priced. The novel dimension of our model is that the
confidence risks also receive risk compensation. Notably, confidence jump risks are
priced even though there are no corresponding jumps in the consumption process.
Table 11 reports prices of risks in the standard model with complete information,
and in our model with learning and fluctuating confidence risks. As can be seen in
the Table, the risk compensations for long-run and consumption volatility risks are
smaller, while the compensation for short-run risks is somewhat higher in the model
with learning and fluctuating confidence. For example, the price of risk for 1 standard
deviation shock to the long-run growth is 8.5% in our model relative to 8.8% in the
standard specification, while the price of consumption volatility shocks is −4.2% in
our model relative to −9.1% in the standard specification. The compensation for
the one standard deviation shock to the confidence measure is −6.6% in our model;
naturally, in standard long-run risks specification the true expected growth state is
known, so that the confidence risk channel is absent.

In Table 12 we show the model-implied equity premium for the dividend asset, as
well as its decomposition into short-run, long-run, consumption volatility and confi-
dence measure risks in the economy for different model specifications. For comparison,
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the first panel presents the results for a standard long-run risks model, where in-
vestors observe expected growth process, and consumption volatility is time-varying.
The model delivers a total risk premium of 5.1%. Most of the risk premium comes
from the compensation for long-run and consumption volatility risks, 1.7% and 2.3%,
respectively, while immediate consumption shocks contribute about 1.2% to the total
compensation. These magnitudes are consistent with the long-run risks literature,
see e.g. Bansal and Yaron (2004).

Our full model with confidence risks and time-varying consumption volatility gen-
erates an unconditional equity premium of about 5.3%. Confidence shocks and long-
run risks shocks contribute 1.7% each to the total premium. It is important to note
that as the calibrated confidence measure is driven by jump shocks, the compensation
for confidence risks thus determines the compensation for jump risks in the economy.
That is, the jumps in the market return demand 1.7%, or one-third, of the total equity
premium in the economy. This magnitude is consistent with other studies, see e.g.
Broadie et al. (2007), Singleton (2006) and Pan (2002), who use option prices data
and other empirical approaches.

Notably, the compensation for the consumption volatility risks decreases relative
to standard model from 2.3% to 0.8%. That means that quantitatively, the role of the
consumption volatility channel for the asset valuations and risk premia in the economy
diminishes once we introduce learning and fluctuating confidence risks. Without the
time-varying consumption volatility risks, the total equity premium would fall by
0.8%, which corresponds to the risk compensation for the consumption volatility
shocks. On the other hand, as shown in Table 12, without fluctuating confidence
risks, the total equity premium would decrease to below 3%. This highlights the
importance of confidence risks for the risk compensation in the economy.

Using the analytical results and calibrated model parameters, we can further cal-
culate the magnitudes of the conditional risk premium using the empirical measure
of investors’ confidence based on the GDP forecasts, and the conditional volatility of
real GDP. Specifically, the quarterly expected excess returns in the model are given
by,

E(rt+1 + rt+2 + rt+3| It)− rft,3 = A0 + AvVt + Aσσ
2

t ,

for quarterly risk-free rate rft,3. The loadingsA0, Av andAσ are pinned down by model
and preference parameters. For Vt and σ2

t , we substitute the annualized confidence
measure and conditional variance of real GDP, scaled to match the calibrated level of
consumption volatility. This allows us to compute the quarterly risk premium in the
sample implied by our model, and decompose it into the contributions for short-run,
long-run, consumption volatility and confidence measure risks. We show the empirical
results in the last panel of Table 12. The total equity premium is 5.6%, which agrees
with the estimate in the sample. Most of the total risk premium is explained by the
long-run shocks (1.9%) and confidence risks (2%,) while the remaining 1% goes to
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the immediate consumption shocks and 0.7% to consumption volatility shocks. These
estimates are close to the unconditional values in the model.

The time-variation in the confidence of investors in equilibrium generates pre-
dictability of equity returns by price-dividend ratios, as both the expected excess
returns and asset valuations in the model are time-varying with Vt and σ

2
t . In Table

13 we report the results from the projections of future excess returns on price-dividend
ratios in the data and in the model. In full specification, the model delivers the R2

of 16% at 5 year horizon, relative to 18% in the data. Confidence risk channel plays
a key role to match the predictability of returns in the data. Indeed, when con-
sumption volatility is constant, the R2 decreases only slightly to 14%. With constant
confidence and constant consumption volatility, however, the small-sample R2 goes
down to 4%. Notably, the standard errors on slope coefficient and R2 are quite large,
and the small-sample slope estimates have a well-known downward bias. We also
verify the predictability of future consumption growth by the current price-dividend
ratio is consistent with the data, as shown in Table 14.

7 Conclusion

We develop a long-run risks type model in which investors learn about the unobserved
expected growth using a cross-section of signals. The fluctuations in the quality of
signals give rise to a novel learning-based risk channel in the model which we call
confidence risks. This channel enhances the ability of the model to explain the joint
distribution of the asset prices and consumption growth, time-variation in the equity
risk premium, predictability of excess returns, and other key asset market facts.

To model the learning process of the agents, we specify a belief-updating model
which allows us to incorporate a notion of the recency bias in forecast formation of
investors. Our specification of the recency bias captures the intuition that as the
information quality worsens, agents do not optimally decrease the weight attached
to the new signals and therefore overweigh the impact of recent information on their
forecasts. Therefore, in equilibrium, asset prices decline more sharply (i.e. overreact)
when confidence risk rises relative to the case of optimal learning.

We construct a confidence measure in the data as a cross-sectional variance of the
average forecast from the Survey of Professional Forecasters. While the level of the
confidence measure is quite small, the series exhibits significant variation across time.
We find that fluctuations in confidence can not be attributed to smooth Gaussian
innovations only, and present statistical evidence for jump-like component in the
dynamics of the series. Further, we show that large moves in the confidence measure
in the data are significantly related to large moves in asset prices at frequencies of 18
months, while in the data there is no link between large moves in the real economy and
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in returns at the considered frequencies. Similarly, confidence measure has significant
information about the asset prices and the right tale of the distribution of the variance
of returns, even controlling for the aggregate volatility in the economy.

We calibrate the model to match the key dimensions of consumption growth and
the confidence measure in the data. The model with recency bias and fluctuating
confidence of investors can explain the heavy-tailed and negatively skewed distribution
of asset prices, even though fundamental consumption volatility is constant and there
are no jumps in consumption. We document that the correlations of large moves in
returns with large moves in consumption and confidence measure match the evidence
in the data. At the calibrated model parameters, confidence jump risks contribute
about one-third to the total equity premium, which highlights the importance of
fluctuations in investors’ confidence for the asset markets. The confidence jump risk
channel can account for the predictability of excess returns and future consumption
growth by the price-dividend ratios in the data. The results suggest that confidence
jumps risk plays an important role to economically explain the asset prices and sources
of risk in the economy.
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A Kalman Filter Specification

A.1 Learning Dynamics

Let us first start with a general solution to the Kalman Filter when agents optimally learn
about the unobserved state using the history of consumption and signal data.

Using the dynamics of the underlying economy in (2.5)-(2.6) and the specification of
signals in (2.8), we obtain that the distribution of the states given the current information
set and next-period confidence measure is conditionally Normal:





xt+1

∆ct+1

x̄t+1



 | It, Vt+1 ∼ N









ρx̂t
µ+ x̂t
ρx̂t



 ,Σt+1



 , (A.1)

where the variance-covariance matrix is given by,

Σt+1 =





ρ2ω2
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 . (A.2)

The innovation representation of the system can then be written in the following way:

∆ct+1 = µ+ x̂t + ac,t+1, (A.3)

x̄t+1 = ρx̂t + ax,t+1, (A.4)

x̂t+1 = ρx̂t +K1,t+1ac,t+1 +K2,t+1ax,t+1, (A.5)

where the Kalman Filter weights and the update for the filtering variance ω2
t satisfy standard

equations

Kt+1 = Σ12
t+1

(

Σ22
t+1

)

−1
,

ω2
t+1 = Σ11

t+1 − Σ12
t+1

(

Σ22
t+1

)

−1
Σ21
t+1,

(A.6)

where the superscripts refer to the partitioning of Σt+1 into four blocks, such that Σ11
t+1 is

the (1, 1) element of the matrix, Σ12
t+1 contain the elements from the first row and second

and third columns, etc. The explicit solutions for the Kalman Filter weights satisfy

K1,t+1 =
ρω2

t Vt+1

(ω2
t + σ2t )Vt+1 + (ϕ2

eσ
2
t + (ϕ2

e + ρ2)ω2
t )σ

2
t

, (A.7)

K2,t+1 =
(ϕ2

eσ
2
t + (ϕ2

e + ρ2)ω2
t )σ

2
t

(ω2
t + σ2t )Vt+1 + (ϕ2

eσ
2
t + (ϕ2

e + ρ2)ω2
t )σ

2
t

, (A.8)

while the evolution of the variance of the filtering error is given by

ω2
t+1 = Vt+1K2,t+1. (A.9)
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Notably, for the economically relevant parameter values, signals are much more infor-
mative about the expected growth than consumption data, the Kalman Filter weight on
consumption news K1,t+1 is much smaller than that on the average signal K2,t+1. Hence,
to simplify the exposition, we solve the model when the agent learns only from the average
signals. In the case when investors do not look at consumption data and only update based
on the average signal, K1,t+1 = 0 and K2,t+1 simplifies to

K2,t+1 =
ρ2ω2

t + ϕ2
eσ

2
t

ρ2ω2
t + ϕ2

eσ
2
t + Vt+1

. (A.10)

Further, the evolution of the estimate of expected growth can be rewritten in the fol-
lowing way:

x̂t+1 = (1−K2,t+1)ρx̂t +K2,t+1x̄t+1. (A.11)

In the approximate solution of the model that we feature in the paper, the weight K2,t+1

is constant and equal to steady-state value. To solve for the steady state of the system, we
plug the solution for filtering uncertainty in w2

t = K2Vt into the above equation and solve
a quadratic equation for the constant value of K2 when the volatility processes Vt and σ

2
t

are set to their unconditional means.

A.2 Asset Prices

For completeness, we present a solution for the equilibrium asset prices in the general case
with optimal learning.

In the general case, K1,t+1 and K2,t+1 are time-varying, and their solutions are non-
linear functions of the consumption volatility σ2t and confidence measure Vt (see expressions
(A.7) and (A.8)).

We conjecture that log price-to-consumption ratio pct is linear in the expected growth
state x̂t, and capture its non-linear dependence on the confidence measure, filtering uncer-
tainty and consumption volatility states by the function f(Vt, ω

2
t , σ

2
t ) :

pct = Bxx̂t + f(Vt, ω
2
t , σ

2
t ). (A.12)

Using the log-linearization of returns (see Campbell and Shiller, 1988), we can write
down the log-linearized return on consumption asset in the following way:

rc,t+1 = κ0 + κ1pct+1 − pct +∆ct+1

= κ0 + µ+ (Bx(κ1ρ− 1) + 1)x̂t − ft + κ1ft+1 + (κ1BxK1,t+1 + 1)ac,t+1 + κ1BxK2,t+1ax,t+1.

(A.13)
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Using Euler equation (2.4), we can directly solve for the loading Bx :

Bx =
1− 1

ψ

1− κ1ρ
, (A.14)

while the volatility component ft satisfies the recursive equation

ft = log δ + κ0 + (1− 1

ψ
)µ

+
1

θ
logEtexp

(

θκ1ft+1 +
1

2
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[
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]′
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ψ

κ1BxK2,t+1

]

)

,

(A.15)

where

Σcx,t+1 = V ar

([

ac,t+1

ax,t+1

])

=

[

ω2
t + σ2t ρω2

t

ρω2
t ρ2ω2

t + ϕ2
eσ

2
t + Vt+1

]

. (A.16)

From here it follows that the log discount factor is given by,

mt+1 = θ log δ − (1− θ)κ0 − γµ− 1

ψ
x̂t + (1− θ)ft

− (γ + (1− θ)κ1BxK1,t+1)ac,t+1 − (1− θ)κ1BxK2,t+1ax,t+1 − (1− θ)κ1ft+1.

(A.17)

Using the discount factor above, we obtain the interest rates and equity prices in the
economy. These solutions are non-linear functions of the volatility states, which have to be
solved using the numerical methods.

B Preferred Model Specification

B.1 Discount Factor

The aggregate consumption volatility σ2t follows a square-root process specified in (2.7),
while the dynamics of confidence measure is given by a discrete-time jump-diffusion spec-
ification outlined in (2.14). The distribution of jump size Ji,t+1 is defined by its moment
generating function,

l(y) ≡ EeyJi . (B.1)

For example, when jump size follows exponential distribution with mean jump µj,

l(y) = (1− µjy)
−1. (B.2)
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The log price-to-consumption ratio pct is linear in the states of the economy:

pct = B0 +Bxx̂t +BvVt +Bσσ
2
t . (B.3)

The solution for the loading Bx is given in (A.14). The loading on the confidence
measure Bv satisfies non-linear equation

1

2
θκ21σ

2
wz

2−(1−κ1(ν−λ1µj))z+
1

2
θB2

xK2((1−(1−K2)κ1ρ)
2+κ1K2)+

λ1

θ
(l(θκ1z)− 1) = 0,

(B.4)
for z = Bv +

1

2
θκ1B

2
xK

2
2 , while Bσ solves a quadratic equation
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θκ21ϕ
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2
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2
xK

2
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2
e

)

= 0. (B.5)

Finally, the log-linearization parameter, which is pinned down by the equilibrium level
of the price-consumption ratio, satisfies the following non-linear equation:

log κ1 = log δ + (1− 1

ψ
)µ+Bσ (1− κ1νc) σ

2

+ (Bv(1− κ1) + κ1(1− ν)z) σ2v +
λ0

θ
(l(θκ1z)− θκ1zµj − 1) .

(B.6)

As in Eraker and Shaliastovich (2008), in case of multiple roots for Bσ and Bv we choose
the solution which is non-explosive as the variation in Vt or σ

2
t is approaching zero.

Using the equilibrium solution to the price-consumption ratio, we can write down the
expression for the discount factor in the following way:

mt+1 = m0 +mxxt +mvVt +mσσ
2
t

− λcac,t+1 − λxK2ax,t+1 − λv

(

σw
√

Vtwt+1 +Qt+1

)

− λσϕwσtwc,t+1,
(B.7)

where the discount factor loadings and the prices of risks are pinned down by the dynamics
of factors and preference parameters of the investors. Their solutions are given by,

mx = − 1

ψ
, mv = (1− θ)Bv(1− κ1ν), mσ = (1− θ)Bσ(1− κ1νc),

m0 = θ log δ + (1− θ) log κ1 − γµ−mvσ
2
v −mσσ

2,

(B.8)

and

λx = (1− θ)κ1Bx, λσ = (1− θ)κ1Bσ, λv = (1− θ)κ1Bv. (B.9)
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B.2 Asset Prices

Consider a log payoff tomorrow expressed as,

pn−1,t+1 = F0,n−1 + Fx,n−1x̂t+1 + Fv,n−1Vt+1 + Fσ,n−1σ
2
t+1 + Fg,n−1∆ct+1 + Fd,n−1σtηd,t+1.

(B.10)

Then, the solution for the coefficients in its log price today pn,t satisfies

Fg,n = Fd,n = 0,

Fx,n = mx + Fx,n−1ρ+ Fg,n−1,

Fσ,n = mσ + Fσ,n−1νc +
1

2
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2 + ϕ2
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2K2
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2
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F0,n = m0 + F0,n−1 + Fg,n−1µ+ Fσ,n−1σ
2(1 − νc) + (qvx + λv)σ

2
v(1− ν) + λ0(l(qvx)− qvxµj − 1)

(B.11)

for qvx = Fv,n−1 − λv +
1

2
(Fx,n−1 − λx)

2K2
2 .

Setting F0,n−1 = Fx,n−1 = Fv,n−1 = Fσ,n−1 = Fg,n−1 = Fd,n−1 = 0 in the above
recursion, we can obtain the solution to n−period real risk-free rate.

On the other hand, the price-dividend ratio is given by,

pdt = H0 +Hxx̂t +HvVt +Hσσ
2
t , (B.12)

where the loadings satisfy the following equations:

Hx = mx + κd,1ρHx + φ,
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(B.13)

for qvx = κd,1Hv − λv +
1

2
(κd,1Hx − λx)

2K2
2 , and the log-linearization parameter

log κd,1 = m0 + µd +

(
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2K2
2 (1− ν)

)
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2 + λ0(l(qvx)− qvxµj − 1).

(B.14)
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Tables and Figures

Table 1: Return Summary Statistics

Mean Vol AR(1) Skew Kurtosis

Market Return 6.51 18.81 0.10 -0.44 9.68
(2.27) (1.60) (0.05) (0.50) (1.24)

Risk-free Rate 0.57 1.13 0.98 -0.80 6.91
(0.42) (0.14) (0.01) (0.56) (1.32)

Summary statistics for market return and the risk-free rate. Monthly data from 1927 to

2007. Standard errors are Newey-West adjusted with 12 lags. Mean and volatility are

annualized, in percent.

Table 2: Large Return Move Evidence

Negative 2std Positive 2std

Number of observations 38 16
Average Return -139.30 148.91

Number of large return moves, and the average return level in those periods. Large return
moves correspond to negative and positive 2 standard deviations or above innovations in
the series, calculated based on AR(1)-GARCH(1,1) fit.
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Table 3: Large Move Correlations in Returns and Macro Series

Correlations: Return Jump Ind., Return, Return Jump Ind.,
Factor Jump Ind. Factor Jump Ind. Factor
0m 6m 12m 0m 6m 12m 0m 6m 12m

Monthly :
Consumption -0.02 -0.01 0.02 0.00 -0.01 0.02 -0.12 -0.09 -0.01

(0.03) (0.04) (0.05) (0.03) (0.03) (0.04) (0.04) (0.03) (0.03)

Quarterly :
Consumption -0.03 -0.03 0.09 0.02 -0.04 -0.08 -0.08 0.08 -0.04

(0.02) (0.03) (0.12) (0.04) (0.04) (0.08) (0.04) (0.08) (0.07)

Confidence 0.34 -0.04 -0.04 -0.32 -0.01 -0.05 0.11 0.04 0.06
Measure (0.17) (0.01) (0.01) (0.10) (0.04) (0.07) (0.07) (0.07) (0.05)

Correlations of return moves with current and future moves in macroeconomic variables.

The left panel shows the correlations of large return move indicator with current and future

jump indicators in consumption and confidence measure 6 and 12 months ahead. The

middle panel shows the correlations of the level of returns with current and future large

move indicators in macroeconomic series, while the right panel depicts the correlations of the

large return move indicator with current and future consumption and confidence measure 6

and 12 months ahead. Data on confidence measures are based on forecasts of real GDP from

1968 to 2007, on monthly consumption from 1959 to 2007, and on quarterly consumption

from 1947 to 2007. Jump indicators correspond to 2 standard deviation or above move in

a series, based on AR(1)-GARCH(1,1) fit.
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Table 4: Predictability of Asset Valuation and Return Variance

Confidence Cond. Variance R2

pd −5.31∗ −0.13∗ 0.53
[-2.38] [-5.16]

Implied Variance:

projection 5527.45 243.50∗ 0.16
[1.18] [2.24]

25th quantile 1887.69 345.07∗ 0.21
[1.42] [10.19]

50th quantile 9034.78∗ 337.20∗ 0.24
[3.75] [8.19]

75th quantile 18292.80∗ 192.74 0.11
[3.07] [1.22]

Regression of price-dividend ratio and the variance of returns on confidence measure and

conditional variance of real GDP. Quarterly data on price-dividend ratio, returns and con-

fidence measure are from 1968 to 2007, and implied volatility, based on the VIX index

squared, is from 1990 to 2007. All series annualized in percent. T-statistics are in square

brackets, and star superscript refers to significance at 1% level.
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Table 5: Estimation of Confidence Measure Dynamics

σv ν σw µj λ0 λ1 p− value

Real GDP:

Square-Root 0.12 0.83 0.11
(0.03) (0.10) (0.01)

Square-Root+Jump 0.12 0.73 0.03 0.01 0.18 45.73 0.00
(0.02) (0.10) (0.004) (0.002) (0.13) (16.81)

Industrial Production

Square-Root 0.18 0.66 0.16
(0.02) (0.10) (0.01)

Square-Root +Jump 0.18 0.62 0.04 0.02 0.22 14.48 0.00
(0.02) (0.09) (0.005) (0.004) (0.12) (5.68)

Estimation results for discrete-time jump diffusion model for the confidence measures.

Square-root specification has only Normal innovations, while Square-root+Jump model

features Gaussian shocks and Poisson jumps with time-varying arrival intensity and ex-

ponentially distributed jump size. Quarterly data on confidence measures based on real

GDP and industrial production forecasts from 1969 to 2007, annualized in percent. P-value

is computed for the Likelihood Ratio test that jump parameters µj , λ0 and λ1 are jointly

equal to zero.
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Table 6: Model Parameter Calibration

Parameter Value

Preference Parameters:

δ 0.9992
γ 10
ψ 1.5
Consumption Dynamics:

µ 0.0017
ρ 0.975
σ 0.0064
νc 0.995
ϕw 5.19e-04
ϕe 0.038
φ 2.75
ϕd 3
Confidence Dynamics:

σv 4.33e-04
ν 0.91
σw 0
µj 3.59e− 07
λ0 0.18/3
λ1 20× 40000

Calibrated parameter values, monthly frequency.
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Table 7: Confidence Measure: Data and Model Calibration

Mean Vol AR(1) Skew Kurt

Real GDP 0.07 0.04 0.68 1.73 7.85
(0.02) (0.02) (0.07) (0.39) (2.04)

IP 0.06 0.04 0.60 1.19 4.06
(0.01) (0.01) (0.12) (0.31) (1.06)

Sim. Median 0.09 0.07 0.59 1.26 4.23
5% 0.05 0.03 0.39 0.80 2.77
95% 0.15 0.12 0.75 1.74 8.04

Summary statistics for square-root of confidence measure scaled by the average volatility of

the underlying series. Data are based on quarterly observations of confidence measure based

on forecasts of real GDP and industrial production from 1969 to 2007. Model estimates

are calculated based on 100 simulations of 40 years of data. The square root of confidence

measure scaled by the volatility of the consumption growth is sampled every third month.

Table 8: Consumption Dynamics: Data and Model Calibration

Data Model
Estimate S.E. 5% Median 95%

Mean 1.95 (0.32) 1.27 1.99 2.73
Vol 2.13 (0.52) 1.43 2.08 3.07
AR(1) 0.44 (0.13) 0.22 0.42 0.56
AR(2) 0.16 (0.18) -0.13 0.14 0.38
AR(5) -0.01 (0.10) -0.21 0.03 0.23
VR(2) 1.58 (0.18) 1.22 1.42 1.56
VR(5) 2.23 (0.86) 1.28 1.95 2.72

Calibration of consumption dynamics. Data is annual real consumption growth for 1930-

2006. Model is based on 100 simulations of 80 years of monthly consumption data aggregated

to annual horizon, based on the full specification with fluctuating confidence and time-

varying consumption volatility.
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Table 9: Model Output for Return Distribution

Mean Vol AR(1) Skew Kurt

Complete Information,

Time-Varying Vol:

Log return 6.31 14.02 -0.01 0.08 3.78
Risk-free rate 1.50 0.26 0.97 -0.38 3.16

Constant confidence,

Constant Vol:

Log return 4.22 10.95 0.01 0.00 3.00
Risk-free rate 1.71 0.23 0.97 0.00 3.00

Time-varying confidence,

Time-Varying Vol:

Log return 6.73 19.97 -0.06 -0.85 8.64
Risk-free rate 1.15 0.37 0.91 -1.35 6.82

Model-implied summary statistics for returns and risk-free rates. Based on 100 simulations

of 80 years of data.

Table 10: Model-Implied Large Move Correlations

Correlations: Return Jump Ind., Return, Return Jump Ind.,
Factor Jump Ind. Factor Jump Ind. Factor
0m 6m 12m 0m 6m 12m 0m 6m 12m

Consumption 0.03 0.00 -0.01 0.01 0.00 0.00 0.00 0.00 0.00
(0.10) (0.08) (0.07) (0.10) (0.07) (0.08) (0.09) (0.09) (0.08)

Confidence 0.39 0.00 0.00 -0.45 -0.01 0.00 0.38 0.15 0.02
Measure (0.08) (0.09) (0.07) (0.07) (0.08) (0.07) (0.10) (0.11) (0.10)

Model-implied correlations of return moves with current and future moves in consumption
and confidence measure. The left panel shows the correlations of large return move indicator
with current and future jump indicators in consumption and confidence measure 6 and 12
months ahead. The middle panel shows the correlations of the level of returns with current
and future large move indicators in macroeconomic series, while the right panel depicts
the correlations of the large return move indicator with current and future consumption
and confidence measure 6 and 12 months ahead. Statistics are calculated based on 100
simulations of 80 years of data.
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Table 11: Prices of Risk

Long-Run Short-Run Confidence Consumption
Growth Growth Measure Volatility

Complete Information 8.81 6.35 -9.06
Fluctuating Confidence 8.52 6.36 -6.06 -4.16

Prices of risk for 1 standard deviation shock, in per cent, in standard long-run risks model

with complete information, and in the model with learning and fluctuating confidence risks.

Table 12: Equity Premium Decomposition

Long-Run Short-Run Confidence Consumption Total
Growth Growth Measure Volatility

Model:

Complete Information 1.67 1.15 2.30 5.11
Time-varying Vol.

Constant Confidence 1.69 1.19 2.87
Constant Vol.

Time-varying Confidence 1.66 1.19 1.69 0.75 5.25
Time-varying Vol.

Data:

Based on Full model 1.94 0.96 1.96 0.74 5.56

Decomposition of equity risk premium into contributions from long-run, short-run, con-

sumption volatility and confidence risks. Equity premium is annualized, in percent. Model-

based decomposition in the data is based on calibrated parameter values and observed series

of confidence measure and real GDP volatility from 1968 to 2007, quarterly.
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Table 13: Predictability of Excess Returns

1y 3y 5y
Estimate S.E. Estimate S.E. Estimate S.E.

Data:

Slope -0.08 (0.05) -0.25 (0.09) -0.41 (0.11)
R2 0.03 (0.04) 0.13 (0.07) 0.26 (0.07)

Constant confidence,

Constant Vol:

Sim. Slope -0.03 (0.11) -0.10 (0.30) -0.19 (0.43)
R2 0.01 (0.02) 0.01 (0.03) 0.02 (0.05)

Time-varying confidence,

Time-Varying Vol:

Sim. Slope -0.39 (0.17) -0.58 (0.26) -0.68 (0.31)
R2 0.14 (0.09) 0.16 (0.12) 0.16 (0.12)

Projection of future excess returns on price-dividend ratio in the data (first panel) and in

the models with constant confidence and constant consumption volatility, and fluctuating

confidence and time-varying consumption volatility (second panel). Monthly observations of

equity returns, price-dividend ratios and risk-free rates from 1927 to 2007. Simulated slopes

and R2 together with 5% − 95% confidence band are calculated based on 100 simulations

of 80 years of data.
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Table 14: Predictability of Consumption Growth

1y 3y 5y
Estimate S.E. Estimate S.E. Estimate S.E.

Data:

Slope 0.01 (0.01) 0.01 (0.02) 0.003 (0.01)
R2 0.08 (0.06) 0.03 (0.02) 0.001 (0.03)

Constant confidence,

Constant Vol:

Sim. Slope 0.13 (0.02) 0.25 (0.06) 0.32 (0.10)
R2 0.43 (0.10) 0.30 (0.12) 0.23 (0.12)

Time-varying confidence,

Time-Varying Vol:

Sim. Slope 0.05 (0.02) 0.08 (0.05) 0.10 (0.08)
R2 0.14 (0.09) 0.09 (0.10) 0.07 (0.10)

Projection of future consumption growth on price-dividend ratio in the data (first panel) and

in the models with constant confidence and constant consumption volatility, and fluctuating

confidence and time-varying consumption volatility (second panel). Table reports slope

coefficient β1 and R
2 in the regressions

∑K
j=1

∆ct+j = β0+β1pdt+error, where K is from 1

to 5 years. Annual observations of real consumption growth and price-dividend ratios from

1930 to 2007. Simulated slopes and R2 are calculated based on 100 simulations of 80 years

of data.
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Figure 1: Time-Series of Returns
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Time series of returns, monthly, from 1927 to 2007. Stars indicate periods with 2 standard

deviations or above moves in returns.

Figure 2: Time Series of Confidence Measure
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Square-root of confidence measure based on forecasts of next-quarter real GDP, annualized,

in percent. Quarterly observations from the Survey of Professional Forecasts from 1969 to

2007.
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Figure 3: Distribution of True Expected Growth
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Distribution of true expected growth state, given information set of investors, in a standard

long-run risks model with complete information (left panel), and model with learning and

fluctuating confidence risks (right panel). Consumption volatility is constant, and Low

and High V correspond to 0.25 and 0.75 quantile of calibrated distribution of confidence

measure.

Figure 4: Unconditional Distribution of Consumption and Returns
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Unconditional distribution of consumption growth (left panel) and returns in the model with

constant confidence measure (middle panel) and in the model with fluctuating confidence

risks (right panel). Consumption volatility is constant.
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