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Abstract

Our model shows that deterioration of debt market liquidity not only leads to

an increase in liquidity premium of corporate bonds but also credit risk. The lat-

ter e¤ect originates from �rms�debt rollover. When liquidity deterioration causes

a �rm to su¤er losses in rolling over its maturing debt, equity holders bear the

losses while maturing debt holders get paid in full. This con�ict leads the �rm to

default at a higher fundamental threshold. Our model demonstrates an intricate

interaction between liquidity premium and default premium and highlights the

role of short-term debt in exacerbating rollover risk.
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1 Introduction

The yield spread of a �rm�s bond relative to the risk-free interest rate directly determines the

�rm�s debt �nancing cost, and is often referred to as its credit spread. It is widely recognized

that the credit spread not only re�ects a default premium determined by the �rm�s credit

risk but also a liquidity premium due to illiquidity of the secondary debt market, e.g.,

Longsta¤, Mithal, and Neis (2005), and Chen, Lesmond, and Wei (2007). However, both

academics and policy makers tend to treat the default premium and liquidity premium

as independent, and thus ignore interactions between them. The �nancial crisis of 2007-

2008 demonstrated importance of such an interaction� deterioration of debt market liquidity

caused severe �nancing di¢ culties for many �nancial �rms, which in turn exacerbated their

credit risk.

In this paper, we develop a theoretical model to analyze the interaction between debt

market liquidity and credit risk through so-called rollover risk: when the debt market liquid-

ity deteriorates, �rms face rollover losses from issuing new bonds to replace maturing bonds.

To avoid default, equity holders need to bear the rollover losses, while maturing debt holders

get paid in full. This intrinsic con�ict of interest between debt and equity holders implies

that equity holders may choose to default earlier. This con�ict of interest is similar in spirit

to the classic debt overhang problem coined by Myers (1977) and has been highlighted by

Flannery (2005) and Du¢ e (2009) as a crucial obstacle to recapitalizing banks and �nancial

institutions in the aftermath of various �nancial crises, including the recent one.

We build on the structural credit risk model of Leland (1994) and Leland and Toft (1996).

Ideal for our research question, this framework adopts the endogenous-default notion of Black

and Cox (1976) and endogenously determines a �rm�s credit risk through the joint valuation

of its debt and equity. When a bond matures, the �rm issues a new bond with the same

face value and maturity to replace it at the market price, which can be higher or lower than

the principal of the maturing bond. This rollover gain/loss is absorbed by the �rm�s equity

holders. As a result, the equity price is determined by the �rm�s current fundamental (i.e.,

the �rm value when it is unlevered) and expected future rollover gains/losses. When the

equity value drops to zero, the �rm defaults endogenously and bond holders can only recover

their debt by liquidating the �rm asset at a discount.

We extend this framework with an illiquid debt market. Bond holders are subject to

Poisson liquidity shocks. Upon the arrival of a liquidity shock, a bond holder has to sell

his holdings at a proportional cost. The trading cost multiplied by bond holders�liquidity
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shock intensity determines the liquidity premium in the �rm�s credit spread. Throughout

the paper, we take the bond market liquidity as exogenously given and focus on the e¤ect

of bond market liquidity deterioration (either due to an increase in the trading cost or an

increase in investors�liquidity shock intensity) on the �rm�s credit risk.

A key result of our model is that even in the absence of any constraint on the �rm�s ability

to raise more equity, deterioration of debt market liquidity can cause the �rm to default at

a higher fundamental threshold due to the surge in the �rm�s rollover losses. Equity holders

are willing to absorb rollover losses and bail out maturing bond holders to the extent that

the equity value is positive, i.e., the option value of keeping the �rm alive justi�es the cost

of absorbing rollover losses. Deterioration of debt market liquidity makes it more costly for

equity holders to keep the �rm alive. As a result, not only liquidity premium of the �rm�s

bonds rises, but also their default probability and default premium.

Debt maturity plays an important role in determining the �rm�s rollover risk. While

shorter maturity for an individual bond reduces its risk, shorter maturity for all bonds issued

by a �rm exacerbates its rollover risk by forcing its equity holders to quickly absorb losses

incurred by its debt �nancing. Leland and Toft (1996) numerically illustrate that shorter

debt maturity can lead a �rm to default at a higher fundamental boundary. We formally

analyze this e¤ect and further show that deterioration of market liquidity can amplify this

e¤ect.

Our calibration shows that deterioration of market liquidity can have a signi�cant e¤ect

on credit risk of �rms with di¤erent credit ratings and debt maturities. If an unexpected

shock causes liquidity premium to increase by 100 bps, default premium of a �rm with

speculative grade B rating and 1 year debt maturity (a �nancial �rm) would rise by 70

bps, which contributes to 41% of the total credit spread increase. As a result of the same

liquidity shock, increased default premium contributes to 22:4% of credit spread increase

of a BB rated �rm with 6 year debt maturity (a non-�nancial �rm), 18:8% for a �rm with

investment grade A rating and 1 year debt maturity, and 11:3% for an A rated �rm with 6

year debt maturity.

Our model o¤ers implications for a broad set of issues related to �rms�credit risk. First,

our model highlights debt market liquidity as a new economic factor for predicting �rm de-

faults. This implication can help improve the empirical performance of structural credit risk

models, e.g., Merton (1973), Longsta¤ and Schwartz (1995), Leland (1994), and Leland and

Toft (1996), which focus on the so-called distance to default (a volatility adjusted measure of

�rm leverage) as the key variable that drives defaults. Debt market liquidity can also act as
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a common factor in explaining �rms�default correlation, a phenomenon that the commonly

used variables such as distance-to-default and trailing stock returns of �rms and market

indices cannot fully explain, e.g., Du¢ e et al. (2009).

Second, the intrinsic interaction between liquidity premia and default premia derived

from our model challenges the common practice of decomposing �rms�credit spreads into

independent liquidity-premium and default-premium components and then assessing their

quantitative contributions, e.g., Longsta¤, Mithal, and Neis (2005), Beber, Brandt, and

Kavajecz (2009), and Schwarz (2009). This interaction also implies that in testing e¤ects of

liquidity on �rms�credit spreads, the commonly used control variables for default risk such

as credit default swap spread may act to absorb the intended liquidity e¤ects and thus cause

under-estimation.

Third, by deriving the e¤ect of short-term debt in exacerbating �rms�rollover risk, our

model highlights the so-called maturity risk, i.e., �rms with shorter average debt maturity

or more short-term debt face greater default risk. As pointed out by many observers, e.g.,

Brunnermeier (2009) and Krishnamurthy (2010), the heavy use of short-term debt �nancing

such as commercial paper and overnight repos is a key factor that had led to the collapses

of Bear Stearns and Lehman Brothers.

Finally, our model shows that liquidity risk and default risk can compound upon each

other and make betas (i.e., price exposures) of a bond with respect to fundamental shocks

and liquidity shocks highly variable. In the same way that gamma (i.e., variability of delta)

reduces e¤ectiveness of discrete delta hedging of options, the high variability implies a large

residual risk in bond investors�portfolios even after an initially perfect hedge of the portfolios�

fundamental and liquidity risk.

Our paper complements several recent studies of rollover risk. Acharya, Gale, and Yorul-

mazer (2010) study a setting in which asset owners have no capital and need to use the

purchased risky asset as collateral to secure short-term debt funding. They show that the

high rollover frequency associated with short-term debt can lead to diminishing debt capac-

ity. In contrast to their model, our model demonstrates severe consequences of short-term

debt even in the absence of any constraint on equity issuance. This feature also di¤erentiates

our model fromMorris and Shin (2004, 2010) and He and Xiong (2010), who focus on rollover

risk originated from coordination problems between debt holders of �rms that are restricted

from raising more equity. Furthermore, by highlighting the e¤ects of market liquidity within

a standard credit-risk framework, our model is convenient for empirical calibrations.

The paper is organized as follows. Section 2 presents the model setting. We derive the
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debt and equity valuation and the �rm�s endogenous default boundary in closed-form in

Section 3. Section 4 analyzes the e¤ects of market liquidity on the �rm�s credit spread.

Section 5 examines the �rm�s optimal leverage. We discuss the implications of our model

for various issues related to �rms�credit risk in Section 6 and conclude in Section 7. The

Appendix provides technical proofs.

2 The Model

We build on the structural credit risk model of Leland and Toft (1996) by adding an illiquid

secondary bond market. This setting is generic and applies to both �nancial and non-

�nancial �rms, although the e¤ects illustrated by our model are stronger for �nancial �rms

due to their higher leverages and shorter debt maturities.

2.1 Firm Asset

The unlevered �rm asset value fVt : 0 � t <1g follows a geometric Brownian motion in the
risk-neutral probability measure:

dVt
Vt

= (r � �) dt+ �dZt; (1)

where r is the constant risk-free rate in this economy,1 � is the �rm�s constant cash payout

rate, � is the constant asset volatility, and fZt : 0 � t <1g is a standard Brownian motion,
representing random shocks to the �rm fundamental. Throughout the paper, we refer to Vt

as the �rm fundamental.2

When the �rm goes bankrupt, we assume that creditors can only recover a fraction �

of the �rm�s asset value from liquidation. The bankruptcy cost 1 � � can be interpreted
in di¤erent ways, such as loss from selling the �rm�s real asset to second-best users, loss of

customers because of anticipation of the bankruptcy, asset �re-sale losses, legal fees, etc. An

important issue to keep in mind is that the liquidation loss represents a deadweight loss to

equity holders ex ante, but is ex post borne by debt holders.

1In this paper, we treat the risk-free rate as constant and exogenous. This assumption simpli�es the
potential �ight-to-liquidity e¤ect during liquidity crises.

2As in Leland (1994), we treat the unlevered �rm value process fVt : 0 � t <1g as the exogenously given
state variable to focus on the e¤ects of market liquidity and debt maturity. In our context, this approach is
equivalent to directly modeling the �rm�s exogenous cash �ow process f�Vt : 0 � t <1g as the state variable
(i.e., the so-called EBIT model advocated by Goldstein, Ju, and Leland (2001)). For instance, Hackbarth,
Miao, and Morellec (2006) use this EBIT model framework to analyze the e¤ects of macroeconomic conditions
on �rms�credit risk.
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2.2 Stationary Debt Structure

The �rm maintains a stationary debt structure. At each moment in time, the �rm has a

continuum of bonds outstanding with an aggregate principal of P and an aggregate annual

coupon payment of C. Each bond has maturitym, and expirations of the bonds are uniformly

spread out across time. That is, during a time interval (t; t+ dt) ; a fraction 1
m
dt of the bonds

matures and needs to be rolled over.

We measure the �rm�s bonds by m units. Then, each unit has a principal value of

p =
P

m
; (2)

and an annual coupon payment of

c =
C

m
: (3)

These bonds di¤er only in the time-to-maturity � 2 [0;m]. Denote by d (Vt; �) the value of
one unit of bond as a function of the �rm fundamental Vt and its time-to-maturity � .

Following the Leland framework, we assume that the �rm commits to a stationary debt

structure denoted by (C;P;m). In other words, when a bond matures, the �rm will replace

it by issuing a new bond with identical maturity, principal value, and coupon rate. In most

of our analysis, we take the �rm�s leverage (i.e., C and P ) and debt maturity (i.e., m) as

given, and will discuss the �rm�s initial optimal leverage and maturity choices in Section 5.

2.3 Debt Rollover and Endogenous Bankruptcy

When the �rm issues new bonds to replace maturing bonds, the market price of the new

bonds can be higher or lower than the required principal payments of the maturing bonds.

Equity holders are the residual claimants of the rollover gains/losses. For simplicity, we

assume that any gain will be immediately paid out to equity holders and any loss will be

paid o¤by issuing more equity at the market price. Thus, over a short time interval (t; t+ dt),

the net cash �ow to equity holders (omitting dt) is

NCt = �Vt � (1� �)C + d (Vt;m)� p: (4)

The �rst term is the �rm�s cash payout. The second term is the after-tax coupon payment,

where � denotes the marginal tax bene�t rate of debt. The third and fourth terms capture the

�rm�s rollover gain/loss by issuing new bonds to replace maturing bonds. In this transaction,

there are dt units of bonds maturing. The maturing bonds require a principal payment of

pdt: The market value of the newly issued bonds is d (Vt;m) dt:When the bond price d (Vt;m)

drops, equity holders have to absorb the rollover loss [d (Vt;m)� p] dt to prevent bankruptcy.
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When the �rm issues additional equity to pay o¤ the rollover loss, the equity issuance

dilutes the value of existing shares. As a result, the rollover loss feeds back into the equity

value. This is a key feature of the model� the equity value is jointly determined by the

�rm�s fundamental and expected future rollover gains/losses.3 Equity holders are willing

to buy more shares and bail out the maturing debt holders as long as the equity value is

still positive (i.e., the option value of keeping the �rm alive justi�es the expected rollover

losses). The �rm defaults when its equity value drops to zero, which occurs when the �rm

fundamental drops to an endogenously determined threshold VB: At this point, the bond

holders are entitled to the �rm�s liquidation value �VB; which, in most cases, is below the

debt face value P .

To focus on the liquidity e¤ect originating from the debt market, we ignore any additional

frictions in the equity market such as transaction costs and asymmetric information. It is

important to note that while we allow the �rm to freely issue more equity, the equity value

can be severely a¤ected by the �rm�s debt rollover losses. This feedback e¤ect allows the

model to capture di¢ culties faced by many �rms in raising equity during a �nancial-market

meltdown even in the absence of any friction in the equity market.

We adopt the stationary debt structure of the Leland framework, i.e., newly issued bonds

have identical maturity, principal value, coupon rate, and seniority as maturing ones. Once

facing rollover losses, it is tempting for the �rm to reduce rollover losses by increasing senior-

ity of its newly issued bonds, which dilutes existing debt holders. Leland (1994) illustrates a

dilution e¤ect of this nature by allowing equity holders to issue more pari passu bonds. Since

doing so necessarily hurts existing bond holders, it is usually restricted by bond covenants

(e.g., Smith and Warner (1979)).4 However, covenants in practice are imperfect and cannot

fully shield bond holders from future dilution. Thus, when purchasing newly issued bonds,

3A simple example works as follows. Suppose a �rm has 1 billion shares of equity outstanding, and each
share is initially valued at $10. The �rm has $10 billion of debt maturing now, and because of an unexpected
shock to the bond market liquidity, the �rm�s new bonds with the same face value can only be sold for $9
billion. To cover the shortfall, the �rm needs to issue more equity. As the proceeds from the share o¤ering
accrue to the maturing debt holders, the new shares dilute the existing shares and thus reduce the market
value of each share. If the �rm only needs to roll over its debt once, then it is easy to compute that the �rm
needs to issue 1=9 billion shares and each share is valued at $9. The $1 price drop re�ects the rollover loss
borne by each share. If the �rm needs to roll over more debt in the future and the debt market liquidity
problem persists, the share price should be even lower due to the anticipation of future rollover losses. We
derive such an e¤ect in the model.

4Brunnermeier and Oehmke (2010) provide a model to show that if a �rm�s bond covenants do not
restrict maturity of its new debt issuance, a maturity rat race could emerge as each debt holder would
demand the shortest maturity to protect himself against demands of others to have shorter maturities. As
shorter maturity leads to implicit higher priority, this result illustrates a severe consequence of not imposing
priority rules on future bond issuance in bond covenants.
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investors anticipate future dilution and thereby pay a lower price. Though theoretically in-

teresting and challenging, this alternative setting is unlikely to change our key result: if debt

market liquidity deteriorates, investors will undervalue the �rm�s newly issued bonds (despite

their greater seniority), which in turn leads equity holders to su¤er rollover losses and thus

default earlier.5 Precommitting equity holders to absorb ex post rollover losses can resolve

the �rm�s rollover risk. However, this resolution violates equity holders� limited liability.

Furthermore, enforcing ex post payments from dispersed equity holders is also costly.

Under the stationary debt structure, the �rm�s default boundary VB is constant, which

we will derive in the next section. As in any trade-o¤ theory, bankruptcy involves a dead-

weight loss. Endogenous bankruptcy is a re�ection of the con�ict of interest between debt

and equity holders: when the bond prices are low, equity holders are not willing to bear

the rollover losses to avoid the deadweight loss of bankruptcy. This situation resembles the

debt-overhang problem coined by Myers (1977), as equity holders voluntarily discontinue the

�rm by refusing to subsidize maturing debt holders.

2.4 Secondary Bond Markets

We adopt a bond market structure similar to that in Amihud and Mendelson (1986). Each

bond investor is exposed to an idiosyncratic liquidity shock, which arrives according to

a Poisson occurrence with intensity �: Upon the arrival of the liquidity shock, the bond

investor has to exit by selling his bond holding in the secondary market at a fractional cost

of k. In other words, the investor only recovers a fraction 1� k of the bond�s market value.6

5Diamond (1993) presents a two-period model in which it is optimal (even ex ante) to make re�nancing
debt (issued at intermediate date 1) senior to existing long-term debt (which matures at date 2). In that
model, better-than-average �rms want to issue more information-sensitive short-term debt at date 0. Because
making re�nancing debt more senior allows more date-0 short-term debt to be re�nanced, it increases date-0
short-term debt capacity. Although the information driven preference of short-term debt is absent in our
model, this insight does suggest that making re�nancing debt senior to existing debt can reduce the �rm�s
rollover losses. However, the two-period setting considered by Diamond misses an important issue associated
with recurring re�nancing of real-life �rms. To facilitate our discussion, take the in�nite horizon setting of our
model. Suppose that newly issued debt is always senior to existing debt, i.e., the priority rule in bankruptcy
now becomes inversely related to time-to-maturity of existing bonds. This implies that newly issued bonds,
while senior to existing bonds, must be junior to bonds issued in the future. Therefore, although equity
holders can reduce rollover losses at the default boundary (because debt issued right before default is most
senior during the bankruptcy), they may incur greater rollover losses when further away from the default
boundary (because bonds issued at this time are likely to be junior in a more distant bankruptcy). The
overall e¤ect is unclear and worthwhile for future research.

6As documented by a series of empirical papers, e.g., Bessembinder, Maxwell, and Venkataraman (2006),
Edwards, Harris, and Piwowar (2007), Mahanti et al (2008), and Bao, Pan, and Wang (2009), the secondary
markets for corporate bonds are highly illiquid. The illiquidity is re�ected by a large bid-ask spread that
bond investors have to pay in trading with dealers, as well as a potential price impact of the trade. Edwards,
Harris, and Piwowar (2007) show that the average e¤ective bid-ask spread on corporate bonds ranges from
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We shall broadly attribute this cost either to market impact of the trade, e.g., Kyle (1985),

or to bid-ask spreads charged by bond dealers, e.g., Glosten and Milgrom (1985).

While our model focuses on analyzing the e¤ect of external market liquidity, it is also

useful to note the importance of �rms�internal liquidity. By keeping more cash and acquiring

more credit lines, a �rm can alleviate its exposure to market liquidity.7 By allowing the �rm

to raise equity as needed, our model shuts o¤ the internal-liquidity channel and instead

focuses on the e¤ect of external market liquidity. It is reasonable to conjecture that the

availability of internal liquidity can reduce the e¤ect of market liquidity on �rms� credit

spreads. However, internal liquidity holdings cannot fully shield �rms from deterioration of

market liquidity as long as internal liquidity is limited.8 Indeed, as documented by Almeida et

al. (2009) and Hu (2010), during the recent credit crisis non-�nancial �rms that happened to

have a greater fraction of long-term debt maturing in the near future had more pronounced

investment decline and greater credit spread increases than otherwise similar �rms. This

evidence demonstrates the �rms�reliance on market liquidity despite their internal liquidity

holdings. We will leave a more comprehensive analysis of the interaction between internal

and external liquidity for future research.

3 Valuation and Default Boundary

3.1 Debt Value

We �rst derive bond valuation by taking the �rm�s default boundary VB as given. Recall

that d (Vt; � ;VB) is the value of one unit of bond with time-to-maturity � < m, an annual

coupon payment of c, and a principal value of p. We have the following standard partial

di¤erential equation for the bond value:

rd (Vt; �) = c� �kd (Vt; �)�
@d (Vt; �)

@�
+ (r � �)Vt

@d (Vt; �)

@V
+
1

2
�2V 2t

@2d (Vt; �)

@V 2
: (5)

8 basis points for large trades to 150 basis points for small trades. Bao, Pan, and Wang (2009) estimate
that in a relatively liquid sample, the average e¤ective trading cost, which incorporates bid-ask spread, price
impact and other factors, ranges from 74 to 221 basis points depending on the trade size. There is also large
variation across di¤erent bonds with the same trade size.

7Bolton, Chen, and Wang (2010) recently model �rms� cash holdings as an important aspect of their
internal risk management. Campello et al. (2010) provide empirical evidence that during the recent credit
crisis, non-�nancial �rms use credit lines to substitute cash holdings to �nance their investment decisions.

8In particular, when the �rm draws down its credit lines, issuing new ones may be di¢ cult, especially
during crises. Acharya, Almeida, and Campello (2010) provide evidence that aggregate risk limits availability
of credit lines and Mur�n (2010) shows that a shock to a bank�s capital tends to cause the bank to tighten
its lending.
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The left-hand side rd is the required (dollar) return from holding the bond. There are four

terms on the right-hand side, capturing expected returns from holding the bond. The �rst

term is coupon payment. The second term is loss caused by occurrence of a liquidity shock.

The liquidity shock hits with probability �dt. Upon its arrival, the bond holder su¤ers a

transaction cost of kd (Vt; �) by selling the bond holding. The last three terms capture the

expected value change due to change in time-to-maturity � (the third term) and �uctuation

in the �rm�s asset value Vt (the fourth and �fth terms). By moving the second term to the

left-hand-side, the transaction cost essentially increases the discount rate (i.e., the required

return) for the bond to r + �k, sum of risk free rate r and a liquidity premium �k.

We have two boundary conditions to pin down the bond price based on equation (5).

At the default boundary VB, bond holders share the �rm�s liquidation value proportionally.

Thus, each unit of bond gets

d (VB; � ;VB) =
�VB
m
; for all � 2 [0;m] : (6)

When � = 0, the bond matures and its holder gets the principal value p if the �rm survives:

d (Vt; 0;VB) = p, for all Vt > VB. (7)

Equation (5) and boundary conditions (6) and (7) determine the bond value:

d (Vt; � ;VB) =
c

r + �k
+ e�(r+�k)�

�
p� c

r + �k

�
(1� F (�)) +

�
�VB
m

� c

r + �k

�
G (�) ; (8)

where

F (�) = N (h1 (�)) +

�
Vt
VB

��2a
N (h2 (�)) ; (9)

G (�) =

�
Vt
VB

��a+bz
N (q1 (�)) +

�
Vt
VB

��a�bz
N (q2 (�)) ;

h1 (�) =
(�vt � a�2�)

�
p
�

; h2 (�) =
(�vt + a�2�)

�
p
�

;

q1 (�) =
(�vt � bz�2�)

�
p
�

; q2 (�) =
(�vt + bz�2�)

�
p
�

;

vt � ln

�
Vt
VB

�
; a � r � � � �2=2

�2
; bz � [a2�4 + 2 (r + �k)�2]

1=2

�2
;

and N (x) �
R x
�1

1p
2�
e�

y2

2 dy is the cumulative standard normal distribution. This debt

valuation formula is similar to the one derived in Leland and Toft (1996) except that market

illiquidity makes r + �k the e¤ective discount rate for the bond payo¤.
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The bond yield is typically computed as the equivalent return on a bond conditional on it

being held to maturity without default or trading. Given the bond price derived in equation

(8), the bond yield y is determined by solving the following equation:

d (Vt;m) =
c

y

�
1� e�ym

�
+ pe�ym (10)

where the right-hand side is the price of a bond with a constant coupon payment c over time

and a principal payment p at the bond maturity, conditional on no default or trading before

maturity. The spread between y and risk-free rate r is often called credit spread of the bond.

Since the bond price in equation (8) includes both trading cost and bankruptcy cost e¤ects,

the credit spread contains a liquidity premium and a default premium. The focus of our

analysis is to uncover interaction between the liquidity premium and default premium.

3.2 Equity Value and Endogenous Default Boundary

Leland (1994) and Leland and Toft (1996) indirectly derive equity value as the di¤erence

between the total �rm value and debt value. The total �rm value is the unlevered �rm value

Vt, plus the total tax-bene�t, minus the bankruptcy cost. This approach does not apply to

our model because part of the �rm value is consumed by future trading costs. Thus, we

directly compute equity value E (Vt) through the following di¤erential equation:

rE = (r � �)VtEV +
1

2
�2V 2t EV V + �Vt � (1� �)C + d (Vt;m)� p: (11)

The left-hand side is the required equity return. This term should be equal to the expected

return from holding the equity, which is sum of the terms on the right-hand side.

� The �rst two terms (r � �)VtEV + 1
2
�2V 2t EV V capture expected change in the equity

value caused by �uctuation of the �rm�s asset value Vt:

� The third term �Vt is cash �ow generated by the �rm per unit of time.

� The fourth term (1� �)C is after-tax coupon payment per unit of time.

� The �fth and sixth terms d (Vt;m)� p is equity holders�rollover gain/loss from paying
o¤ maturing bonds by issuing new bonds at the market price.

Limited liability of equity holders provides the following boundary condition at VB:

E (VB) = 0: Solving the di¤erential equation in (11) is challenging because it contains the

complicated bond valuation function d (Vt;m) given in (8). We manage to solve it using
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the Laplace transformation technique detailed in Appendix A.1. Based on the equity value,

we then derive equity holders�endogenous bankruptcy boundary VB based on the smooth-

pasting condition that E 0 (VB) = 0:9

The results are summarized in the next proposition.

Proposition 1 The equity value E (Vt) is given in equation (22) of Appendix A.1. The

endogenous bankruptcy boundary VB is given by

VB =

(1��)C+(1�e�(r+�k)m)(p� c
r+�k)

�
+
n�
p� c

r+�k

�
[b (�a) + b (a)] + c

r+�k
[B (�bz) +B (bz)]o

�
��1 +

�
m
[B (�bz) +B (bz)] ;

(12)

where a � r����2=2
�2

; z � (a2�4+2r�2)
1=2

�2
; � � z � a > 1; bz � [a2�4+2(r+�k)�2]

1=2

�2
;

b (x) =
1

z + x
e�(r+�k)m

�
N
�
x�
p
m
�
� ermN

�
�z�

p
m
��
;

B (x) =
1

z + x

h
N
�
x�
p
m
�
� e

1
2 [z2�x2]�2mN

�
�z�

p
m
�i
:

4 Market Liquidity and Endogenous Default

Many factors can cause bond market liquidity to change over time. Increased uncertainty

about a �rm�s fundamental can cause the cost of trading its bonds (i.e., k) to go up; less

secured �nancing due to redemption risk faced by open-end mutual funds and margin risk

faced by leveraged institutions (i.e., deterioration of funding liquidity a la Brunnermeier

and Pedersen (2009)) can also cause bond investors� liquidity shock intensity (i.e., �) to

rise. Through the increase of one or both of these variables, the liquidity premium �k will

increase. In this section, we analyze the e¤ect of such a shock to bond market liquidity on

�rms�credit spreads.

Figure 1 illustrates two key channels for a shock to � or k to a¤ect a �rm�s credit spread.

Besides the direct liquidity-premium channel mentioned above, there is an indirect rollover-

risk channel. The increased liquidity premium suppresses market price of the �rm�s newly

issued bonds and increases equity holders�rollover losses. As a result, equity holders become

more reluctant to keep the �rm alive even though the falling bond price is caused by deteri-

oration of market liquidity, rather than the �rm�s fundamental. In other words, the default

threshold VB rises, which in turn leads to a greater default premium in the credit spread.

This indirect rollover-risk channel is the main focus of our analysis.
9Chen and Kou (2009) provide a rigorous proof of the optimality of the smooth-pasting condition in

an endogenous-default model under a set of general conditions, which include �nite debt maturity and a
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Figure 1: The key channels of liquidity e¤ects on credit spreads.

As � and k a¤ect the bond price in equation (8) symmetrically through the liquidity

premium, we will use an increase in � to illustrate the e¤ect. Speci�cally, we hold con-

stant the �rm�s debt structure (i.e., leverage and bond maturity). This is realistic as bond

covenants and other operational restrictions prevent real-life �rms from swiftly modifying

their debt structures in response to sudden market �uctuations. For simplicity, we also treat

the increase in � as permanent in the analysis.10

4.1 Model Parameters

To facilitate our analysis, we use a set of baseline parameters given in Table 1. We choose

these parameters to be broadly consistent with those used in the literature to calibrate

standard structural credit risk models. We set the risk-free rate r to be 8%; which is also used

by Huang and Huang (2004). We use a debt tax bene�t rate � = 27% based on the following

estimate. While tax rate of bond income is 35%, many institutions holding corporate bonds

enjoy tax exemption. Thus, we use an e¤ective bond income tax rate of 25%. Then, the

formula given by Miller (1977) implies a debt tax bene�t of 1� (1�35%)(1�15%)
1�25% = 26:5% where

jump-and-di¤usion process for the �rm�s unlevered asset value.
10In an earlier version of this paper (NBER working paper #15653), we extend our model to incorporate

a temporary liquidity shock. Speci�cally, an increase in � mean-reverts back to its normal level according
to a Poisson occurrence. This extension becomes more technically involved and requires numerical analysis.
The numerical results nevertheless show that as long as debt maturity is comparable to the expected length
of the liquidity shock, treating the increase in � as permanent or temporary only leads to a modest di¤erence
in its impact on the �rm�s credit spread.
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Table 1: Baseline Parameters

General Environment
Interest rate r = 8:0%

Debt tax bene�t rate � = 27%

Firm Characteristics
Volatility � = 23%

Bankruptcy recovery rate � = 60%

Payout rate � = 2%

Bond Market Illiquidity
Transaction cost k = 1:0%

Liquidity shock intensity � = 1

Debt Structure
Maturity m = 1

Current fundamental V0 = 100

Annual coupon payment C = 6:39

Aggregate principal P = 61:68

35% is the marginal rate of corporate tax and 15% is the marginal rate of capital gain tax.11

We �rst focus on calibrating our model to �rms with a speculative grade BB rating. Later

in Section 4.4, we will also calibrate the model to �rms with an investment grade A rating.

According to Zhang, Zhou, and Zhu (2009), BB rated �rms have an average fundamental

volatility of 23%, and A rated �rms have an average of 21%: Thus, we choose � = 23% as

the baseline value in Table 1, and will use � = 21% in our later calibration of �rms with

A rating. Chen (2010) �nds that across 9 di¤erent aggregate states, bonds have default

recovery rates around 60%. Thus, we set � = 60%: Huang and Zhou (2008) �nd that in

a sample of �rms the average payout rate is 2:14%, and, more speci�cally, the average for

BB rated �rms is 2:15% and for A rated �rms is 2:02%. Given the small variation across

di¤erent ratings, we use � = 2% throughout the paper.

Edwards, Harris, and Piwowar (2007) and Bao, Pan, and Wang (2010) �nd that cost

of trading corporate bonds decreases with bond rating and trade size. Consistent with

their estimates, we choose k = 1:0% for BB rated bonds and k = 0:5% for A rated bonds.

Furthermore, We set bond investors� liquidity shock intensity � to be 1, which is broadly

consistent with the average turnover rate of corporate bonds in the sample analyzed by Bao,

11The formula works as follows. One dollar after-tax to debt holders costs a �rm $1=(1 � 25%) = $1:33:
One the other hand, if $1:33 is booked as �rm pro�t and paid out to equity holders, the after-tax income is
only $1:33� (1� 35%)� (1� 15%) = $0:735; which implies a tax bene�t of 26:5% to debt holders.

13



Pan, and Wang (2010).

As a �rm�s rollover risk is determined by its overall debt maturity rather than maturity of

a particular bond, we calibrate debt maturity in the model to �rms�overall debt maturities.

Guedes and Opler (1996) �nd that �rms with di¤erent credit ratings have very similar debt

maturities. According to Custodio, Ferreira, and Laureano (2010), the medium time-to-

maturity of non-�nancial �rms is 3 years, which implies an initial debt maturity of 6 years

if debt expirations are uniformly distributed. Financial �rms tend to have shorter debt

maturities as they heavily rely on repo transactions with maturities from 1 day to 3 months

and commercial paper with maturities less than 9 months. To highlight rollover risk of

�nancial �rms, we choose m = 1 as the baseline value in Table 1. We will also report more

modest, but nevertheless signi�cant, e¤ects of rollover risk in Section 4.4 for non-�nancial

�rms by varying m from 1 to 3; 6; and 10:

Without lose of generality, we normalize the �rm�s current fundamental V0 = 100 and

choose its leverage to match its one-year credit spread with the average spread of BB rated

bonds. Rossi (2009) summarizes yield spread for di¤erent maturities and credit ratings in

the TRACE data. He �nds that the average spread for BB rated bonds is 331 basis points

when maturity is either 0-2 years or 3-10 years. For A rated bonds, the average spread is

107 basis points if maturity is 0-2 years and 90 basis points if maturity is 3-10 years. Based

on these numbers, we choose C = 6:39 and P = 61:68 so that the �rm issues one year bonds

at par and these bonds have a credit spread of 330 basis points. In our later calibration in

Section 4.4, we will set the target bond yield at 100 bps for A rated bonds.

4.2 Liquidity Premium and Default Premium

Figure 2 demonstrates e¤ects of an increase in � on the �rm�s rollover loss, endogenous

default boundary, and credit spread, by �xing other parameters given in Table 1. Panel A

depicts equity holders�aggregate rollover loss per unit of time d (Vt;m;VB) � p against �.
The line shows that the magnitude of rollover loss increases with �. That is, as bond holders�

liquidity shock intensity increases, the increased liquidity premium makes it more costly for

equity holders to roll over the �rm�s maturing bonds. Panel B shows that the �rm�s default

boundary VB consequently increases with �. In other words, when bond market liquidity

deteriorates, equity holders will choose to default at a higher fundamental threshold. We

formally prove these results in Proposition 2.

Proposition 2 All else equal, an increase in bond holders� liquidity shock intensity � de-

creases the �rm�s bond price and increases equity holders�default boundary VB.

14



0 0.5 1 1.5 2
2

1.5

1

0.5

0

0.5
Panel A: Rollover Loss

ξ

d(
V

,ξ ;
 V

B
)

p

0 0.5 1 1.5 2
65

66

67

68

69

70
Panel B: Bankruptcy  Boundary

ξ

V
B

0 0.5 1 1.5 2
0.01

0.02

0.03

0.04

0.05
Panel C: Bond Spread

ξ

Y
r

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

0.025

0.03
Panel D: Com position of Bond Spread

ξ
Y

r

Credit Part
Liquidity Part

Figure 2: E¤ects of bond investors� liquidity demand intensity �. This �gure uses the baseline
parameters listed in Table 1. Panel A depicts equity holders�aggregate rollover loss per unit of
time, d (Vt;m;VB) � p; which has the same scale as the �rm�s fundamental; Panel B depicts their
default boundary VB; Panel C depicts credit spread of the �rm�s newly issued bonds; and Panel
D decomposes the credit spread into two components: liquidity premium �k and the remaining
default premium. All the panels are with respect to �:

Panel C of Figure 2 depicts credit spread of the �rm�s newly issued bonds against �,

and shows that it increases with �. More speci�cally, as � increases from 1 to 2, the credit

spread increases from 330 basis points to 499:6. Panel D further decomposes the bond spread

into two components. One is the liquidity premium �k, which, as shown by the dotted line,

increases linearly with �. The residual credit spread after deducting the liquidity premium

captures the part of the credit spread that is related to the �rm�s default risk. We call this

component default premium. Interestingly, the solid line shows that the default premium

also increases with �: This con�rms our earlier discussion: by raising the �rm�s default

boundary, deterioration of bond market liquidity also increases the default component of the

�rm�s credit spread. Speci�cally, as � increases from 1 to 2, the liquidity premium rises by

100 basis points while the default premium goes up by 69:6 basis points (which contributes

to 41% of the total credit spread increase).

As deterioration of market liquidity increases the �rm�s debt �nancing cost, it is reason-

able to posit that the resulting earlier default might be consistent with the joint interest of
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debt and equity holders. To clarify this issue, suppose that the �rm never defaults. Then,

the present value of future tax shield is �C
r
;while the present value of future bond transaction

costs is �k
r

C
r+�k

, where C
r+�k

is the �rm�s bond value (i.e., coupon payments discounted by

the transaction cost adjusted discount rate). The present value of future tax shield is higher

than that of future bond transaction costs if

� >
�k

r + �k
: (13)

Under the condition in (13), default damages the joint interest of debt and equity holders

because even in absence of any bankruptcy cost, the tax shield bene�t dominates the cost

incurred by future bond trading.

The condition in (13) holds in the parameters that generate Figure 2. Thus, the default

boundary depicted in Panel B originates from con�ict of interest between debt and equity

holders: when the bond price falls (even for liquidity reasons), equity holders have to bear

all of the rollover losses to avoid default, while maturing debt holders get paid in full. This

unequal sharing of losses causes the equity value to drop down to zero at VB; at which point

equity holders stop servicing the debt. Could debt and equity holders share the �rm�s losses,

they would avoid the deadweight loss induced by the �rm default. See Section 2.3 for some

discussion of various realistic considerations that can prevent the use of debt restructuring

in this situation.

The asset pricing literature has recognized importance of bond market liquidity on �rms�

credit spreads. However, most studies focus on the direct liquidity-premium channel. For

instance, Longsta¤, Mithal, and Neis (2005) �nd that while default risk can explain a large

part of �rms� credit spreads, there is still a signi�cant non-default component related to

measures of bond-speci�c illiquidity; and Chen, Lesmond, and Wei (2007) show that bonds

with lower market liquidity tend to earn higher credit spreads. In contrast, our model

identi�es a new channel� the rollover-risk channel, through which liquidity premium and

default premium interact with each other. Our channel is also di¤erent from the bankruptcy-

renegotiation channel emphasized by Ericsson and Renault (2006), who show that market

illiquidity can hurt bond holders�outside option in bankruptcy negotiation.

4.3 Ampli�cation of Short-term Debt

A standard intuition suggests that shorter debt maturity for an individual bond leads to

lower credit risk. However, shortening maturities of all bonds issued by a �rm intensi�es its

rollover risk and makes it more vulnerable to deterioration of market liquidity. According to
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Figure 3: E¤ects of debt maturity m. This �gure uses the baseline parameters listed in Table 1,
and compares two �rms with di¤erent debt maturities m = 1 and 6. Panels A, B, and C depict
equity holders�rollover loss d (Vt;m;VB)�p; endogenous default boundary VB; and credit spread of
the �rm�s newly issued bonds, respectively. All panels are with respect to bond investors�liquidity
shock intensity �.

our model, a shorter debt maturity for the �rm implies a higher rollover frequency. Directly

from the rollover loss expression d (Vt;m)� P=m; if market value of the �rm�s newly issued
bonds d (Vt;m) is below principal of maturing bonds P=m, a higher rollover frequency forces

equity holders to absorb a greater rollover loss per unit of time. This means a higher cost

of keeping the �rm alive, which in turn motivates equity holders to default at a higher

fundamental threshold.

To illustrate this maturity e¤ect, we compare two otherwise identical �rms, one with debt

maturity of 1 year and the other with debt maturity of 6 years. Note that the second �rm

has the same fundamental, coupon payment, and debt face value as the �rst �rm; in other

words, we do not calibrate its credit spread to any benchmark level. As a result, this �rm is

di¤erent from the calibrated BB rated �rm with 6-year debt maturity in Section 4.4.

Figure 3 demonstrates di¤erent impacts of a change in � on these two �rms with di¤erent

maturities. Panel A shows that as bond investors� liquidity shock intensity � increases,

rollover losses (per unit of time) of both �rms increase. More importantly, rollover loss

of the �rm with shorter debt maturity increases more than that of the �rm with longer
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maturity. Panel B further con�rms that while both �rms�default boundaries increase with

�, the boundary of the shorter maturity �rm is uniformly higher. Panel C shows that as �

increases from 1 to 2; credit spread of the shorter maturity �rm increases by 170 basis points

from 330 to 500, while that of the longer maturity �rm only increases by 119 basis points

from 215 to 334: As these �rms share the same liquidity premium in their credit spreads,

the di¤erence in the changes of their credit spreads is due to the default component of credit

spread.

We can formally prove the following proposition regarding e¤ect of debt maturity on the

�rm�s rollover risk under the conditions that principal payment due at debt maturity and

bankruptcy cost are both su¢ ciently high.

Proposition 3 Suppose (r + �k)P � C � 0 and C
r+�k

�
��1 > �

(1��)C+((r+�k)P�C)
�

. Then, the

�rm�s default boundary VB decreases with its debt maturity m:

From a contracting point of view, the e¤ect of debt maturity on rollover gains/losses orig-

inates from short-term debt being a �harder�claim relative to long-term debt. Essentially,

short-term bond holders do not share gains/losses with equity holders to the same extent as

long-term debt holders do. As a result, short-term debt leads to greater rollover losses borne

by equity holders in bad times. This is similar in spirit to the debt-overhang problem coined

by Myers (1977). See Diamond and He (2010) for a recent study that further analyzes the

e¤ects of short-term debt overhang on �rms�investment decisions.12

In the aftermath of the recent �nancial crisis, many observers, e.g., Brunnermeier (2009)

and Krishnamurthy (2010), have pointed out the heavy use of short-term debt �nancing

by many �nancial institutions right before the crisis. In the months leading up to its bank-

ruptcy, Lehman Brothers was rolling over 25% of its debt every day through overnight repos,

a type of collateralized lending agreement with an extremely short maturity of one day. Con-

sistent with the rollover di¢ culty faced by Lehman Brothers, Figure 3 and Proposition 3

demonstrate that short-term debt can signi�cantly amplify a �rm�s rollover risk and make

it vulnerable to shocks to bond market liquidity. Our model thus highlights �rms�debt

maturity structure as an important determinant of credit risk.

12This result is also similar to Manso, Strulvocici, and Tchistyi (2010) who show that performance-sensitive
debt, which corresponds to a rising re�nancing rate for short-term debt when the �rm fundamental dete-
riorates, leads to earlier endogenous default. For other debt overhang e¤ects in the Leland setting, see
Lambrecht and Myers (2008) and He (2011).
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Table 2: Responses of Di¤erent Firms to a Liquidity Shock

Panel A: Firms with Speculative Grade BB

� = 1 � rises to 2 � rises to 4

Maturity Spread Spread �Spread Default Part Spread �Spread Default Part

(yrs) (bps) (bps) (bps) (bps) (fraction) (bps) (bps) (bps) (fraction)

m = 1 330 499:6 169:6 69:6 41:0% 853:0 523:0 223:0 42:6%

m = 3 330 474:6 144:6 44:6 30:8% 752:1 422:1 122:1 28:9%

m = 6 330 458:9 128:9 28:9 22:4% 699:8 369:8 69:8 18:9%

m = 10 330 450:3 120:3 20:3 16:9% 671:9 341:9 41:9 12:3%

Panel B: Firms with Investment Grade A

� = 1 � rises to 2 � rises to 4

Maturity Spread Spread �Spread Default Part Spread �Spread Default Part

(yrs) (bps) (bps) (bps) (bps) (fraction) (bps) (bps) (bps) (fraction)

m = 1 100 161:7 61:7 11:7 18:8% 290:7 190:7 40:7 21:3%

m = 3 100 157:2 57:2 7:2 12:6% 274:3 174:3 24:3 13:9%

m = 6 100 156:4 56:4 6:4 11:3% 266:9 166:9 16:9 10:1%

m = 10 100 153:7 53:7 3:7 6:9% 259:7 159:7 9:7 6:1%

The common parameters are r = 8%, � = 27%, � = 60%, � = 2, and V0 = 100. For A rated �rms,
� = 21%, k = 50 bps. For BB rated �rms, � = 23%, k = 100 bps. We calibrate a �rm�s leverage
(C;P ) so that its newly issued par bonds with the speci�ed maturity have an initial credit spread
of 100 bps for A rated �rms and 330 bps for BB rated �rms.

4.4 Calibration of Di¤erent Firms

Our model shows that liquidity premia and default premia are intertwined and work together

in determining �rms� credit spreads. In particular, an increase of liquidity premium can

exacerbate default risk and make �rms with weaker fundamentals more susceptible to default

risk. To illustrate this e¤ect, we compare responses of a set of �rms with di¤erent credit

ratings and debt maturities to the same liquidity shock represented by an increase in �. This

exercise also allows us to show that deterioration of market liquidity can have a signi�cant

e¤ect on credit risk of a variety of �rms through debt rollover.

We focus on �rms with two particular credit ratings: investment grade A and speculative

grade BB. For each credit rating, we consider �rms with 4 di¤erent debt maturities: m = 1; 3;

6; and 10:We let these �rms share the same baseline values given in Table 1 for interest rate r,
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debt tax bene�t rate �, bankruptcy recovery rate �, payout rate �, current �rm fundamental

V0, and investors�liquidity shock intensity �. We let A rated �rms have fundamental volatility

� = 21% and bond trading cost k = 0:5%; while BB rated �rms have � = 23% and k = 1:0%:

For each A rated �rm, we calibrate its leverage (i.e., coupon payment C and debt face value

P ) so that the �rm issues new bonds at par and these bonds have a credit spread of 100 basis

points at issuance. For each BB rated �rm, we calibrate its leverage so that its newly issued

par bonds have a credit spread of 330 basis points. These parameter choices are discussed

in Section 4.1.

For each of the �rms, Table 2 reports its bond spread when � = 1 (the baseline), 2; and

4; together with the total spread change from the baseline and the part caused by increased

default risk. As � changes from 1 to 2, liquidity premium doubles from 100 bps to 200 for

credit spread of a BB rated �rm and from 50 to 100 for an A rated �rm. Similarly, As �

changes from 1 to 4, the liquidity premium quadruples. According to Bao, Pan, and Wang

(2010), trading cost of corporate bonds more than quadrupled during the recent �nancial

crisis. Thus, we interpret the change of � from 1 to 2 as a modest shock to market liquidity

and from 1 to 4 as a severe crisis shock.

Table 2 shows that credit spreads of BB rated �rms are more sensitive to the same shock

to market liquidity than those of A rated �rms. Furthermore, for a given debt maturity,

increased default risk contributes to a greater fraction of credit spread increase of the BB

rated �rm. This is because the weaker BB rated �rm is closer to its default boundary and

thus more vulnerable to any increase in default boundary caused by the shock to market

liquidity. This result sheds some light on the so-called �ight-to-quality phenomenon. After

major liquidity disruptions in �nancial markets, prices (credit spreads) of low quality bonds

drop (rise) much more than those of high quality bonds.13

Table 2 also o¤ers calibrated magnitude of the e¤ect of the market liquidity shock on

credit risk of di¤erent �rms. For �rms with 1 year debt maturity (�nancial �rms), the modest

liquidity shock of � from 1 to 2 increases default component of credit spread of a BB rated

�rm by 69:6 basis points (which contributes to 41% of the net credit spread increase) and

that of an A rated �rm by 11:7 basis points (18:8% of the credit spread increase). While the

13Recent episodes include the stock market crash of 1987, the events surrounding the Russian default and
the crisis of LTCM in 1998, the events after the attacks of 9/11 in 2001, and the credit crisis of 2007/2008.
See BIS report (1999) and Fender, Ho, and Hordahl (2009) for reports of �ight to quality during the 1998
LTCM crisis and the period around the bankruptcy of Lehman Brothers in September 2008. Several recent
studies, e.g., de Jong and Driessen (2006), Chen, Lesmond, and Wei (2007), Acharya, Amihud, and Bharath
(2009) provide systematic evidence that the exposures (or betas) of speculative-grade corporate bonds to
market liquidity shocks rise substantially during times of severe market illiquidity and volatility.
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e¤ect is smaller for the A rated �rm, it is nevertheless signi�cant. The shock can also cause

a signi�cant e¤ect on credit risk of �rms with 6 year debt maturity (non-�nancial �rms).

Speci�cally, the e¤ect on the default component of credit spread of a BB rated �rm is 28:9

basis points (22:4% of the credit spread increase), and the e¤ect on an A rated �rm is 6:4

basis points (11:3% of the credit spread increase). For the more severe liquidity shock of �

from 1 to 4; increased credit risk contributes to similar fractions of credit spread increases

of these �rms.

5 Optimal Leverage

Given the substantial impact of market liquidity on the �rm�s credit risk, it is important for

the �rm to incorporate this e¤ect in its initial leverage choice at t = 0. We now discuss the

�rm�s optimal leverage. Like Leland and Toft (1996), we take the unlevered asset value V0

as given and compute the levered �rm value by

v (C;P; V0) = E (C;P; V0;VB (C;P )) +D (C;P; V0;VB (C;P )) ; (14)

where the equity value E (�), debt value D (�), and default boundary VB (�) are given in
(22), (8), and (12), respectively. For a given annual coupon payment C, we choose the

aggregate debt face value P (C) such that the bond is issued at par at t = 0, i.e., P =

D (C;P; V0;VB (C;P )). We then search for the optimal C� that maximizes (14) and calculate

the optimal leverage ratio as

D (C�; P (C�) ; V0;VB (C
�; P (C�)))

E (C�; P �; V0;VB (C�; P (C�))) +D (C�; P (C�) ; V0;VB (C�; P (C�)))
:

In analyzing the �rm�s optimal leverage, we focus on e¤ects of three model parameters:

bond trading cost k; debt maturity m; and the �rm�s asset volatility �: Figure 4 depicts the

�rm�s optimal leverage with respect to bond trading cost k (Panel A) and debt maturity m

(Panel B) for two �rms, one with asset volatility � = 15% and the other with � = 23%. Both

panels shows that the optimal leverage of the �rm with the lower asset volatility is uniformly

higher than the other �rm, because the former �rm can a¤ord to use a higher leverage due

to its smaller credit risk.

Panel A shows that the optimal leverage of both �rms decreases with bond trading cost.

As k increases from 10 to 150 basis points, the optimal leverage of the �rm with the higher

asset volatility drops from 35:7% to 29:2%. This pattern is consistent with the key insight

of our model that as debt market becomes more illiquid, the �rm�s default risk rises, which

in turn motivates the �rm to use a lower leverage.
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Figure 4: The �rm�s optimal leverage. This �gure uses the baseline parameters listed in Table
1. Panel A depicts the optimal initial leverage with respect to the bond trading cost k for two
�rms, one with asset volatility � = 15% and the other with � = 23%: Panel B depicts the optimal
leverage with respect to debt maturity m for these two �rms.

Panel B shows that each �rm�s optimal leverage increases with its debt maturity. As m

increases from 0:25 to 6; the optimal leverage of the �rm with 23% asset volatility increases

from 25:6% to 56:4%. This pattern is again consistent with our earlier result that short-

term debt ampli�es �rms�rollover risk. As a result, it is optimal to use a lower leverage

for shorter debt maturity. This implication leads to a further question on �rms�optimal

debt maturity. In practice, bonds with shorter maturities tend to be more liquid (e.g.,

Bao, Pan, and Wang (2010)) and thus demand smaller liquidity premia. In the earlier

version of this paper (NBER working paper #15653), we allow the �rm to issue two types

of bonds with di¤erent maturities and trading costs, and then analyze the tradeo¤ between

lower liquidity premium and higher rollover risk of short-term debt in determining the �rm�s

optimal maturity structure. To save space, we do not present this analysis in the current

version and instead refer interested readers to the earlier version.

It is well known that �rm leverage predicted by the Leland model tends to be too high

relative to the level observed in the data, e.g., Goldstein, Ju, and Leland (2001). Given

the presence of realistic rollover risk faced by �rms, our analysis implies that illiquidity of

secondary bond market motivates �rms to use lower leverages, and thus helps reconcile the

observed leverage level with standard structural models.

While our model treats market liquidity as independent of �rm fundamental, market

liquidity tends to be cyclical with the aggregate economy. One can formally analyze this

e¤ect by extending our model to allow time-varying liquidity regimes that are correlated with

investors�pricing kernels. It is intuitive that a �rm�s optimal leverage and maturity choices

should depend on the aggregate bond market liquidity regime, which in turn may have useful
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implications for leverage/credit cycles that we have observed in the past. Suppose that bond

market liquidity follows a binary-state Markovian structure, and that �rms may adjust their

leverage and debt maturity at a certain adjustment cost. Then, in the high liquidity state,

we expect �rms to use a relatively high leverage with shorter debt maturity because of the

lower rollover risk they face. Once the liquidity condition switches to the low regime, �rms

are likely to encounter mounting rollover losses, which, as we analyzed in our model, can

lead them to default earlier rather than to reduce their leverage at the expenses of equity

holders. Although a thorough examination of this credit cycle is challenging, the economic

mechanism is important and worth pursuing in future research.

6 Model Implications

6.1 Predicting Defaults

Structural credit models, e.g., Merton (1973), Longsta¤ and Schwarz (1995), and Leland

(1994), are widely used to predict �rms�default probabilities. The models share a common

feature that a �rm defaults when its fundamental drops below a default boundary. In the

Merton model, the default occurs only at debt maturity if the �rm fundamental is below

its debt level. In the Longsta¤-Schwarz model, a �rm defaults when its fundamental drops

below an exogenously speci�ed threshold for the �rst time. In the Leland model, the default

boundary is endogenously determined by the equity value. Together, these models highlight

distance to default, which is essentially a volatility adjusted measure of �rm leverage, as the

key variable for predicting defaults.

Several empirical studies have examined the empirical performance of the distance to

default measure constructed from these models. Leland (2004) calibrates the Leland-Toft

model and �nds that it can match the average long-term default frequencies of both in-

vestment grade and non-investment grade bonds. Bharath and Shumway (2008) �nd that

while the Merton model implemented by the KMV corporation provides a useful predictor

of future defaults, it does not produce a su¢ cient statistic for default probability. Davy-

denko (2007) compares the characteristics of �rms at times of bankruptcy and �nds a rich

heterogeneity. Some �rms default even when their fundamentals are still above the default

boundary calibrated from the Leland-Toft model, while other �rms manage not to default

for years even though their fundamentals are below the boundary.

Our model provides a new perspective: secondary bond market liquidity can act as

an additional factor in explaining the heterogeneity in �rm defaults. In particular, our
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model modi�es distance to default, de�ned in a standard structural credit framework, by

incorporating the e¤ect of market liquidity through �rms�endogenous default boundary.

A crucial issue for predicting defaults of bond portfolios is the default correlation between

di¤erent �rms. Du¢ e et al. (2009) �nd that the commonly used variables, such as distance

to default, trailing stock returns of �rms and the market, and risk-free interest rate, can only

capture a small fraction of �rms�default correlation. Instead, they introduce common latent

factors to model correlated defaults.

Our model shows that correlated shocks to the liquidity of di¤erent �rms�bonds, which

have been largely ignored in this literature, can help explain correlated defaults. In our

model, it is intuitive to interpret a shock to bond investors� liquidity shock intensity � as

common to all �rms, while a shock to the trading cost of a bond k as �rm idiosyncratic.

Our model is thus suitable for employing the bond market liquidity factors identi�ed in the

empirical literature (e.g., Chen, Lesmond, and Wei (2007), and Bao, Pan and Wang (2010))

to predict �rm defaults.

On a related issue, Collin-Dufresne, Goldstein, and Martin (2001) �nd that proxies for

both changes in the probability of future default based on standard credit risk models and

for changes in the recovery rate can only explain about 25% of the observed credit spread

changes. On the other hand, they �nd that the residuals from these regressions are highly

cross-correlated, and that over 75% of the variation in the residuals is due to the �rst

principal component. The source of this systematic component still remains unclear. Our

model suggests aggregate shocks to the liquidity of bond markets are a possible candidate.

6.2 Decomposing Credit Spreads

Both academics and policy makers have recognized the important e¤ect of liquidity premium

on credit spreads, but tend to treat it as independent from default premium. This is probably

due to the fact that the existing structural credit risk models ignore liquidity e¤ects. Our

model demonstrates that market liquidity can a¤ect �rms�default risk through the rollover-

risk channel. If market liquidity deteriorates, not only is there a greater liquidity premium,

but there is also a greater default premium as increasing rollover losses cause equity holders

to default earlier. This implies that default premium and liquidity premium in �rms�credit

spreads are correlated. The existence of this correlation has important implications for

empirical studies that aim to decompose credit spreads and to test liquidity e¤ects in credit

spreads.

Several studies, e.g., Longsta¤, Mithal, and Neis (2005), Beber, Brandt, and Kavajecz
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(2009), and Schwarz (2009), decompose �rms�credit spreads to assess the quantitative con-

tributions of liquidity premium and default premium. These studies typically use spread of

a �rm�s credit default swap (CDS) to measure its default premium as CDS contracts tend

to be liquid. A commonly used panel regression is

Credit_Spreadi;t = �+ � � CDSi;t + � � LIQi;t + �i;t; (15)

where Credit_Spreadi;t and CDSi;t are �rm i�s credit spread and CDS spread, and LIQi;t

is a measure of the �rm�s bond liquidity. Longsta¤, Mithal, and Neis (2005), and Beber,

Brandt, and Kavajecz (2009) �nd that a majority of the cross-sectional variation of credit

spreads can be explained by the CDS spreads, although the coe¢ cients of the liquidity

measures (such as bid-ask spread and market depth) are also signi�cant. Schwarz (2009)

reports a greater contribution by liquidity measures.

Our model cautions against over-interpreting quantitative results from such a decompo-

sition. As the CDS spread also captures the premium related to endogenous default driven

by market liquidity, the coe¢ cient of the liquidity measure under-estimates the total e¤ect

of liquidity on the credit spread. Formally, our model implies the following data generating

process for a �rm�s CDS:

CDSi;t = f (Vi;t) + (0 + 1Vi;t) � LIQi;t + vi;t:

The �rm�s CDS is not only determined by the �rm fundamental Vi;t, but also by its LIQi;t.

Here, 0 > 0 captures the higher default boundary when liquidity deteriorates, and 1 < 0

captures the potential �ight to quality property illustrated in Section 4.4. Suppose the �rm

fundamental Vt is �xed and, without loss of generality, set at Vt = 0. Then, the e¤ect

of liquidity on the �rm�s credit spread is � + �0, where � and � are given in equation

(15). However, an econometrician who runs regression in the form of equation (15) will only

attribute � as the e¤ect of liquidity on the �rm�s credit spread.

This critique is especially relevant for tests of liquidity e¤ects on credit spreads. Several

recent studies, e.g., Taylor and Williams (2009), McAndrews, Sarkar, and Wang (2008), and

Wu (2008), test whether the term auction facility (TAF) created by the Federal Reserve

during the recent credit crisis had improved the funding liquidity of banks and �nancial

institutions. These studies all interpret this potential e¤ect as a liquidity e¤ect, which

should lead to a lower spread between the LIBOR rate and overnight index swap (OIS) rate.

Because LIBOR-OIS spread may include default risk, these studies all control for default

premium in the LIBOR-OIS spread by using certain measures of banks�credit risk, such as
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CDS spread. Taylor and Williams (2009) use the following regression:

(LIBOR�OIS)t = a � CDSt + b � TAFt + �t;

where CDSt is the median CDS spread for 15 of the 16 banks in the US dollar LIBOR survey

and TAFt is a dummy used to represent activities of the TAF. They �nd that the regression

coe¢ cient b is insigni�cant and thus conclude that the TAF had an insigni�cant e¤ect on the

LIBOR-OIS spread.14 Again, as suggested by our model, the liquidity e¤ect created by the

TAF should also feedback into the default premium in the LIBOR-OIS spread. As a result,

by controlling for the CDS spread, the coe¢ cient of the TAF dummy under-estimates the

liquidity e¤ect of TAF.

6.3 Maturity Risk

Several recent empirical studies �nd that �rms with shorter debt maturity or with more

short-term debt tend to face greater default risk during the recent credit crisis. This so-called

maturity-risk e¤ect essentially re�ects the �rms�rollover risk and has been largely ignored

by both academics and industry practitioners. Almeida et al. (2009) use the fraction of long-

term debt that is scheduled to mature in the near future as a measure of rollover risk faced by

�rms. This measure avoids the potential endogeneity problems related to �rms�initial debt

maturity choice. They �nd that during the recent credit crisis, �rms facing greater rollover

risk tend to have more pronounced investment decline than otherwise similar �rms. Hu

(2010) further shows that these �rms also have higher credit spreads. Our model explains

this phenomenon (Proposition 3) and thus highlights �rms�debt maturity structure as a

determinant of their credit risk.

In assigning credit ratings, rating agencies tend to ignore the e¤ects of �rms�debt matu-

rity structures. Gopalan, Song, and Yerramilli (2009) �nd that �rms with a higher proportion

of short-term debt are more likely to experience multi-notch credit-rating downgrades. Their

evidence suggests that credit ratings underestimate maturity risk. Interestingly, rating agen-

cies have recently started to incorporate this risk into credit ratings. For example, one of

the major rating agencies, Standard & Poor�s, has recently improved its approach to rating

speculative-grade credits by adjusting for maturity risk:

�Although we believe that our enhanced analytics will not have a material e¤ect

on the majority of our current ratings, individual ratings may be revised. For

14McAndrews, Sarkar, and Wang (2008) and Wu (2008) use similar regression speci�cations but di¤erent
dummy measures of the TAF and �nd more signi�cant regression coe¢ cients.
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example, a company with heavy debt maturities over the near term (especially

considering the current market conditions) would face more credit risk, notwith-

standing benign long-term prospects.�Ratings Direct (2008, page 6).

6.4 Managing Credit and Liquidity Risk

Our model also has an important implication for managing credit and liquidity risk of cor-

porate bonds. We can measure the exposures of a bond to fundamental shocks and liquidity

shocks by the derivatives of the bond price function with respect to Vt and �, which we call

the fundamental beta and liquidity beta:

�V �
@d (Vt; �;VB (�))

@V
;

and

�� �
dd (Vt; �;VB (�))

d�
=
@d (Vt; �;VB (�))

@�
+
@d (Vt; �;VB (�))

@VB
� dVB (�)

d�
:

Note that the liquidity beta contains two components, capturing the e¤ects of a liquidity

shock through the liquidity-premium channel and the rollover-risk channel.

As investors cannot constantly revise hedges of their portfolios, variability of the funda-

mental beta and liquidity beta directly a¤ects the residual risk that remains in their portfolios

even if they initially hedge away the fundamental beta and liquidity beta. To hedge a stock

option, the celebrated Black-Scholes model requires a continuous revision of the delta hedg-

ing position in order to maintain a perfect hedge when its underlying stock price �uctuates.

However, such a strategy requires in�nite trading and is thus precluded by transaction costs

(e.g., Leland (1985)). To reduce transaction costs, institutions often choose to follow discrete

revisions of their hedging positions. Then, the gamma of the option (i.e., variability of its

delta) is important in determining the residual risk, and the higher the gamma, the greater

the residual risk in using the discrete delta-hedging strategy. The same argument implies

that the variability of fundamental beta and liquidity beta of a bond determines the residual

risk in applying discrete hedges of the bond�s fundamental and liquidity risk.

To highlight the variability of the fundamental beta and liquidity beta implied by our

model, we use a benchmark structural credit risk model, which is otherwise identical to our

model except that the default boundary is exogenously speci�ed (as in Longsta¤and Schwarz

(1995)). We �x the exogenous default boundary at the level derived from our model under

the baseline parameters.

Figure 5 depicts the fundamental beta and liquidity beta with respect to bond investors�

liquidity shock intensity �. The dotted lines in Panels A and B show that if the �rm�s default
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Figure 5: Variability of fundamental beta and liquidity beta. This �gure uses the baseline para-
meters listed in Table 1. Panel A depicts the fundamental beta of newly issued bonds with respect
to bond investors�liquidity shock intensity � and Panel B depicts the liquidity beta of newly issued
bonds with respect to �.

boundary is �xed at the baseline level, the bond�s fundamental beta and liquidity beta do

not vary much with �. However, when the default boundary is endogenously determined by

equity holders, both betas (plotted in the solid lines) vary substantially with �: This �gure

demonstrates that through the rollover-risk channel, �uctuation of debt market liquidity can

cause large variability in bonds�fundamental beta and liquidity beta. As a result, investors

should expect substantial residual risk even after an initial perfect hedge.

7 Conclusion

This paper provides a model to analyze e¤ects of debt market liquidity on a �rm�s credit

risk through its debt rollover. When a shock to market liquidity pushes down a �rm�s

bond prices, it ampli�es the con�ict of interest between debt and equity holders because, to

avoid bankruptcy, equity holders have to absorb the �rm�s losses from rolling over maturing

bonds at the reduced market prices. As a result, equity holders choose to default at a

higher fundamental threshold even if the �rm can freely raise more equity. This implies

that deterioration of debt market liquidity not only leads to a higher liquidity premium but

also a higher default premium. This implication justi�es market liquidity as a predictor of

�rm defaults, and cautions against treating credit spread as sum of independent liquidity and

default premia. Our model also shows that �rms with weaker fundamentals are more exposed

to deterioration of market liquidity and thus helps explain the �ight-to-quality phenomenon.

The intricate interaction between a bond�s liquidity risk and fundamental risk also makes

its risk exposures highly variable and di¢ cult to manage. Finally, our model highlights the

role of short-term debt in amplifying a �rm�s rollover risk, and thus calls for more attention
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to be given to debt maturity structure when assessing credit risk.

A Appendix

A.1 Proof for Proposition 1

We omit the time subscript in Vt in the following derivation. The equity value satis�es the
following di¤erential equation:

rE = (r � �)V EV +
1

2
�2V 2EV V + d (V;m) + �V � [(1� �)C + p] :

De�ne

v � ln
�
V

VB

�
: (16)

Then, we have

rE =

�
r � � � 1

2
�2
�
Ev +

1

2
�2Evv + d (v;m) + �VBe

v � [(1� �)C + p] ; (17)

with the boundary conditions

E (0) = 0 and Ev (0) = l;

where the free parameter l is to be determined by the boundary condition that as v ! 1,
the equity value is linear in V .
De�ne the Laplace transformation of E (v) as

F (s) � L [E (v)] =
Z 1

0

e�svE (v) dv:

Then, applying the Laplace transformation to both sides of (17), we have:

rF (s) =

�
r � � � 1

2
�2
�
L [Ev] +

1

2
�2L [Evv] + L [d (v;m)] +

�VB
s� 1 �

(1� �)C + p
s

:

Note that
L [Ev] = sF (s)� E (0) = sF (s)

and
L [Evv] = s

2F (s)� sE (0)� Ev (0) = s2F (s)� l:

Thus, we have�
r �

�
r � � � 1

2
�2
�
s� 1

2
�2s2

�
F (s) = L [d (v;m)]� 1

2
�2l +

�VB
s� 1 �

(1� �)C + p
s

:
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De�ne � > 0 and � < 0 to be the two roots of the following equation with respect to s:

r �
�
r � � � 1

2
�2
�
s� 1

2
�2s2 = 0:

That is, �1
2
�2 (s� �) (s+ ) = 0. Direct calculation gives

� = z � a > 1; and  = a+ z > 0

where

a � r � � � �2=2
�2

; and z � (a2�4 + 2r�2)
1=2

�2
:

Then,

1

2
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�
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Recall that d (v;m) is given in (8). By plugging it into (18), we have
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Call the �rst line in (19) bF (s). It is easy to work out its Laplace inverse by using (16) to
derive that �VB

(��1)(+1)e
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Call the second line in (19) F (s). One can show that
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We need to calculate the Laplace inverse of F (s), which we call E (v). To this end, we de�ne
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Then,
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Now we impose the boundary condition at v !1. The equity value has to grow linearly
when V !1. Since e�v =

�
V
VB

��
and � > 1, to avoid explosion we require the coe¢ cient of

e�v in E(v) to collapse to 0. By collecting the coe¢ cients of e�v and noting that ���a = �z,
 = 2a+ �, and 1

2
[z2 � a2]�2m = rm, we have

0 = � �VB
� � 1 +

�
(1� �)C +

�
1� e�(r+�k)m

��
p� c

r + �k

��
1

�
+
�2

2
l

+e�(r+�k)m
�
p� c

r + �k

�24 fN(�a�pm)�ermN(�z�pm)g
�

+
fN(a�pm)�ermN(�z�pm)g
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+

�
�VB
m

� c

r + �k

�26664 �
(
N(�bz�pm)�e 12 [z2�bz2]�2mN(�z�pm))

a�bz+�
�

(
N(bz�pm)�e 12 [z2�bz2]�2mN(�z�pm))

a+bz+�

37775 :
This equation allows us to solve l.
Then, we get a closed-form expression for the equity value:

E (Vt) = Vt �
�VB
z�2

e�vt

 + 1
�
(1� �)C +

�
1� e�(r+�k)m

� h
p� c

r+�k

i
z�2

�
1

�
+
(1� e�vt)



�
+
1

z�2

�
e�(r+�k)m

�
p� c

r + �k

�
A (a)�

�
�VB
m

� c

r + �k

�
A (bz)� ; (22)

where

A (y) � 1

z � y (K (vt; a; y; ) + k (vt; a;�y;��)) +
1

z + y
(K (vt; a;�y; ) + k (vt; a; y;��)) ;

where K (vt; a; y; ) is de�ned in Eq. (20) and

k (vt; a; y;��) = e
1
2 [(���a)

2�y2]�2me�vN

�
�v + (�� � a)�2m

�
p
m

�
� e�(a+y)vN

�
�v + y�2m
�
p
m

�
:
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Basically, k (vt; a; y;��) is K (vt; a; y;��) but without the �rst termh
N
�
y�
p
m
�
� e

1
2 [(���a)

2�y2]�2mN
�
(�� � a)�

p
m
�i
e�v;

because this part has to be zero as E cannot explode when v !1.
The smooth pasting condition implies that E 0 (VB) = 0, or E 0v (0) = l = 0. Then we can

use condition (21) to obtain VB, which is given in (12).

A.2 Proof of Proposition 2

We �rst �x the default boundary VB. According to the Feynman-Kac formula, PDE (5)
implies that at time 0; the price of a bond with time-to-maturity � satis�es

d(V0; � ;VB) = E0
�R �^�B
0

e�(r+�k)scds+ e�(r+�k)�(�^�B)d (� ^ �B)
�
; (23)

where �B = inf ft : Vt = VBg is the �rst time of Vt hitting VB. Vt follows (1), and d (� ^ �B)
is de�ned by the boundary conditions in (6) and (7):

d (� ^ �B) =
�

1
m
�VB if � ^ �B = �B
p if � ^ �B = �

:

As an increase in � leads to a higher discount rate for the bond�s coupon payment and
principal payment, a path-by-path argument implies that the bond price d decreases with �.
Similarly, the equity value can be written as

E(V0; � ;VB) = E0
�R �B

0
e�rs [�Vs � (1� �)C + d (Vs;m� s; �)� p] ds

	
;

where we write the dependence of d on � explicitly. Again, a path-by-path argument implies
that once �xing VB, the equity value E decreases with �.
We now consider two di¤erent values of �: �1 < �2. Denote the corresponding default

boundaries as VB;1 and VB;2. We need to show that VB;1 < VB;2. Suppose that the opposite
is true, i.e., VB;1 � VB;2. Since the equity value is zero on the default boundary, we have

E (VB;1;VB;1; �1) = E (VB;2;VB;2; �2) = 0;

where we expand the notation to let the equity value E(Vt;VB; �) explicitly depend on VB (the
default boundary) and � (the bond holders�liquidity shock intensity). Also, the optimality
of the default boundary implies that

0 = E (VB;1;VB;1; �1) > E (VB;1;VB;2; �1) :

Since E decreases with �, E (VB;1;VB;2; �1) > E (VB;1;VB;2; �2). Because VB;1 � VB;2 accord-
ing to our counter-factual hypothesis, E (VB;1;VB;2; �2) < 0. This contradicts limited liability
which says that

E (Vt;VB;2; �2) � 0 for all Vt � VB;2:

Therefore VB;1 < VB;2.
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A.3 Proof of Proposition 3

We �rst consider the case that P = C
r+�k

. Under this assumption, the endogenous bankruptcy
boundary VB is given by

VB (m) =

(1��)C
�

+
n

C
r+�k

1
m
[B (�bz) +B (bz)]o

�
��1 +

�
m
[B (�bz) +B (bz)] ; (24)

where
B (x) =

1

z + x

h
N
�
x�
p
m
�
� e

1
2 [z2�x2]�2mN

�
�z�

p
m
�i
:

De�ne

Y (m) � 1

z � bz hN ��bz�pm�� e 12 [z2�bz2]�2mN ��z�pm�i
+

1

z + bz hN �bz�pm�� e 12 [z2�bz2]�2mN ��z�pm�i ; (25)

and X (m) � 1
m
Y (m) :

It is clear that Y (0) = 0. Note that

Y 0 (m) =
1

z � bz
"
�n (�bz�pm) bz� 1

2
p
m
� e

1
2 [z2�bz2]�2m 1

2
[z2 � bz2]�2N (�z�pm)

+e
1
2 [z2�bz2]�2mn (�z�pm) z� 1

2
p
m

#

+
1

z + bz
"
n (bz�pm) bz� 1

2
p
m
� e

1
2 [z2�bz2]�2m 1

2
[z2 � bz2]�2N (�z�pm)

+e
1
2 [z2�bz2]�2mn (�z�pm) z� 1

2
p
m

#
=

�p
2�m

e�
1
2
bz2�2m � e 12 [z2�bz2]�2mz�2N ��z�pm�

=
�p
m
e
1
2 [z2�bz2]�2m �n �z�pm�� z�pmN ��z�pm�� ; (26)

where n (x) = 1p
2�
e�

1
2
x2. The following lemma shows that Y 0 (m) > 0.

Lemma 4 For all m > 0, j (m) � n (z�
p
m)� z�

p
mN (�z�

p
m) > 0 , and j0 (m) < 0.

Proof. Let t = z�
p
m. When t!1, n (t)� tN (�t) converges to zero. When t = 0, it is

n (0), which is positive. Its derivative is

n0 (t)�N (�t) + tn (�t) = �N (�t) < 0

as n0 (t) = �tn0 (t). Because the derivative is always negative, n (t) � tN (�t) > 0 for
t 2 (0;1).

This lemma shows that Y (m) > 0: Therefore, X (m) > 0. We need to show that

VB (m) =

(1��)C
�

+ C
r+�k

X (m)
�
��1 + �X (m)
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is decreasing with m. Since 1
r+�k

�
��1 >

(1��)�
�
, it su¢ ces to show that

X 0 (m) =
Y 0 (m)m� Y (m)

m2
< 0:

We now show that S (m) � Y 0 (m)m� Y (m) < 0. Note that

S 0 (m) = Y 00 (m)m+ Y 0 (m)� Y 0 (m) = Y 00 (m)m;

where

Y 00 (m) =
d

dm

�
�p
m
e
1
2 [z2�bz2]�2m�� 1p

2�
e�

1
2
z2�2m � z�

p
mN

�
�z�

p
m
��

+
�p
m
e
1
2 [z2�bz2]�2m d

dm

�
1p
2�
e�

1
2
z2�2m � z�

p
mN

�
�z�

p
m
��
:

The �rst term is negative because z2� bz2 < 0. The second term is also negative because the
derivative is

� 1p
2�
e�

1
2
z2�2m1

2
z2�2 + z�

p
mn

�
�z�

p
m
� z�

2
p
m
� z�

2
p
m
N
�
�z�

p
m
�

= � z�

2
p
m
N
�
�z�

p
m
�
< 0:

Therefore, Y 00 (m) < 0 and S 0 (m) = Y 00 (m)m < 0: Thus, we conclude that S (m) < 0 for
all m, which in turn implies that V 0B (m) < 0 in the case of P =

C
r+�k

.

Now we consider the case that P > C
r+�k

. Let u � P � C
r+�k

> 0, w (m) � (1�e�(r+�k)m)
m

;

and W (m) = b(�a)+b(a)
m

: We know immediately that

w0 (m) < 0; and w (m) � w (0) = r + �k: (27)

Then, we have

VB (m) =

(1��)C+(1�e�(r+�k)m) 1m(P�
C

r+�k)
�

+

(
1
m

�
P � C

r+�k

�
[b (�a) + b (a)]

+ C
r+�k

1
m
[B (�bz) +B (bz)]

)
�
��1 +

�
m
[B (�bz) +B (bz)]

=

(1��)C+uw(m)
�

+ uW (m) + C
r+�k

X (m)
�
��1 + �X (m)

By taking derivative with respect to m, we have

V 0B (m) /
�
uw0 (m)

�
+ uW 0 (m)

��
�

� � 1 + �X (m)
�
+

C

r + �k
X 0 (m)

�

� � 1

�
�
(1� �)C + uw (m)

�
+ uW (m)

�
�X 0 (m)

< uW 0 (m)
�

� � 1 +X
0 (m)

�
��(1� �)C + uw (m)

�
+

C

r + �k

�

� � 1

�
(28)

+u� [W 0 (m)X (m)�W (m)X 0 (m)] :
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We will show that

W 0 (m) < 0 and W 0 (m)X (m)�W (m)X 0 (m) < 0: (29)

Given these two results, the �rst and third terms of (28) are negative. The second term is
negative given the su¢ cient condition that

C

r + �k

�

� � 1 > �
(1� �)C + u (r + �k)

�
> �

(1� �)C + uw (0)
�

using the fact in (27). Thus, V
0
B (m) < 0:

We now prove the �rst part of (29). Note that

W (m) =
b (�a) + b (a)

m
=
e�(r+�k)m

m

�
1
z�a [N (�a�

p
m)� ermN (�z�

p
m)]

+ 1
z+a

[N (a�
p
m)� ermN (�z�

p
m)]

�
:

Let

Q (m) � 1

z � a
�
N
�
�a�

p
m
�
� ermN

�
�z�

p
m
��
+

1

z + a

�
N
�
a�
p
m
�
� ermN

�
�z�

p
m
��
:

Note its resemblance to the function Y (m) de�ned in (25), by recalling the de�nitions of z
and a in (9) and thus that rm = 1

2
(z2 � a2)�2m: Therefore, similar to the derivation for

Y (m), we have

Q0 (m) =
�p
m
erm

�
n
�
z�
p
m
�
� z�

p
mN

�
�z�

p
m
��
: (30)

De�ne F (m) � �p
m
[n (z�

p
m)� z�

p
mN (�z�

p
m)] : Then, Lemma 4 gives that F (m) =

�j(m)p
m
. Note that

Y 0 (m) = e��kmF (m) : (31)

Lemma 5 F (m) > 0 and F 0 (m) < 0.
Proof. Lemma 4 implies that the numerator of F (m) is positive and decreasing. Since its
denominator

p
m is positive and increasing, the claim holds true.

By taking derivative with respect tom, the claim thatW (m) = e�(r+�k)mQ(m)
m

is decreasing
is equivalent to

mQ0 (m) < (1 + (r + �k)m)Q (m) :

When m = 0, this holds in equality. Taking derivative again on both sides, and canceling
the term Q0 (m), the claim becomes equivalent to

mQ00 (m) < (r + �k)mQ0 (m) + (r + �k)Q (m) :

Note that
mQ00 (m) = � �

2
p
m3
ermj (m) +

r�p
m
ermj (m) +

�p
m
ermj0 (m)
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where the �rst and third terms are negative according to Lemma 4, and the second term is
just rQ (m). Thus, mQ00 (m) < rQ (m), which in turn leads to the claim.
We now prove the second part of (29): W 0 (m)X (m) � W (m)X 0 (m) < 0, which is

equivalent to �
e�(r+�k)mQ (m)

�0
Y (m)� e�(r+�k)mQ (m)Y 0 (m) < 0:

Using (30) and (31), it su¢ ces to show that

F (m)
�
ermY (m)� e��kmQ (m)

�
� (r + �k)Q (m)Y (m) < 0:

When m = 0; this holds in equality. Its derivative is

F 0 (m)
�
ermY (m)� e��kmQ (m)

�
:

It is clear that ermY (m)�e��kmQ (m) > 0, because it is zero when m = 0, and its derivative
is always positive. Then, according to Lemma 5 the claim holds true.

References
Acharya, Viral, Yakov Amihud, and Sreedhar Bharath (2009), Liquidity risk of corporate

bond returns, Working paper, NYU.

Acharya, Viral, Douglas Gale, and Tanju Yorulmazer (2010), Rollover risk and market
freezes, Journal of Finance, forthcoming.

Acharya, Viral, Heitor Almeida, and Murillo Campello (2010), Aggregate risk and the
choice between cash and lines of credit, Working paper, NYU.

Almeida, Heitor, Murillo Campello, Bruno Laranjeira, and Scott Weisbenner (2009), Cor-
porate debt maturity and the real e¤ects of the 2007 credit crisis, Working paper,
University of Illinois.

Amihud, Yakov and Haim Mendelson (1986), Asset pricing and the bid-ask spread, Journal
of Financial Economics 17, 223-249.

Bank for International Settlements (1999), A review of �nancial market events in autumn
1998, Report submitted by the Committee on the Global Financial System.

Bao, Jack, Jun Pan, and Jiang Wang (2010), Liquidity of corporate bonds, Journal of
Finance, forthcoming.

Beber, Alessandro, Michael Brandt, and Kenneth A. Kavajecz (2009), Flight-to-quality or
�ight-to-liquidity? Evidence from the Euro-area bond market, Review of Financial
Studies 22, 925-957.

Black, Fischer, and John Cox, 1976, Valuing corporate securities: some e¤ects of bond
indenture provisions, Journal of Finance 31, 351-367.

Bessembinder, Hendrik, William Maxwell, and Kumar Venkataraman (2006), Market trans-
parency, liquidity externalities, and institutional trading costs in corporate bonds,
Journal of Financial Economics 82, 251-288.

37



Bolton, Patrick, Hui Chen, and Neng Wang (2010), A uni�ed theory of Tobin�s q, corporate
investment, �nancing, and risk management, Journal of Finance, forthcoming.

Brunnermeier, Markus (2009), Deciphering the liquidity and credit crunch 2007-08, Journal
of Economic Perspectives 23, 77-100.

Brunnermeier, Markus and Lasse Pedersen (2009), Market liquidity and funding liquidity,
Review of Financial Studies 22, 2201-2238.

Brunnermeier, Markus and Martin Oehmke (2009), The maturity rat race, Working paper,
Princeton University.

Campello, Murillo, John Graham, Erasmo Giambona, and Campbell Harvey (2010), Liq-
uidity management and corporate investment during a �nancial crisis, Working paper,
Duke University.

Chen, Long, David Lesmond, and Jason Wei (2007), Corporate yield spreads and bond
liquidity, Journal of Finance 62, 119-149.

Chen, Nan and S. G. Kou (2009), Credit spreads, optimal capital structure, and implied
volatility with endogenous default and jump risk, Mathematical Finance 19, 343-378.

Collin-Dufresne, Pierre, Robert Goldstein, J Spencer Martin (2001), The determinants of
credit spread changes, Journal of Finance 56, 2177-2207.

Custódio, Cláudia, Miguel Ferreira, and Luís Laureano (2010), Why are U.S. �rms using
more short-term debt? Working paper, London School of Economics.

Diamond, Douglas (1993), Seniority and maturity of debt contracts, Journal of Financial
Economics 33, 341-368.

Diamond, Douglas and Zhiguo He (2010), A theory of debt maturity: the long and short
of debt overhang, Working paper, University of Chicago.

Du¢ e, Darrell (2009), Contractual methods for out-of-court restructuring of systemically
important �nancial institutions, Submission Requested by the U.S. Treasury Working
Group on Bank Capital.

Du¢ e, Darrell, Andreas Eckner, Guillaumel Horel, and Leandro Saita (2009), Frailty cor-
related default, Journal of Finance 64, 2089-2123.

Edwards, Amy, Lawrence Harris, and Michael Piwowar (2007), Corporate bond market
transparency and transaction costs, Journal of Finance 62, 1421-1451.

Ericsson, Jan and Olivier Renault (2006), Liquidity and credit risk, Journal of Finance 61,
2219-2250.

European Fund and Asset Management Association, European Securitization Forum, and
Investment Management Association (2008), Asset management industry guidelines to
address over-reliance upon ratings, available at http://www.efama.org.

Fender, Ingo, Corrinne Ho, and Peter Hördahl (2009), Overview: investors ponder depth
and duration of global downturn, BIS Report.

Flannery, Mark (2005), No pain, no gain? e¤ecting market discipline via �reverse convertible
debentures�, in Hal S. Scott (ed.), Risk Based Capital Adequacy, Oxford University
Press.

38



Glosten, Lawrence and Paul Milgrom (1985), Bid, ask and transaction prices in a specialist
market with heterogeneously informed traders, Journal of Financial Economics 14,
71-100.

Goldstein, Robert, Nengjiu Ju, and Hayne Leland (2001), An ebit-based model of dynamic
capital structure, Journal of Business 74, 483-512.

Gopalan, Radhakrishnan, Fenghua Song, and Vijay Yerramilli (2009), Do credit rating
agencies underestimate liquidity risk?, Working paper, Washington University.

Guedes, Jose and Tim Opler (1996), The determinants of the maturity of corporate debt
issues, Journal of Finance 51, 1809-1833.

Hackbarth, Dirk, Jianjun Miao, and Erwan Morellec (2006), Capital structure, credit risk,
and macroeconomic conditions, Journal of Financial Economics 82, 519-550.

He, Zhiguo (2011), A model of dynamic compensation and capital structure, Journal of
Financial Economics 100, 351-366.

He, Zhiguo and Wei Xiong (2010), Dynamic debt runs, Working paper, University of
Chicago and Princeton University.

Hu, Xing (2010), Rollover risk and credit spreads in the �nancial crisis of 2008, Working
paper, Princeton University.

Huang, Jingzhi and Ming Huang (2003), How much of the corporate-treasury yield spread
is due to credit risk? Working paper , Penn State University and Stanford University.

Huang, Jing-zhi and Hao Zhou (2008), Speci�cation analysis of structural credit risk models,
Working paper, Penn State University and Federal Reserve Board.

Krishnamurthy, Arvind (2010), How debt markets have malfunctioned in the crisis, Journal
of Economic Perspectives 24(1), 3-28.

Kyle, Albert (1985), Continuous auctions and insider trading, Econometrica 53, 1315-1335.

Lambrecht, Bart and Stewart Myers (2008), Debt and managerial rents in a real-options
model of the �rm, Journal of Financial Economics 89, 209-231.

Leland, Hayne (1985), Option pricing and replication with transactions costs, Journal of
Finance 40, 1283-1301.

Leland, Hayne (1994), Corporate debt value, bond covenants, and optimal capital structure,
Journal of Finance 49, 1213-1252.

Leland, Hayne and Klaus Bjerre Toft (1996), Optimal capital structure, endogenous bank-
ruptcy, and the term structure of credit spreads, Journal of Finance 51, 987-1019.

Longsta¤, Francis, Sanjay Mithal, and Eric Neis (2004), Corporate yield spreads: Default
risk or liquidity? New evidence from the credit default swap market, Journal of Finance
59, 2213-2253.

Mahanti, Sriketan, Amrut Nashikkar, Marti Subrahmanyam, George Chacko, and Gaurav
Mallik (2008), Latent liquidity: A new measure of liquidity, with an application to
corporate bonds, Journal of Financial Economics 88, 272�298.

39



Manso,Gustavo, Bruno Strulovici and Alexei Tchistyi (2010), Performance-sensitive debt,
Review of Financial Studies, forthcoming.

McAndrews, James, Asani Sarkar, and ZhenyuWang (2008), The e¤ect of the Term Auction
Facility on the London Inter-Bank O¤ered Rate, Sta¤ Report, Federal Reserve Bank
of New York.

Merton, Robert (1974), On the pricing of corporate debt: the risk structure of interest
rates, Journal of Finance 29, 449-470.

Miller, Merton (1977), Debt and taxes, Journal of Finance 32, 261-275.

Morris Stephen and Hyun Song Shin (2004), Liquidity black holes, Review of Finance 8,
1-18.

Morris, Stephen and Hyun Song Shin (2010), Illiquidity component of credit risk, Working
paper, Princeton University.

Mur�n, Justin (2010), The supply-side determinants of loan contract strictness, Working
paper, Yale University.

Myers, Stewart (1977), The determinants of corporate borrowing, Journal of Financial
Economics 5, 147-175.

Ratings Direct (2008), Leveraged �nance: Standard & Poor�s revises its approach to rating
speculative-grade credits, Standard & Poors�, May 13, 2008.

Rossi, Marco (2009), Realized volatility, liquidity, and corporate yield spreads, Working
paper, Penn State University.

Schwarz, Krista (2009), Mind the gap: Disentangling credit and liquidity in risk spreads,
Working paper, Wharton School.

Smith, Cli¤ord and Jerold Warner (1979), On �nancial contracting: an analysis of bond
covenants, Journal of Financial Economics 7, 117-161.

Taylor, John and John Williams (2009), A black swan in the money market, American
Economic Journal: Macroeconomics 1, 58�83.

Wu, Tao (2008), On the e¤ectiveness of the Federal Reserves new liquidity facilities, Work-
ing paper, Federal Reserve Bank of Dallas.

Zhang, Yibin, Hao Zhou, and Haibin Zhou (2009), Explaining credit default swap spreads
with the equity volatility and jump risks of individual �rms, Review of Financial Studies
22, 5099-5131.

40


