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Abstract
Despite the extensive literature on the analysis of firm equity volatility, relatively little

is known about the relation between firm characteristics and volatility dynamics. This
is partly due to the lack of an appropriate modelling framework in which these research
questions can be addressed adequately. This work proposes a Hierarchical Factor GARCH
model for multivariate volatility analysis in large panels of assets. The novelty consists
of augmenting the dynamic specification with equations that link the volatility dynamics
parameters of each firm to observed and unobserved characteristics. The hierarchical
approach has features that are useful for both economic and forecasting applications. It
permits one to investigate how variation of firm variables explains variation in volatility
dynamics. Moreover, it allows for a parsimonious parameterization of a multivariate
system that is independent of its dimension, yet capable of retaining flexibility in the
individual series dynamics thanks to the random effect structure. The model is estimated
via Maximum Likelihood. The proposed methodology is used to analyse the volatility
dynamics of top U.S. financial institutions during the 2007-2009 crisis using a financial
index as common factor. Dynamics are a function of firm size, leverage, distance to default
and liquidity before the beginning of the credit crunch. Results show that leverage is the
most influential variable, and firms with high leverage have high factor exposure, high
idiosyncratic volatility as well as high sensitivity to temporary idiosyncratic volatility
shocks. Factor exposure in the crisis is also high for firms that are large, have a small
distance to default and are illiquid. Overall, the model captures a substantial portion of
cross sectional variation in volatility dynamics.
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1 Introduction

The literature on financial volatility measurement, modelling and forecasting has witnessed a
steady growth over the last three decades. Methodological advances and empirical findings in
the different areas of the discipline are surveyed in Bollerslev et al. (1994), Ghysels et al. (1996),
Poon and Granger (2003, 2005) Andersen et al. (2006), Bauwens et al. (2006) and Silvennoinen
and Teräsvirta (2009), to name a few. In the study of firm equity volatility few contribu-
tions have investigated the relation between firm characteristics and volatility dynamics. For
instance, one might be interested in assessing whether levered companies are more prone to
abrupt volatility shocks or if illiquid firms have higher volatility persistence. More generally,
there is a conspicuous amount of information on firm characteristics coming from, among other
sources, financial statements. This information can provide important economic insights on the
nature of firm’s volatility but is seldom used in this literature.

Understanding the relationship between firm characteristics and volatility dynamics is also
of particular interest in the analysis of the 2007–2009 financial crisis. The crisis has harshly
demonstrated that the collapse of a number of large financial institutions can generate vast
negative externalities to the rest of the economy. These failures are especially harmful because
they are not independent, as they are influenced by common economic determinants, such as
market, industry or regional factors. The study of these issues goes under the header of systemic
risk and the topic already has a significant body of contributions (cf. Adrian and Brunnermeier
(2009), Acharya, Pedersen, Philippe and Richardson (2010) and Brownlees and Engle (2010)).
Current U.S. regulation produced in the aftermath of the crisis to promote financial stability
defines a number of criteria to identify risky firms on the basis of their characteristics (cf.
Acharya, Brownlees, Engle, Farazmand and Richardson (2010)). This calls for an empirical
assessment of which features relate to higher volatility and lower diversification in periods of
distress, as well as understanding to which extent they are able to fully explain a firm’s exposure
to adverse economic conditions.

This work proposes to frame these research questions with a hierarchical model. I intro-
duce a Hierarchical Factor GARCH model for the analysis of multivariate volatility dynamics
in large panels of assets. The model assumes that the return on an asset is a linear function
of an observed systematic factor and an idiosyncratic shock, where both the systematic and
idiosyncratic components are assumed to be GARCH. The parameterization employed charac-
terises the dynamics of each asset with four coefficients: a factor loading, long run idiosyncratic
variance, persistence of idiosyncratic variance shocks and smoothness of the conditional id-
iosyncratic variance path. The novelty with respect to standard modelling approach consists
of augmenting the specification with equations that link the coefficients to a set of observed
characteristics and a random effect. The attribute hierarchical stems from the fact that the
specification can be decomposed in two levels: the, so called, Level I, which models returns
using a vector of unknown coefficients, and the Level II, which models the Level I coefficients.
The methodology has features that are useful in both economic and forecasting applications. It
permits one to straightforwardly test for a significant relation between a firm characteristic and
a facet of the dynamics of volatility of interest. Moreover, it allows for a parsimonious parame-
terization of a multivariate system that is independent of its dimension, yet capable of retaining
flexibility in the individual series dynamics thanks to the random effect structure. Inference on
the model is based on Maximum Likelihood (ML) estimation. The log–likelihood involves the
computation of analytically intractable integrals that arise because of the latent random effects.
The integrals are low dimensional and standard quadrature rules are applied to approximate
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them. I resort to Sparse Grid Integration (SGI) methods (Smolyak (1963), Heiss and Winschel
(2008), Winschel and Krätzig (2010)) to overcome this hurdle, which are numerically accurate,
computationally efficient and easy to implement quadrature rules. Properties of the estimator
follow from standard arguments used in the literature, which are analogous to those used to
establish the properties of Maximum Simulated Likelihood estimators (cf. Hajivassiliou and
Ruud (1994)).

The Hierarchical Factor GARCH is applied to a panel of top U.S. financial firms in the
financial crisis period (defined as July 2007 to July 2009) using a financial index as the common
factor. The sample of companies is the same analysed in Acharya, Pedersen, Philippe and
Richardson (2010). The set of firm characteristics considered are size, leverage, distance to
default and liquidity measured using the data available as of the end of June 2007. Of particular
interest in this context is the factor loading coefficient that captures the dependence of a firm to
the industry factor. Ceteris paribus, a high factor loading denotes high exposure to a large fall
in the common factor. Results show that the coefficient increases with size and leverage, and
decreases with distance to default and liquidity, with leverage being the most relevant variable.
The relation between size and the factor loading is somehow surprising as it is typically believed
that larger firms are more diversified hence less exposed to common shocks. Results point out
that this need not to be the case in a systemic crisis. This finding is also related to the issue of
interconnectedness (cf. Acharya, Brownlees, Engle, Farazmand and Richardson (2010)), which
is usually considered one of the harnessing factors of the crisis. Everything being equal, it is
sensible to assume that a large firm ought to be more interconnected than a small one, hence
the size variable could be capturing this effect. This finding is also broadly consistent with the
evidence of Verde et al. (2005), who document that in high default periods (like a recession) the
default rate of large–cap is higher than the one of mid–cap companies. The proportion of cross
section variability explained by the model is 35.4%, implying that the idiosyncratic behaviour
of individual firms still accounts for a large part of the total cross sectional variability. Long run
idiosyncratic variance is decreasing in size and increasing in leverage. Volatility persistence does
not have any significant explanatory variable, and in fact the amount of cross sectional variation
of the coefficient is substantially small if not absent. This provides evidence that the degree
of volatility memory is not firm specific but is common to all firms. The volatility smoothness
coefficient increases with leverage. This coefficient is also related to the unconditional kurtosis
of a firm’s returns, implying that the returns of highly levered firms are heavier. I estimate the
same specification from January 2005 to July 2007, a period of expansion and low volatility
for the market and the financial industry. The relation between firm characteristics and the
volatility dynamics differs, with the exception of leverage, which, roughly speaking, has the
same impact. Overall results convey that a substantial amount of cross sectional variation
in volatility dynamics is captured by firm characteristics. Leverage is the most influential
determinant of volatility dynamics in the panel. On the other hand, illiquidity, small distance
to default and, to a minor extent, large size, are harnessing features in the crisis period. The
pre–crisis estimation results are also used to investigate which firms have higher systematic
exposure before the beginning of the great fall. I consider the top 20% firms by size and rank
them on the basis of their factor loading. The first four companies turn out to be, in order,
Lehman, Goldman Sachs, Morgan Stanley and Merrill Lynch, that is, all the large investment
banks. Pre-crisis results indicate that these firms had worrying level of exposure to systematic
shocks and, indeed, these companies turned out to be, in different ways, the most severely
harmed by the crisis.

Different strands of literature relate to this work. The intuition of treating coefficients as
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draws from some underlying population comes from Engle (2009) in the context of the Dynamic
Conditional Correlation (DCC) model. This is motivated by the empirical observation that in
this context, as well as in several other financial econometrics applications, parameter estimates
of the same specification estimated over different assets often cluster. The idea is further de-
veloped in Engle et al. (2008) and Pakel et al. (2010) where individual coefficients are treated
as incidental parameters and the focus is on estimating their averages. In this work, on the
other hand, I explicitly model coefficients and estimate them. Independently, also the research
of Bauwens and Rombouts (2007) is based on the same intuition. The use of factor modelling is
widespread in the financial econometrics literature in many different shades. The list of recent
contributions includes Calzolari et al. (2008), Hautsch (2008), Barigozzi et al. (2010). This
paper also relates to the literature on panel data. Recent advances in the field are surveyed,
among others, in Arellano and Honoré (2001). Hierarchical modelling is popular in several fields
of the social sciences. The terminology is unfortunately highly heterogeneous and these models
are also called Multilevel, Random Coefficient, Mixed, and Variance Components, to name a
few. The use of random effects in nonlinear models is relatively young because of the numerical
challenges in the computation of the likelihood. The list of contributions on the topic includes
Davidian and Gallant (1993) and Green (2001). In the econometrics literature, simulation based
methods are often used to approximate the intractable multidimensional integrals that arise
in the likelihood of latent variable models. The list of proposed techniques includes Maximum
Simulated Likelihood, Nonparametric Simulated Maximum Likelihood, Indirect Inference, Ef-
ficient Method of Moments, and Monte Carlo EM to name a few (cf. Gourieroux et al. (1993),
Hajivassiliou and Ruud (1994), Gallant and Tauchen (1996), Nielsen (2000), Fermanian and
Salanié (2004), Kristensen and Shin (2008)). In large dimensional problems simulation is the
most effective approach, but for moderate dimensional problems, which are the ones relevant in
this work, quadrature performs well. In fact, these methods are the common choice for latent
variable modelling software (e.g. the GLAMM package for Stata or the procedure NLMIXED
in SAS). The literature on quadrature rules includes, among others, Rabe-Hesketh et al. (2005).

The rest of the paper is structured as follows. Section 2 introduces the model and the
inferential approach. Section 3 illustrates the methodology using simulated data. Section 4
presents the application to the 2007-2009 crisis. Concluding remarks follow in Section 5.

2 Hierarchical Nonlinear Dynamic Modelling

2.1 A Hierarchical Factor GARCH Model

The hierarchical modelling approach proposed in this work is illustrated by means of a Fac-
tor GARCH model with one observed common factor. Factor modelling is probably the main
dimensional reduction technique in multivariate analysis and in the Multivariate GARCH liter-
ature this approach has been advocated since its early days, as in Engle et al. (1984), Diebold
and Nerlove (1989), Engle et al. (1990) and King et al. (1994). It is is also a natural modelling
framework in finance, where the Arbitrage Pricing Theory (APT) suggests that the unexpected
return of a risky asset can be expressed as a function of a few common factors and an idiosyn-
cratic component. The model described in this section is referred to as factor double ARCH in
Engle (2009), but I will use the name Factor GARCH for simplicity.

Let ri t denote the return of the ith firm on period t, with i in 1, ..., N and t in 1, ..., T .
Conditionally on the information set at time t − 1 and the common observed factor rF t, the
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return on period t of the ith firm is

ri t = βi rF t + εi t, (1)

where the coefficient βi is the factor loading and εi t is an unobserved idiosyncratic shock. For
notational convenience I also use the short cut notation ri to denote the series {ri t}Tt=1 for all
the time series in the model. The rF and εi processes are assumed to be heteroskedastic

rF t | It−1 ∼ N (0, hF t) and εi t | It−1, rF t ∼ N (0, hi t), (2)

and for concreteness sake are assumed to be GARCH(1,1). The equation describing the evolu-
tion of the conditional factor variance hF t is

hF t = ωF + αF r
2
F t−1 + βF hF t−1, ωF > 0, αF > 0, βF ≥ 0, (3)

and the conditional idiosyncratic variance hi t is

hi t = ω′i + α′i ε
2
i t−1 + β′i hi t−1, ω′i > 0, α′i > 0, β′i > 0,

where it is explicitly assumed that β′i > 0 and that the idiosyncratic variance is stationary,
that is α′i + β′i < 1. This work resorts to an alternative parametrization of the conditional
idiosyncratic variance equation that turns out to be more convenient in a hierarchical setting

hi t = (1− πi)hi + πi
[
λiε

2
i t−1 + (1− λi)hi t−1

]
, hi > 0, 0 < πi < 1, 0 < λi < 1, (4)

where one immediately sees that the mapping with the classical formulation is hi = ω′i/(1−α′i−
β′i), πi = α′i + β′i and λi = α′i/(α

′
i + β′i). Thus, hi is the unconditional idiosyncratic variance,

which I call idiosyncratic variance for short. The πi coefficient is called persistence and it
controls the amount of dependence of the idiosyncratic variance evolution. It is well known
that the autocorrelation of the squared GARCH(1,1) process is

Corr(ε2i t, ε
2
i t−l) = ρ1π

l−1
i

where ρ1 is the lag one autocorrelation. It is evident from the formula that higher levels of πi
lead to a higher and a more slowly decaying pattern. Finally, λi determines the smoothness of
the idiosyncratic variance path, the higher the value of the coefficient the rougher the volatility
path. Also, πi and λi relate to unconditional kurtosis of the idiosyncratic process

kurtosisi = 6
π2
i λ

2
i

1− π2
i (1− 2λ2

i )
(5)

where it can be readily checked that the formula is an increasing function in both coefficients.1

The alternative parameterization of Equation (4) has two advantages: the set of constraints
on the idiosyncratic variance equation are independent of each other (which is an important
feature to implement a hierarchical formulation) and coefficients have an easier interpretation.
Using hierarchical terminology, Equations (1) to (4) will be referred to as the Level I model.

The properties of Factor GARCH models are well known and have been illustrated, among
others, in Engle et al. (1990). The conditional variance of an asset is given by

Vart−1(ri t) = β2
i hF t + hi t,

1The kurtosis formula in Equation (5) applies to a GARCH(1,1) with Gaussian errors. Under more general
distributional assumptions, Bai et al. (2003) show that kurtosis is still an increasing function of this quantity.
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where the two terms of the expression are referred to as the systematic and idiosyncratic
variance components; and conditional correlation between two assets is

Corrt−1(ri t, rj t) =
βiβjhF t√

(β2
i hF t + hi t)(β2

jhF t + hj t)
.

Long run versions of these expressions are obtained by replacing the conditional variances with
their unconditional analogs.

The departure from standard modelling consists of augmenting the specification with equa-
tions for the factor loading, idiosyncratic variance, persistence and smoothness coefficients
(βi, hi, πi, λi)

′ that characterise the dynamics of each series. The model links the coefficients to
a set of observed and unobserved firm characteristics. Let xi denote a vector of p dimensional
variables like industry group, size, leverage and so forth. The coefficients of the Level I model
are given by the following set of equations

βi = δβ 0 +

p∑
k=1

δβ k xi k + uβ i uβ i ∼ N (0, τ 2
β), (6)

log(hi) = δh 0 +

p∑
k=1

δh k xi k + uh i uh i ∼ N (0, τ 2
h), (7)

Φ−1(πi) = δπ 0 +

p∑
k=1

δπ k xi k + uπ i uπ i ∼ N (0, τ 2
π), (8)

Φ−1(λi) = δλ 0 +

p∑
k=1

δλ k xi k + uλ i uλ i ∼ N (0, τ 2
λ), (9)

where ui = (uβ, uh, uπ, uλ)
′ are independent Gaussian random effects and log(·) and Φ−1 are

link functions appropriately mapping the domain of the coefficients onto R (Φ−1(p) is the
inverse of the standard Gaussian cumulative density function, the probit link). The use of link
functions to appropriately map the domain of a coefficient is a commonly used device in the
financial econometrics literature (cf. Patton (2006), Distaso et al. (2009)) and is inspired by
Generalized Liner Models. Let zi = (zβ, zh, zπ, zλ)

′ = (uβ/τβ, uh/τh, uπ/τπ, uλ/τλ)
′ be defined as

the specificity of firm i, in the sense that zi captures the deviation of the behaviour of company i
from what the observed characteristics xi would otherwise imply.2 Equations (6) to (9) describe
the so called Level II model using, again, hierarchical modelling terminology. They add the
Hierarchical attribute to Factor GARCH in the sense that the coefficients that drive Level I
model are the outcomes of the Level II specification.

The dynamics of the full multivariate system are governed by the factor parameter ψ =
(ωF , αF , βF )′ and the hyper parameter θ = (δ′β, δ

′
h, δ
′
π, δ
′
λ, τ

2
β , τ

2
h , τ

2
λ , τ

2
π)′.

2.2 Discussion

The logic of the model is that idiosyncratic and systematic news drive the volatility of a firm, but
that the way information is processed depends on its characteristics. Characteristics are time
invariant. This assumption could obviously be relaxed at the expense of making the specification

2A more common term than specificity would probably be idiosyncrasy. However, I avoid using this termi-
nology in order not to create confusion with the idiosyncratic process εi.
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more complex. However, it is reasonable to believe that while volatility is inherently a high
frequency phenomenon many firm features such as industry group classification, size, leverage,
firm governance, etc. are slowly varying and often measured at low frequencies (quarterly or
yearly). They can be considered constant to the extent that the time series span of the analysis
has a reasonable length.

The proposed modelling approach differs substantially from adding lagged firm character-
istics in the conditional variance equation, which is somehow more common (cf. Poon and
Granger (2005), Brownlees and Gallo (2008)). One might be inclined to do so especially given
that mixed data sampling (MIDAS) issues have recently been effectively tackled in the literature
(see Ghysels et al. (2006)). If one is interested in determining the relation between volatility
and asset characteristic, the challenge in this approach is that this source of information is
not necessarily independent of the news process. For instance, if a firm decides to change its
governance, it is likely that information concerning such a decision will gradually leek in the
news process, corroding the relevance of the proxy capturing the characteristic.

On the other hand, the approach of this paper has connections with the credit scoring
model literature, starting from Altman’s seminal contribution (Altman (1968)). The aim of
this literature is to identify characteristics that explain the default probability of a firm. One of
the motivations of Altman’s original contributions was to “bridge the gap rather than sever the
link between traditional ratio “analysis” and the more rigorous statistical techniques” in order
to better understand default risk. This paper follows this very same philosophy, with the only
difference that the focus is on volatility dynamics.

The Hierarchical Factor GARCH also easily lends itself to a Bayesian interpretation. The
Level II specification can be interpreted as a prior for the Level I model coefficients and the
δ and τ 2 parameters are what a Bayesian calls hyper parameters. Hierarchical modelling is in
fact at the core of the Bayesian way of thinking.

The model also has an interpretation in terms of shrinkage and pooled estimation. The
estimator of the individual firm coefficients can be interpreted as a compromise between the
information available for that company and the one available from all other companies in the
panel. The random effect shrinks the coefficient of each asset to the expected value implied
by its characteristics. The degree of shrinkage is determined by the variance of the random
effect that is estimated from the data. Borrowing estimation strength from the ensemble is
appealing for short time series and for coefficients with relatively large asymptotic variability.
As one would hope, this is only a finite sample correction and as the time series dimension
grows standard arguments deliver consistency of the coefficients. The advantage of the random
effect formulation over shrinkage is to avoid many of the inferential problems associated with
bandwidth selection optimality and post bandwidth selection inference (cf. Leeb and Pötscher
(2005) and Leeb and Pötscher (2006)). In fact, in semiparametric modelling (cf. Ruppert et al.
(2003)) a hierarchical estimation approach is often used for estimation and shrinkage selection.

The use of random coefficients also has an empirical motivation. In the analysis of panels of
financial time series (like in Shephard and Sheppard (2010), Barigozzi et al. (2010)) it is often
found that the estimation results of the same specification over the different series exhibit coef-
ficient clustering. The typical example would be the one of the simple GARCH(1,1) on equity
returns, which delivers “ARCH” and “GARCH” parameter estimates in the neighbourhood of,
respectively, 0.05 and 0.95. The assumption that in an homogeneous panel of series coefficients
are drawn by some underlying population with some mean and variance to be estimated from
the data seems to be an empirically reasonable one.

Last, the hierarchical formulation can also be seen as a statistical hack to counter the curse
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of dimensionality, in that the number of parameters in the model is independent of the number
of assets. The fixed effect version of the specification would have a number of parameters
proportional to the number of assets, which is clearly numerically unfeasible for moderately
large panels. At the same time, the random effect structure allows one to keep flexibility in the
individual series dynamics. The price to pay to kill vicious parameter proliferation that poisons
multivariate volatility modelling is a likelihood function involving a multidimensional integral
that is typically not tractable analytically. However, as is detailed in Section 2.3, the integral
is low dimensional, and straightforward numerical integration techniques can be applied.

2.3 Inference

There are several fixed and random quantities of interest that need to be estimated from
the data. The fixed factor parameter ψ = (ωF , αF , βF )′, the fixed hyper parameter θ =
(δ′β, δ

′
h, δ
′
π, δ
′
λ, τ

2
β , τ

2
h , τ

2
π , τ

2
λ)′, the random effects realizations ui and the random coefficients real-

izations (βi, hi, πi, λi)
′.

The estimation of the fixed parameters ψ and θ is carried out by maximum likelihood (ML).
The random effects ui are predicted3 using the customary Empirical Bayes (EB) predictor
conditional on the ML estimate of θ. Finally, random coefficients (βi, hi, πi, λi)

′ are obtained
by plugging into the respective equations the ML estimate of θ and EB predictions of ui.

The estimators and predictors introduced have diverse sampling properties. The factor
parameter is consistent for large T . On the other hand, the hyper parameter is consistent
as N becomes large for any fixed T . Because of the random effect assumption, inference on
the random effects and random coefficients realizations requires a consistent estimator of the
hyper parameter, yet it can be carried out for any fixed T . However, it follows from standard
arguments that with large T predictions consistently estimate the latent realizations.

The ML estimator of θ and EB predictors of ui involve the computation of integrals that
are not analytically tractable and quadrature rules based on Sparse Grid Integration (SGI)
detailed in Section 2.4 are used to overcome this hurdle.

2.3.1 Fixed Parameters

The likelihood of the returns panel r = (r1, ..., rN , rF ) can be factorized in the joint likelihood
of the N assets r1 to rN conditional on the common factor rF and the likelihood of the factor
rF . Estimation of the two sets of parameters θ and ψ entering respectively the first and second
likelihood components can be carried out independently. I shall not digress on the estimation
of the factor parameter ψ, which is standard GARCH ML, and in this section I focus on hyper
parameter θ only.

3It is standard practice to refer to the estimation of random effect realizations as prediction. See Robinson
(1991) for an interesting discussion on the origin of the terminology.
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The marginal log–likelihood of the N assets conditionally on the factor is

QN(θ) = logLN(θ; rF ,x), = log

∫ N∏
i=1

f(ri|xi, ui, rF ; θ) p(ui; θ),

=
N∑
i=1

log

∫
f(ri|xi, ui, rF ; θ) p(ui; θ),

=
N∑
i=1

log

∫
f(ri|xi, zi, rF ; θ) φ(zi),

=
N∑
i=1

qi(θ), (10)

where φ(·) is the pdf of a quadrivariate standard Gaussian random variable. The marginal
log–likelihood contains a multi–dimensional integral that arises in integrating out the random
effects ui. However, the structure of the model allows one to factor the 4 ·N dimensional
integral in the sum of N integrals of dimension 4, which albeit not being analytically tractable
are feasible to compute numerically using standard quadrature techniques.

The intractable objective function in Equation (10) is replaced by

Q̃ l
N(θ) =

N∑
i=1

q̃ li (θ),

where q̃ li (θ) is used to denote the approximation of qi(θ). The Maximum (Approximated)
Likelihood estimator is defined as

θ̂ = arg max
θ
Q̃ l
N(θ).

Results on the consistency and asymptotic distribution of the estimator can be obtained from
standard arguments similar to those used to establish the properties of Maximum Simulated
Likelihood estimators (cf. Hajivassiliou and Ruud (1994)).

Some more notation on numerical integration has to be set.4 To carry out inference it is
necessary to evaluate the integral of functions g : R4 → R with Gaussian weighting, that is

G =

∫
g(z) φ(z) d z, (11)

which are approximated using a quadrature rule, that is

G̃ l =
∑
z∈Zl

g(z) wl(z), (12)

where Zl is a set of abscissas in R4 called grid, wl(·) is a function that associates every abscissa
z in Zl to a weight and l denotes the level of accuracy of the rule. The absolute error bound
is denoted by El(g) or El(G) depending on convenience. Bounds on the error El depend on the
quadrature rule used and smoothness conditions on the integrand g. Although the emphasis

4Admittedly, I avoid using detailed notation and I focus only on the subset needed in this context.
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in this work is on quadrature, the approximation strategy of Equation (12) also encompasses
simple Monte Carlo integration by letting the grid be a set of realizations from the standard
Gaussian and setting the weight function to unity.

The following algorithm is used to approximate qi(θ)

q̃ li (θ) = log
∑
z∈Zl

exp [log f(ri|xi, z, rF ; θ)− log f(ri|xi, z∗, rF ; θ)] wl(z)

+ log f(ri|xi, z∗, rF ; θ), (13)

where

log f(ri|xi, z, rF ; θ) =
T∑
t=1

log ft(ri t|xi, z, rF t; θ),

and with
z∗ = arg max

z∈Zl

log f(ri|xi, z, rF ; θ).

The procedure computes the log–likelihood of the ith series using log–densities only. It is
straightforward to verify that Equation (13) is algebraically equivalent to

q̃ li (θ) = log
∑
z∈Zl

f(ri|xi, z, rF ; θ) wl(z)

however, from a numerical standpoint, the direct computation of the density on a computer
using finite precision would lead to underflow for moderately large T while the proposed method
does not. The numerical evaluation of the integral is relatively simple. Requires one to code the
log–likelihood of the model conditionally on observing the random effects and then to compute
a rescaled weighted average of these functions for different values of the random effects. Also
note that z∗ is the maximum over a set of finite dimension, so no numerical optimization is
required to find it. The number of floating point operations required to compute the objective
function increases (linearly) in the number of assets N , (linearly) in length of the time series
T and desired level of accuracy l. The optimization of the objective function in large systems
with high accuracy may require one to compute lengthy function evaluations but to the extent
that θ is small dimensional the optimization problem is straightforward.

Consistency can be established starting from the assumption that the ML estimator based
on the analytically intractable log–likelihood QN(·) is consistent (for instance, Theorem 2.1 of
Newey and McFadden (1994)). Let θ0 be the maximizer of Q0(θ), the probability limit of QN(θ)
for arbitrarily large N . It can be shown that θ̂ is consistent for θ0 provided that the level of
accuracy l is sufficiently high to make the approximation error negligible. An advantage of the
algorithm described in Equation (13) is that the error bound is (Proposition 1 in the Appendix)

El(qi) = El(fi)
[

f(ri|xi, z∗, rF ; θ)∫
f(ri|xi, z, rF ; θ) φ(z)

]
,

instead of the one that one would get from the direct computation

El(fi)
[

1∫
f(ri|xi, z, rF ; θ) φ(z)

]
,

which would suggest that for small values of the marginal density of f large levels of accuracy
ought to be used.

10



This large bound is a consequence of not rescaling the integrand appropriately.
The asymptotic distribution of the estimator can be obtained via the customary mean value

theorem expansion around θ0

√
N(θ̂ − θ0) =

[
1

N
∇2
θQ̃

l
N(θ̌)

]−1

· 1√
N
∇θQ̃

l
N(θ0), (14)

where the elements of θ̌ lie on the segment between θ0 and θ̂. The task is then to show that
appropriate LLN and CLT can be applied to the right hand side of Equation (14) and that the
approximation error is sufficiently small so that the familiar result can be obtained, that is

√
N(θ̂ − θ0)

d→ N (0, I−1(θ0)).

where I(θ0) is E(∇2
θQ0(θ0) ).

The derivative of the intractable log–likelihood is

∇θqi =

∫
∇θ log f(ri|xi, z, rF ; θ)

f(ri|xi, z, rF ; θ)

f(ri|xi, rF ; θ)
φ(z),

and the derivative of the approximated log–likelihood is

∇θq̃
l
i =

∑
z∈Zl

∇θ log f(ri|xi, z, rF ; θ) exp
[
log f(ri|xi, z, rF ; θ)− q̃ li (θ)

]
wl(z). (15)

The assessment of the approximation error in Equation (15) is slightly complicated by the
fact that the formula involves using an approximation of the log–likelihood which enters the
equation nonlinearly. It turns out that (Proposition 2 in the Appendix) that

∇θq̃
l
i = ∇θqi + Ai +Bi

where Ai and Bi are bounded by

Ai ≤ exp(qi − q̃ li ) El(∇qi) and Bi ≤ ∇θqi El(qi).

The score of the objective function can then be expressed as

1√
N
∇θQ̃

l
N(θ0) =

1√
N
∇θQN(θ0) +

1√
N

N∑
i=1

Ai +
1√
N

N∑
i=1

Bi.

As long as the level of accuracy l in the least favourable approximations of Ai and Bi is such that√
N maxiAi and

√
N maxiBi are negligible, the asymptotic distribution of the approximated

and exact score is going to be the same. Consistency of θ̌ for θ0 and analog arguments can be
used to established that

1

N
∇2
θQ̃

l
N(θ̌)

p→ E
(
∇2
θQ0(θ0)

)
= I(θ0),

which leads to the familiar result.
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2.3.2 Random Effects and Random Coefficients

Conditionally on the observed factor rF , asset characteristic xi and parameter θ, the random
effect and return series pairs (ri, ui) of each asset are independent of each other. It follows from
basic probability theory that inference about ui is based on the conditional distribution

p(ui|ri, xi, rF ; θ) ∝
T∏
t=1

f(ri|xi, ui, rF ; θ) p(ui; θ),

where ∝ denotes that the distribution is equal to the quantity on the right hand side up to a
multiplicative constant. An obvious predictor for the random effect ui is its conditional mean
of the random effect conditional on available information

µi = E(ui|ri, xi, rF ; θ), (16)

and its variance can be measured as

Σi = Var(ui − µi|ri, xi, rF ; θ). (17)

Alternatively, authors like Davidian and Gallant (1993) propose using the maximum of the
conditional distribution, the mode

Mi = arg max
ui

T∏
t=1

f(ri|xi, ui, rF ; θ) p(ui; θ),

straightforward manipulations allow us to see that this estimator can be interpreted as a pe-
nalized maximum likelihood estimator with ridge type penalty

Mi = arg max
ui

T∑
t=1

log f(ri|xi, ui, rF ; θ) + log p(ui; θ)

= arg max
ui

T∑
t=1

log f(ri|xi, ui, rF ; δ)− 1

2

∑∣∣∣∣ui jτj
∣∣∣∣2

where the reciprocal of the random effects variance τ 2 is the equivalent of the so called “shrink-
age” or “ridge” parameter. Note that for appropriately regular multivariate unimodal distri-
butions the distance between the mean and the mode is bounded, where the bound is inversely
proportional to the variance.5 Furthermore, the law of total variance implies that the expecta-
tion of the variance in Equation (17) is a nonincreasing function in T , and uniformly so. Hence,
the deviation between the two predictors is expected to get smaller in longer time series. Com-
putationally speaking µi requires solving a numerical integration problem while Mi involves a
numerical optimization. As it is more commonly done in the literature, I use µi to predict the
random effect.

5It follows from basic probability that if X is a univariate unimodal distribution with finite second moment
then

|mode(X)− E(X)| ≤
√

3 Var(X).

Analogous inequalities hold for multivariate random variables (Basu and DasGupta (1996)) depending on the
definiton of unimodality adopted in a multivariate setting.
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The random coefficients (βi, hi, πi, λi)
′ predictions are obtained by substituting the latent

random effect realizations with their predictions. In the case of the factor loading βi is straight-
forward to see that one gets

E(βi|ri, xi, rF ; θ) = δβ 0 +

p∑
k=1

δβ k xi k + E(uh i|ri, xi, rF ; θ). (18)

This approach only delivers unbiased predictions for the coefficients with linear link (that is the
factor loading βi). In the case of log or probit link however, a Taylor expansion of the moments
of a function of a random variable suggests that the bias ought to be small when the variance
of the random effect predictor is sufficiently small, and, in fact

E(hi|ri, xi, rF ; θ) ≈ exp

{
δh 0 +

p∑
k=1

δh k xi k + E(uh i|ri, xi, rF ; θ)

}

+
1

2
exp

{
δh 0 +

p∑
k=1

δh k xi k + E(uh i|ri, xi, rF ; θ)

}
Var(uh i|ri, xi, rF ; θ).

In practice random effects and random coefficients predictions are constructed by plugging
in the ML estimator θ̂ into Equations (16) and (18) respectively, that is

ûi = µ̂i = E(hi|ri, xi, rF ; θ̂)

and, in the case of the factor loading βi, one gets

β̂i = δ̂β 0 +

p∑
k=1

δ̂β k xi k + ûβ i.

Also, the näıve estimate of the standard error of ûi is defined as

ŝeβ i =

√
Σ̂i β

where Σ̂i β denotes the variance on the diagonal of the covariance matrix of Σ̂i corresponding to
the factor loading β. The estimator of the standard error predictions is called näıve as it does
not take into account estimation variability. This is a topic of active research in the hierarchical
modelling literature.

The predictors of the random effects do not require the time series dimension T to become
arbitrarily large, however one might be interested in the large sample behaviour of these quan-
tities. As the time-series length T increases, the two estimators are expected to be consistent
for the latent realizations of ui. The Mi predictor is consistent for the realization of ui under
standard conditions for maximum likelihood. Note that as the sample size increases the con-
tribution to the likelihood of the random effect part becomes negligible (see also asymptotics
for shrinkage type estimators, like Knight and Fu (2000)). Analogously, a Bernstein-Von Mises
type argument can be used to show the consistency of µi.

2.4 Multidimensional Numerical Integration with Sparse Grids

Sparse Grid Integration (SGI) rules are used to approximate the intractable integrals in the like-
lihood of the model. SGI methods can be tracked back to Smolyak (1963) and were reproposed

13



(a) Product Rule Grid (b) SGI Grid (c) Monte Carlo Grid

Figure 1: Grid comparison. The figure plots the bivariate integration grids of the (a) Product Rule,
(b) Sparse rule and (c) simple Monte Carlo integration.

in the 90’s in the numerical analysis literature (cf. Bungartz and Griebel (2004)). Recently,
these techniques have been introduced in econometrics by, among other, Heiss and Winschel
(2008), which provide an excellent discussion on the topic. This section briefly sketches the
main ideas along the lines of their contribution. A classic exposition on numerical integration
is Davis and Rabinowitz (1984).

The objective is to approximate the type of integrals of Equation (11) using quadrature rules
of the form given in Equation (12) that are able to deliver high approximation accuracy with
the least number of function evaluations possible. In the one dimensional case there are many
rules that precisely approximate integrals using relatively few function evaluations, provided
the integrand is sufficiently regular. Integration problems get more challenging in multiple
dimensions. One of the commonly used methods is the so called Product Rule (Tauchen and
Hussey (1991)), which is a combination of one dimensional quadrature rules. This approach
however is affected by the curse of dimensionality. The number of function evaluations grows
exponentially with the dimension of the domain of integration, making the method feasible
for small problems only. This limitation is typically the motivation to use simulation based
approaches. SGI is an appealing solution for moderately large problems. SGI rules are still
constructed combining one dimension rules but in a more parsimonious way, hence the name
sparse. Asymptotically, the number of function evaluations grows polynomially rather than
exponentially (cf. Theorem 2 in Heiss and Winschel (2008)) while still guaranteeing adequate
approximation properties.

Figure 1 plots bivariate grids of the Product Rule and SGI, obtained by combining the same
univariate quadrature rule, together with Monte Carlo Integration. One immediately sees how
the Product Rule extends in multiple dimension in a more expensive way than SGI. The number
of function evaluations of the former is 81 versus the 37 of the latter. Figuratively speaking, the
figure shows how the SGI grid attempts to cover the domain of integration in a more clever way
with respect to the way of the Product Rule. For comparison purposes, I also report the Monte
Carlo integration grid that one could get by simulating 37 points from a standard Gaussian
distribution. Among other things, simple simulation requires a large number of replications
in order to cover appropriately the domain of integration and there is no guarantee that grid
points are sufficiently far from each other, making some function evaluations redundant.
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Several improvements are available to increase the accuracy and efficiency of quadrature
rules, like a change of variables or adaptive methods (cf. Rabe-Hesketh et al. (2005)). Here I
prefer to use to SGI in its basic form to stress how these rules work adequately in their simplest
form.

In the computation of the likelihood and its derivatives in this work I use SGI based on
univariate nested quadrature rules for integrals with Gaussian weighting. Grids and weights
are the ones made publicly available as supplement material of Heiss and Winschel (2008).6

2.5 Allowing for Richer Dynamics

The specification introduced in Section 2.1 is sufficiently flexible for the purposes of this work,
however, there is an array of straightforward extensions that allow one to handle specific mod-
eling needs that often arise in volatility analysis.

In the standard GARCH(1,1) model, estimated persistence πi is typically close to unity and
this can be problematic in this framework in that the parameters of the πi equation can be
poorly identified. In fact, in this work I choose a factor model because, empirically, the issue
of persistence close to unity is alleviated by the fact that the factor soaks parts of the variance
dynamics (and this also turns out to be the case in the application). More generally, there are
different ways to approach this issue that I am going to briefly sketch. In case all assets exhibit
strong persistence, then πi can be treated as a fixed coefficient common across assets which gets
either estimated from the data or fixed to unity. If assets exhibit strong persistence, but there is
a significant degree of variability, one could resort to a link function which converges to unit as
slowly as possible, like log–log link function. This is also a device used in binary choice models
to attenuate the parallel issue of over/under dispersion. Another solution consists of resorting
to a specification that disentangles short and long run persistence such as the Component
GARCH (cf. Engle and Lee (1999), Andersen et al. (2006)). In this model, the conditional
idiosyncratic variance evolution is described by (using this work’s parameterization)

hi t = ζi t(1− πi) + πi
[
λiε

2
i t−1 + (1− λi)hi t−1

]
,

where ζi t, the long term variance, is

ζi t = ωi + ρζi t−1 + φ(ε2i t−1 − hi t−1),

with ρ and φ being fixed coefficients capturing the persistence of the long term variance assumed
to be common across assets. Empirically, this model typically delivers estimates of ρ close to
unity while the short term persistence captured by πi is bounded away from one.

The asymmetric volatility effect, that is the tendency of volatility to react differently to
positive or negative news, is often a relevant feature of volatility modelling and forecasting. In
order to allow for asymmetric effects à la TARCH models (Rabemananjara and Zakoian (1993),
Glosten et al. (1993)) it is convenient to resort to the parameterization of the APARCH model
(Ding et al. (1993)), that is

hi t = (1− πi)hi + πi
[
λi(|εi t−1| − γiεi t−1)2 + (1− λi)hi t−1

]
,

with γi ∈ (−1, 1). The equation for γi is

link(γi) = δγ 0 +

p∑
k=1

δγ k xi k + uγ i, uγ i ∼ N(0, τ 2
γ )

6Resources are posted on the website http://www.sparse-grids.de/.
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where link(·) is an appropriate link function from (−1, 1) onto R, for instance Φ−1((x+ 1)/2).
The introduction of ultra–high frequency based measures of daily volatility, also known as

realized volatility, has been one of the prominent developments of the financial econometrics
literature (cf. Andersen et al. (2003), Aı̈t-Sahalia et al. (2005), Bandi and Russell (2006),
Barndorff-Nielsen et al. (2008)). After a first wave of papers focused on modelling realized
volatility itself (inter alia, Deo et al. (2006), Engle and Gallo (2006), Ghysels et al. (2006),
Corsi (2010)) a more recent strand of contributions has focused on using realized volatility to
model the volatility of returns (cf. Giot and Laurent (2003) and Brownlees and Gallo (2010)).
Several authors have now proposed alternative specifications for the variance of returns using
realized volatility on the right hand side (cf. Engle and Gallo (2006), Shephard and Sheppard
(2010), Hansen et al. (2010), see also Chen et al. (2010)). Without going into more sophisticated
details and assuming the absence of a factor struture, realized volatility based modelling of the
returns variance can be accomodated using

hi t = (1− πi)hi + πi [λirvi t−1 + (1− λi)hi t−1]

where rvi t−1 is an appropriate estimator of the latent variance of asset i on period t− 1.

3 Monte Carlo Illustration

This section provides an illustration of the model and estimation methodology using simulated
data. The exercise mimics some of the features of the empirical application in this work in
order to give some insights on the performance of the estimator in that context.

I simulate a panel of 100 assets with a single characteristic x assumed to be a Gaussian
random variable with mean zero and variance one. The Level II specification is

βi = 1.0 +0.1 · xi + uβ i uβ i ∼ N (0, 0.10)
log(hi) = −6.91 +0.0 · xi + uh i uβ i ∼ N (0, 0.10)

Φ−1(πi) = 1.28 −0.3 · xi + uπ i uβ i ∼ N (0, 0.05)
Φ−1(λi) = −0.84 +0.0 · xi + uλ i uβ i ∼ N (0, 0.05)

The intercepts of each equation are set so that for an average asset (that is, when x is equal
0) the expectation of β is 1, annualized idiosyncratic volatility is 50%, persistence πi is 0.90
and smoothness λi is 0.20. The Factor GARCH unconditional annualized volatility is 30% and
αF and βF are respectively 0.02 and 0.97. For each of the 100 assets I simulate 500 days of
data. The simulation is replicated 100 times keeping the values of the characteristics x fixed
across simulations. The model is then estimated using the methodology described in Section 2
resorting to different levels of accuracy (2, 4, 6, 8, 10, 12).

I choose one of the one hundred replications for illustration purposes. The estimation
results with accuracy level 12 deliver the following estimates (standard errors in parenthesis
and significant characteristics in bold)

βi = 1.0 +0.109
(0.0027)

·xi + uβ i uβ i ∼ N (0, 0.099
(0.0021)

),

log(hi) = −6.911
(0.0168)

−0.008
(0.0084)

·xi + uh i uβ i ∼ N (0, 0.094
(0.0046)

),

Φ−1(πi) = 1.321
(0.0449)

−0.277
(0.0204)

·xi + uπ i uβ i ∼ N (0, 0.045
(0.0053)

),

Φ−1(λi) = −0.839
(0.0233)

+0.030
(0.0300)

·xi + uλ i uβ i ∼ N (0, 0.046
(0.0052)

).
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An R2 type statistics is used to measure the goodness of fit of the equations with significant
characteristics. Let the expected linear predictors for βi and Φ−1(πi) be defined respectively as
η̂β i = δ̂β 0 + δ̂β 1xi and η̂π i = δ̂π 0 + δ̂π 1xi. Goodness of fit measures can be defined as

R2
β =

s2(η̂β i)

s2(η̂β i) + τ̂ 2
β

and R2
π =

s2(η̂π i)

s2(η̂π i) + τ̂ 2
π

,

which are essentially variance ratios of the explained variance over total variance. In the sample
estimates, the R2

β and R2
π are respectively 8.5% and 62.8% (the population analogs are 8.7%

and 61.6%).
Figure 2 reports the plots of the actual and predicted random coefficients β and π against

the characteristic x, together with the actual and estimated regression line. The figure also
reports the estimates of the coefficients that can be obtained by estimating the 100 series indi-
vidually (hence, ignoring the hierarchical structure) using ML. Visual inspection of the graphs
suggests that the estimation of β is reasonably precise and that the random coefficient predic-
tions (Hierarchical Factor GARCH) and the fixed coefficient estimates (Factor GARCH) are
close. In fact, the rank correlation with the latent coefficients is 0.98 in both cases and the
MSEs are, respectively, 2.56 × 10−3 and 2.58 × 10−3. This does not make a strong case for
using the hierarchical specification if one is only interested in the fitting the data, but it is
nevertheless reassuring to see that the random and fixed methodology substantially coincide
when the data contain sufficient information about the coefficient. The estimation of π deliv-
ers a different story. The pooling effect around the regression line of the random coefficient
predictions is evident, and it appears to improve precision over the fixed coefficient estimates.
Rank correlations with the latent coefficients are, respectively, 0.84 and 0.74 and the MSEs are
1.05× 10−3 and 4.84× 10−3, almost five times more precise.

A useful feature of hierarchical modelling is that it allows one to predict/impute the random
coefficients of a new asset with given characteristics x. Analogously, one can compute the
expected coefficients for representative firms A and B with asset characteristics xA and xB.
An insightful way to examine the differences implied by the model is to plot functions of the
coefficients, such as moments, autocorrelation function, impulse response functions and so on.
I illustrate the construction of a hierarchical impulse response function as an example. Let A
be an average asset with xA = 0 and B an asset with moderate levels of x (xB = 1.5σx). In
period t = 0, the variance of the factor and idiosyncratic innovation of both companies are at
their steady states. In period t = 1, both assets receive a relative idiosyncratic shock ν of the
same magnitude, equal to the 0.99 quantile of a Gaussian random variables with zero mean
and unit variance. The response of the idiosyncratic variance at time t+ 1 is

hi t+1 = hi(1− πi) + πi
[
λhi ν

2 + (1− λ)hi
]

i ∈ {A,B}

and the total asset variance from period t+ 1 to the future is equal to

Vart+k|t(rt) = β2
i hm + hi(1− πi) + πk−1

i (hi t+1 − hi).

The graph of the hierarchical impulse response functions for companies A and B is reported in
Figure 3. Since βi increases in the characteristic x, company B has a higher long term variance
because it has a higher systematic variance component. However, as πi decrease in x, company
A has higher short term because it has more variance persistence and it takes longer for A to
absorb the shock.

17



(a
)
β

i
vs

.
x

i
(b

)
β̂

i
vs

.
x

i
(c

)
β̃

i
vs

.
x

i

(d
)
π

i
vs

.
x

i
(e

)
π̂

i
vs

.
x

i
(f

)
π̃

i
vs

.
x

i

F
ig

u
re

2:
C

oe
ffi

ci
en

ts
ve

rs
us

as
se

t
ch

ar
ac

te
ri

st
ic

.
T

he
fig

ur
e

pl
ot

s
th

e
ac

tu
al

fa
ct

or
lo

ad
in

g
β
i

an
d

pe
rs

is
te

nc
e
π
i

re
al

iz
at

io
ns

ve
rs

us
th

e
as

se
t

ch
ar

ac
te

ri
st

ic
x

to
gt

he
r

w
it

h
th

e
ac

tu
al

re
gr

es
si

on
cu

rv
e

((
a)

an
d

(d
))

;
th

e
H

ie
ra

rc
hi

ca
l

Fa
ct

or
G

A
R

C
H

co
effi

ci
en

ts
pr

ed
ic

ti
on

s
w

it
h

th
e

es
ti

m
at

io
n

re
gr

es
si

on
cu

rv
e

((
b)

an
d

(e
))

an
d

th
e

Fa
ct

or
G

A
R

C
H

co
effi

ci
en

t
es

ti
m

at
es

((
c)

an
d

(f
))

.

18



Figure 3: Hierarchical impulse response function. Model implied forecast function for representative
company A (triangle) and company B (square).

Figure 4: Relative Monte Carlo RMSE. Monte Carlo precision of the hyper parameter estimator.

The 100 replications give insights on the finite sample precision of the estimation procedure
of the hyper parameter. Figure 4 reports the mean and 90% quantiles of the root mean square
estimation error of the hyper parameter as a function of the accuracy level of the quadrature
rule. The root mean square error is reported in relative terms, that is the mean and quantiles
of the plot are scaled by the root mean square error of the unfeasible Maximum Likelihood esti-
mator that also uses the random effect realizations. The RMSE is, not surprisingly, well above
one. When the level of accuracy is low it is up to almost six times larger than the unfeasible
benchmark. However, as the degree of accuracy increases, the RMSE steeply improves, being
in bewteen two to three when the level of accuracy is high. Detailed inspection of the result
suggests that the random effect variances τ 2 have higher RMSE, and also appear to be slighlty
downward biased when the dimension of the cross sections is moderate.
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Results show that the estimation approach works sufficiently well. I would like to stress
that there is a feature of the data that is replicated in the Monte Carlo setting that makes the
estimation work. That is coefficient clustering, the fact that there is cross sectional clustering
of the coefficients. When the degree of cross sectional variability is high or absent, implying
that assuming coefficients belong to some population becomes less evident, the efficiency of the
RMSE deteriorates.

4 Application to the 2007/2009 Financial Crisis

I analyse top U.S. financial firms during the crisis in the attempt to identify which pre-crisis
characteristics explain the cross sectional variation of volatility dynamics during the crisis. As-
set dynamics are assumed to be described by the Hierarchical Factor GARCH model introduced
in Section 2 and the set of firm characteristics considered are size, leverage, distance to default
and liquidity. Of particular interest in this context is the assessment of how variables relate to
the factor loading βi. In this framework, a systemically important firm with factor exposure is
systemically risky in that common factor drop will generate large losses to the firm and negative
externalities to the rest of the economy.

The empirical application builds up on the ideas of Acharya, Pedersen, Philippe and Richard-
son (2010), which propose to measure systemic risk using the Marginal Expected Shortfall
(MES), the expected loss of an asset when the whole sector has a downturn. In Acharya, Ped-
ersen, Philippe and Richardson (2010) and Brownlees and Engle (2010) the aim of the analysis
is real time exposure measurement and elaborate models of dependence are introduced. Brown-
lees and Engle (2010) propose a method for modelling MES based on time varying volatility,
correlation and a tail correction to capture potential nonlinear dependence in the innovation
process. On the other hand, here the focus is on average exposure measurement during the crisis
and the linkage with cross sectional characteristics, and the simple factor loading βi suffices.

On a general note, I would like to stress that a simple factor model with heteroskedastic
components is able to describe the evolution of risk in the crisis. This is somehow in contrast
with the popular view that has been stressing the inadequacies of the models proposed in the
literature because of their inability to capture complex forms of dependence (cf. Taleb (2007)
comments on ARCH models). Particularly, it has been emphasized that the clustering of the
extreme losses of several financial institutions observed in the Fall of 2008 is not captured by
standard models. While the research for more sophisticated methods to capture nonlinear de-
pendence is of great importance (cf. Brownlees and Engle (2010)), it is inaccurate to claim that
current financial econometrics machinery is inept for this task. In fact, in the simple Factor
GARCH even if the conditional distribution of returns does not allow for extreme event cluster-
ing, the unconditional one allows for high levels of dependence in the extremes of the process.
Conditional volatility and average correlation are increasing functions of the volatility of the
factor, hence, extreme factor volatility determines extreme joint realizations of the process.

4.1 Data Description

The analysis focuses on all U.S. Financial firms with a market capitalization greater than 5 bln
USD as of the end of June 2007; the same panel of institutions studied in Acharya, Pedersen,
Philippe and Richardson (2010). Table 1 contains the full list of tickers and company names.
The dataset is constructed using the CRSP and COMPUSTAT databases.
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Ticker Name Ticker Name

ABK AMBAC Financial Group HUM Humana
ACAS American CapitaL ICE Intercontinental Exchange
AET Aetna JNS Janus Capital
AFL Aflac JPM J.P. Morgan Chase
AGE A. G. Edwards KEY KeyCorp
AIG American International Group LEH Lehman Brothers
AIZ Assurant LM LEGG Mason
ALL Allstate LNC Lincoln National
AMP Ameriprise Financial MBI MBIA
AMTD TD Ameritrade MER Merrill Lynch
AON Aon Corporation MET MetLife
AXP American Express MI Marshall & Ilsley
BAC Bank of America MMC Marsh & McLennan
BBT BB&T MS Morgan Stanley
BEN Franklin Resources MTB M&T Bank
BK Bank of New York Mellon NCC National City Corporation
BLK Blackrock NMX NYMEX
BOT CBOT Holdings NTRS Northern Trust
BRK Berkshire Hathaway NYB New York Community Bank
BSC Bear Stearns NYX NYSE Euronext
C Citigroup PBCT Peoples United
CB Chubb Corporation PFG Pripal Financial Group
CBG C. B. Richard Ellis PGR Progressive
CBH Commerce Bank PNC PNC Financial
CBSS Compass Bancshares PRU Prudential Financial
CFC Countrywide Financial RF Regions Financial
CI Cigna Corporation SAF Safeco
CINF Cinnati Financial Corporation SCHW Schwab
CIT CIT Group SEIC SEI Investments
CMA Comerica SLM SLM
CME CME Group SNV Synovus
CNA CNA Financial Corporation SOV Sovereign Bank
COF Capital One Financial STI SunTrust
CVH Coventry Health Care STT State Street
ETFC E-Trade TMK Torchmark
EV Eaton Vance TROW T. Rowe Price
FITB Fifth Third TRV St. Paul Companies
FNF Fidelity National Financial UB UnionBanCal
FNM Fannie UNH UnitedHealth Group
FRE Freddie UNM Unum
GNW Genworth Financial USB U. S. Bancorp
GS Goldman Sachs WB Wachovia
HBAN Huntington Bancshares WFC Wells Fargo
HCBK Hudson City Bank WM Washington Mutual
HIG Hartford Financial WRB W. R. Berkley Corporation
HNT Health Net WU Western Union
HRB H & R Block ZION Zions Bank

Table 1: Tickers and company names.

Q0.10 Median Q0.90 XLF

Ann. Mean -153.28 -37.82 -6.22 -51.76
Ann. Vol. 48 80.1 146.3 68.1
Kurt. 5.48 8.41 58.82 5.68
ρ1(r2) 0.04 0.16 0.27 0.19

Table 2: Daily returns descriptive statistics in the financial crisis. The table reports the 10%, 50% and
90% quantiles of the annualized mean, annualized volatility, kurtosis and first order autocorrelation
of the squared return together with the value of the same statistics for the XLF.
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Figure 5: Financial (XLF) and Volatility (VIX) indexes.

I study daily return volatility dynamics in the two year period July 2, 2007 to June 30,
2009, which delivers a maximum of 504 trading days for each asset. The sample also roughly
matches the NBER late 2000’s recession defined as the period December 2007 to July 2009.
As customary, daily returns are defined as log differences of the adjusted closing price. I
choose to analyse this two year period only to specifically focus on dynamics during the crisis.
Parameter estimates of GARCH type models typically exhibit slow moving variation (see for
instance the evidence in Shephard and Sheppard (2010) or Brownlees et al. (2010)) and a wider
sample would dampen crisis specific features. Out of the 94 companies in the panel, 15 do
not make it to the end of the sample and have traded for as little as 8 days.7 Even if the
contribution of such companies is negligible, they have not been excluded from the sample to
illustrate how the hierarchical methodology works in such conditions. A preliminary factor
analysis suggests that a one factor structure is a reasonable assumption for the panel. The
first principal component explains 49.0% of the total variability of the dataset followed by the
second and third components capturing 9.9% and 4.8%. I take as a common factor the daily
returns on the Financial Select Sector SPDR ETF (XLF). The series is strongly correlated with
the equally weighted portfolio return constructed from the panel (96.0), the first factor from a
principal components analysis (96.0) and also with the S&P 500 index (87.1). Figure 5 plots
the XLF and the Volatility Index (VIX) from June 2004 through December 2009, the crisis
period is the shaded gray area. Note that in the crisis the XLF index has dropped more than
80% from the peaks it reached in July 2007. Summary descriptive statistics on the financial
returns panel and the common factor are reported in Table 2.

Asset characteristics are computed using quarterly accounting and daily market data as of
the end of June 2007. The first characteristic is the size of the firm, denoted as siz and measured
as market capitalization. I consider leverage (lvg), the proportion of debt to finance the firm.
The abuse of leverage by financial institutions before the crisis is often blamed as one of the

7I adhere to CRSP for the determination of the end dates of each stock.
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major sources of weakness that led to the crisis. I measure this characteristic as quasi market
leverage

lvgi =
BAi − BEi + MEi

MEi
,

where BA, BE and ME are respectively the book value of asset, book value of equity and
market value of equity. I also employ distance to default to capture a firm’s (in)ability to
generate profits and distance from insolvency. There are different approaches in the literature
to measure this quantity and I use the same indicator employed in, among others, Laeven and
Levin (2009) and Beltratti and Stultz (2010), that is

dtdi =
ROAi + CARi
sd(ROAi)

,

where ROA stands for return on assets, CAR is the capital asset ratio and sd(·) denotes the
(historical) standard deviation of ROA. The rationale of the measure is that the event CARi <
ROAi can be considered as insolvency, hence ROAi+CARi measures the distance from insolvency.
The adjustment by sd(ROAi) is a customary normalization done in the literature. Lastly,
I consider liquidity, the capacity of a firm to turn assets into cash to pay short term debt.
Measuring liquidity for financial institutions is inherently challenging given the intermediary
nature of the business itself. I proxy it using the proportion of assets that can be easily
transformed in cash, that is

liqi =
CSi
BAi

,

where CS is the sum of cash and short term investments and BA is the book value of assets.
The choice of these accounting ratios is related to the financial statement analysis practice.
Typically, the ratios used to infer the fundamental value of a firm are divided into three cate-
gories, which are stability, profitability and liquidity; and the characteristics I use attempt to
broadly cover these three different sources of information coming from financial statements.

Table 3 reports descriptive statistics on the set of variables. It is interesting to notice that
even if asset characteristics change in time, the cross section appears to be rather stable between
2004 and 2007. The correlations between the variables as of June 2007 and December 2004 are
between 84% and 98%. The degree of dependence among regressors is modest, with maximum
cross section correlation in absolute value being 0.26.

4.2 Preliminary Analysis

The time series analysis of volatility dynamics during the crisis turns out to be quite challenging
because of the presence of strong heteroskedasticity, extreme returns and the limited time span
of the period of interest.

For each asset in the panel, I estimate a Factor GARCH with fixed coefficients by Maximum
Likelihood (ML). ML estimation under the Gaussian assumption turns out to be highly sensitive
to the presence of outliers. In order to avoid extreme returns having too much of an impact
on the estimates I switch to the Student t-distribution, which improves results.8 Nevertheless,
the nonlinear estimation procedure does not converge for 16 out of 94 series. As documented,
among others, in Brownlees et al. (2010), GARCH models can be quite data hungry. The

8Trimming the outliers produces estimates which are substantially close to the ones that one gets using
Student t-distribution.
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parameter estimates exhibit a certain degree of cross sectional dispersion but, with the exception
of smoothness parameter λi, the average values are close to the typical estimates. The λi
parameter has an average value of 0.17, which can be interpreted as evidence of higher levels
of roughness in the volatility path and unconditional kurtosis during the crisis period. This is
also consistent with the evidence of Shephard and Sheppard (2010) on the performance of the
GARCH model on the S&P500 during the crisis.9

(a) Factor Loading vs. Leverage (b) Idiosyncratic Volatility vs. Leverage

(c) Persistence vs. Leverage (d) Smoothness vs. Leverage

Figure 6: Preliminary analysis. Fixed coefficient estimates versus leverage. The fixed coefficients
estimates are the ML estimates of the Factor GARCH model.

I construct scatter plots of (log) asset characteristics against parameter estimates to investi-
gate the presence of cross sectional patterns in the coefficients. For sake of space, I only report
the ones obtained using leverage in Figure 6. The scatters suggest that leverage is positively
related to all the Factor GARCH coefficients. The most convincing case is seen in the factor
loading βi while the less clear cut case is probably found in the persistence πi. Generally speak-
ing, the visual inspection of these scatters gives interesting clues as to which characteristics are
more promising explanatory variables.

9They predict conditional variance using GARCH estimates obtained from a longer sample period which
delivers (in my parameterization) a low λi. However, they notice (cf. Section 4.6 of Shephard and Sheppard
(2010)) that GARCH conditional volatility adjust too slowly to the turmoil of the crisis, implying that a higher
λi would have performed better.
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It is also interesting to comment on the behaviour of the simple least squares (LS) estimator
of the factor loading βi during the crisis.10 As is well known, in the presence of heterskedasticity
the estimator is consistent yet not efficient. During the financial crisis however, the degree of
heteroskedascticity, together with the magnitude and number of extreme observations, is such
that the LS estimates overestimate the factor loading βi by an economically significant distance.
Comparing the βi estimate obtained by ML and LS, one can see that out of the 78 successfully
converged ML estimates, in 10 cases the LS ones overshoot the parameter from 20% to 52%.
In the remaining cases, LS provides 5 estimates above 2 and up to 4 (Lehman Brothers).

4.3 Estimation Results

I estimate the Hierarchical Factor GARCH presented in Section 2 by Maximum Likelihood using
SGI with accuracy level 10. The set of explanatory variables siz, lvg, dtd and liq are transformed
in logs and are demeaned so that the intercept of each equation can be interpreted as the average
of a representative firm. The preliminary analysis suggests that the Gaussian assumption is too
restrictive and I resort to Student t-distribution innovations using a common number of degrees
of freedom for each series. This creates a minor glitch in the specification. Conditional moments
of the process are still defined in the usual manner but the joint conditional distribution of the
returns is not well known. As it is well known, multivariate generalisations of the Student
t-distribution are available (cf. Kotz and Nadarajah (2004)) but I do not pursue the exercise
here.

The model fitting process of hierarchical nonlinear dynamic models via numerical inte-
gration is not too common in the financial econometrics literature and I devote some length
describing it. This application is also somehow demanding given that the full specification is
richly parameterised (the number of parameters is twenty-four). Firstly, the intercept (that is,
the average) of the βi equation is set to unity so there is one less parameter to be estimated.
I begin by estimating the Hierarchical Factor GARCH allowing for asset characteristics one
equation at a time and using a lower integration accuracy (level 6). The initial values of the
intercepts and random effect variances are set according to the cross sectional means and vari-
ances of the preliminary analysis while the characteristics parameters are set to zero. Initial
values are also jittered in order to avoid potential local minima. Typically, all parameters that
turn out to be significant seem to capture the right sign even when the accuracy level is low.
The random effect variance parameter τ 2

· on the other hand appears to become more reliable
when the accuracy level is higher. The estimates I get from this procedure are used as initial
values for the full maximum likelihood estimation of all equations simultaneously and with high
accuracy (level 10). These initial values appear to be reasonably close to the final estimates.
The main difference between the simultaneous and equation by equation estimation regards the
significance of the parameters that is weakened in the full estimation case, which is probably
due to the high number of parameters.

The maximum likelihood estimation results delivers the following estimates (standard errors

10I am thankful to Robert Engle for initially making me notice the issue.
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in parenthesis and significant characteristics in bold)

βi = 1.0 +0.021
(0.0119)

· sizi +0.164
(0.0197)

· lvgi −0.092
(0.0142)

·dtdi −0.022
(0.0131)

· liqi + uβ i,

log(hi) = −6.759
(0.1121)

−0.176
(0.1068)

· sizi +0.145
(0.0853)

· lvgi −0.027
(0.0825)

· dtdi +0.055
(0.0903)

· liqi + uh i,

Φ−1(πi) = 1.990
(0.3228)

+0.049
(0.3663)

· sizi +0.112
(0.3204)

· lvgi +0.059
(0.2356)

· dtdi −0.043
(0.2054)

· liqi + uπ i,

Φ−1(λi) = −0.936
(0.0453)

+0.009
(0.0519)

· sizi +0.119
(0.0614)

· lvgi +0.034
(0.0495)

· dtdi +0.058
(0.0435)

· liqi + uλ i,

and the estimates of the random effects variances are

uβ i ∼ N(0, 0.055
(0.0027)

) uh i ∼ N(0, 0.190
(0.0674)

) uπ i ∼ N(0, 0.030
(0.0719)

) uλ i ∼ N(0, 0.048
(0.0211)

).

The null hypothesis of no joint effect of the asset characteristics is strongly rejected by a
Likelihood Ratio Test. In order to make the estimation easier to read, I report the Median and
the 90% coverage probability of the coefficients of an average firm, together with the R2 of each
equation in Table 4.

The factor loading βi equation is the one that has more significant relations with asset char-
acteristics. In the crisis, the factor loading is increasing in size and leverage and is decreasing in
distance to default and liquidity, with leverage being the most relevant effect. The link of the
factor loading with size is somehow surprising as typically the larger the size of a company, the
higher the degree of diversification, the lower the factor loading with respect to the common
factor. Results show that, even after controlling for other characteristics, large firms have more
systematic exposure than the small ones during the crisis. This can also be related to an inter-
connectedness effect. It is fair to say that, everything being equal, a large financial institution
is bound to be more interconnected than a small one and more interconnected institutions are
believed to have a higher exposure in the crisis. In the idiosyncratic variance hi equation only
size and leverage are significant with signs that are in line with expectations: idiosyncratic
volatility is higher for smaller institutions and more levered institutions. Persistence πi is not
significantly explained by any of the asset characteristics and furthermore the variance of its
random effect appears to be only mildly significant. This provides evidence that the degree
of volatility memory is not firm specific but is common to all firms. Finally, the smoothness
coefficient λi is positively related to leverage, meaning that levered firms have a rough volatility
path and are more prone to abrupt volatility shocks. Overall estimation results show that the
factor loading is the parameter with more cross sectional links and that leverage is the most
relevant asset characteristic. The R2 of the various coefficients reported in Table 4 show that
the model is capturing a relevant portion of the overall variation, with the factor loading R2

β

being the highest.
Conditional volatility and correlation time series plots provide a synthesis of the dynamics in

the crisis. I report the volatility of the common factor as well as the one of the global minimum
variance portfolio (GMV) in the top panel of Figure 7. The two series are on a relative scale
to facilitate comparisons. They are standardised by the level of volatility they have on the
first day of the sample. The GMV volatility can actually be computed in close form in O(N)
operations, which is appealing for large cross sectional applications (see Proposition 3 in the
appendix). The correlation of an average firm is reported on the bottom panel of Figure 7.
The correlation is computed using the following formula

ρx t =
βx hF t√

hF t (β2
x hF t + hx)

,
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Figure 7: Volatility and correlation in the crisis. The top panel shows the volatility of the financial
industry factor (thick line) and the volatility of the global minimum variance portfolio (thin line).
The bottom panel shows the correlation of an average firm with the financial factor. The vertical
line marks September 15, 2008, the day Lehman filed for Chapter 11, the largest bankruptcy in U.S.
history.

where βx, β
2
x and hx are the expected factor loading, squared factor loading and idiosyncratic

variance of a representative firm with characteristics x, that is

βx = δβ 0 +

p∑
k=1

δβ k xk, β
2
x =

(
δβ 0 +

p∑
k=1

δβ k xk

)2

+ τ 2
β , hx = exp

{
δh 0 +

p∑
k=1

δh k xk + τ 2
h/2

}
.

The plot is then constructed by setting the characteristics x to their averages. The plot docu-
ments a steady increase in volatility and correlation in crisis. Also, factor volatility dynamics
in this period are rougher than typical GARCH estimates (αF and βF are, respectively, 0.14
and 0.86). From the beginning of the sample to the mid of September 2008 volatilities and
correlation increase by, respectively, roughly 100% and 200%. After the liquidation of Lehman
on September 15th, the turbulence reaches its climax. To factor and GMV volatility have a
further steep increase and correlation gets beyond 0.80. The failure of Lehman also marks
a steep relative increase of GMV over the factor volatility. At the peak of the crisis, many
companies suffered the most severe falls (Lehman, Washington Mutual, Freddie and Fannie,
to name a few), which in turns leads to an increase in the level of idiosyncratic volatility and,
consequently, GMV volatility.

Figure 8 shows the scatter of the crisis annualized mean return and the factor loading βi.
The inspection of the graph reveals that, not surprisingly, many of the most troubled companies
were indeed the ones with higher factor exposure, to name a few, Lehman, Washington Mutual,
Bear Sterns, Countrywide Financial, Freddie and Fannie. The rank correlation between the
two series is 74.3%.

Inspection of the predicted specificities ẑi = ûi/
√
τ̂ 2 is used to check the adequacy of the nor-

mality assumption of the random effects. For each coefficient I construct a specificity histogram
and test the Null hypothesis of Gaussianity using a Jarque-Bera test. Results are reported in
Figure 9. The Gaussian assumption is adequate for the factor loading and idiosyncratic volatil-
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Figure 8: Financial crisis loss versus factor loading.

ity, but it is rejected for the persistence and smoothness. The histograms of these last two
effects suggest that there are a couple of outlying firms which lead the null to be rejected.

The predictions of the individual specificities permit one to identify which firms behave
in a substantially different manner from what their characteristics would otherwise imply. In
the case of the factor loading, a large negative specificity prediction can be intepreted as the
market evaluating the firm more market neutral than other similar companies.11 In this context
this can be judged as the firm ability of lowering its market exposure. Figure 10 plots ranked
factor loading specificity predictions of selected companies with 95% confidence interval. The
solid lines in the graph denote the 95% confidence interval of a standard Gaussian random
variable. Interestingly, the plot shows that Lehman and Washington Mutual have high factor
loading specificity, signaling that even after controlling for size, leverage, distance to default
and liquidity, the exposure of these companies in the crisis is large.

Figure 11 shows the scatter plot of the estimated coefficients versus leverage together with
the estimated regression line. The pooling effect of the random effect is evident when comparing
with fixed effect estimates in Figure 6. The shrinkage effect appears to adjust some of the
outlying estimates obtained by fixed effect approach. For instance, the idiosyncratic variance
of ABK which the fixed effect estimate set to above 140% is now slightly below 60%. The
amount of shrinkage is not uniform across coefficients. The factor loading does not exhibit a
strong shrinkage effect while the idiosyncratic variance gets notably shrunk. This is also in line
with the evidence of the simulation exercise.

The estimation results allow one to construct impulse response functions whose shape is
a function of firm characteristics to further explore model implied differences in the volatility
dynamics. Figure 12 displays the impulse response function of three companies labelled as
Average, Large and Levered. The Average firm has all characteristics set to their sample

11This, of course, relies on controlling for enough observed characteristics which might not be the case in this
application. In any case, I engage in this discussion for illustration purposes.
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(a) Factor Loading Specificity Histogram (b) Idiosyncratic Volatility Specificity Histogram

(c) Persistence Specificity Histogram (d) Smoothness Specificity Histogram

Figure 9: Specificity histograms.

Figure 10: Factor loading specificity rankings for selected firms.

averages, while the Large and Levered firms are average firms with, respectively, siz and lvg set
to 0.75% quantile of their respective empirical distributions. The impulse response functions
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(a) Factor Loading vs. Leverage (b) Idiosyncratic Volatility vs. Leverage

(c) Persistence vs. Leverage (d) Smoothness vs. Leverage

Figure 11: Random effect predictions versus leverage.

Figure 12: Hierarchical impulse response function for an average firm (triangle), levered firm (square)
and large firm (circle).
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are constructed using the same steps outlined in Section 3. The Average firm response to a
volatility shock exhibits the typical pattern of GARCH forecasts, with a markedly slow decay in
the absorption of volatility shocks. The Large firm is less volatile than the average in the steady
state. During the crisis, βi increases with size while hi decreases, but ultimately the reduction
of idiosyncratic volatility in hi makes the total variance of the firm smaller. Volatility shocks
to the Large firm behave exactly like those of the Average one. The Levered company has
the highest level of volatility in the steady state, as leverage in the crisis buys both systematic
and idiosyncratic volatility. On top of this, leverage also gets more volatility roughness, that is
higher λi, and as a result the company has a more pronounced sensitivity to volatility shocks.
Persistence of shocks is roughly equal for all firms, hence forecasts of all companies mean revert
at the same speed. The plot also suggests some further remarks on the dynamics of volatility.
It would be natural to consider tha persistence πi and smoothness λi coefficients somehow less
economically interesting in that they only capture temporary effects. However, the estimation
results hint that temporary can be a pretty long time as the estimates of πi are high and,
roughly, the same for all firms. In such a context, the λi equation can be interpreted as the
determinant of short term volatility in the presence of extreme shocks. From this perspective
the estimation results show that in case of an extreme event levered firms are the ones affected
by an extra increase in short term volatility with respect to all other firms.

It is of interest to carry out the same type of analysis in the period anticipating the turmoil
to assess whether asset characteristics and volatility dynamics relate in the same way. Also, it is
interesting to investigate if early symptoms can be detected. I estimate the same specification
using data from January 2005 to June 2007 using asset characteristics measured using data as
of December 2004. The maximum likelihood estimation results delivers the following estimates
(standard errors in parenthesis and significant characteristics in bold)

βi = 1.0 −0.034
(0.0196)

· sizi +0.117
(0.0345)

· lvgi +0.010
(0.0169)

· dtdi −0.011
(0.0221)

· liqi + uβ i,

log(hi) = −6.682
(0.1145)

−0.152
(0.0543)

· sizi +0.004
(0.0960)

· lvgi +0.004
(0.0579)

· dtdi +0.005
(0.0564)

· liqi + uh i,

Φ−1(πi) = 2.016
(0.1214)

+0.011
(0.0837)

· sizi +0.012
(0.1367)

· lvgi −0.014
(0.0790)

· dtdi −0.002
(0.1058)

· liqi + uπ i,

Φ−1(λi) = −1.285
(0.0662)

+0.005
(0.0338)

· sizi +0.108
(0.0511)

· lvgi +0.008
(0.0402)

· dtdi +0.010
(0.0380)

· liqi + uλ i.

and the estimates of the random effects variances are

uβ i ∼ N(0, 0.049
(0.0130)

) uh i ∼ N(0, 0.091
(0.0168)

) uπ i ∼ N(0, 0.117
(0.0332)

) uλ i ∼ N(0, 0.069
(0.0118)

).

Again, a Likelihood Ratio Test overwhelmingly rejects the null hypothesis of no joint effect of
the asset characteristics and Table 5 reports the Median and the 90% coverage probability of
the coefficients of an average firm, together with the R2 of each equation.

The factor loading equation has two significant explanatory variables only, size and lever-
age. Size restores its expected sign, that is large firms have small exposure while leverage has
still a positive relation to systematic exposure. Idiosyncratic volatility is decreasing in size
and leverage does not enter the equation significantly any more. The persistence equation and
smoothness equation have the same significant links as in the crisis: persistence is not signifi-
cantly related to any variables and smoothness is significantly explained by leverage, implying
that levered firms have a rougher volatility dynamics.

It is also interesting to use the pre-crisis results to rank firms according to their exposure
to the factor. I divide firms according to size quintiles (measured as of June 2007) and display
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Figure 13: Pre-crisis factor loading rankings for the largest U.S. financials.

factor loading ranks of the top quintile in Figure 13.12 This is in the spirit of Acharya, Pedersen,
Philippe and Richardson (2010) who stress the importance of the construction of systemic risk
ranking based on market data. Interestingly, the ranks clearly show Lehman Brothers (LEH)
and top U.S. Investment banks are the most systematically exposed institutions before the
crisis.

5 Conclusions

This work proposes the use of hierarchical modelling to analyse the relationship between firm
characteristics and volatility dynamics. I introduce a Hierarchical Factor GARCH model in
which firm variables determine factor exposure, idiosyncratic volatility, volatility persistence
and smoothness of the volatility path. The proposed methodology is used to analyse the
dynamics of top U.S. financial institutions during the 2007-2009 crisis using a financial index as
common factor. Dynamics are a function of firm size, leverage, distance to default and liquidity
before the beginning of the credit crunch. Of particular interest in this context is the factor
loading coefficient capturing the sensitivity to systematic shocks. Results show that leverage is
the most influential variable in the crisis, and firms with high leverage have high factor exposure,
high idiosyncratic volatility as well as high sensitivity to temporary idiosyncratic volatility
shocks. Factor exposure in the crisis is also high for firms that have a small distance to default,
are illiquid and, to a minor extent, are large. The comparison with pre–crisis estimation results
shows that role leverage is roughly stable but the impact on factor exposure of the other effects
are harnessing features of the crisis period only. Overall, the model captures a substantial
amount of cross sectional variation in volatility dynamics and gives economic insights on the
nature of volatility in the crisis.

12One could also think of multiplying the factor loading by size. The problem with this approach is that the
degree of concentration in size is such that the rankings one would get end up reflecting essentially rankings in
this variable.
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Proposition 1

q̃i(θ)− qi(θ) = log
∑
z∈Zl

f(ri|xi, z, rF ; θ)

f(ri|xi, z∗, rF ; θ)
wl(z) + log f(ri|xi, z∗, rF ; θ)− log

∫
f(ri|xi, z, rF ; θ) φ(z)

= log
∑
z∈Zl

f(ri|xi, z, rF ; θ)

f(ri|xi, z∗, rF ; θ)
wl(z) + log f(ri|xi, z∗, rF ; θ)

− log

∫
f(ri|xi, z, rF ; θ)

f(ri|xi, z∗, rF ; θ)
φ(z)− log f(ri|xi, z∗, rF ; θ)

= log
∑
z∈Zl

f(ri|xi, z, rF ; θ)

f(ri|xi, z∗, rF ; θ)
wl(z)− log

∫
f(ri|xi, z, rF ; θ)

f(ri|xi, z∗, rF ; θ)
φ(z)

=

(
A−

∫
f(ri|xi, z, rF ; θ)

f(ri|xi, z∗, rF ; θ)
φ(z)

)(∫
f(ri|xi, z, rF ; θ)

f(ri|xi, z∗, rF ; θ)
φ(z)

)−1

≤ El(f)

[
f(ri|xi, z∗, rF ; θ)∫
f(ri|xi, z, rF ; θ) φ(z)

]
Proposition 2 Let the function hi be defined as

hi =

∫
∇θ log f(ri|xi, z, rF ; θ) exp [log f(ri|xi, z, rF ; θ)− q̃i(θ)] φ(z)

and consider the factorization of the derivative log–likelihood approximation error as

∇θq̃i(θ)−∇θqi(θ) = (∇θq̃i − hi) + (hi −∇θqi)

= Ai +Bi

where Ai is the approximation error in the computation of the derivative log–likelihood assuming
that keeping the value of the likelihood fixed at f l, and Bi is the contribution of the total
approximation error due approximation of f l, which can be conviently be expressed as

Ai =
∑
z∈Zl

∇θ log f(ri|xi, z, rF ; θ) f(ri|xi, z, rF ; θ)
f(ri|xi, z, rF ; θ)

exp q̃i(θ)
wl(z)

−
∫
∇θ log f(ri|xi, z, rF ; θ) f(ri|xi, z, rF ; θ)

f(ri|xi, z, rF ; θ)

exp q̃i(θ)
φ(z)

=
fi

exp q̃i(θ)

(∑
z∈Zl

∇θ log f(ri|xi, z, rF ; θ) f(ri|xi, z, rF ; θ)
f(ri|xi, z, rF ; θ)

fi(θ)
wl(z)

−
∫
∇θ log f(ri|xi, z, rF ; θ) f(ri|xi, z, rF ; θ)

f(ri|xi, z, rF ; θ)

fi(θ)
φ(z)

)
≤ exp(qi − q̃i) El(∇qi)

Bi =

∫
∇θ log f(ri|xi, z, rF ; θ) f(ri|xi, z, rF ; θ) ( exp(−q̃i)− exp(−qi) ) φ(z)

=

(∫
∇θ log f(ri|xi, z, rF ; θ)

f(ri|xi, z, rF ; θ)

fi
φ(z)

)
(qi − q̌i)

≤ ∇θqi El(qi)

where the second expression is obtained using the mean value theorem and f̌i lies in segment
joining fi and f̃ l

i .
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Proposition 3
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Correlation
Q0.10 Mean Std. Dev. Q0.90 ρ2004 siz lvg dtd liq

siz 6406 31643 44450 72628 0.99
lvg 1.34 5.53 4.43 10.64 0.87 0.26
dtd 10.42 49.43 60.53 80.41 0.96 -0.06 -0.09
liq 0.02 0.14 0.17 0.3 0.84 -0.02 -0.25 -0.06

Table 3: Asset characteristics descriptive statistics.

Coefficient Q0.05 Median Q0.95 R2

β 0.61 1.00 1.39 35.4%

h
1/2
ann 37.78 54.07 77.39 10.9%
π 0.96 0.98 0.99 –
λ 0.10 0.17 0.28 16.4%

Table 4: Coefficient quantiles for an average firm and goodness of fit.

Coefficient Q0.05 Median Q0.95 R2

β 0.63 1.00 1.36 13.7%

h
1/2
ann 43.86 56.19 71.98 24.9%
π 0.93 0.98 1.00 –
λ 0.04 0.10 0.20 10.2%

Table 5: Coefficient quantiles for an average firm and goodness of fit.
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