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Objective dictates modeling framework

Different modeling frameworks are built for different purposes:

Expectation hypothesis (EH): Predict short rate move with yield curve slope.

Yield curve shape combines information from expectation, risk
premium, and convexity, but expectation dominates the short term.

Dynamic Term Structure Models (DTSM): Value the whole yield curve
based on assumptions on the full risk-neutral dynamics of the short rate.

Uses one yardstick (the short rate) to measure everything else for
cross-sectional consistency.

Deviations from DTSM valuation can be used to construct statistical
arbitrage trading on the yield curve.

HJM-type models: Price interest rate options based on the current forward
curve and views of forward rate volatility.

Highlight the volatility contribution for option valuation while
delta-hedge the yield curve exposure.
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Our objective: Analyzing returns on long-dated bonds

EH uses long rates to predict short rate move, not the other away around.

How to predict long rate movements based on the yield curve shape,
while accounting for risk premium and convexity?

More importantly, how to predict excess returns on long bonds?

Modeling long rates with DTSM stretches the modeler’s imagination on how
short rate should move in the next 30-60 years...

Mean reversion calibrated to time series or short end of the yield curve
implies much smaller movements than observed from long rates.

Long rates are neither (easily) predictable, nor converging to a
constant. — They move randomly, and with substantial volatility.

Can we say something useful about a 50-year bond without making a
50-year projection?

The distinct behaviors of long bonds ask for a distinct modeling approach.
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A new modeling approach

We propose a new modeling framework that is particularly suited for analyzing
long bond returns:

Link pricing directly to P&L attribution of bond investments.

The attribution makes it clear on what to bet/hedge

Price each rate based on its own behavior, not that of the short rate.

Localization allows one to make less ambitious but more confident
statements.

The model can say/do something useful about a 50-yr bond investment
without making a 50-year projection, especially if one just wants to
hold the bond for short term (say a year).

Generate predictions on bond returns, even with no prediction on rates.

via a separation of expectation/risk premium from convexity.
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Notation and the classic setting

Let Bt be the time-t price of a default-free coupon bond (portfolio) with
fixed future cash flows {Cj} at times {t + τj} ≥ t for j = 1, 2, · · · ,N.

The classic valuation of this coupon bond can be represented as

Bt =
∑
j

CjEP
t

[
Mt,t+τj

]
=
∑
j

CjEP
t

[(
dQ
dP

)
e−

∫ t+τj
t rudu

]
=

∑
j

CjEQ
t

[
e−

∫ T
t

rudu
]
.

Et [·] — expectation under time-t filtration,
Mt,T — the pricing kernel linking value at time t to value at time T
P — the real world probability measure,
Q — the so-called risk-neutral measure,
rt — instantaneous short rate
dQ
dP defines the measure change from P to Q. It is the martingale
component of the pricing kernel that defines the pricing of various risks.

The yield-to-maturity of the bond is defined via the following transformation:

Bt ≡
∑
j

Cj exp(−ytτj).
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P&L attribution of a bond investment

Decompose the ex post bond return wrt its own yield movement:

dBt =
∂Bt

∂t
dt +

∂Bt

∂dy
dy +

1

2

∂2Bt

∂y2
(dy)2 + o(dt)

o(dt) denotes higher-order terms of dt when yield moves diffusively.

This decomposition is local/particular to the bond and is tied to the
movement of the yield to maturity on this particular bond.

The ex ante expected return from the bond investment is

EP
t

[
dBt

Btdt

]
= yt − µt,yτ +

1

2
σ2
t,yτ

2

µt,y — the time-t level of the drift/direction of the yield.
σ2
t,y — the time-t level of its variance rate.

τ and τ 2 — value-weighted maturity (duration) and maturity squared:

τ =
∑
j

Cje
−ytτj

Bt
τj , τ 2 =

∑
j

Cje
−ytτj

Bt
τ 2j .
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Decomposing expected return on bond investments

EP
t

[
dBt

Btdt

]
= yt − µt,yτ +

1

2
σ2
t,yτ

2

Decomposes expected bond return into three sources:

1 Carry: Bonds with a higher yield have higher returns due to carry.

2 Prediction: Expected rate hike reduces expected return.

3 Convexity: Since bond price and yield exhibit a convex relation,
random shaking of yield (without direction) leads to a positive return.

A duration neutral portfolio that is long longer-term bonds (convexity)
is analogous to a delta-neutral long options position.

Implications

If one has no view on direction, form duration-neutral portfolios (to
neutral out the second term).

Long/short convexity based on view on volatility estimates

Adjust carry trades for convexity.
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Example: Arbitrage a parallel-shifting flat yield curve

EP
t

[
dBt

Btdt

]
= yt − µt,yτ +

1

2
σ2
t,yτ

2

Imagine a situation where

zero-coupon yields at long maturities (e.g., at 10, 15, 30 years) are flat
and move in parallel: yt(τ) = yt .
The yields move by substantial amounts, σ2

t (τ) = σ2
t � 0.

One can form a self-financing, riskless portfolio that makes money:

Make the portfolio dollar neutral — Since the yield level is the same.
Dollar-neutral leads to zero carry and hence self-financing.
Make the portfolio duration neutral — Since the three rates move in
parallel driven by the same risk source, duration-neutral cancels out the
risk and hence makes the portfolio riskless.
Make the portfolio long convexity — positive expected profits.

Example: Long $300 10-yr and $100 30-yr zeros, short $400 15-yr zero.

Dollar neutral: $300 + $100− $400 = 0
Duration neutral: 3

410 + 1
430− 15 = 0.

Long convexity: 3
4102 + 1

4302 − 152 = 300− 225 = 75.
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The payoff of a fly

dBt =
∂Bt

∂t
dt +

∂Bt

∂y
dy +

1

2

∂2Bt

∂y2
(dy)2 + o(dt)

= ytBtdt − τBtdy +
1

2
τ 2Bt(dy)2 + o(dt)

dFlyt = 0 + 0 +
1

2

∑
j

(wjτ
2
j )

 (dy)2 + o(dt)

Zeros Fly
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No dynamic arbitrage pricing on bond investments

Given the P&L attribution on bond investment,

dBt =
∂Bt

∂t
dt +

∂Bt

∂y
dy +

1

2

∂2Bt

∂y2
(dy)2 + o(dt)

Take expectation under Q, and set the instantaneous expected return to rt
by no dynamic arbitrage (NDA):

EQ
t

[
dBt

Btdt

]
= rt =

∂Bt

Bt∂t
+

∂Bt

Bt∂y
µQ
t,y +

1

2

∂2Bt

Bt∂y2
σ2
t,y

NDA leads to a simple pricing relation for the long bond yield:

yt = rt + µQ
t,yτ −

1

2
σ2
t,yτ

2 .

The fair value of the yield spread (yt − rt) on the bond investment is
determined by its current risk-neutral drift (µQ

t,y ) and volatility (σt,y )
estimates.
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Bond pricing based on local, near-term dynamics

yt = rt + µQ
t,yτ −

1

2
σ2
t,yτ

2 (1)

Local: The fair valuation of the bond investment in (1) does not depend on
short-rate dynamics, but only depend on the behavior of its own yield.

Near-term: The pricing of the yield does not even depend on its own full
dynamics, but only depends on the current level of the drift and volatility.

The drift µQ
t,y and volatility σt,y can each follow some stochastic

process, and/or depend on other rates/economic state variables ...

None of these dynamics specifications enter into the pricing relation

Views, not (much) dynamics: One can bring in forecasts/estimates/opinions
on volatility, risk premium, & rate prediction, and examine their implications
on the yield (curve).

The estimates can come from any (other) model assumptions,
algorithms, or information sources.
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Different frameworks serve different purposes

Classic DTSM

Full short rate dynamics prices
bond of all maturities.

Maintain cross-sectional
consistency across the whole
curve.

Hard to reconcile long rates
with actual short rate
dynamics.

Better suited to construct
smooth curves with
cross-sectional consistency.

New framework

Each yield is priced according
to its own near-term
predictions.

Ask for the most relevant
predictions for the pricing.

Hard to maintain
cross-sectional consistency
across all bonds.

Better suited to analyze
specific bond (portfolios) and
connect to (views on) their
own, current behaviors.
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Pricing the yield curve based on common factors

yt = rt + µQ
t,yτ −

1

2
σ2
t,yτ

2 (2)

The stand-alone fair valuation of a particular bond investment depends on
views/estimates of its own conditional drift and volatility.

One can perform joint valuation on the yield curve via a common factor
approach:

y i
t = β>i,tXt + ωi,tui,t , Xt ∼ N (µt − λt ,Σt)

Xt can be principal components and/or macroeconomic factors

Can be used for both P&L analysis and pricing

Analsis/pricing depends only on (empirical) conditional forecasts and
views, not on particular dynamics specification.
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Decomposing long-bond returns with no rate predictions

It is difficult to predict long rate movements. So we start by assuming
random walk on floating (constant maturity) long rates:

dyt(τ) = σt(τ)dW P
t .

A risk-neutral drift is induced by market pricing of bond risk (−dWt):

dyt(τ) = λtσtdt + σt(τ)dW Q
t .

Market price of interest rate tends to be negative, leading to positive
market price of bond risk (λt) on average.

The risk-neutral drift of the fixed-expiry rates is further adjusted by the local
shape of the yield curve (“sliding”):

µQ
t = λtσt − y ′t (τ).

The pricing is based on the yield dynamics of a fixed contract, but it is
easier to model/estimate floating rate dynamics (e.g., 30-yr rate).
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Decomposing long-bond returns

Plugging the no-prediction assumption into the pricing relation leads to

∂ [ytτ ]

∂τ
= r + λtσt(τ)τ − 1

2
σ2
t (τ)τ 2 .

For zeros, ∂[ytτ ]
∂τ = f (τ) is the instantaneous forward rate.

Define instantaneous volatility weighted duration and convexity as

dt = σt(τ)τ, ct = σ2
t (τ)τ 2.

Integrate

yt = r + λtDt −
1

2
Ct ,

with D and C denoting the integrated duration and convexity:

Dt ≡
[

1

τ

∫ τ

0

dt(s)ds

]
, Ct ≡

[
1

τ

∫ τ

0

ct(s)ds

]
What matters is not just sensitivity (τ), but also volatility.

In absence of prediction, risk premium drives long rates up, convexity drives
long rates down.
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Extract bond risk premium from long rates

We can extract bond risk premium from long yield and yield volatility:

λt =
yt − rt + 1

2 Ct

Dt

Long rates (yt) and financing cost (rt) are directly observed.

Variance term structure σt(τ) can be estimated using recent history
(e.g., via GARCH, from options, curve)

We can then examine whether the ex-ante risk premium predicts ex post
bond excess return, without ever the need to fit a predictive regression.
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Empirical analysis: Data

Data: US and UK swap rates 1995.1.3-2016.5.11, 5378 business days

Based on 6-month LIBOR Maturity, 2,3,4,5,7,10,15,20,30

Extended maturity since
US: 2004/11/12 for 40 & 50 years
UK: 1999/1/19 for 20 & 30 years, 2003/08/08 for 40 & 50 years
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Stripped Treasury zero rates for robustness check
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Swap rate variance term structure estimators

Estimate variance σ2
t on each floating swap rate series with a 1y rolling window.

US UK

Long rates vary as much as, if not more than, short rates.
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Market price of bond risk

US UK
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The market price of bond risk extracted from different rates are similar in
magnitude and move together:

Over the common sample, the cross-correlation estimates among the
different λt series average 99.67% for US, and 98.76% for UK.
The evidence supports a one-factor structure for the bond risk
premium, as in Cochrane & Piazessi.

In the US, market price of risk approached zero in late 1998, 2000, and
2007, but tended to be high during recessions.

In the UK, the market price became quite negative during 1998 and
2007-2008.
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Predicting ex post excess returns with ex ante risk premium

Correlation between ex ante risk premium (γtσ
m
t ) and ex post excess returns on

each par bond, with the average denoting the correlation between the average risk
premium and the average bond excess return over the common sample period

Maturity 10 15 20 30 40 50 Average
Horizon: 6-month

US 0.31 0.28 0.26 0.24 0.27 0.26 0.29
UK 0.18 0.22 0.22 0.18 0.19 0.22 0.23

Horizon: One year
US 0.36 0.36 0.34 0.31 0.31 0.30 0.34
UK 0.36 0.42 0.40 0.32 0.33 0.37 0.39

The assumption of no prediction on long-dated swap rates leads to
significant prediction on bond excess returns.

The predictors (risk premium) are generated based purely on a variance
estimator and the current slope of the yield curve, without estimating
predictive regressions.
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Formulating rate expectation

If we can predict rate movement, we can further enhance bond return prediction:

EH uses the yield curve slope to predict short-rate movements.

We can at least perform convexity adjustment to generate a more
informative slope:

ASt = yL
t − rt +

1

2
CL
t

EH does not say anything about long-rate prediction, we propose to predict
long-rate movements based on anticipated central bank action, which we
capture using the yield curve slope at the short end.

CBt = y2
t − y1

t

Anticipated monetary tightening reins in future inflation, ultimately
bringing down long-dated rates (Rotemberg&Woodford (1997)).

Rate prediction at each maturity reflects the combined effects of the two:

µt(τ) =
1− e−κτ

κτ
(ASt + CBt)− CBt , κ = 1

This is just a starting point...
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Predictive correlations on rates and excess returns

Universal rate and excess return predictive power across short and long maturities

US UK
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Similar results from stripped Treasury spot rates

over a longer period (1986-

Market price of risk Predictive correlation
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Concluding remarks

We propose a new modeling framework that is particularly suited for
analyzing returns on a particular bond or bond portfolio.

The framework does not try to model the full dynamics of an instantaneous
short rate, but focus squarely on the behavior of the bond yield in question.

It does not even ask for the full dynamics specification of this bond yield, but
only needs estimates of its current expectation, risk premium, and volatility.

It can readily accommodate findings from other models, algorithms,
information sources.

The model framework decomposes each yield into three components:
expectation, risk premium, and volatility.

One can estimate the volatility from historical time series, or infer it
from the curvature of the yield curve, or interest rate options.
Separating risk premium from expectation can be a very challenging,
but very fruitful endeavor.

We show that we can predict bond excess returns, without running
predictive regressions, even by assuming no prediction on interest rates.
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