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1 Introduction

Global costs of weather-related disasters have increased sharply in recent decades. While this

trend increase is partly due to economic growth and exposure of physical capital (Pielke et

al., 2008), recent climate research links climate change to more frequent disasters (National

Academy of Sciences, 2016). Emissions abatement will only impact such losses decades down

the road and might not fully address the consequences for weather disasters. Hence, adapta-

tions to mitigate natural disaster risks, be it flooding from tropical cyclones or damage from

wildfires, need to play a major role going forward.

In contrast to emissions abatement, which have been the main focus of research using

integrated assessment models (Nordhaus, 2017; Golosov, Hassler, Krusell, and Tsyvinski,

2014), such adaptation strategies have thus far been relatively under-emphasized both in

climate change research and practice (Bouwer et al., 2007). Since there is uncertainty on

the impact of global warming for the frequency of disasters, adaptation naturally depends on

households learning about these consequences.1

To address these issues, we introduce learning and adaptation into a continuous-time

stochastic general-equilibrium model with disasters along the lines emphasized by Rietz (1988),

Barro (2006), and especially Pindyck and Wang (2013). Output is determined by an AK

growth function augmented with capital adjustment costs (e.g., Hayashi, 1982) that give rise

to rents for installed capital and the value of capital (Tobin’s average q). Disaster shocks

following a Poisson process destroy capital stock, affect equilibrium asset prices, and reduce

the welfare of households endowed with recursive utility (Epstein and Zin, 1989).

Mitigation of these disaster shocks is modeled via a combination of two adaptation tech-

nologies: (1.) adaptation spending at the firm level that reduces the exposure of a firm’s

capital to the disaster shock (e.g. sandbags and other temporary barriers to protect build-

ings) and (2.) spending at the aggregate level that requires collective action which reduces

the conditional damage of a disaster arrival and tail risk for all agents in the economy (e.g.,

an early warning system, infrastructure maintenance and preparedness, and other government

funded programs.)2

1For instance, scientific consensus on the impact of global warming on the frequency of hurricanes changed
markedly in 2005, when a record number of hurricanes including Katrina made landfall (Emanuel, 2005).
Recent weather disasters have moved public opinion on the consequences of climate change (see, e.g., the Yale
Climate Opinion Maps website at https://climatecommunication.yale.edu/visualizations-data/ycom-us/.)

2See Bennetton et al. (2022) and Fried (2023) for evidence on the value of flood control adaptations.
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Our model generates the following key properties and predictions. First, while the planner’s

first-best solution features an optimal mix of spending on both adaptation technologies, firms

do not internalize the benefits of aggregate risk mitigation and underspend on total risk

mitigation in market economies. We prove that an optimal tax on capital to fund government

spending on reducing aggregate tail risks restores the first-best solution while still maintaining

a balanced budget.

Second, belief that the economy is in the bad state (B) is a key state variable driving

equilibrium outcomes. “Bad” news (an unexpected arrival) leads to a discontinuous jump

(worsening) of belief, as a disaster arrival is a discrete event also serving as a discrete signal.3

Absent any arrivals, belief drifts gradually towards the good (G) state, as no news is good

news when it comes to arrival of disasters in our model.

Third, unexpected disaster arrivals have not only direct effects of capital destruction

(Pindyck and Wang, 2013) but also indirect effects due to learning that the world is riskier

than anticipated. As a result, the effects of disaster arrivals on economic growth are also

time-varying and persistent. Additionally, Tobin’s q falls and the stock market risk premium

rises upon a disaster arrival. Without the learning channel in our model, asset valuation

multiples, e.g., Tobin’s q, would not move upon disaster arrivals as predicted by Pindyck and

Wang (2013). The disaster arrival effects on growth, valuation, and risk premium are a major

difference between our model and the literature.4

We then quantify the importance of learning and adaptation for disaster risk mitigation

in the context of tropical cyclones, which include hurricanes, typhoons, cyclones, and tropical

storms,5 that are estimated to affect nearly 35% of the global population. Using panel data

covering 109 countries over the period of 1950-2010, we calibrate our model via simulation

to target moments pertaining to the macroeconomy (aggregate consumption, investment, and

output), to financial markets (the risk-free rate, equity risk premium and Tobin’s q), and to

the arrivals of tropical cyclones and adaptation (e.g., government flood control budgets). We

confirm findings in the literature that a typical disaster leads to 1% reduction in GDP growth

(Hsiang and Jina, 2014). We also present new findings that country-level asset prices (the

3Our model generates time-varying disaster arrival rates via learning (also see e.g., Wachter and Zhu, 2019,
Colin-Dufresne, Johannes, and Lochstoer, 2016).

4See Hong, Karolyi, and Scheinkman (2020) for a review of recent findings on weather disasters and climate
risks including the impact of sea-level rise on coastal property prices. Beliefs of the risks are shown to play a
role (Bakkensen and Barrage, 2017).

5They are referred to as tropical storms or hurricanes in Atlantic, typhoons in the Pacific, and cyclones in
Indian Ocean.
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risk-free rate, Tobin’s q, and equity risk premium) also respond strongly to disaster arrivals,

thus allowing us to internally calibrate parameters governing the learning process.

The first finding of our quantitative analysis is that large learning effects are needed to

rationalize the data. The second finding is that the value of adaptation is much higher than

under the counterfactual no-learning environment. That is, a large part of the value of optimal

adaptation derives from uncertainty associated with learning about the climate state. The

third finding is that there is a significant gap between welfare in a competitive economy (with

only private adaptation) and welfare in the first-best economy, which is implementable in

a market economy with optimal capital taxes. Our quantitative conclusions are generally

robust to two changes to the model: (1) a generalized belief updating process that allows the

underlying state to switch between the good and bad states, and (2) different risk preferences.

Having established the importance of adaptation for mitigating disaster risks in a learning

environment, we then explain how learning and adaptation influence the social cost of carbon.

We consider a tractable extension, incorporating features from the social cost of carbon model

of Van den Bremer and Van der Ploeg (2021). Output depends on both capital and fossil

fuels. Using fossil fuels increases the stock of carbon in the atmosphere, which leads to larger

expected damages from disasters. But there is still uncertainty about damages, which our

society learns about from disaster arrivals, and then makes adaptation decisions in response.

Equilibrium outcomes depend on both the belief (about how likely the economy is in the

bad state) and the carbon stock. We show that both a fossil-fuel tax (set at the equilibrium

social cost of carbon) and an adaptation (capital) tax are needed for the society to attain the

first-best solution.

We use our calibration of the planner’s first-best solution to highlight the role of learning.

In the no-learning first-best benchmark, recent integrated assessment models (with Epstein-

Zin risk preferences and productivity shocks) project the social cost of carbon to increase

over time as carbon stock gradually rises (Jensen and Traeger, 2014; Cai and Lontzek, 2019).

Learning and adaptation affect the social cost of carbon in several ways. First, overall levels

are naturally lower due to adaptation. Moreover, the slopes and variances of projections over

time depend the society’s prior belief and the speed of convergence of beliefs to a steady state.

Posterior beliefs have a bi-modal distribution, which widens the inter-quartile range of social

cost of carbon projections over time.

Our model differs in three key respects from Brestchler and Vinograd (2014), who also
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model how optimal emissions abatement mitigates disaster risks. First we incorporate learning

as our asset-pricing and other key implications would fail badly absent learning. Second we

allow for an optimal mix of fossil fuel taxes and adaptation. Finally, our quantitative analysis

also differs in that we infer the latent learning process from asset prices. Our learning findings

complement the analysis of model uncertainty for climate policy (Barnett, Brock, and Hansen,

2020).

2 Model

In this section, we develop a model in which there is an externality when it comes to the

mitigation of disaster risks in a market economy. Time is continuous and the horizon is

infinite. There is a continuum of identical firms and households, both with a unit measure.

2.1 Firms’ and Households’ Optimization Problems

Firm production. A firm produces output, Yt, using its capital stock, Kt, the sole factor

of production. Specifically, Yt is proportional to its contemporaneous capital stock Kt:

Yt = AKt , (1)

where A > 0 is a constant that defines productivity. This is a version of the AK model but

importantly generalized with capital adjustment costs as we show later.

Firm investment, capital accumulation, and arrival of jumps (disasters). Let It

denote firm investment. The firm’s capital stock Kt evolves as:

dKt = (It− − δKKt−) dt+ σKKt−dWK
t −Nt−Kt−(1− Z)dJt , (2)

where δK is the depreciation rate of capital. The second term captures continuous diffusive

shocks to capital, where WK
t is a standard Brownian motion and the parameter σK is the

diffusion volatility. This term is the standard source of shocks for AK models in macroeco-

nomics and sometimes is interpreted as stochastic depreciation shocks. The last term in (2)

captures the loss to the firm’s capital from a stochastic arrival of a disaster.

The process Jt in (2) is a Poisson process where each jump arrives at a constant but

unobservable rate, which we denote by λ. We will return to discuss the details for the arrival

rate λ. There is no limit to the number of these jump shocks. If a jump does not arrive at t,

4



i.e., dJt = 0, the third term disappears. To emphasize the timing of potential jumps, we use

t− to denote the pre-jump time so that a discrete jump may or may not arrive at t. The Nt−

process is chosen by the firm to mitigate its exposures to disasters, which we introduce later.

Without reducing disaster exposures (which implies Nt− = 1), upon a disaster arrival at t

(dJt = 1), a stochastic fraction (1−Z) ∈ (0, 1) of the firm’s capital stock Kt− is permanently

destroyed at t and hence the surviving capital stock is Kt = ZKt−. (For example, if the firm

incurred no disaster exposure reduction spending at t− and a shock arrived at t destroying 15

percent of capital stock, we would have Z = 0.85.) Naturally, anticipating damages caused by

these disasters, the firm has incentives to ex-ante reduce its exposures to disaster shocks by

spending resources (e.g., sandbags to keep a building from flooding during a tropical cyclone.)

Let Ξ(Z) and ξ(Z) denote the cumulative distribution function (cdf) and probability den-

sity function (pdf) for the stochastic fraction of capital recovery Z, respectively, conditional

on a jump arrival. While the firm takes the distribution of Z as given, the society as a whole

can spend resources to influence the distribution of Z by making disasters less damaging to

the economy. We introduce the determinants of Ξ(Z) at the aggregate level in Section 2.4.

Reducing a firm’s disaster exposure (firm-level adaptation). Let Xe
t− denote the

firm’s adaptation spending to reduces its exposure to a disaster, where the superscript e refers

to exposure at t−. With this spending at t−, should a disaster arrive at t, the firm decreases

its capital loss from (1− Z)Kt− to Nt−(1− Z)Kt−, where Nt− ∈ [0, 1] depends on Xe
t−. The

effect of this spending on capital stock dynamics is captured by the Nt− term in (2). Let

xet− = Xe
t−/Kt− denote the firm’s scaled disaster exposure reduction spending.

To preserve our model’s homogeneity property, we assume that Nt− is a function of xet−:

Nt− = N(xet−) . (3)

Equations (2) and (3) imply that if we double Xe
t− and capital stock Kt− simultaneously, the

benefit from reducing disaster damages (in units of goods) also doubles. To see why, observe

that Nt− = N(xet−) is unchanged with the simultaneous doubling of Xe
t− and Kt− but the

amount of loss reduced by adaptation, is doubled since Kt− has doubled.

We requireN ′(xe) ≤ 0 as adaptation spending reduces damages. Additionally, the marginal

effect of spending on reducing damages is decreasing in xe, which implies N ′′(xe) ≥ 0. Finally,

by definition, N(0) = 1, as no adaptation spending (xe = 0) no damage reduction.
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Capital adjustment costs and firm’s objective. Following the q theory of investment

(Hayashi, 1982; Abel and Eberly, 1994), we assume that when investing Itdt, the firm incurs

additional capital adjustment costs, which we denote by Φtdt. That is, the total cost of

investment per unit of time is (It + Φt) including both capital purchase and adjustment costs.

Let CFt denote the firm’s cash flow/dividend payout:

CFt = Yt − (It + Φt)−Xe
t . (4)

Let cft = CFt/Kt denote the scaled cash flow and it = It/Kt denote the investment-capital

ratio. Next, we specify the capital adjustment cost function. Following Hayashi (1982), we

assume that Φ(I,K) is homogeneous with degree one in I and K by writing:

Φ(I,K) = φ(i)K , (5)

where φ(i) is increasing and convex.

The representative firm chooses investment I and the adaptation spending Xe to maximize

its risk-adjusted present value of future cash flows by solving:6

max
I,Xe

E
[∫ ∞

0

Mt

M0

(Yt − (It + Φt)−Xe
t ) dt

]
, (6)

where M is the equilibrium stochastic discount factor (SDF) to be determined later. Note

that the firm takes M as given when solving its problem. Let Q0 denote the firm’s value at

t = 0, the solution for (6). Because installing capital is costly, installed capital earns rents

in equilibrium so that Tobin’s average q, the ratio between the firm’s value (Q0) and the

replacement cost of capital (K0), exceeds one.

Households’ preferences. We work with the recursive utility developed by Epstein and

Zin (1989) and formulated in continuous time by Duffie and Epstein (1992). The life-time

utility of our representative consumer’s recursive preferences is given by:

V0 = E
[∫ ∞

0

f(Ct, Vt)dt

]
, (7)

where f(C, V ) known as the normalized aggregator is given by

f(C, V ) =
ρ

1− ψ−1

C1−ψ−1 − ((1− γ)V )ω

((1− γ)V )ω−1 (8)

6Financial markets are perfectly competitive and complete. While the firm can hold financial positions
(e.g., DIS contracts in net zero supply), these financial hedging transactions generate zero NPV for the firm.
Therefore, financial hedging policies are indeterminate, a version of the Modigliani-Miller financing irrelevant
result. The firm can thus ignore financial contracts without loss of generality.
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and ω = (1 − ψ−1)/(1 − γ). Here ρ is the rate of time preference, ψ is the elasticity of

intertemporal substitution (EIS), γ is the coefficient of relative risk aversion. Unlike expected

utility, recursive preferences as defined by (7) and (8) disentangle risk aversion from the

EIS.7 To check the robustness of our analysis, we also analyze our model with external habit

formation proposed by Campbell and Cochrane (1999) in Subsection 7.7.

2.2 Bayesian Belief Updating about the Disaster Arrival Frequency

Next, we turn to the disaster arrival process. The arrival rate λ while constant is unobservable

to the agent.8 Therefore, an arrival of a disaster not only destroys capital stock, but also serves

as a signal from which households and firms update their beliefs about λ.

While the true disaster arrival rate λ is constant by assumption, households and firms do

not have complete information about the value of λ. What the households and firms know at

time 0 is that the true value of λ is either λG or λB with λB > λG. If the true value of λ is

λB rather than λG, capital stock is more likely to be hit by a disaster (i.e., a negative jump).

We refer to the low-arrival-rate and high-arrival-rate scenarios as the good (G) state and the

bad (B) state, respectively. Additionally, all agents are endowed with the same prior belief

π0− that the true value of λ is λB. In sum, all agents in our model have the same information

sets, share the same prior, and use the same Bayes rule to update beliefs.

Let πt denote the time-t posterior belief that λ = λB:

πt = Pt(λ = λB) , (10)

where Pt( · ) is the conditional probability at t. The expected disaster arrival rate at t, λt, is:

λt = Et(λ) = λ(πt) = λBπt + λG(1− πt) , (11)

which is a weighted average of λB and λG. A higher value of πt corresponds to a belief that

the economy is more likely in State B where the jump arrival rate is λB > λG.

What leads the agent’s belief to worsen (increasing π) is jump arrivals. What leads the

belief to revise favorably is no jump arrivals. In this sense, no-jump news is good news.

7If γ = ψ−1 so that ω = 1, we have the standard constant-relative-risk-aversion (CRRA) expected utility,
represented by the additively separable aggregator:

f(C, V ) =
ρC1−γ

1− γ
− ρ V. (9)

8In Section OA of the Online Appendix, we generalize our model to a setting where the unobservable
disaster arrival rate λ is stochastic and follows a two-state continuous-time Markov chain.
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Mathematically, the agent updates his belief using the Bayes rule:9

dπt = σπ(πt−) (dJt − λt−dt) , (12)

where

σπ(π) =
π(1− π)(λB − λG)

λ(π)
=
π(1− π)(λB − λG)

λBπ + λG(1− π)
> 0 . (13)

Here, signals come from Jt. Note that πt and λt are both martingales which can be seen from

(12) as Et−[dJt] = λt−dt. When a disaster strikes at t, the belief immediately increases from

the pre-jump level πt− to πJt by σπ(πt−), where

πJt = πt− + σπ(πt−) =
πt− λB
λ(πt−)

> πt− . (14)

If there is no arrival (dJt = 0) over dt, the household becomes more optimistic. In this case,

dπt
dt

= µπ(πt−) = πt−(1− πt−)(λG − λB) , (15)

using µπ(πt−) = −σπ(πt−)λ(πt−) . Equation (15) is a logistic differential equation. Conditional

on no jump (dJv = 0) for v ∈ (s, t), we obtain the closed-form logistic function for πt:

πt =
πse
−(λB−λG)(t−s)

1 + πs(e−(λB−λG)(t−s) − 1)
. (16)

In Figure 1, we plot a simulated path for π starting from π0− = 0.1. It shows that absent a

jump arrival, belief becomes more optimistic and πt decreases deterministically between two

consecutive jumps following the logistic function given in (16). Once a jump arrives at t, the

belief worsens moving upward to πJt given in (14) by a discrete amount σπ(πt−) given in (13).

2.3 Competitive Market Structure and Equilibrium

Next, we turn to the competitive market structure and define market equilibrium. Financial

markets are dynamically complete. Without loss of generality, it is sufficient to assume that

the following financial securities exist at all time t: (i) a risk-free asset thats pays interest at

the equilibrium rate of rt and (ii) the aggregate equity market.10

9See Theorem 19.6 in Liptser and Shiryaev (2001).
10For markets to be dynamically complete, we also need actuarially fair diffusion and jump hedging contracts

(for each possible jump contingency) as in Pindyck and Wang (2013). The net demand is zero for all hedging
contracts. For expositional simplicity, we omit these hedging contracts and refer readers to Pindyck and Wang
(2013) for related detailed analysis.
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Figure 1: This figure simulates a path for disaster arrival times in Panel A and plots the
corresponding belief updating process in Panel B starting with π0 = 0.08. The belief decreases
deterministically in the absence of jumps but discretely increases upward upon a jump arrival.

To ease exposition, we use boldfaced letters to refer to aggregate variables so as to

differentiate from the corresponding micro-level variables.

Let {Qt} denote the equilibrium ex-dividend aggregate stock market value and {Dt} denote

the aggregate dividends, respectively. The cum-dividend return is then given by

dQt + Dt−dt

Qt−
= µQ(πt−)dt+ σKdWK

t +

(
QJt
Qt−

− 1

)
dJt , (17)

where µQ(π) is the expected stock market return (leaving aside the jump effect). We later

verify that the diffusion volatility of the stock market return equals σK , the same as the

diffusion volatility given in (2). Finally, the last term captures the effect of jumps on returns.

Competitive equilibrium. We define the recursive competitive equilibrium as follows:

(a.) Taking the equilibrium risk-free rate r and the equilibrium aggregate stock market return

process (17) as given, the representative household chooses consumption C and allocation to

the aggregate stock market Γ to maximize lifetime utility given by (7)-(8);11 (b.) Taking the

equilibrium SDF {Mt; t ≥ 0} as given, the representative firm chooses investment I and the

disaster exposure mitigation spending Xe to maximize its market value given in (6); (c.) The

interest rate r, the stock market return process (17), and the SDF {Mt; t ≥ 0} are consistent

with the households’ and firms’ optimal decisions and all markets clear in equilibrium.

11Since each household is infinitesimally small and has no impact on any aggregate variables, there is no
incentive to spend on mitigation. We provide additional discussions later in the paper.
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2.4 Source of Externality: Technology Reducing Tail Risk of the
Damage Distribution Ξ(Z) for All Firms

Next, we introduce another adaptation technology, which reduces the tail risk of the aggregate

disaster distribution Ξ(Z). In contrast to the first type of adaptation technology, which

operated at the firm level, this second type of adaptation technology operates at the aggregate

level and features an externality (a realistic aspect of adaptation) as its effectiveness depends

on collective contributions of all firms in aggregate.

We assume that the aggregate spending made at t− can curtail left-tail disaster (jump)

risks at t if a jump arrives at t. The idea is that changing the distribution of Z for all firms

is very costly and requires a spending that is at the order of a fraction of the aggregate

capital stock K. Let Xd
t− denote the aggregate spending on this distribution-tail-curtailing

technology, where the superscript d refers to the notion that this spending is to make the

distribution of fractional loss (1 − Z) less damaging. Let xdt− = Xd
t−/Kt− denote this scaled

aggregate adaptation spending. Since aggregate risk reduction is a public good, no firm has

incentives to spend on this new technology. This is the reason why markets fail.

Specifically, by spending on aggregate tail risk reduction, we change the distribution of

the post-jump fractional recovery Z from Ξ(Z) to Ξ(Z; xdt−). While simultaneously doubling

this type of aggregate adaptation spending Xd
t− and the aggregate capital stock Kt− does not

change the distribution Ξ(Z; xdt−), as the ratio xdt− = Xd
t−/Kt− remains unchanged, doing so

doubles the benefit of this public spending (i.e., the total reduction of damages) in levels as

the benefit is proportional to Kt−(1− Z) at the aggregate level.12

We have completed the description of our market economy model. Before solving it in

Section 4, we first analyze the planner’s problem. The first-best solution for the planner’s

model serves as an important benchmark for our analysis of the market economy.

3 Planner’s Problem and its First-Best Solution

The social planner chooses consumption C, investment I, and adaptation spendings Xd and

Xe to maximize the representative household’s utility given in (7)-(8) subject to the repre-

sentative firm’s production/capital accumulation technology, the adaptation technologies, and

the aggregate resource constraint: C + I + Φ + Xd + Xe = Y = AK.

12This is similar to the homogeneity assumption for disaster distribution (private adaptation) mitigation
spending Xe

t−.
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To save on notation, we drop the subscript fb in this section until the end of this section

where we summarize the first-best solution.

Dynamic programming. Let V (K, π) denote the representative household’s value func-

tion. The Hamilton-Jacobi-Bellman (HJB) equation for the planner is:

0 = max
C, I,xe xd

f(C, V ) + (I− δKK)VK(K, π) + µπ(π)Vπ(K, π) +
1

2
σ2
KK2VKK(K, π)

+λ(π)Exd
[
V
(
KJ , πJ

)
− V (K, π)

]
, (18)

where πJ is the post-jump belief given in (14), KJ is the post-jump capital stock given by

KJ = (1−N(xe)(1− Z)) K , (19)

µπ(π) is the expected change of belief absent jumps given in (15), λ(π) is the jump arrival

rate given in (11), and Exd [ · ] is the expectation operator with respect to the pdf ξ(Z; xd) for

the recovery fraction Z for a given level adaptation spending xd to reduce aggregate risk.

The first term on the right side of (18) is the household’s normalized aggregator (Duffie

and Epstein, 1992); the second term captures how investment I affects V (K, π); the third

term reflects how belief updating (in the absence of jumps) impacts V (K, π); and the fourth

term captures the effect of capital-stock diffusion shocks on V (K, π). It is worth noting that

as the signals in our learning model are discrete (jump arrivals), there is no diffusion-induced

quadratic-variation term involving Vππ in the HJB equation (18).

Direct (value destroying) versus learning effects. Finally, the last term (on the second

line) of (18) captures the effect of jumps on the expected change in V (K, π). This term

captures rich economic forces and warrants additional explanations. When a jump arrives at

t (dJt = 1), capital falls from Kt− to (1 − Z)Kt− absent exposure mitigation spending. By

spending xet− to reduce the exposure, the planner reduces the capital loss from (1−Z)Kt− by

N(xet−)(1− Z)Kt−, so that the post-jump capital is KJt = (1−N(xet−)(1− Z))Kt− at t.

In sum, a jump triggers two effects on V (K, π). First, there is a direct capital destruction

effect. As a jump arrival lowers capital stock from Kt− to KJt = (1−N(xet−)(1−Z))Kt−, the

value function decreases from V (Kt−, πt−) to V (KJt , πt−) even if we ignore the agent’s belief

updating due to learning. Second, there is a learning (belief-updating) effect. As a jump

arrival also cause the belief to increase from πt− to πJt given in (14), the agent becomes more
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pessimistic causing the value function to further decrease from V (KJt , πt−) to V (KJt , π
J
t ).

These two effects reinforce each other over time leading to potentially significant losses.

The planner chooses consumption C, investment I, two types of adaptation spendings,

Xd and Xe, to maximize recursive utility given in (7)-(8) by setting the sum of the five

terms on the right side of (18) to zero, implied by the optimality argument underpinning the

HJB equation for recursive utility (see Duffie and Epstein, 1992). Because of the resource

constraint, it is sufficient to focus on I, Xd and Xe as control variables.

First-order conditions for investment and two types of adaptation spendings. The

first-order condition (FOC) for investment I is

(1 + ΦI(I,K))fC(C, V ) = VK(K, π) . (20)

The right side of (20), VK(K, π), is the marginal (utility) benefit of accumulating capital

stock. The left side of (20) is the marginal cost of accumulating capital, which is given by

the product of forgone marginal utility of consumption fC(C, V ) and the marginal cost of

accumulating capital, (1 + ΦI(I,K)). Because of capital adjustment costs, increasing K by

one unit requires incurring investment costs more than one unit, which explains the marginal

adjustment cost ΦI(I,K). Because of non-separability of preferences, fC(C, V ) depends on

not just consumption C but also the continuation utility V .

The FOC for the scaled aggregate tail risk reduction spending, xd ≥ 0, is

fC(C, V ) =
1

K
λ(π)

∫ 1

0

[
∂ξ(Z; xd)

∂xd
V
(
KJ , πJ

)]
dZ , (21)

if the solution is positive, xd > 0.13 The planner chooses xd to equate the marginal cost of

adaptation, which is the forgone marginal (utility) benefit of consumption fC(C, V ) given on

the left side of (21), with the marginal benefit of adaptation given on the right side of (21).14

By spending xd per unit of capital to make the distribution of Z less damaging, the planner

changes the pdf ξ(Z; xd) for the fractional capital recovery, Z, from ξ(Z; 0) to ξ(Z; xd).

Similarly, the FOC for the scaled aggregate disaster exposure reduction spending xe is

fC(C, V ) = −λ(π)N ′(xe)Exd
[
(1− Z)VK

(
KJ , πJ

)]
, (22)

13Otherwise, xd = 0 as adaptation in reality cannot be negative. When do we see xd = 0? One scenario is
when the technology is very inefficient. In this case, the marginal benefit of spending on disaster distribution
mitigation spending is less than one, causing the planner to set xd = 0.

14The second-order condition (SOC) λ(π)
∫ 1

0

[
∂2ξ(Z;xd)
∂(xd)2

V
(
KJ , πJ

)]
dZ < 0 is satisfied.
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if the solution is strictly positive, xe > 0.15 That is, the planner optimally chooses xe to

equate the marginal benefit of reducing the disaster exposure with the marginal cost of doing

so. By spending xet− per unit of capital, the planner reduces the post-jump fractional capital

loss from (1− Z)Kt− to Kt− −KJt = N(xet−)(1− Z)Kt−.

Using the homogeneity property to simplify the solution. Our model has the fol-

lowing homogeneity property. If we double capital stock K, it is optimal for the planner to

simultaneously double its quantity choices: the two types of adaptation spendings Xd and

Xe, investment I, and consumption C at all time. As a result, the value function V (K, π) is

homogeneous with degree (1− γ) in K. We can write Vfb(K, π) as follows:

Vfb(K, π) =
1

1− γ
(bfb(π)K)1−γ , (23)

where bfb(π) is a welfare measure proportional to certainty equivalent wealth under first best to

be determined as part of the solution. Using the FOCs (20), (21), (22), substituting the value

function V (K, π) given in (23) into the HJB equation (18), and simplifying these equations,

we obtain the following four-equation ODE system for b(π), i(π), xd(π), and xe(π):

0 =
ρ

1− ψ−1

[(
b(π)

ρ(1 + φ′(i(π)))

)1−ψ

− 1

]
+ i(π)− δK −

γσ2
K

2
+ µπ(π)

b′(π)

b(π)

+
λ(π)

1− γ

(b (πJ )
b(π)

)1−γ

Exd(π)((1−N(xe(π))(1− Z))1−γ)− 1

 , (24)

b(π) = [A− i(π)− φ(i(π))− xd(π)− xe(π)]1/(1−ψ) [ρ(1 + φ′(i(π)))]
−ψ/(1−ψ)

, (25)

1

1 + φ′(i(π))
= λ(π)

[
b
(
πJ
)

b(π)

]1−γ

N ′(xe(π))Exd(π)
[
(Z − 1)(1−N(xe(π))(1− Z))−γ

]
, (26)

1

1 + φ′(i(π))
=

λ(π)

1− γ

[
b
(
πJ
)

b(π)

]1−γ ∫ 1

0

[
∂ξ(Z; xd(π))

∂xd
(1−N(xe(π))(1− Z))1−γ

]
dZ . (27)

We derive the system of ODEs (24)-(27) in Appendix A.1.

Next, we provide the boundary conditions at π = 0 and π = 1 and discuss the intuition.

As we show, the model at the two boundaries map to the model in Pindyck and Wang (2013)

with a generalization of allowing for the two types of adaptation spendings. When π = 0,

15Otherwise, xe = 0 since adaptation cannot be negative.

13



the economy is permanently in state G as there is no learning and the solution boils down to

solving the four unknowns, b(0), i(0), xd(0), and xe(0), via the following four-equation system:

−

[
b(0)

ρ(1+φ′(i(0)))

]1−ψ
− 1

1− ψ−1
ρ = i(0)− δK −

γσ2
K

2
+

λG

[
Exd(0)((1−N(xe(0))(1−Z))1−γ)−1

]
1−γ , (28)

b(0) [ρ(1 + φ′(i(0)))]
ψ/(1−ψ)

= [A− i(0)− φ(i(0))− xd(0)− xe(0)]1/(1−ψ) , (29)

1

1 + φ′(i(0))
= λGN

′(xe(0))Exd(0) [(Z − 1)(1−N(xe(0))(1− Z))−γ] , (30)

1

1 + φ′(i(0))
= λG

1−γ

∫ 1

0

[
∂ξ(Z;xd(0))

∂xd
(1−N(xe(0))(1− Z))1−γ

]
dZ . (31)

Once π reaches zero at time t (i.e., πt = 0), i, xd, xe, c, and welfare measure b all remain

constant at all time s ≥ t. By applying essentially the same analysis to the other boundary

at π = 1, i.e., when the economy reaches state B, we solve for the four unknowns, b(1), i(1),

xd(1) and xe(1), via (A.4)-(A.7), another four-equation system in Appendix A.1.

Next, we summarize our model’s solution for the entire belief region π ∈ [0, 1].

Proposition 1 The first-best solution is given by the value function (23), where the welfare

measure bfb(π), ifb(π) and the policy rules, xdfb(π), and xefb(π), solve the four-equation ODE

system (24)-(27) in 0 ≤ π ≤ 1 region subject to the boundary conditions (28)-(31) for π = 0

and (A.4)-(A.7) for π = 1.

See Appendix A.1 for a proof.

4 Competitive Markets Solution

While the planner’s (first-best) public adaptation spending is strictly positive, no firms have

incentives to reduce the aggregate risk distribution in a market economy. We show that the

market solution is equivalent to the planner’s solution for the case where only the disaster

exposure reduction technology is available.

4.1 Firm Adaptation and Investment

At the micro level, the firm maximizes its market value given by (6) taking the following

(endogenously determined equilibrium) SDF Mt as given:

dMt

Mt−
= −rt−dt− γσKdWK

t + (ηt − 1) (dJt − λ(πt−)dt) . (32)
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The first term on the right side of (32) states the equilibrium restriction that the drift of

dMt/Mt− equals −rt−dt (Duffie, 2001), where the equilibrium risk-free rate rt− is a function

of (πt−), rt− = r(πt−). The second term on the right side of (32) is the diffusion martingale

and γσ is the equilibrium market price of diffusion risk as in Pindyck and Wang (2013), which

we verify later. As λ(πt−)dt = Et− (dJt), the last term in (32) is a jump martingale under

the physical measure. This implies that when a jump arrives at t, the SDF changes discretely

from Mt− to MJt by a multiple of endogenously determined market price of jump risk ηt:

MJt
Mt−

= ηt , (33)

which is a function of belief πt− and the realized value of Z: ηt = η(πt−;Z).16

Applying the Ito’s Lemma to firm value Q(Kt, πt) = q(πt)Kt given in (6) and using (32),

we obtain the following HJB equation for Tobin’s q, q(π), (see Appendix B.1):

r(π)q(π) = max
i, xe, xd

A− i− φ(i)− xe − xd + (i− δK)q(π) + µπ(π)q′(π)− γσ2
Kq(π)

+ λ(π)Exd
[
η(π;Z)

(
q(πJ )(1−N(xe)(1− Z))− q(π)

)]
. (34)

The expectation operator in the last (jump) term (34) takes the aggregate disaster mitigation

spending in the economy, xd, as given. Additionally, there are three optimality conditions.

First, (34) implies that xd = 0, as a firm is infinitesimal and hence reducing aggregate

disaster risk brings no benefit but only cost to itself.17 Second, unlike xd, (34) implies a rather

different FOC for the firm’s exposure reduction spending xe:

1 = −λ(π)q(πJ )N ′(xe)Exd [(1− Z)η(π;Z)] . (35)

By spending a dollar at the margin on exposure risk mitigation, the firm reduces the destruc-

tion of its capital stock by −(1 − Z)N ′(xe) > 0 units should a jump arrive. Upon a jump

arrival, the gross percentage change of SDF is MJt /Mt− = η(πt−;Z) and the Tobin’s q jumps

from q(π) to q(πJ ). To obtain the marginal benefit of spending on exposure mitigation Xe,

we multiply the marginal reduction of capital stock destruction caused by a jump arrival,

−(1 − Z)N ′(xe) > 0, by λ(π)q(πJ )η(π;Z), and then integrate over all possible values of Z.

The resulting expected marginal value of mitigating the disaster exposure, given on the right

side of (35), equals one, the marginal cost of mitigating the exposure on the left side of (35).

16We provide equilibrium solutions for r(πt−) and η(πt−;Z) in Section 5.3 and Subsections 4.3, respectively.
17To be precise, since the firm’s adaptation spending xd has positive marginal cost but zero marginal benefit,

the FOC cannot hold with equality and the corner solution xd = 0 is optimal.

15



The FOC for investment implied by (34) is:

q(π) = 1 + φ′(i(π)) , (36)

which is the standard investment optimality condition that equates the marginal q to the

marginal cost of investing 1 + φ′(i(π)). The homogeneity property implies that the average q

equals the marginal q as in Hayashi (1982).

4.2 Household Optimization

We show that the household’s value function, Jt = J(Wt, πt), is homogeneous with degree

1− γ in wealth W . That is, Jt = J(Wt, πt) takes the form of:

J(W,π) =
1

1− γ
(u(π)W )1−γ , (37)

where u(π) is a welfare measure that will be endogenously determined.

First, note that no household spends on disaster exposure or disaster distribution mitiga-

tion spendings: Xd = 0 and Xe = 0, as each household is infinitesimally small and has impact

on neither the aggregate disaster distribution nor the aggregate disaster exposure. Second,

we solve for the household’s optimal consumption C and allocation to the risky asset Γ using

the following HJB equation:

0 = max
C,Γ

f(C, J) + µπ(π)Jπ + λ(π)

∫ 1

0

[
J
(
WJ , πJ

)
− J(W,π)

]
ξ(Z; xd)dZ

+ [r(π)W + (µQ(π)− r(π))Γ− C] JW +
σ2
KΓ2JWW

2
, (38)

where µQ(π) is defined in (17), πJ is the post-jump belief given in (14), and WJ is the

post-jump wealth given by

WJ
t = Wt− +

(
QJt
Qt−

− 1

)
Γt− . (39)

The aggregate stock market valuation Qt is proportional to the aggregate capital stock K:

Qt = q(πt)Kt where q(πt) is the Tobin’s q for K in equilibrium. When a jump arrives,

QJt
Qt−

=
q(πJt )KJt
q(πt−)Kt−

=
q(πJt )

q(πt−)
(1−N(xet−)(1− Z)) . (40)

Equation (40) states that aggregate stock market value changes from Qt− = q(πt−)Kt− to

QJt = q(πJt )KJt as a jump arrives for two reasons: 1.) capital stock decreases from Kt− to

KJt = [1−N(xet−)(1−Z)]Kt− by a fraction of N(xet−)(1−Z) and 2.) the aggregate Tobin’s q
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changes from q(πt−) to q(πJt ), where πJt = πt−λB/λ(πt−) is given in (14). For brevity, we drop

the time subscripts when it does not cause confusion. That is, we write QJ /Q = QJt /Qt−.

Substituting (37) into the consumption FOC fC(C, J) = JW (W,π) and simplifying the

expression, we obtain the following consumption rule:

C(π) = ρψu(π)1−ψW . (41)

Consumption is linear in wealth with a π-dependent marginal propensity to consume. Sim-

plifying the household’s FOC for the market portfolio allocation Γ, we obtain:

Γ = −µQ(π)− r(π)

σ2
K

JW (W,π)

JWW (W,π)
+
λ(π)

σ2
K

Exd

[(
1− QJ

Q

)
JW
(
WJ , πJ

)
JWW (W,π)

]
. (42)

The first term in (42) is the standard Merton’s mean-variance demand (absent jumps) and

the second term in (42) captures the intertemporal hedging demand as a jump arrival causes

both the household’s belief π and wealth W as well as the stock market Q to jump discretely.

4.3 Market Equilibrium

In equilibrium, the household invests all wealth in the stock market, Wt = Γt = Qt. We can

show that the ratio of the pre-jump and the post-jump SDF Mt in equilibrium, ηt, is given by

ηt =
MJt
Mt−

=
JW (QJt , π

J
t )

JW (Qt−, πt−)
. (43)

The second equality in (43) states that ηt equals the ratio of the household’s post-jump

marginal value of wealth JW (QJt , π
J
t ) and the pre-jump marginal value of wealth JW (Qt−, πt−).

This is because in equilibrium both the household’s pre-jump and post-jump wealth are in the

stock market: Wt− = Qt− and WJ
t = QJt . Using the homogeneity property, we write ηt as:

ηt = η(πt;Z,x
e
t−) =

(
u(πJt )

u(πt−)

)1−γ (
q(πJt )

q(πt−)
(1−N(xet−)(1− Z))

)−γ
. (44)

We can further simplify the household’s HJB equation (38) as:

0 =
ψ−1ρψu(πt−)1−ψ − ρ

1− ψ−1
+ µQ(πt−) + µπ(πt−)

u′(πt−)

u(πt−)
− γσ2

K

2
+
λ(πt−)

1− γ

[
Exd

(
ηt

QJt
Qt−

)
− 1

]
,(45)

where ηt is given in (44) and µQ(πt−) defined in (17) is given by18

µQ(πt−) = r(πt−) + γσ2
K + λ(πt−)Exd

t−

[
ηt

(
1− QJt

Qt−

)]
(46)

=
c(πt−)

q(πt−)
+ i(πt−)− δK + µπ(πt−)

q′(πt−)

q(πt−)
. (47)

18We use the FOC given in (42) and the equilibrium condition Γt = Wt to obtain (46). Substituting the
resource constraint c(π) = A− i(π)− φ(i(π))− xe(π) into the ODE (34) for q(π), we obtain (47).
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In equilibrium, the household invests all wealth in the stock market, Wt = Γt = Qt.

Additionally, both the aggregate disaster exposure and distribution mitigation spendings in

a laissez-faire economy equal zero: Xe = Xd = 0.19 In sum, the model solution is given by

1.) the ODE (45) for u(π) and the FOCs (41)-(42) for households and 2.) the ODE (34) for

q(π) and the FOCs (35)-(36) for firms. We can also show that this solution of our market

model is the same as that of a planner’s problem, where the planner has no access to the

adaptation technology that curtails tail risk (xd(π) = 0). This planner’s problem is easier to

solve. Rather than solving for u(π) and q(π) in our market economy, it is equivalent to solve

for b(π) and optimal policies in the planner’s economy. Next, we summarize this equivalence

result.

Proposition 2 The market solution is the same as the planner’s solution where there is no

adaptation technology to change the distribution of the recovery fraction Z (xd(π) = 0).

See Appendix B.3 for proof. Note that this proposition states that the Welfare Theorem

applies when there is no such adaptation technology.

5 Taxation and Asset Prices

In this section, we show that introducing optimal capital taxation into our competitive market

economy of Section 2 changes the market-economy solution given in Section 4 to the one

implied by the planner’s first-best solution given in Section 3. We then derive the asset prices

that would hold under a given economy type.

5.1 Firm and Household Optimization under Capital Taxation

The government taxes the firm’s capital stock Kt at a rate of τt = xdfb,t, where xdfb,t is the

first-best mitigation spending to change the distribution of Z, obtained in Section 3. Then,

the government spends Xd
t = τtKt to reduce the tail risk of the disaster distribution.20 We

write the tax rate τt as a function of πt: τt = τ(πt) = xdfb,t = xdfb(πt).

Facing a capital tax rate of τ(πt) and taking the equilibrium SDF Mt as given, each firm

solves the following problem:

max
I,Xe, Xd

E
[∫ ∞

0

(
Mt

M0

[
(A− τ(πt))Kt − It − Φt −Xe

t−Xd
t

])
dt

]
. (48)

19Since households contribute nothing to disaster exposure and distribution mitigation spendings, using the
law of large numbers, the aggregate exposure and distribution mitigation spendings are also zero.

20Equivalently the government can impose via a tax on sales Yt = AKt at the firm level.
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First, the firm does not spend on disaster distribution mitigation (Xd = 0), as there is no

benefit for the firm. In effect, the tax lowers the firm’s productivity from A to A − τ(πt).

Applying the Ito’s Lemma to firm value Q(Kt, πt) = q(πt)Kt given in (6), and using (32), we

obtain the following HJB equation for q(πt):

r(π)q(π) = max
i, xe

A− τ(π)− i− φ(i)− xe + (i(π)− δK)q(π) + µπ(π)q′(π)− γσ2
Kq(π)

+ λ(π)Exd
[
η(π;Z,xe)

(
q(πJ )(1−N(xe)(1− Z))− q(π)

)]
. (49)

Note that the tax rate τ(π) appears in (49). The FOCs for i and xe are given by (35) and

(36), respectively, the same as in the no-tax competitive-market economy model of Section 4.

For brevity, we refer readers to Section 4 for the household’s problem, as it is in effect the

same as in the previous section. Next, we prove that incorporating optimal capital taxation

into the competitive-market economy yields the first-best solution.

5.2 Optimal Capital Taxation Restores First-Best

In this section, we show that the household’s value function in the competitive economy with

optimal taxes is the same as the value function under the first-best. As the household’s value

function in a market economy depends on wealth W while the planner’s value function depends

on K, we use the equilibrium result Wt = q(πt)Kt in the market economy with taxation to

write the household’s value function as J(Wt, πt) = J(q(πt)Kt, πt). The value functions in the

two economies are equal, V (Kt, πt) = J(Wt, πt), if and only if b(π) in the first-best economy

equals the product u(π)q(π) in the competitive economy with taxes.

Specifically, we show the following results: (1.) the first-order conditions for i(π) and

xe(π) in the competitive economy with an optimal tax rate set at the xdfb,t are the same as

those in the planner’s economy; (2.) the implied ODE for u(π)q(π) in the competitive market

economy is the same as the ODE (24) for b(π) in the planner’s economy; (3.) all the boundary

conditions at π = 0 and π = 1 in the two economies are the same. Below is a proof.

First, combining the equilibrium aggregate investment FOC, q(π) = 1+φ′(i(π)), implied by

(36) with the optimal scaled consumption rule c(π) = ρψu(π)1−ψq(π) = (ρq(π))ψ [u(π)q(π)]1−ψ,

implied by (41) and W = q(π)K, we obtain the following expression for consumption:

c(π) = [ρ(1 + φ′(i(π)))]
ψ

[u(π)q(π)]1−ψ . (50)

Using the goods-market clearing condition c(π) = A− τ(π)− i(π)− φ(i(π))− xe(π) and
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b(π) = u(π)q(π), we obtain the following expression:

b(π) = [A− τ(π)− i(π)− φ(i(π))− xe(π)]1/(1−ψ) [ρ(1 + φ′(i(π)))]
−ψ/(1−ψ)

, (51)

which is the same as the investment FOC, given in (25), for the planner’s problem, provided

that the capital tax rate equals xdfb(π): τ(π) = xdfb(π). Note that (51) summarizes both the

consumer’s and the firm’s optimization FOCs in the market economy with optimal taxes.

Second, substituting (44) for η into the FOC (35) for disaster exposure mitigation xe in

the competitive market economy, we obtain

1 = −λ(π)q(πJ )N ′(xe)Exd

[
(1− Z)

(
u(πJ )

u(π)

)1−γ (
q(πJ )

q(π)
(1−N(xe)(1− Z))

)−γ ]
. (52)

Using the investment FOC q(π) = 1 + φ′(i(π)), the equilibrium conditions, q(π) = q(π),

i(π) = i(π), and the b(π) = u(π)q(π) result for the two economies, we obtain

1 = −N ′(xe(π))λ(π)(1 + φ′(i(π)))

[
b(πJ )

b(π)

]1−γ

Exd(π)
[
(1− Z)(1−N(xe(π))(1− Z))−γ

]
, (53)

which is the same as the planner’s FOC (26) for xe. So far, we have verified that the FOCs

for investment and exposure mitigation spending in the two economies are the same.

Third, substituting (47) into (45) and using the consumption rule c(π) = ρψu(π)1−ψq(π)

implied by the FOC (41), we may rewrite the ODE (45) for the household’s u(π) as

0 =
ρψu(π)1−ψ − ρ

1− ψ−1
+ i(π)− δK + µπ(π)

q′(π)

q(π)
+ µπ(π)

u′(π)

u(π)
− γσ2

2

+
λ(π)

1− γ

[
Exd

(
η(π;Z,xe)

QJ

Q

)
− 1

]
=

ρψu(π)1−ψ − ρ
1− ψ−1

+ i(π)− δ + µπ(π)

(
u′(π)

u(π)
+
q′(π)

q(π)

)
− γσ2

2

+
λ(π)

1− γ

(u (πJ )q
(
πJ
)

u(π)q(π)

)1−γ

Exd((1−N(xe)(1− Z))1−γ)− 1

 . (54)

We obtain (54) by using η(π;Z,xe) given in (44) and QJ /Q given in (40).

Fourth, using the conjecture b(π) = u(π)q(π) = u(π)(1 + φ′(i(π))), we may simplify the

ODE (54) and obtain the following ODE for b(π) = u(π)q(π):

0 =
ρ

1− ψ−1

[[
b(π)

ρ(1 + φ′(i(π)))

]1−ψ

− 1

]
+ i(π)− δK + µπ(π)

b′(π)

b(π)
− γσ2

2

+
λ(π)

1− γ

(b (πJ )
b(π)

)1−γ

Exd((1−N(xe)(1− Z))1−γ)− 1

 , (55)
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which is the same as the ODE (24) for b(π) in the first-best economy. Finally, applying the

same arguments as the above to the boundaries at π = 0 and π = 1, we can show that the

two economies have the same FOCs and, moreover, b(0) = u(0)q(0) and b(1) = u(1)q(1). In

sum, we have verified that setting the capital tax at τ(π) = xdfb(π) in the market economy

yields the same allocation as in the first-best economy. Next we summarize this result.

Proposition 3 Setting the capital tax rate τ(πt) to xdfb(πt) for all firms and then spending all

tax proceeds each period to mitigate the tail risk of the disaster distributio: τ(πt) = xdfb(πt),

the competitive-market economy attains the first-best resource allocation.

5.3 Asset Prices

Next, we report and discuss the equilibrium asset pricing implications.

Proposition 4 Tobin’s average q for the aggregate capital stock is q(π) = 1 +φ′(i(π)), where

i(π) is the optimal investment-capital ratio. The equilibrium risk-free rate, r(π), is given by

r(π) = ρ+ ψ−1(i(π)− δK)− γ(ψ−1 + 1)σ2
K

2
−
[
(1− ψ−1)

(
u′(π)

u(π)
+

q′(π)

q(π)

)
− q′(π)

q(π)

]
µπ(π)

− λ(π)
[
Exd(η(π;Z,xe))− 1

]
− λ(π)

ψ−1 − γ
1− γ

[
1− Exd

(
QJ

Q
η(π;Z,xe)

)]
, (56)

where η(π;Z,xe) is given in (44) and QJ /Q is the jump-triggered (gross) percentage change

of the stock market value given in (40). The stock market risk premium, rp(π), is

rp(π) = γσ2
K − λ(π)Exd

[
(η(π;Z,xe)− 1)

(
QJ

Q
− 1

)]
. (57)

These results apply to both the market economy with taxation and the one without.

Out of the six terms in (56), the first three terms are the contributing factors to the

equilibrium interest rate in AK models with diffusion shocks. The fourth term captures the

effect of belief updating. The fifth term describes how the jump-induced expected change

of the marginal value of wealth (MJ /M) contributes to the risk-free rate. The sixth term

captures the additional effect of jumps on the equilibrium risk-free rate due to the household’s

recursive (non-separable) Epstein-Zin preferences rather than expected utility.21

There are two terms for the market risk premium rp given in (57). In addition to the

diffusion risk premium (the first term), there is a jump risk premium (the second term),

21To be precise, for recursive utility, fCV 6= 0 and therefore the SDF Mt is not additively separable, which
makes jumps to have an additional intertemporal effect. For expected utility (γ = ψ−1), this term disappears.
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which equals the expectation over the product of the (net) percentage change of marginal

value of wealth (M), (η(π;Z,xe) − 1), and the (net) percentage change of the stock market

value given in (40), both of which are caused by jump arrivals. A downward jump causes

the household’s marginal utility to increase (η(π;Z,xe) = MJ /M ≥ 1). As the stock market

valuation decreases upon a jump arrival, (QJ < Q), the jump risk premium is positive.

6 Application to Tropical Cyclones

We apply our model of learning and adaptation for weather disasters to tropical cyclones

and leverage our asset pricing results to highlight the learning channel. Beyond the fact that

one-third of the global population is potentially affected by cyclones, there is also a great

deal of uncertainty on the consequences of global warming for their frequency. According to

the most recent authoritative survey of 50 climate model projections (Knutson et al., 2020),

there are considerable disagreements across these models on the frequencies of major tropical

cyclones in a world that is 2oc higher than in the pre-industrial era. The most pessimistic

model projects 2.25 times of pre-industrial levels, whereas the most optimistic model projects

a slight decrease relative to pre-industrial levels. The median model projects a modest 13%

increase relative to pre-industrial.

We provide a list of moments on the frequency of cyclones alongside macroeconomic and

financial aggregates for a panel of countries that we use to show the importance of financial

markets learning from cyclone arrivals. Our largest sample contains annual observations for

the real GDP per capita growth rate and cyclone landfalls across 109 countries from 1960 to

2010 with 5,410 county-year observations in total.22

6.1 Frequencies of Landfalls and Spendings on Flood Control

Let Landfalli,t be an indicator variable that equals one if and only if country i experienced

at least one cyclone landfall that is “tropical storm” or higher in year t. Table 1 reports the

sample statistics of cyclone landfalls for each of the four regions.23 Globally, a country on

average experiences a tropical cyclone landfall once every 7.4 years, as the disaster arrival rate

is 0.135 per annum (in Table 1.)

22These are the same set of countries as in Hsiang and Jina (2014) excluding Taiwan for which there is no
GDP data from the World Bank Development Indicator.

23We assign the 109 countries into four regions: North Atlantic (including North America, the Caribbean,
and West Europe) West Pacific (including Oceania), North India (including North India, Middle East, North
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Table 1: Summary statistics of cyclone landfalls

Region (1) Total # of (2) Total # of (3) Freq. of landfalls = (2)/(1):
country-year obs. cyclone landfall obs. Disaster arrival rate estimate

North Atlantic 1,587 229 0.144
West Pacific 638 326 0.511
North India 719 75 0.104
South Atlantic 2,466 99 0.040

Global 5,410 729 0.135

The primary adaptation for countries in our sample is government flood control budgets.

Unlike the landfall data, such data is not readily available. We hand collected data on gov-

ernment flood control budgets based on public sources by focusing on countries in the West

Pacific (including Oceania), which according to Table 1 faces the most frequent tropical cy-

clone landfalls. We are able to obtain through various sources 72 country-year observations of

government flood control budgets for a cross section of eight countries.24 For this cross section,

the average annual government flood control budget is around 0.1% (10 basis points) of the

country’s capital stock with a standard deviation of 0.05% across country-years observations.

There are also private spendings as well on flood control according to field studies, which typ-

ically place these private spendings somewhat around 0.03% – 0.05% of capital stock, below

the 0.1% of capital stock for public spendings (Genovese and Thaler, 2020).

To provide some perspectives on these small expenditures on flood control, over this sample

period, the output-to-capital ratio is about 30% (with a standard deviation of 17%). The

investment-capital ratio is 7% (with a standard deviation of 4%) and the consumption-capital

ratio is 22% (with a standard deviation of 13%). The small expenditures on adaptation

presumably reflect a belief that the consequences of global warming are relatively mild but

they may significantly increase should the frequencies of arrivals increase and the society

quickly updates beliefs towards the most pessimistic model projections.

6.2 Damage from Landfalls and Asset Market Reactions

Importantly, we retrieve two key panel regression estimates on the response of growth and

asset prices to the arrival of cyclones that highlight the importance of learning in financial

markets. According to Proposition 1 and Proposition 4, how policies (e.g., investment and

Africa, and Central Europe), and South Atlantic (including Latin America and Sub-Saharan Africa).
24West Pacific countries include China, Japan, Korea, and the Philippines. Oceania countries include

Australia, Indonesia, New Zealand and Papua New Guinea.
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consumption) and asset prices respond to a cyclone arrival depend on beliefs π which change

over time. A landfall is bad news and leads to more pessimistic beliefs for growth going

forward. Asset prices also fall in anticipation of more frequent disasters in the future. In the

model of Pindyck and Wang (2013), which is a special case of our no-learning model, disasters

lead to a destruction in capital stock K but the growth rate is identically and independently

distributed at all time. That is, even after a disaster arrival destroys a fraction of the country’s

capital stock, there is no impact at all on either growth projection or asset prices (e.g., Tobin’s

q, the risk-free rate and the risk premium) going forward in Pindyck and Wang (2013). This

is because there is no learning in their model.

Table 2: Baseline model estimation results

Dependent variable: Growth rate of real GDP per capita

(1) (2) (3) (4) (5)
North Atlantic West Pacific North India South Atlantic Global

Landfall -0.0061* -0.0029* -0.0088*** -0.0275*** -0.0077***
(-2.01) (-1.94) (-3.35) (-3.69) (-4.29)

Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Time trends Yes Yes Yes Yes Yes

We now show that landfalls damage growth and asset prices respond adversely to news of

cyclone arrivals, consistent with our model and the importance of learning. Table 2 reports the

estimates of the impact of a major cyclone making landfall on GDP growth for each region

and also for the world. The dependent variable is the per capita GDP growth rate. The

independent variable is the Landfall indicator. The Panel regression has country fixed effects,

year fixed effects, and country-specific quadratic time trends. A landfall disaster reduces the

(expected) annual growth rate by 0.61%, 0.29%, 0.88%, and 2.75% in North Atlantic, West

Pacific, North India, and South Atlantic respectively, and by 0.77% in the global sample. Since

the average annual growth rate in our sample is 1.95% (with a standard deviation of 5.09%),

a landfall, which lowers the annual growth rate by 0.77% on average, is quite economically

damaging.25

Since the data availability for financial variables is quite limited before 1990, and to be

consistent with our samples using real GDP growth data, the sample period of macro-financial

variables for the cyclone landfall analysis is from 1990 to 2010. Even then, we only have a

25Our estimates are consistent with those reported in Hsiang and Jina (2014), who estimate the marginal
effect of windspeed on GDP growth damage.
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subset of countries that have the relevant financial variables. Panel A of Table 3 reports the

unconditional moments for asset prices pooling all these remaining countries. These moments

including a risk-free rate of 1.43% and an equity risk premium of 5.26%, a volatility of equity

market returns of 26.57%,, and a Tobin’s average q of 2.49.

Table 3: Summary statistics of asset prices

Panel A provides the summary statistics of the financial variables used in our study. RealRF is real interest
rate (nominal interest rate minus inflation rate). ERP is equity risk premium (stock market return net of
nominal interest rate). TobinQ is Tobin’s average q. VolRET is volatility of annual stock market return.
Annual risk-free nominal interest rate, inflation rate, and stock market return data at the country level are
from the IMF and the World Bank. Panel B reports regression of these asset-pricing moments on cyclone
landfalls. Estimates for RealRF and ERP are in percentages. t-statistics with clustered robust standard errors
are shown in parentheses below the estimates. The sample period is 1990 to 2010 for the cyclone sample.

Panel A: Summary Statistics

Mean Standard deviation Median 10 percentile 90 percentile

RealRF (%) 1.43 4.32 1.32 -4.40 6.91
ERP (%) 5.26 24.26 5.61 -27.47 37.36
TobinQ 2.49 4.84 1.51 0.60 3.65
VolRET (%) 26.57 8.26 26.38 15.24 37.52

Panel B: Asset Market Reaction to Landfalls

RealRF ERP TobinQ

Landfall -0.090** 0.307** -0.101**
(-2.34) (2.48) (-2.11)

As before with real GDP growth in Table 2, we use a Panel regression model in Panel B of

Table 3 to measure the impact of a cyclone landfall on a country’s real interest rate (RealRF),

equity risk premium (ERP), or Tobin’s average q (TobinQ) by using country and time fixed

effects. The panel regression model regresses financial variables on an indicator for cyclone

landfall (Landfall) for the whole sample. A cyclone landfall on average reduces Tobin’s average

q by 0.10, lower the real interest rate by 0.09%, and increases equity risk premium by 0.31%

per annum. These estimates are inconsistent with models of disasters absent learning, e.g.,

Pindyck and Wang (2013), as we discussed earlier.

7 Quantitative Analysis

We now use the moments in Section 6 to calibrate our model.
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7.1 Distributional and Functional Form Specifications

As in Barro (2006) and Pindyck and Wang (2013), we assume that the distribution function

of the recovery fraction Z upon a cyclone arrival is given by a power law over Z ∈ (0, 1 ):

Ξ(Z; xd) = Zβ(xd) , (58)

where β(xd) is the exponent function that depends on scaled disaster distribution mitigation

xd. To ensure that our model is well defined, we require β(xd) > γ − 1.

Conditional on a jump arrival, the expected fractional capital loss for a firm is given by

`(π) = N(xe)(1− Exd(Z)) =
N(xe)

β(xd) + 1
. (59)

The larger the value of β( · ), the smaller the expected fractional loss Exd(1−Z) even absent

the firm’s disaster exposure mitigation xe. To capture the benefit of public mitigation, we

assume that β(xd) is increasing in xd: β′(xd) > 0. The benefit of public disaster distribution

mitigation xd is to increase the capital stock recovery (upon the arrival of a disaster) in the

sense of first-order stochastic dominance in that Ξ(Z; xd) decreases with xd.

Let gt = g(πt) denote a firm’s expected growth rate including the jump effect. The

homogeneity property implies that growth is independent of the aggregate capital K and

g(π) = i(π)− δK − λ(π)`(π) = i(π)− δK −
λ(π)N(xe)

β(xd) + 1
. (60)

We specify the firm’s exposure mitigation technology N(xe) as follows:

N(xe) = 1− (xe)ζ , (61)

where 0 < ζ < 1. That is, the more exposure mitigation spending xe the smaller the (frac-

tional) damage, i.e., the lower the level of N(xe). Additionally, the marginal benefit of xe

on reducing damages diminishes. We use the following linear specification for β(xd) which

governs the public disaster distribution mitigation technology:

β(xd) = β0 + βxx
d , (62)

with β0 ≥ max{γ − 1, 0} and βx > 0. The coefficient β0 is the exponent for the distribution

function of the fractional recovery Z in the absence of mitigation. The coefficient βx is a

key parameter in our model and measures the efficiency of the aggregate disaster distribution

mitigation technology.
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Finally, we use the widely used quadratic adjustment cost function (e.g., Hayashi, 1982):

φ(i) =
θi2

2
, (63)

where the parameter θ measures how costly it is to adjust capital.

7.2 Calibration and Parameter Choices

Table 4: Parameter Values

Parameters Symbol Value

disaster jump arrival rate in State G λG 0.1
disaster (jump) arrival rate in State B λB 0.8
prior of being in State B π0 0.08
power law exponent absent adaptation β0 39
distribution adaptation technology parameter βx 1, 800
exposure adaptation technology parameter ζ 0.4

elasticity of intertemporal substitution ψ 1.5
time rate of preference ρ 5%
productivity parameter A 27%
quadratic adjustment cost parameter θ 17
coefficient of relative risk aversion γ 8
capital diffusion volatility σK 8%
depreciation rate of capital δK 6%

All parameter values, whenever applicable, are continuously compounded and annualized.

Our model has 13 parameters. We calibrate these parameters by targeting 13 moments

described in Section 6. The calibrated values of these parameters are given in Table 4.

The new parameters in our analyses are the three for the learning process (λG, λB, and

π0) and the other three for the adaptation technologies (β0, βx and ζ). In order to determine

these six parameters, we use six moments from our panel data on the frequencies of tropical

cyclone landfalls, their impact on GDP growth and asset prices (risk-free rate, equity risk

premium, and Tobin’s average q), and the levels of private and public adaptation spendings

that we obtained and reported in Section 6, i.e., around 0.1% and 0.04% of capital stock,

respectively.

A number of the macro-finance moments we are targeting, such as the risk-free rate rate

and equity risk premium (Panel A of Table 3), are similar to those targeted in the asset pricing

literature. Hence, our preference parameters, e.g., the EIS ψ and coefficient of relative risk
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aversion γ, are similar to those used in this literature. For instance, Bansal and Yaron (2004)

show that setting the coefficient of relative risk aversion γ to a value between 7 to 10 and

an EIS ψ to be larger than one is necessary to match the equity risk premium and the risk-

free rate. Similarly, the parameters for the production part of our model, e.g., productivity,

capital adjustment costs, and the capital depreciation rate, are chosen to match the aggregate

output and production targets discussed in Section 6.1. The calibrated values turn out to be

close to those in the literature (e.g., Eberly, Rebelo, and Vincent, 2012), suggesting that our

calibration strategy yields sensibly robust parameter values for our quantitative analysis.

Next, we use these parameters to analyze a few economies. In Figure 2, we plot and

compare the solutions for three economies: 1.) the planner’s first-best solution (solid blue

lines), 2.) the market economy (dashed red lines) and 3.) the planner’s solution with no

learning (dotted black lines). In the next two subsections, we do two pair-wise comparisons.

7.3 Comparing First-Best with Competitive-Market Solutions

In this subsection, we compare the first-best with competitive-market solutions. A key feature

that both economies share is learning.
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Figure 2: This figure compare the solutions for three economies: 1.) the planner’s first-best
solution (solid blue lines), 2.) the market economy (dashed red lines), and 3.) the planner’s
solution with no learning (dotted black lines). The first two economies feature Bayesian
learning. The parameters values are given in Table 4.
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In Panel A of Figure 2, we see that public mitigation xd (solid blue line) rapidly increases

with the expected disaster arrival rate λ to 1.18% per annum in the first-best economy. In con-

trast, the market solution features no public mitigation spending (dashed red line) regardless

of beliefs due to externalities.

Panel B shows that private mitigation xe in both economies increases with λ. Moreover,

xe is higher in the market economy than in the first-best economy as the marginal benefit of

private mitigation is higher in the market economy than in the planner’s economy as it is the

only measure to mitigate disaster risk in the market economy (for almost all levels of λ except

at the very low levels of λ). The difference of xe increases with λ but the total mitigation

spendings given by the sum, xe + xd, are lower in the market economy than in the first-best

economy, meaning that the combined risk mitigation in the economy is still under-provided

in the laissez faire market economy.

Panel C shows that for almost all levels of λ, investment i is lower in the first-best economy

than in the market economy. Panel D shows that for almost all levels of λ, consumption c is

lower in the first-best economy than in the market economy.

Now we turn to Figure 3. We define WTP ζp(π) and ζm(π) as the fraction of capital the

market economy with no adaptation is willing to give up to transition to the planner’s first-

best economy and the market economy with just private adaptation, respectively.26 Panel A

shows that both WTPs increase with belief π.27 The WTP wedge ζp(π) − ζm(π) measures

the additional welfare gain of having access to the tail-risk public adaptation technology in

a market economy that already has access to the firm-level exposure adaptation technology.

This additional welfare gain increases with λ and is quite substantial for the real-world relevant

range of values for λ.

In Panel B of Figure 3, we show that the conditional damage `(λ) in both the first-best and

26To calculate the WTP measures, ζp(π) and ζm(π), we use the representative household’s value functions
(welfare measures proportional to the certainty equivalent wealth) for the three economies. Formally, we use

ζp(π) = 1− b(π)

bfb(π)
and ζm(π) = 1− b(π)

b̂(π)
> 0 ,

where bfb, b̂, and b are the welfare measures (proportional to certainty equivalent wealth) in the (planner’s) first-
best economy, the market economy (with access to both adaptation technologies but only private mitigation
technology will be adapted in equilibrium), and the market economy (with access to neither adaptation
technology), respectively.

27We can decompose the WTPs into the risk premium and timing premium components by building on the
idea and extending the procedure proposed in Epstein, Farhi, and Strzalecki (2014). We show that for our
calibrated baseline, while the timing premium is also important, the risk premium component is the major
contributor to the total WTP.
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Figure 3: This figure compare the solutions for three economies: 1.) the planner’s first-best
economy (solid blue lines), 2.) the market economy (dashed red lines), and 3.) the planner’s
economy with no learning (dotted black lines). The first two economies feature Bayesian
learning. The parameters values are given in Table 4.

market economies decrease with λ. Additionally, the conditional damage `(λ) in the first-best

economy is lower than in the market economy. Moreover, as λ increases, the wedge between

`(λ) in the two economies widens. Because of larger risk mitigation and smaller conditional

damage `(λ) in the first-best economy than in the market economy, the expected growth rate

g(λ) is higher in the first-best economy than the market economy (Panel C). This is because

the society is more prepared in the first-best economy than in the market economy. The

growth-rate difference in the two economies increases with λ and is quantitatively large for

the real-world relevant range of λ.

In Panels D, E, and F of Figure 3, we show that in both the first-best and market economies,

Tobin’s average q decreases as belief worsens, however, the interest rate and risk premium are

nonlinear and non-monotonic in λ. This is because while the mean growth prospect gets

worse as λ increases, uncertainty is the highest for the intermediate range of λ. As both

the first-moment and higher-order-moment effects are important in the first-best and market
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economies, the impact of λ on the interest rate and risk premium are nonlinear and non-

monotonic.

7.4 Learning versus No-Learning Counterfactual

In this subsection, we assess the value of learning by comparing the solution of our first-best

model with learning (of Section 3) with the solution of a counterfactual planner’s model with

no learning. In the counterfactual no-learning model, we assume that the disaster arrival rate

is fixed at a given value of λ and then solve the model. We find that adaptation spendings (in

Panels A and B of Figure 2) for π ∈ (0, 1) are larger in our learning model (solid blue lines)

than in our counterfactual no-learning model (dotted black lines). As the π = 0 state (where

λ = λG = 0.1) and the π = 1 state (where λ = λB = 0.8) are absorbing, the solutions for the

first-best learning model (solid blue lines) and the planner’s no-learning model (dotted black

lines) are the same at π = 0 and π = 1 states.That is, adaptation spendings are the highest in

the learning model where there is uncertainty over climate states (intermediate values of λ).

Investment in our learning model is also lower than in our no-learning counterfactual model

(Panel C), but consumption differences in the two economies are limited (Panel D).

7.5 Comparative Statics

In Online Appendix OD, we conduct comparative static analyses with respect to four key

parameters: the EIS (ψ), the disaster arrival rate in state B (λB), the time rate of preference

(ρ), and the coefficient of relative risk aversion (γ). Our main mitigation findings are robust

across these three parameter values. The main difference lies in valuation ratios, e.g., the

price-dividend ratio. When EIS ψ = 1, the price-dividend ratio, q/c, equals 1/ρ, the inverse

of the time rate of preference, for all levels of π, which is known in the asset-pricing literature,

e.g., Wachter (2013). When ψ is greater (less) than one, this q/c ratio decreases (increases)

with π. That is, equity valuation ratios react negatively to bad (e.g., disaster arrival) news

consistent with the reason why the long-run risk literature chooses ψ > 1.

7.6 Generalized Learning Model with Stochastic Arrival Rate λt

The disaster arrival rate in our baseline model of Section 2, while unobservable, is constant.

In Appendix OA, we generalize our baseline model to allow for the unobservable disaster

arrival rate to be stochastic, by using a two-state Markov Chain (see, e.g., Wachter and Zhu,
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2019). We show that our main quantitative results and conclusions continue to hold in the

generalized model of Appendix OA where the transition rates between states G and B are

small.

7.7 External Habit Model

In Appendix OB, we replace the Epstein-Zin recursive utility used in our baseline model of

Section 2 with another widely-used risk preference—the external habit model proposed by

Campbell and Cochrane (1999). For brevity, we focus on the planner’s solution. We calibrate

our external habit model by targeting the same moments as we do for our baseline model

whenever feasible. The quantitative implications on mitigation spendings and welfare in our

external habit model are similar to those in our baseline model with Epstein-Zin preferences.

However, the two models generate opposite predictions on how investment i and Tobin’s

average q respond as belief becomes more pessimistic (π increases). While both i and q

increase with π in our habit model, the opposite holds in our baseline Epstein-Zin model. The

intuition follows from our discussion regarding comparative statics with respect to ψ.28

8 Implications for the Social Cost of Carbon

In this section, we propose an extension of our model that allows us to tractably draw out the

implications of learning and adaptation to weather disasters for the social cost of carbon.

8.1 Fossil Fuels, Carbon Stock, and Disasters

First, we introduce fossil-fuel-usage caused emissions, Ht, as an additional factor of production

at the micro level, so that firm production Yt is given by:

Yt = AKα
t H

1−α
t , (64)

with 0 < α < 1, as in Golosov et al. (2014) and Van den Bremer and Van der Ploeg (2021).

The stock of (aggregate) atmospheric carbon that exceeds the pre-industrial atmospheric

carbon stock associated with man-made emissions, which we denote by St, evolves:

dSt = (Ht− − δSSt−)dt+ σSSt−dWS
t , (65)

28From the long-run risk literature and the comparative static analysis for our baseline Epstein-Zin model
with respect to ψ in Section OD of the Online Appendix, we know that an EIS (lower than one) causes the
valuation ratios, e.g., the price-dividend ratio, to go up in response to bad news. Our habit model inherits
this property, which explains the key differences between the two utility models.
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where Ht is the aggregate fossil fuel emissions by all firms: Ht =
∫
Hν
t dν, δS is the decaying

rate of the atmospheric carbon stock, WS
t is a standard Brownian motion, and the parameter

σS is the volatility of atmospheric carbon. Let ϑ denote the correlation coefficient between

WS
t and the standard Brownian motion WK

t . We measure both the firm-level H and the

aggregate H in units of carbon and therefore also measure S in units of carbon (e.g., tons of

carbon). Let pH denote the price of carbon in units of consumption good, the numeraire.

To model the damage of the aggregate carbon stock St, we assume that the distribution of

the post-jump fractional recovery Z depends on St. That is, the damage of weather disaster

shocks is still uncertain and increases in expectation with St. As in our baseline model, firms

and households learn from disaster arrivals over time regarding the severity of climate risk. To

maintain the homogeneity structure of our model, we assume that the distribution function

of the post-jump fractional recovery Z, Ξ, depends on both aggregate adaptation spending,

xt−, and the scaled carbon stock, st− = St−/Kt−, i.e., Ξ(Z; xdt−, st−).

The carbon-to-productive-capital ratio s = S/K evolves as follows:

dst = µs(πt−, st−)dt+ st−
[
σSdWS

t − σKdWK
t +Nt−(1− Z)dJt

]
, (66)

where µs(πt−, st−) is given by

µs(πt−, st−) = ht− −
(
it− − δK + δS − σ2

K + ϑσKσS
)

st− . (67)

8.2 Planner’s Solution

Let V (K,S, π) denote the representative household’s value function. The following HJB

equation characterizes the planner’s problem:

0 = max
C, I,xe xd,H

f(C, V ) + (I− δKK)VK + µπ(π)Vπ + (H− δSS)VS +
σ2
KK2VKK

2
+
σ2
SS2VSS

2

+ϑσKσSKSVKS + λ(π)Exd
[
V
(
(1−N(xe)(1− Z))K,S, πJ

)
− V (K,S, π)

]
, (68)

subject to the following resource constraints:

AKα
t H

1−α
t = Yt = Ct + It + Φ(It,Kt) + Xd

t + Xe
t + pHHt . (69)

Recall that pH is the price of carbon in units of the (numeraire) consumption good.

Unlike in our baseline model without S, the household not only takes into account the

evolution of S (via the drift term involving VS and the quadratic-variation term involving
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VSS), but also has incentives to hedge against shocks to carbon stock S (via the quadratic-

covariation term involving VKS).

The first-order condition (FOC) for fossil fuel H is

(
pH − (1− α)AKαH−α

)
fC(C, V ) = VS(K,S, π) . (70)

The right side of (70), VS(K,S, π), is the marginal (utility) benefit of using fossil fuel. The

left side of (70) is the marginal (utility) cost of fossil fuel, given by the product of forgone

marginal utility of consumption fC(C, V ) and (pH − (1− α)AKαH−α), the latter of which

has two terms: the relative price of fossil fuel pH and the reduction of marginal product of

carbon stock.)

As in Golosov et al. (2014) and Van den Bremer and Van der Ploeg (2021), we use

mt ≡ −
VS(Kt,St, πt)

fC(Ct, Vt)
(71)

to denote the social cost of carbon (SCC), marginal utility cost of emitting an additional ton

of carbon divided by the marginal utility of consumption. Rewriting the FOC for fossil fuel,

(70) and using SCC defined in (71), we obtain:

(1− α)Yt

Ht

= pH +mt . (72)

We show that the value function V is homogeneous with degree (1− γ) in K and S:

V (K,S, π) =
1

1− γ
(b(π, s)K)1−γ , (73)

where s = S/K and b(π, s) is a measure of welfare proportional to the household’s certainty

equivalent wealth under optimality.

Using the FOCs and substituting the value function V (K,S, π) given in (73) into the

HJB equation (68), and simplifying the equations, we obtain the following five-equation PDE

system for b(π, s), i(π, s), xd(π, s), xe(π, s) and h(π, s):

0 =
ρ

1− ψ−1

[[
b(π, s)

ρ(1 + φ′(i(π, s)))

]1−ψ

− 1

]
+ i(π, s)− δK −

γσ2
K

2
+ µπ(π)

bπ(π, s)

b(π, s)

+ (h(π, s)− δSs)
bs(π, s)

b(π, s)
+
σ2
Ss2

2

(
bss(π, s)

b(π, s)
− γ (bs(π, s))2

b(π, s)2

)
+ (1− γ)ϑσKσSs

bs(π, s)

b(π, s)

+
λ(π)

1− γ

Exd(π,s)

(
(1−N(xe(π, s))(1− Z))b

(
πJ , sJ

)
b(π, s)

)1−γ

− 1

 , (74)
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b(π, s) = [Ah(π, s)1−α − i(π, s)− φ(i(π, s))− xd(π, s)− xe(π, s)− pHh(π, s)]1/(1−ψ)[
ρ(1 + φ′(i(π, s)))

]−ψ/(1−ψ)
, (75)

bs(π, s)

b(π, s)− sbs(π, s)
=
pH − (1− α)Ah(π, s)−α

1 + φ′(i(π, s))
, (76)

1

1 + φ′(i(π, s))
= λ(π)Exd(π,s)

[
(Z − 1)N ′(xe(π, s))

(
b
(
πJ , sJ

)
− sJ bs

(
πJ , sJ

))
b(π, s)

×

(
(1−N(xe(π, s))(1− Z))b

(
πJ , sJ

)
b(π, s)

)−γ]
, (77)

1

1 + φ′(i(π, s))
=

λ(π)

1− γ

∫ 1

0

∂ξ(Z; xd(π, s))

∂xd

(
(1−N(xe(π, s))(1− Z))b

(
πJ , sJ

)
b(π, s)

)1−γ
 dZ .

(78)

where sJ = s
1−N(xe(π,s))(1−Z)

is the post-jump ratio carbon-productive-capital ratio s.

Recall that s is a mean-reverting process. Because π = 0 and π = 1 are absorbing states,

we can obtain the boundary conditions at π = 0 and π = 1 by substituting π = 0 and π = 1

into (74)-(78).

Proposition 5 In a competitive market economy, household consumption, corporate invest-

ment, and disaster risk exposure mitigation attain the first-best levels provided that the gov-

ernment chooses the following policies. First, the government sets its fossil fuel tax at:

m ≡ −VS(K,S, π)

fC(C, V )
= −bs(π, s)

ρ

(
c(π, s)

b(π, s)

)ψ−1

, (79)

where

c(π, s) = Ah(π, s)1−α − i(π, s)− φ(i(π, s))− xd(π, s)− xe(π, s)− pHh(π, s) . (80)

Second, the government selects the capital tax rate τ(πt) at the first-best level xdfb(πt) for all

firms and then spends 100% of the capital tax proceeds each period to mitigate the tail risk of

the disaster distribution, balancing its budget period by period.

That is, the government uses fossil fuel taxes to address the tackle externality and levy

carbon taxes to address the lack of mitigation spending. By combining these two policies, the

government implements the first-best outcome.
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8.3 Calibration

Next, we calibrate our generalized model with carbon stock. The solution of this generalized

model boils down to a PDE system even after we use the homogeneity property to simplify our

analysis. After incorporating fossil fuel and carbon dynamics, our model has 20 parameters

(Table 5) while our baseline model of Section 7 has 13 parameters (Table 4).

First, we assume that the β function that describes the disaster damage distribution de-

pends on not only Xd and K but also S in our carbon model as follows:

β(xd, s) = β0 + βxx
d − βss , (81)

where xd = Xd/K, s = S/K, and βx and βs are positive parameters. Compared with (62),

we now incorporate the effect of carbon stock s on disaster damages, which is captured by a

key new parameter βs.

Generalizing our calibration procedure for the baseline model, we determine the eight

parameters in the first Panel of Table 5 (λG, β0, βx, βs, ζ, λB, δS, and π0) by targeting the

GDP growth, asset prices (risk-free rate, equity risk premium, and Tobin’s average q), the

levels of private and public adaptation spendings (reported in Section 6), the steady state of

s at 0.25, and also importantly the level of social cost of carbon, which is around $40. as in

the literature, e.g., Cai and Lontzek (2019).

The four parameters in the second Panel of Table 5 (α, σS, pH , and s0) are related to fossil

fuels and carbon stock dynamics in our model. We use the parameter values from the carbon

economics literature for these parameters (see e.g., Van den Bremer and Van der Ploeg, 2021).

For the three preference parameters (the EIS ψ, risk aversion γ, and the time rate of

preference ρ) and the four production parameters (productivity A, the quadratic adjustment

cost θ, capital diffusion volatility σ, and capital depreciation rate δK) reported in the last

Panel of Table 5, we use the same values as those in Table 4 for our baseline model without

carbon (of Section 2). Finally, we set the correlation coefficient between capital shocks and

carbon stock shocks to zero: ϑ = 0.

8.4 Social Cost of Carbon (SCC) Projections

We discuss the economics of SCC projections in two steps using the planner’s solution. To

ease our exposition, we first consider the counterfactual by shutting down the learning channel

and then incorporate Bayesian learning and analyze its effect on SCC.
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Table 5: Parameter Values for Generalized Model with Carbon

Parameters Symbol Value

disaster (jump) arrival rate in State G λG 0.1
disaster (jump) arrival rate in State B λB 0.8
prior of being in State B π0 0.1
power law exponent absent adaptation β0 39
distribution adaptation technology parameter βx 3, 500
exposure adaptation technology parameter ζ 0.2

damage parameter from atmospheric carbon βs 14, 000
carbon decaying rate δS 3%
return-to-scale parameter α 0.96
volatility of carbon stock growth σS 7.5%
price of carbon input pH 540
initial value of s s0 0.13/pH

elasticity of intertemporal substitution ψ 1.5
time rate of preference ρ 4.8%
productivity parameter A 27%
quadratic adjustment cost parameter θ 18
coefficient of relative risk aversion γ 8
capital diffusion volatility σK 8%
depreciation rate of capital δK 6%

correlation between capital and carbon stocks ϑ 0

All parameter values, whenever applicable, are continuously compounded and annualized.

In Figure 4, we report the mean and quantiles of SCC projections under the counterfactual

without learning. First, the mean of time-t conditional distribution of SCC increases over time

(see Panel A). This is because the stock of carbon accumulates over time in expectation and

SCC increases with carbon stock. This effect is similar to the one emphazised in recent

integrated assessment models with Epstein-Zin risk preferences, e.g., Cai and Lontzek (2019).

Second, the quantiles of time-t conditional distribution of SCC also increase over time (see

Panel B). Moreover, the wedge for any pair of SCC quantiles widens in the first twenty years

because the expected change (drift) of carbon stock is positive before reaching the stochastic

steady state, which takes about twenty years for our counterfactual no-learning case. After

the stochastic steady state is reached in about twenty years, the wedge between a pair of SCC

quantiles barely changes over time.

In Figure 5, we report the mean and quantiles of SCC projections over fifty years under

the planner’s first-best solution with learning. First, we note that the SCC projections are
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Figure 4: Mean (Panel A) and quantiles (Panel B) of the conditional distribution of the social
cost of carbon (SCC) in the counterfactual model without learning. The parameters values
are reported in Table 5.

lower in our learning model than in the no-learning counterfactual analyzed earlier. This is

consistent with our model’s prediction that it is more valuable to adapt when the representative

household can learn from disaster arrivals than cannot. As a result, the planner adapts more

in our learning model that in the counterfactual no-learning model (see Section 7.4).

Second, unlike in the no-learning counterfactual where the mean of SCC is increasing over

time, the mean of SCC projections in our learning model first decreases over time, bottoms

out around ten years, and then increases over time (see Panel A of figure 5). Why does the

mean of SCC increase over the first ten years? This is because belief is a martingale and

SCC is concave in belief.29 After the household’s belief converges to either G or B in about

ten years (which occurs with a very high probability), the mean of SCC projections increases

over time because upon reaching the stochastic steady state, the carbon stock increases in

expectation over time and SCC increases with carbon stock. This latter force operating after

the stochastic steady state is similar to that in the no-learning model that we analyzed earlier.

Note that the SCC quantiles in our learning model are also non-monotonic over time

tracking the shape of the mean of SCC over time (see Panel B of figure 5). This is because

the same two forces (for the first ten years and after reaching the stochastic steady state) are

29The martingale convergence theorem implies that belief eventually settles either at state G with probability
one or at state B with probability one. Because SCC is concave in belief, using Jensen’s inequality, we conclude
that the mean of SCC first decreases over time.
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at work.

Finally, the wedge between a pair of SCC projections, e.g., at 10% and 99% quantiles, in

our learning model is much larger than the wedge for the same pair of SCC projections in

the no-learning counterfactual. This is again because in our learning model, belief eventually

settles either at state G with probability one or at state B with probability one, in effect

increasing the dispersion of SCC projections.

In sum, contrasting Figures 4 and 5, we bring out the key roles of learning and adaptation

in our generalized Bayesian model with carbon stock and adaption.
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Figure 5: The mean (Panel A) and quantiles (Panel B) of the social cost of carbon (SCC)
projections for the generalized learning model with carbon of Section 7.

9 Conclusion

We develop a model where households and firms learn from exogenous natural disaster arrivals

about arrival rates and adapt to mitigate potential future damages. Adaptation spending—

by curtailing aggregate risk and insuring sustainable growth—is undersupplied relative to the

first-best planner’s solution in competitive markets due to externalities. The planner’s solution

can be implemented via a capital tax and subsidy scheme. We apply our model to country-

level control of flooding from major tropical cyclones and calibrate the latent learning process

using new empirical findings on the response of asset prices to disaster arrivals. Adaptation

with learning is higher than under the counterfactual without learning due to uncertainty.
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Projections for social costs of carbon over time also depend on the resolution of uncertainty

and properties of the underlying learning process.
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Appendices

A Proof for Planner’s First-Best Economy in Section 3

A.1 Planner’s Resource Allocation

Substituting the value function (23) into the FOC (20) for investment, the FOC (21) for the aggregate

disaster distribution adaptation spending, and the FOC (22) for the aggregate disaster exposure

adaptation spending, we obtain:

b(π) = c(π)1/(1−ψ)
[
ρ(1 + φ′(i(π)))

]−ψ/(1−ψ)
, (A.1)

ρc(π)−ψ
−1
b(π)ψ

−1−1 =
λ(π)

1− γ

(
b(πJ )

b(π)

)1−γ ∫ 1

0

[
∂ξ(Z; xd)

∂xd
(1−N(xe(π))(1− Z))1−γ

]
dZ , (A.2)

ρc(π)−ψ
−1
b(π)ψ

−1−1 = λ(π)

[
b
(
πJ
)

b(π)

]1−γ

N ′(xe(π))Exd(π)
[
(Z − 1)(1−N(xe(π))(1− Z))−γ

]
,

(A.3)

where the post-jump πJ is given in (14) as a function of the pre-jump π. Substituting the resource

constraint, c(π) = A− i(π)−φ(i(π))−xd(π)−xe(π), into (A.1), we obtain (25). Substituting (A.1)

into (A.3), we obtain (26) and substituting (A.1) into (A.2), we obtain (27). Finally, substituting

the value function (23) and the FOC (25) into the HJB equation (18), we obtain the ODE (24).

At π = 1, we have the following four equations that characterize b(1), i(1), xd(1), and xe(1):

0 =

(
b(1)

ρ(1+φ′(i(1)))

)1−ψ
− 1

1− ψ−1
ρ+ i(1)− δK −

γσ2
K

2
+
λB

[
Exd(1)((1−N(xe(1))(1− Z))1−γ)− 1

]
1− γ

,

(A.4)

b(1) = [A− i(1)− φ(i(1))− xd(1)− xe(1)]1/(1−ψ)
[
ρ(1 + φ′(i(1)))

]−ψ/(1−ψ)
, (A.5)

1 = λB(1 + φ′(i(1)))N ′(xe(1))Exd(1)
[
(Z − 1)(1−N(xe(1))(1− Z))−γ

]
, (A.6)

1 =
λB(1 + φ′(i(1)))

1− γ

∫ 1

0

[
∂ξ(Z; xd(1))

∂xd
(1−N(xe(1))(1− Z))1−γ

]
dZ . (A.7)

Solving (A.4)-(A.7) yields b(1), i(1), xd(1), and xe(1). Similarly, we obtain the four equations, (28)-

(31), for the left boundary, π = 0. Solving these four equations yields b(0), i(0), xd(0), and xe(0).

In sum, we now have fully characterized the model solution summarized in Proposition 1.

A.2 Asset Pricing Implications of the Planner’s Problem

Duffie and Epstein (1992) show that the SDF {Mt : t ≥ 0} implied by the planner’s solution is:

Mt = exp

[∫ t

0
fV (Cs, Vs) ds

]
fC(Ct, Vt) . (A.8)

Using the FOC for investment (20), the value function (23), and the resource constraint, we obtain:

fC(C, V ) =
1

1 + φ′(i(π))
b(π)1−γK−γ (A.9)
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and

fV (C, V ) =
ρ

1− ψ−1

[
(1− ω)C1−ψ−1

((1− γ))ω−1 V −ω − (1− γ)

]
= −ε(π) , (A.10)

where

ε(π) = −ρ(1− γ)

1− ψ−1

[(
c(π)

b(π)

)1−ψ−1 (
ψ−1 − γ

1− γ

)
− 1

]
. (A.11)

Using the equilibrium relation between b(π) and c(π), we simplify (A.11) as:

ε(π) = ρ+
(
ψ−1 − γ

) [
i(π)− δK −

γσ2
K

2
+ µπ(π)

b′(π)

b(π)

]

+
(
ψ−1 − γ

) λ(π)

1− γ

(b (πJ )
b(π)

)1−γ

Exd
[
(1−N(xe)(1− Z))1−γ]− 1

 , (A.12)

where the post-jump belief πJ given in (14) is a function of the pre-jump belief π. For expected
utility where ψ = 1/γ, we have ε(π) = ρ. Using Ito’s Lemma and the optimal allocation, we obtain

dMt

Mt−
= −ε(π)dt− γ

[
(i(π)− δK)dt+ σKdWK

t

]
+
γ(γ + 1)

2
σ2
Kdt+

(
(1− γ)

b′(π)

b(π)
− i′(π)φ′′(i(π))

1 + φ′(i(π))

)
µπ(π)dt

+

 1 + φ′ (i(π))

1 + φ′ (i(πJ ))

(
b
(
πJ
)

b(π)

)1−γ

(1−N(xe)(1− Z))−γ − 1

 dJt . (A.13)

As the expected percentage change of Mt equals −rt per unit of time (Duffie, 2001), we obtain

the following expression for the equilibrium interest rate:

r(π) = ρ+ ψ−1(i(π)− δK)−
γ(ψ−1 + 1)σ2

K

2
−
[
(1− ψ−1)

b′(π)

b(π)
− i′(π)φ′′(i(π))

1 + φ′(i(π))

]
µπ(π)

− λ(π)

 1 + φ′ (i(π))

1 + φ′ (i(πJ ))

(
b
(
πJ
)

b(π)

)1−γ

Exd((1−N(xe)(1− Z))−γ)− 1


− λ(π)

ψ−1 − γ
1− γ

1−

(
b
(
πJ
)

b(π)

)1−γ

Exd((1−N(xe)(1− Z))1−γ)

 . (A.14)

Since Dt = Ct and Mt−Dt−dt + d(MtQt) is a martingale under the physical measure (Duffie,

2001), Applying Ito’s Lemma to Mt−Dt−dt+ d(MtQt) and setting its drift to zero, we obtain

c(π)

q(π)
= ρ− (1− ψ−1)

[
i(π)− δK −

γσ2
K

2
+ µπ(π)

b′(π)

b(π)

]

+ λ(π)
1− ψ−1

1− γ

1−

(
b
(
πJ
)

b(π)

)1−γ

Exd [1−N(xe)(1− Z)]1−γ

 . (A.15)

We obtain the aggregate Tobin’s average q from (A.15). For the special case with ψ = 1 and any risk

aversion γ > 0, the dividend yield (and equivalently the consumption-wealth ratio) is c(π)/q(π) = ρ.
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B Proof for Market Equilibrium Solution in Section 4

B.1 Firm Value Maximization

First, using Ito’s Lemma, we obtain the following dynamics for Qt = Q(Kt, πt):

dQt =

(
(I − δKK)QK +

1

2
σ2
KK

2QKK + µπ(π)Qπ

)
dt+ σKKQKdWK

t

+
(
Q((1−N(xe)(1− Z))K,πJ )−Q(K,π)

)
dJt . (B.16)

No arbitrage implies that the drift of Mt−(AKt− − It− − Φ(It−,Kt−)−Xe
t− −Xd

t−)dt+ d (MtQt) is

zero under the physical measure (Duffie, 2001). Applying Ito’s Lemma to this martingale, we obtain

0 = max
I,xe,xd

M(AK − I − Φ(I,K)− xeK − xdK) + M
(

(I − δKK)QK +
1

2
σ2
KK

2QKK + µπ(π)Qπ

)
+Q

[
−r(π)− λ(π)

(
Exd(η(π;Z,xe))− 1

)]
M−Mγσ2

KKQK

+ λ(π)Exd
[
η(π;Z,xe)Q((1−N(xe)(1− Z))K,πJ )−Q(K,π)

]
M . (B.17)

And then by using the homogeneity property Q(K,π) = q(π)K, we obtain the simplified HJB

equation (34). Simplifying the FOC for the exposure mitigation spending implied by (B.17), we

obtain (35). Similarly, simplifying the investment FOC implied by (B.17), we obtain (36).

B.2 Household’s Optimization Problem

We conjecture and verify that the cum-dividend return of the aggregate asset market is given by

dQt + Dt−dt

Qt−
= µQ(πt−)dt+ σKdWK

t +

(
QJt
Qt−

− 1

)
dJt , (B.18)

where µQ(π) is the expected cum-dividend return (leaving aside the jump effect), defined in (17), to

be determined in equilibrium. In (B.18), the diffusion volatility in equilibrium equals σK , the same

parameter for the capital accumulation process given in (2).

The representative household accumulates wealth as:30

dWt = r(πt−)Wt−dt+ (µQ(πt−)− r)Γt−dt+ σKΓt−dWK
t − Ct−dt+

(
QJt
Qt−

− 1

)
Γt−dJt . (B.19)

By using the W process given in (B.19), we obtain the HJB equation (38) for the household’s

value function. The FOCs for consumption C and the market portfolio allocation Γ are given by

fC(C, J) = JW (W,π) (B.20)

σ2
KΓJWW (W,π) = −(µQ(π)− r(π))JW (W,π) + λ(π)Exd

[(
1− QJ

Q

)
JW

(
WJ , πJ

)]
. (B.21)

Subsituting (37) into (B.20), we obtain the optimal consumption rule given by (41). Simplifying the

FOC for Γ given by (B.21), we obtain (42).

30The first four terms in (B.19) are standard as in the classic portfolio-choice problem with no insurance
or disasters (Merton, 1971). The last term is the loss of the household’s wealth from her portfolio’s exposure
to the market portfolio. (We leave out the disaster insurance demand as they net out to zero in equilibrium
and do not change the equilibrium analysis.) Pindyck and Wang (2013) provide a detailed description of
their dynamically complete markets setting (with various diffusion and stage-contingent actuarially fair jump
hedging contracts.). Our dynamically complete markets setting builds on Pindyck and Wang (2013).
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B.3 Market Equilibrium

First, the firm’s (scaled) disaster exposure adaptation spending is positive and equals the aggregate

exposure mitigation spending: xe = xe > 0. Second, in equilibrium, the household invests all wealth

in the market portfolio and holds no risk-free asset, Γ = W and W = Q. Simplifying the FOCs, (41)

and (42), and using the value function (37), we obtain:

c(π) = ρψu(π)1−ψq(π) , (B.22)

µQ(π) = r(π) + γσ2
K

+ λ(π)

[
Exd(η(π;Z,xe))− q(πJ )

q(π)
Exd((1−N(xe)(1− Z))η(π;Z,xe))

]
. (B.23)

Then substituting (37) into the HJB equation (38), we obtain (45). Using these equilibrium condi-

tions, we simplify the HJB equation (38) as follows:

0 =
1

1− ψ−1

(
c(π)

q(π)
− ρ
)

+

(
µQ(π)− c(π)

q(π)

)
−
γσ2

K

2
+ µπ(π)

u′(π)

u(π)

+
λ(π)

1− γ

[
q(πJ )

q(π)
Exd((1−N(xe)(1− Z)η(π;Z,xe)))− 1

]
. (B.24)

Third, by substituting c(π) = A− i(π)− φ(i(π))− xe into (34), we obtain

0 =
c(π)

q(π)
− r(π) + i(π)− δK + µπ(π)

q′(π)

q(π)
− γσ2

K

− λ(π)

[
Exd(η(π;Z,xe))− q(πJ )

q(π)
Exd((1−N(xe)(1− Z))η(π;Z,xe))

]
. (B.25)

By using the homogeneity property and comparing (B.18) and (B.16), we obtain

µQ(π) =
c(π)

q(π)
+ i(π)− δK + µπ(π)

q′(π)

q(π)
. (B.26)

Then substituting (B.26) into (B.24), we obtain

c(π)

q(π)
= ρ− (1− ψ−1)

[
i(π)− δK −

γσ2
K

2
+ µπ(π)

(
u′(π)

u(π)
+

q′(π)

q(π)

)]
+λ(π)

(
1− ψ−1

1− γ

)[
1− q(πJ )

q(π)
Exd((1−N(xe)(1− Z))η(π;Z,xe))

]
. (B.27)

Substituting (B.27) into (B.25), we obtain the following expression for the equilibrium risk-free rate:

r(π) = ρ+ ψ−1(i(π)− δK)−
γ(ψ−1 + 1)σ2

K

2
−
[
(1− ψ−1)

(
u′(π)

u(π)
+

q′(π)

q(π)

)
− q′(π)

q(π)

]
µπ(π)

− λ(π)
[
Exd(η(π;Z,xe))− 1

]
− λ(π)

[
ψ−1 − γ

1− γ

(
1− q(πJ )

q(π)
Exd((1−N(xe)(1− Z))η(π;Z,xe))

)]
. (B.28)

Using (B.18) and (B.23), we obtain the following expression for the market risk premium rp(π):

rp(π) = µQ(π) + λ(π)

(
QJ

Q
− 1

)
− r(π) = γσ2

K − λ(π)Exd
[
(η(π;Z,xe)− 1)

(
QJ

Q
− 1

)]
, (B.29)

which implies (57).

In sum, we have derived the equilibrium resource allocations and the asset pricing implications

summarized in Proposition 2 and Proposition 4.
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Online Appendices

OA Model with Stochastic Disaster Arrival Rate

The disaster arrival rate in our baseline model of Section 2, while unobservable, is constant.
In this section, we generalize the baseline model to allow for the unobservable disaster arrival
rate to be stochastic.1 We assume that the disaster arrival rate follows a two-state continuous-
time Markov chain taking two possible values, λG in state G and λB > λG in state B. Let
ϕG denote the transition rate from state G to state B and ϕB denote the transition rate from
state B to state G. That is, over a small time period ∆t, the transition probability from the
G state to the B state is ϕG∆t and similarly the transition probability from the B state to
the G state is ϕB∆t. Our baseline unobservable constant λ model of Section 2 is a special
case of this model with ϕG = ϕB = 0.

OA.1 Model

As in our baseline model, let πt denote the conditional probability that the economy is in
state B. The belief process {πt} evolves as:

dπt = Et−[dπt] + σπ(πt−) (dJt − λt−dt) , (OA.1)

where σπ(π) is given by (13) and λt− = λBπt− + λG(1 − πt−) is the expected disaster arrival
rate at t− given in (11). Note that the second term is a martingale by construction. Since
the economy follows a two-state Markov chain, the expected change of belief is given by

Et−[dπt] = (ϕG − (ϕB + ϕG)πt−)dt . (OA.2)

We can thus rewrite (OA.1) as follows:

dπt = (ϕG − (ϕB + ϕG)πt−)dt+ σπ(πt−) (dJt − λt−dt) . (OA.3)

Equation (OA.3) implies that πt in our generalized model is no longer a martingale. This is in
sharp contrast with our baseline model (with constant arrival rate), where belief πt given in
(12) is a martingale. Rewriting the drift term in (OA.3), we see that the expected change of
belief πt in our generalized learning model is given by the difference between ϕG(1−πt−), which
is the transition rate out of state G, ϕG, multiplied by 1 − πt−, the conditional probability
in state G, and ϕBπt, which is the transition rate out of state B, ϕB, multiplied by πt−, the
conditional probability in state B.2

We note that the jump martingale term (the second term in (OA.3)) in our generalized
model is the same as in the belief updating process (12) for our baseline model. As a result,
when a disaster strikes at t, the belief immediately increases from the pre-jump level πt−
to πt = πJ by σπ(πt−), where πJ is given by (14), the same as in our baseline model with
unobservable constant arrival rate λ.

1Ghaderi, Kilic, and Seo (2022) also develops a Bayesian learning model that builds on Wachter (2013).
2As a result, when πt = 0 (in the G state for sure), the drift of belief πt is exactly ϕG, the arrival rate from

the G to the B state. Similarly by symmetry, when πt = 1 (in the B state for sure), the drift is exactly −ϕB .
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Taking these results together, absent jump arrivals (i.e., dJt = 0), we obtain the following
expression for the rate at which belief changes, µ̂π(πt−) = dπt/dt:

µ̂π(π) = (ϕG − (ϕB + ϕG)π)− π(1− π)(λB − λG) . (OA.4)

Generalizing the unobservable λ from a constant to a stochastic process (two-state Markov
chain) does not change the belief updating upon the immediate arrival of a jump. How-
ever, belief updating conditional on no jump arrival is different from the baseline case with
unobservable constant arrival rate λ.

Next, we calculate the posterior belief πt at t conditional on no jump arrival over the time
interval (s, t), i.e., dJv = 0 for s < v ≤ t. Using (OA.3) and integrating {πv; v ∈ (s, t)} from
s to t conditional on no jump over the interval (s, t), we obtain the following function:

πt = πs −
2(δ0π

2
s + δ1πs + δ2)(e−

√
δ21−4δ0δ2(t−s) − 1)

(
√
δ2

1 − 4δ0δ2 + δ1 + 2δ0πs)(e
−
√
δ21−4δ0δ2(t−s) − 1) + 2

√
δ2

1 − 4δ0δ2

, (OA.5)

where δ0 = −(λG − λB), δ1 = λG − λB − (ϕG + ϕB), and δ2 = ϕG . For our baseline model
(ϕG = ϕB = 0), πt in (OA.5) can be simplified to (16).
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Figure O-1: This figure plots the time series of πt absent jumps in our generalized model,
where the jump arrival rate, λ, is unobservable and follows a two-state Markov chain taking
on two possible values (λG = 0.1 and λB = 0.8) with a prior of π0 = 0.08 that the current value
of λ is λB. Our baseline model with constant unobservable λ corresponds to ϕG = ϕB = 0
(the dashed red line).

In Figure O-1, we plot the belief process {πt : t ∈ (0, 20)} conditional on no jump arrival,
which means dJv = 0 where v ∈ (0, t) = (0, 20), for three cases: 1.) the stationary case with
ϕG = ϕB = 2% (the solid blue line); 2.) the case with ϕG = 2% and ϕB = 0, where the
economy is eventually absorbed at the B state, (the dotted black line); and 3.) the baseline
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constant λ case as ϕG = ϕB = 0 (the dashed red line). The prior for the low value of λ is set
at π0 = 0.08 for all three cases.

First, for the two cases with stochastic λ, πt decreases with t even absent jump arrivals.
For example, the solid blue line (for the ϕG = ϕB = 2% case) shows that πt slowly decreases to
0.0277 in twenty years absent jump arrivals. For the other case where the B state is absorbing
(ϕB = 0), πt decreases to 0.0285 at t = 20 absent jumps (the dotted black line.) The belief
dynamics for these two cases with stochastic λ are similar to the dynamic for our constant
unobservable λ model (the dashed red line), which shows that πt decreases over time to zero
and the agent becomes more optimistic (the no-news-is-good-news result), and the only differ-
ence is the long-run mean absent jump arrivals. So long as the transition rates ϕG and ϕB are
small (which is the practically relevant case), our baseline model (with constant unobservable
λ) and the stochastic unobservable λ model generate similar quantitative predictions. For
parsimony, we use the constant λ model for our quantitative analysis in the paper.

OA.2 Solution

Using the belief process {πt} given in (OA.3), we obtain the following HJB equation for the
planner’s allocation problem:

0 = max
C, I,xe xd

f(C, V ) + (I− δKK)VK(K, π) + µ̂π(π)Vπ(K, π) +
1

2
σ2
KK2VKK(K, π)

+λ(π)Exd
[
V
(
(1−N(xe)(1− Z))K, πJ

)
− V (K, π)

]
, (OA.6)

where µ̂π(π) is given in (OA.4). The FOCs for aggregate investment I, (scaled) aggregate
disaster distribution mitigation spending xd, and (scaled) aggregate disaster exposure miti-
gation spending xe are the same as those for our baseline model (with constant unobservable
λ), which are given in (20), (21), and (22), respectively.

Substituting the value function V (K, π) given in (23) and its derivatives into the HJB
equation (OA.6), using the three FOCs ((20), (21), and (22)), and simplifying these equations,
we obtain the four-equation ODE system for b(π), i(π), xd(π) and xe(π), given in

0 =
ρ

1− ψ−1

[[
b(π)

ρ(1 + φ′(i(π)))

]1−ψ

− 1

]
+ i(π)− δK −

γσ2
K

2
+ µ̂π(π)

b′(π)

b(π)

+
λ(π)

1− γ

(b (πJ )
b(π)

)1−γ

Exd(π)((1−N(xe(π))(1− Z))1−γ)− 1

 . (OA.7)

and (25)-(27) for π ∈ (0, 1). The key difference between (OA.7) and the ODE (24) for b(π)
in our baseline model (with constant but unobservable λ) is that the drift of π absent jumps,
µ̂π(π) given in (OA.4), appears in (OA.7) while µπ(π) given in (15) appears in the ODE (24).3

The other three equations for i(π), xd(π) and xe(π) for our stochastic λ model are (25), (26),
and (27), the same as those for our baseline model of Section 2.

3The wedge µ̂π(π) − µπ(π) = (ϕG − (ϕB + ϕG)π) precisely captures the effect of stochastic transition
between the G and B states.
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Next, we turn to the boundary conditions at π = 0 and π = 1. At π = 0, we have

0 =
ρ

1− ψ−1

[[
b(0)

ρ(1 + φ′(i(0)))

]1−ψ

− 1

]
+ i(0)− δK −

γσ2
K

2
+
ϕGb

′(0)

b(0)

+
λG

[
Exd(0)((1−N(xe(0))(1− Z))1−γ)− 1

]
1− γ

. (OA.8)

Compared with the boundary condition (28) for b(π) at π = 0 in our baseline model of Section

2, we have a new term ϕGb
′(0)

b(0)
on the right side of (OA.8). This is because when πt = 0, while

the state at t is G for sure, it stochastically transitions out of G to B at the rate of ϕG.
Our baseline model of Section 2 is a special case with ϕG = 0. The other three boundary
conditions at π = 0 for i(π), xd(π) and xe(π) in our stochastic λ model are (29), (30), and
(31), the same as those for our baseline model of Section 2.4

Similarly, at π = 1, we have

0 =
ρ

1− ψ−1

[[
b(1)

ρ(1 + φ′(i(1)))

]1−ψ

− 1

]
+ i(1)− δK −

γσ2
K

2
− ϕBb

′(1)

b(1)

+
λB

[
Exd(1)((1−N(xe(1))(1− Z))1−γ)− 1

]
1− γ

, (OA.9)

where the term −ϕBb
′(1)

b(1)
describes the stochastic transition into G from B. All other terms

are the same as in (A.4), the corresponding condition for our baseline model of Section 2. The
other three boundary conditions at π = 1 for i(π), xd(π) and xe(π) in our stochastic λ model
are (A.5), (A.6), and (A.7), the same as those for our baseline model of Section 2.5

Next, we summarize the solution for our generalized learning model.

Proposition 6 The first-best solution for our generalized learning model is given by the value
function (23) and the quartet policy rules, b(π), i(π), xd(π), and xe(π), where 0 ≤ π ≤ 1,
via the four-equation ODE system ((OA.7), (25), (26), and (27)) with the four conditions
((OA.8), (29), (30), and (31)) for π = 0, and ((OA.9), (A.5), (A.6), and (A.7)) for π = 1.

OA.3 Quantitative Analysis

Next, we analyze the solutions for our generalized model with stochastic unobservable λ. For
the stochastic λ model, we set both the transition rate from state G to B (ϕG) and that from
state B to G (ϕB) to 2%, i.e., ϕG = ϕB = 1/50 = 2%, which imply an average duration of 50
years for both G and B states. In the long run, the economy is in either state G or B with
equal (50%) probability.

To ease exposition and facilitate comparison with our baseline (constant unobservable λ)
model of Section 2, we use the same values for all the other parameters as in our baseline
model.

4Note that when π = 0, we also have πJ = 0. This is why the last term in (OA.8) does not involve b( · )
while the last term in (OA.7) for π ∈ (0, 1) does.

5As for the π = 0 case, when π = 1, we also have πJ = 1. This is why the last term in (OA.9) does not
involve b( · ) while the last term in (OA.7) for π ∈ (0, 1) does.
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Figure O-2: This figure compares two learning models: the constant λ and the stochastic λ
models. The transition rates are ϕG = ϕB = 0.02 for the stochastic λ model (solid blue lines).
The transition rates are ϕG = ϕB = 0 for our baseline (constant λ) model (dashed red lines).

In Figure O-2, we plot (scaled) public mitigation xd(π) (Panel A), (scaled) private mitiga-
tion xe(π) (Panel B), investment-capital ratio i(π) (Panel C), and consumption-capital c(π)
(Panel D) as functions of belief π for the planner’s first-best solutions: the solid blue lines are
for the baseline constant λ model and the dashed red lines are for the stochastic λ model.

Panels A and B show that for both public mitigation xd(π) and private exposure mitigation
xe(π) are significantly lower for the stochastic λ model, and this is intuitive because the agent
is exposure to less uncertainty about the belief due the mean reversion of π in the stochastic λ
model, which induces less mitigation motivation. Quantitatively, the differences for investment
and consumption are of very small (second- and third-order effects, as we can see from the
scale for the vertical axes in Panels C and D.) This is because the transition of λ occurs once
every fifty years on average.

Note that investment and consumption are even flatter (less responsive to changes of belief)
in the stochastic λ model than in the constant λ model. Figure O-3 corroborates the belief
mean reversion effect on welfare, growth, and valuation by showing that the welfare measure,
the WTP ζp(π) (Panel A), the expected growth rate g(π) (Panel C), Tobin’s average q, and
the risk-free rate r(π) are all smoother (flatter) as functions of π in the stochastic λ model
than in the constant λ model.

The intuition is as follows. As belief mean reversion in the stochastic λ model, the agent is
less optimistic in the low-π state but also less pessimistic in the high-π state, in the stochastic
λ model, i.e., compared with the constant λ model. As a result, the planner reduces both
consumption and investment in response to changes of belief (so that the planner better
smoothes investment/consumption across states and over time.)

In sum, our analysis shows that for plausible values of slow belief mean reversion, the
quantitative results of our learning model (with stochastic λ) are similar to those of our
learning model (with constant λ). And we confirm the intuition that belief mean reversion
reduces the impact of learning on welfare, valuation and policy rules.
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Figure O-3: This figure compares two learning models: the constant λ and the stochastic λ
models. The transition rates are ϕG = ϕB = 0.02 for the stochastic λ model (solid blue lines).
The transition rates are ϕG = ϕB = 0 for our baseline (constant λ) model (dashed red lines).

OB External Habit Model

We now solve the model with external habit (Campbell-Cochrane) preferences of Section 7.7
and provide a quantitative analysis.6

OB.1 Model

The representative agent has a non-expected utility over consumption {Ct; t ≥ 0} relative to
a stochastic habit process {Ht; t ≥ 0} (Campbell and Cochrane, 1999) given by:

E
(∫ ∞

0

ρe−ρtU(Ct,Ht)dt

)
, (OA.10)

where ρ > 0 is the time rate of preference, U(C,H) = (C−H)1−γ

1−γ , and γ > 0 is a curvature
parameter. It is convenient to work with St, the surplus consumption ratio at t defined as

St =
Ct −Ht

Ct
. (OA.11)

Let st be its natural logarithm: st = ln(St). As in Campbell and Cochrane (1999) and
this literature, we assume that st follows a mean-reverting process with stochastic volatility:

dst = (1− κs)(s− st)dt+ δ(st)σKdWK
t , (OA.12)

where s > 0 is the steady-state value of st and κs measures the degree of persistence.7 The
function δ(st) in (OA.12) is the same sensitivity function as the one in Campbell and Cochrane

6An alternative to the external habit model analyzed in this section is to specify an internal habit formation
model as in Jermann (1998). Due to space constraints, we leave the internal habit formation model out.

7We write 1− κs as the rate of mean reversion as in Campbell and Cochrane (2015). The higher the value
of κs, the more persistent the st process. The κs = 1 special case corresponds to a unit-root process.
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(1999) and stated in Section OB of the Online Appendix. The production side of the economy
and the learning model are the same as in our baseline model of Section 2.

Planner’s solution. The (log) surplus consumption ratio {st; t ≥ 0} acting as the exoge-
nous preferences shock is the new state variable. Let V (K, π, s) denote the household’s value
function. The following HJB equation characterizes the planner’s optimal resource allocation:

ρV = max
C, I,xe xd

ρ
(Ces)1−γ

1− γ
+ (I− δKK)VK + µπ(π)Vπ + (1− κs)(s− s)Vs +

σ2
KK2VKK

2
+

1

2
σ2
Kδ(s)

2Vss

+ σ2
Kδ(s)KVKs + λ(π)Exd

[
V
(
(1−N(xe)(1− Z))K, πJ , s

)
− V (K, π, s)

]
. (OA.13)

Unlike in our baseline model with the Epstein-Zin utility, the agent now not only takes into
account the evolution of s (via the drift term involving Vs and the quadratic-variation term
involving Vss), but also has incentives to hedge against shocks to the surplus consumption
ratio (via the quadratic-covariation term involving VKs).

We show that the value function V (K, π, s) is homogeneous with degree (1− γ) in K:

V (K, π, s) =
1

1− γ
(b(π, s)K)1−γ , (OA.14)

where b(π, s) is a measure of welfare proportional to the certainty equivalent wealth under
optimality. (To ease comparison, we still use b as the function for the welfare measure here
but with the understanding that the b function for external habit model depends on both π
and s and differs from the b function for our baseline Epstein-Zin model.)

Importantly, unlike the welfare measure (b(π)) in our baseline planner’s model of Section
3, b(π, s) in our external habit model depends on not only belief π but also the (log) surplus
consumption ratio s. In Online Appendix OB, we provide details summarizing how we obtain
the PDE for b(π, s) together with optimal policies and boundary conditions. Our external
habit model is technically more challenging than our baseline model with Epstein-Zin utility,
as the external habit becomes an additional state variable in addition to capital stock and
belief.8

In (OA.12), δ(st) is the sensitivity function proportional to the conditional volatility of dst
in response to dWK

t , which we assume is given by the following square-root function:

δ(s) =
1

S

√
1− 2(s− s)− 1 , s ≤ smax (OA.15)

and δ(s) = 0 for s > smax, where smax = s+ 1−S2

2
and S = es.9

OB.2 Solution

Using the surplus consumption ratio process {st} given in (OA.12) and the external habit
utility function given in (OA.10), we obtain the HJB equation (OA.13) for the planner’s

8Because of the homogeneity property of the Epstein-Zin utility, only capital stock and belief are state
variables after simplifying the model solution.

9Additionally, we set S = σK
√

γ
1−κs

as in Campbell and Cochrane (1999).
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resource allocation problem. Substituting the value function given in (OA.14) into the HJB
equation (OA.13), we obtain

0 = max
c, i,xe xd

ρ

1− γ

[(
c(π, s)es

b(π, s)

)1−γ

− 1

]
+ (i(π, s)− δK) + µπ(π)

bπ(π, s)

b(π, s)
+ (1− κs)(s− s)

bs(π, s)

b(π, s)

−γσ
2
K

2
+
σ2
Kδ(s)

2

2

(
bss(π, s)

b(π, s)
− γ (bs(π, s))

2

b(π, s)2

)
+ (1− γ)σ2

Kδ(s)
bs(π, s)

b(π, s)

+
λ(π)

1− γ

(b (πJ , s)
b(π, s)

)1−γ

Exd((1−N(xe(π, s))(1− Z))1−γ)− 1

 . (OA.16)

Using the resource constraint c = A− i− φ(i)− xd − xe to simplify the FOC for investment
i, we obtain the ODE system for b(π, s), i(π, s), xe(π, s) and xd(π, s) in the region where
π ∈ (0, 1) and s ∈ (−∞, smax):

0 =
ρ

1− γ

[(
b(π, s)e−s

ρ(1 + φ′(i(π, s)))

)1−γ−1

− 1

]
+ (i(π, s)− δK) + (1− κs)(s− s)

bs(π, s)

b(π, s)

+ µπ(π)
bπ(π, s)

b(π, s)
− γσ2

K

2
+
σ2
Kδ(s)

2

2

(
bss(π, s)

b(π, s)
− γ (bs(π, s))

2

b(π, s)2

)
+ (1− γ)σ2

Kδ(s)
bs(π, s)

b(π, s)

+
λ(π)

1− γ

(b (πJ , s)
b(π, s)

)1−γ

Exd(π,s)((1−N(xe(π, s))(1− Z))1−γ)− 1

 ,

(OA.17)

b(π, s) = [A− i(π, s)− φ(i(π, s))− xd(π, s)− xe(π, s)]γ/(γ−1) [ρq(π, s)]1/(1−γ) es , (OA.18)

1

q(π, s)
= λ(π)

[
b
(
πJ , s

)
b(π, s)

]1−γ

N ′(xe(π, s))Exd(π,s)
[
(Z − 1)(1−N(xe(π, s))(1− Z))−γ

]
,

(OA.19)

1

q(π, s)
=

λ(π)

1− γ

[
b
(
πJ , s

)
b(π, s)

]1−γ ∫ 1

0

[
∂ξ(Z; xd(π, s))

∂xd
(1−N(xe(π, s))(1− Z))1−γ

]
dZ ,

(OA.20)

where q(π, s) is given by
q(π, s) = 1 + φ′(i(π, s)) . (OA.21)

Using the resource constraint c = A − i − φ(i) − xd − xe to simplify the FOCs for the
two types of mitigation spending, xe and xd, we obtain the optimal exposure mitigation and
distribution mitigation spending rules, (OA.19) and (OA.20) for xe and xd, respectively.
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Since π = 0 is an absorbing state, we have the following boundary conditions at π = 0:

0 =
ρ

1− γ

[(
b(0, s)e−s

ρ(1 + φ′(i(0, s)))

)1−γ−1

− 1

]
+ (i(0, s)− δK) + (1− κs)(s− s)

bs(0, s)

b(0, s)

−γσ
2
K

2
+
σ2
Kδ(s)

2

2

(
bss(0, s)

b(0, s)
− γ (bs(0, s))

2

b(0, s)2

)
+ (1− γ)σ2

Kδ(s)
bs(0, s)

b(0, s)

+
λG

1− γ

[
Exd(π,s)((1−N(xe(0, s))(1− Z))1−γ)− 1

]
, (OA.22)

b(0, s) = [A− i(0, s)− φ(i(0, s))− xd(0, s)− xe(0, s)]γ/(γ−1) [ρq(0, s)]1/(1−γ) es , (OA.23)
1

q(0, s)
= λGN

′(xe(0, s))Exd(π,s)
[
(Z − 1)(1−N(xe(0, s))(1− Z))−γ

]
, (OA.24)

1

q(0, s)
=

λG
1− γ

∫ 1

0

[
∂ξ(Z; xd(0, s))

∂xd
(1−N(xe(0, s))(1− Z))1−γ

]
dZ , (OA.25)

where q(0, s) = 1 + φ′(i(0, s)).
Similarly, at the π = 1 absorbing state, we have the following boundary conditions:

0 =
ρ

1− γ

[(
b(1, s)e−s

ρ(1 + φ′(i(1, s)))

)1−γ−1

− 1

]
+ (i(1, s)− δK) + (1− κs)(s− s)

bs(1, s)

b(1, s)

−γσ
2
K

2
+
σ2
Kδ(s)

2

2

(
bss(1, s)

b(1, s)
− γ (bs(1, s))

2

b(1, s)2

)
+ (1− γ)σ2

Kδ(s)
bs(1, s)

b(1, s)

+
λB

1− γ

[
Exd(1,s)((1−N(xe(1, s))(1− Z))1−γ)− 1

]
, (OA.26)

b(1, s) = [A− i(1, s)− φ(i(1, s))− xd(1, s)− xe(1, s)]γ/(γ−1) [ρq(1, s)]1/(1−γ) es , (OA.27)
1

q(1, s)
= λBN

′(xe(1, s))Exd(1,s)
[
(Z − 1)(1−N(xe(1, s))(1− Z))−γ

]
, (OA.28)

1

q(1, s)
=

λB
1− γ

∫ 1

0

[
∂ξ(Z; xd(1, s))

∂xd
(1−N(xe(1, s))(1− Z))1−γ

]
dZ , (OA.29)

where q(1, s) = 1 + φ′(i(1, s)).
At s = smax, we have the following boundary condition:

0 =
ρ

1− γ

[(
b(π, smax)e−smax

ρ(1 + φ′(i(π, smax)))

)1−γ−1

− 1

]
+ (i(π, smax)− δK) + (1− κs)(s− smax)

bs(π, smax)

b(π, smax)

− γσ2
K

2
+ µπ(π)

bπ(π, smax)

b(π, smax)

+
λ(π)

1− γ

(b (πJ , smax

)
b(π, smax)

)1−γ

Exd(π,smax)((1−N(xe(π, smax))(1− Z))1−γ)− 1

 .
(OA.30)

Additionally, i(π, smax), xe(π, smax) and xd(π, smax), satisfy (OA.18)- (OA.20) at s = smax.10

We summarize our model’s solution in the following proposition.

10Note that as s→ −∞ is not reachable in equilibrium, we can ignore the corresponding boundary conditions
for our numerical analysis.
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Proposition 7 The first-best solution for our external habit model is given by the value
function (OA.14) and the quartet policy rules, b(π, s), i(π, s), xd(π, s), and xe(π, s), where
0 ≤ π ≤ 1 and −∞ < s ≤ smax, via the four-equation ODE system (OA.17), (OA.18),
(OA.19) and (OA.20), together with the boundary conditions (OA.22)-(OA.25) for π = 0,
(OA.26)-(OA.29) for π = 1, (OA.30) and (OA.18)-(OA.20) for s = smax.

Next, we use the equilibrium resource allocation to derive our model’s asset pricing impli-
cations.

OB.3 Asset Pricing Implications

Using the planner’s solution, we can also infer the SDF process for the equilibrium outcome
(under optimal taxation which supports the first-best equilibrium outcome) by applying the
Ito’s Lemma to Mt given below

Mt = e−ρt
UC(Ct,Ht)

UC(C0,H0)
= e−ρt

(
CtSt
C0S0

)−γ
. (OA.31)

We then use the no-arbitrage restriction for the SDF to obtain the equilibrium risk-free rate,
the market price of risk, and the stock market risk premium.

Using (OA.31), we obtain the following expression for the logarithmic SDF, ln(Mt):

ln(Mt) = −ρt− γ (ln(Ct) + ln(St)− ln(C0)− ln(S0)) . (OA.32)

Then using Ito’s lemma, we obtain

dMt

Mt
= −ρdt− γ

(
i(π, s)− δK −

σ2
K

2

)
dt+ (1− κs)(s− st)

(
(1− γ)

bs(π, s)

b(π, s)
− qs(π, s)

q(π, s)
− 1

)
dt

+µπ(π)

(
(1− γ)

bπ(π, s)

b(π, s)
− qπ(π, s)

q(π, s)

)
dt−

[
(1− γ)

bs(π, s)
2

b(π, s)2
− qs(π, s)

2

q(π, s)2

]
(σKδ(s))

2

2
dt

+

[
(1− γ)

bss(π, s)

b(π, s)
− qss(π, s)

q(π, s)

]
(σKδ(s))

2

2
dt

+
σM(π, s)2

2
dt− σM(π, s)dWK

t + [η(π, s;Z,xe)− 1] dJt , (OA.33)

where

η(π, s;Z,xe) =
q(π, s)

q(πJ , s)

(
b
(
πJ , s

)
b(π, s)

)1−γ

(1−N(xe(π, s))(1− Z))−γ , (OA.34)

and

σM(π, s) =

[(
1 +

qs(π, s)

q(π, s)
− (1− γ)

bs(π, s)

b(π, s)

)
δ(s) + γ

]
σK . (OA.35)

Using the equilibrium restriction that the drift of dMt

Mt
equals−rt−dt, we obtain the following

O-10



expression for the equilibrium risk-free rate:

r(π, s) = ρ+ γ

(
i(π, s)− δK −

σ2
K

2

)
− (1− κs)(s− st)

(
(1− γ)

bs(π, s)

b(π, s)
− qs(π, s)

q(π, s)
− 1

)
− µπ(π)

(
(1− γ)

bπ(π, s)

b(π, s)
− qπ(π, s)

q(π, s)

)
+

[
(1− γ)

bs(π, s)
2

b(π, s)2
− qs(π, s)

2

q(π, s)2

]
(σKδ(s))

2

2

−
[
(1− γ)

bss(π, s)

b(π, s)
− qss(π, s)

q(π, s)

]
(σKδ(s))

2

2

− σM(π, s)2

2
− λ(π)

[
Exd(η(π, s;Z,xe))− 1

]
. (OA.36)

Using the equilibrium SDF, we may calculate firm value, Q(K, π, s) by using

Q(Kt, πt, st) =

∫ ∞
t

Mv

Mt

(AKv − Iv − Φ(Iv, Kv)−Xe
v)dv . (OA.37)

Applying the Ito’s Lemma to firm value Q(K, π, s) = q(π, s)K and using (OA.33), we
obtain the following PDE for q(π, s):

r(π, s)q(π, s) = max
i, xe

A− i− φ(i)− xe + (i− σM(π, s)σK)q(π, s) + µπ(π)qπ(π, s)

+
[
(1− κs)(s− s) + δ(s)σ2

K − σM(π, s)δ(s)σK
]
qs(π, s) +

σ2
Kδ(s)

2

2
qss(π, s)

+ λ(π)Exd
[
η(π, s;Z,xe)

(
q(πJ , s)(1−N(xe)(1− Z))− q(π, s)

)]
. (OA.38)

The cum-dividend return dRt over the period dt is given by

dRt =
(AKt− − It − Φ(It−,Kt−)−Xe

t−)dt

Qt−
+
dQt
Qt−

=
A− it− − φ(it−)− xet−

q(πt−, st−)
dt+

dq(πt, st)

q(πt−, st−)
+
dKt

Kt−
+
< dq(πt, st), dKt >

q(πt−, st−)Kt−

=
A− it− − φ(it−)− xet− + (1− κs)(s− st−)qs(πt−, st−) +

σ2
Kδ(st−)2

2 qss(πt−, st−)

q(πt−, st−)
dt

+
µπ(πt−)qπ(πt−, st−)

q(πt−, st−)
dt+ (it− − δK)dt+

qs(πt−, st−)δ(st−)

q(πt−, st−)
σ2
Kdt+

[
qs(πt−, st−)δ(st−)

q(πt−, st−)
+ 1

]
σKdWK

t

+

[
(1−N(xet−)(1− Z))q

(
πJt , st−

)
q(πt−, st−)

− 1

]
dJt

=

[
r(πt−, st−) + σM(πt−, st−)

(
σK + δ(st−)σK

qs(πt−, st−)

q(πt−, st−)

)]
dt

−λ(π)Exd
t−

[
η(πt−, st−;Z,xet−)

(
(1−N(xet−)(1− Z))q

(
πJt , st−

)
q(πt−, st−)

− 1

)]
dt

+

[
qs(πt−, st−)δ(st−)

q(πt−, st−)
+ 1

]
σKdWK

t +

[
(1−N(xet−)(1− Z))q

(
πJt , st−

)
q(πt−, st−)

− 1

]
dJt . (OA.39)

Finally, using the equilibrium conditions q(π, s) = q(π, s) and xe(π, s) = xe(π, s), we write

dQt + Dt−dt

Qt−
=

(
µQ(πt−, st−) + λ(πt−)

(
QJt
Qt−

− 1

))
dt+

[
qs(πt−, st−)δ(st−)

q(πt−, st−)
+ 1

]
σKdWK

t

+

(
QJt
Qt−

− 1

)
(dJt − λ(πt−)dt) , (OA.40)
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where

QJt
Qt−

=
(1−N(xet−)(1− Z))q

(
πJt , st−

)
q(πt−, st−)

, (OA.41)

and

µQ(πt−, st−) = r(πt−, st−) + σM(πt−, st−)

(
1 + δ(st−)

qs(πt−, st−)

q(πt−, st−)

)
σK

+λ(πt−)Exdt−

[
η(πt−, st−;Z,xet−)

(
1− QJt

Qt−

)]
. (OA.42)

The market risk premium is

rp(πt−, st−) = µQ(πt−, st−) + λ(πt−)

(
QJt
Qt−

− 1

)
− r(πt−, st−)

= σM(πt−, st−)

(
1 + δ(st−)

qs(πt−, st−)

q(πt−, st−)

)
σK

−λ(πt−)Exdt−

[(
η(πt−, st−;Z,xet−)− 1

)(QJt
Qt−

− 1

)]
. (OA.43)

Next, we calibrate the model and provide a quantitative analysis.

Table 6: Parameter Values for External Habit Model

Parameters Symbol Value

jump arrival rate in State G λG 0.1
power law exponent absent mitigation β0 39
mitigation technology parameter β1 1800
mitigation technology parameter ζ 0.4
jump arrival rate in State B λB 0.8
prior of being in State B π0 0.08

surplus consumption parameter κs 0.87
time rate of preference ρ 5%
productivity A 27%
quadratic adjustment cost parameter θ 17
coefficient of relative risk aversion γ 8
capital diffusion volatility σK 8%

All parameter values, whenever applicable, are continuously compounded and annualized.

OB.4 Quantitative Analysis

Calibration. We first calibrate our model with the Campbell-Cochrane external habit
model to match the key global warming and macro moments.
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The key new parameter for the external habit model is the (log) surplus consumption
parameter κs. We set the persistence parameter for external habit at κs = 0.87 per annum as
in Campbell and Cochrane (1999).

We calibrate β0, β1 and ζ in a world with no or low global warming risk, i.e., under the
assumption that countries are optimally mitigating cyclone arrivals with belief π0 = 0.08. We
use the following three moments at the steady state level of the surplus consumption ratio
S:11 1.) the optimal public mitigation of 0.1% of the capital stock, xd(0.08) = 0.1%; 2.)
the optimal private mitigation of 0.04% of the capital stock, xe(0.08) = 0.04%; and 3.) a
reduction of the expected annual GDP growth rate by 1.3% per annum caused by the arrival
of a major cyclone, N(xe)Exd(1 − Z) = 1.3%. As in our baseline model with Epstein-Zin
utility, we calibrate the adjustment cost parameter θ along with the time rate of preference
ρ, risk aversion γ, diffusion volatility σK , and productivity A by targeting five key moments
for state G. These include the annual (real) risk-free rate of 2.5%, the expected annual stock
market risk premium of 7%, the annual stock market return volatility of

√
0.0206 = 14%,

the expected growth rate of 4.4%, and Tobin’s q of 2.5 (e.g., in line with Eberly, Rebelo and
Vincent, 2012), when the prior is π0 = 0.104. The resulting parameter values are σK = 14%,
θ = 11, γ = 3, A = 15%, and ρ = 4%. These parameter values are in line with those used in
the literature. Moreover, these calibrated parameter values are close to those in our baseline
calibration with Epstein-Zin utility, even though the building blocks of the two models differ
significantly.

We report the values for all the twelve parameters in Table 6.
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Figure O-4: This figure compares the first-best planner’s model solutions for the external
habit model (solid blue lines) and the baseline model with Epstein-Zin recursive utility. The
parameter values for our baseline (Epstein-Zin) model are summarized in Table 4 and those
for the external habit (Campbell-Cochrane) model are summarized in Table 6.

11The steady-state value of S is S = 0.63 and Smax = 0.85.

O-13



OB.5 Quantitative Results

In Figures O-4 and O-5, we compare the external habit model at the steady state where
S = S = 0.63 with the Epstein-Zin recursive utility model. Recall that both models are
recalibrated to match climate change and macro finance moments at the belief level of π =
8%. Panel A of Figure O-4 shows that the distribution mitigation xd(π) policies for the two
(different utility) models are quite close to each other. Similarly, Panel B of Figure O-4 shows
that the exposure mitigation xe(π) policies for the two models are also quite close. These two
findings suggest that our main results on how changes of belief impact disaster distribution
and exposure mitigation spendings are reasonably robust to preference specifications. This is
encouraging as our key results are not sensitive to the choices of our preferences.
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Figure O-5: This figure compares the first-best planner’s model solutions for the external
habit model (solid blue lines) and the baseline model with Epstein-Zin recursive utility. The
parameter values for our baseline (Epstein-Zin) model are summarized in Table 4 and those
for the external habit (Campbell-Cochrane) model are summarized in Table 6.

Panel C of Figure O-4 shows that the investment-capital ratio is a bit higher with Epstein-
Zin preferences than with external habit at the steady state where S = S = 0.63. Panel
D of Figure O-4 shows that the consumption-capital ratio is a bit lower with Epstein-Zin
preferences than with external habit, which is expected as the sum of total mitigation spending,
investment, and consumption is the same and equals the productivity A in the two models.
Nonetheless, the quantitative differences between the two models in terms of consumption
and investment are of the second order. Again, this is good news as our results seem robust
to changing preferences assumptions.

It is interesting to note that while i(π) decreases with π for the Epstein-Zin utility model,
i(π) increases with π in the external habit model. This difference is caused by the long-run
risk force in the Epstein-Zin utility specification, where the EIS ψ > 1. To generate the
prediction that worsening belief (increasing π) lowers Tobin’s q and equivalently investment
(as investment increases with Tobin’s q), we require ψ > 1.

The external habit model differs from the baseline Epstein-Zin utility model in two ways.
First, risk aversion is significantly enhanced by and also varies with external habit. Second,
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the EIS implied by our external habit model also generates a time-varying elasticity of in-
tertemporal substitution (EIS). As risk aversion increases with habit stock, the EIS decreases.
This is why our model predicts investment (and hence Tobin’s q) increases with belief. Fig-
ure O-5 reports the WTP, conditional damage `(π), the expected growth rate g(π), Tobin’s
average q(π), the risk-free rate r(π), and the market risk premium rp(π). While there are
some differences, we see that these two models, calibrated to match key moments, generate
quantitatively similar results.

In sum, these findings are encouraging when it comes to interpreting our key results.
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Figure O-6: This figure plots the optimal policies for the planner’s first-best economy (solid
blue lines) and the market economy (dashed red lines) as functions of surplus consumption
ratio S, for the external habit (Campbell-Cochrane) model, where π = 0.104.

In Figure O-6, we focus on the external habit utility model by comparing two formulations:
the planner’s first-best economy (solid blue lines) with the market economy solution (dashed
red lines). We plot the two mitigation spending, investment, and consumption policies for
varying levels of S, for a given belief π = 0.08.

Panel A of Figure O-6 shows that there is no public mitigation in a competitive market
economy for the same externality argument as in our baseline model with Epstein-Zin utility.
This Panel also shows that xd increases as the surplus consumption ratio increases. Similarly,
both the exposure mitigation spending and investment increase with S (Panels B and C). The
intuition for these results is as follows. As we increase S, the marginal utility of consumption
(and SDF Mt) decrease, which causes c to decrease with S (see Panel D). Additionally, the
marginal value of investment and that of mitigation (for both types) increase, which causes
xd, xe, and i to increase with S as shown in Panels A, B, and C).

Finally, we note that the private mitigation spending xe is larger for the market economy
than for the planner’s economy. This is because the marginal benefit of private mitigation
is higher in the market economy as there is no public mitigation. In contrast, as the public
mitigation spending xd is positive and significant under the planner’s economy, the additional
value of private mitigation spending in the planner’s economy is much smaller and hence xe

is much smaller under the planner’s economy than under the market economy (a substitution
effect.)
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In sum, we show that time-varying risk aversion induced by external habit influences
optimal mitigation policies, but the general results that we obtain from our baseline model
with Epstein-Zin utility remains valid in our external habit model.

OC Details on Numerical Analysis

In this appendix, we offer a detailed discussion of numerical analysis used in our paper. We
proceed as follows. First, we compare the technical differences between our baseline model
of Section 2, where the unobservable disaster arrival rate λ is constant, and Pindyck and
Wang (2013). Second, we discuss the additional technical complication in our generalized
learning model of Section OA, where the disaster arrival rate λ is stochastic and unobservable.
Third, we discuss how our model with external habit of Section 7.7 further brings technical
complications to our analysis.

OC.1 Comparing Baseline Model with Pindyck and Wang (2013)

Recall that Pindyck and Wang (2013), henceforth PW (2013), is a jump diffusion model with
stochastic capital recovery, Epstein-Zin recursive utility, and capital adjustment costs, but
features no learning and no mitigation. As a result, the state variable in PW (2013) is capital
stock K. Then using the homogeneity property, PW (2013) show that their model solution can
be further simplified. To be precise, to solve the PW (2013) model, one first solves a simple
nonlinear equation for the optimal constant investment-capital ratio i∗ (given by equation
(12) in their paper), then calculates a welfare measure (proportional to certainty equivalent
wealth) b by substituting i∗ into equation (11) in their paper, and finally obtain equilibrium
asset pricing implications and conduct willingness-to-pay (WTP) calculations. That is, there
is no differential equation or even coupled nonlinear equations involved. Therefore, in terms of
numerical solution, PW (2013) is very simple. The PW (2013) model is purposefully designed
with parsimony and transparency to highlight the key features of disasters in mind.

The economics and technical details for our baseline model (with constant unobservable
disaster arrival rate λ) are inevitably more involved than PW (2013), as we need to incorporate
learning and two types of mitigation into PW (2013). As a result, there are two state variables
in our baseline model: belief π and capital stock K. After using the homogeneity property,
we still need to deal with a numerical problem that has one more dimension than PW (2013).
Specifically, this one-dimensional problem involves a system of ordinary differential equations
(ODEs). To obtain solutions for four unknown functions, b(π), i(π), xe(π), and xd(π), we
need to solve the ODE system of four inter-connected nonlinear differential equations subject
to various boundary conditions. It is worth noting that this ODE system is more difficult
to work with than some ODEs that we see in various economics and finance applications,
e.g., the ODEs appearing in dynamic contracting, e.g., DeMarzo and Sannikov (2006) and
Sannikov (2008), are easier to work with.

It is also worth emphasizing that our model has both jumps and diffusion shocks. Jumps
further complicate our numerical analysis. For diffusion models, finite difference methods only
require local information, as discretizing a second-order ODE (of diffusion models) calls for
analyzing tridiagonal matrix. In contrast, as belief may jump in our model, to solve the model
at a given level of π, we also need to take into account the nonlocal effect of jump on value
function and policy rules.
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As a reference to the technical difficulty of our ODE system, our baseline model’s technical
difficulty is at least at par with the technical difficulty level of Brunnermeier and Sannikov
(2014), which is a diffusion model and hence analyzing tridiagonal matrices is sufficient when
solving the coupled ODEs in that paper. In terms of numerical analysis, jumps effectively
increase the difficulty of our numerical analysis by increasing the dimension of our problem
by “0.5 dimension.”

To solve the interconnected ODE system, we also need a set of four interconnected non-
linear equations for the boundary π = 0 and similarly another set of four interconnected
nonlinear equations for the boundary π = 1. Since both boundaries in our baseline model are
absorbing, they are relatively easy to work with but are technically still more involved than
the full PW (2013) model. This is because for our boundary conditions at π = 0 and π = 1,
we solve for four unknowns simultaneously while in PW (2013), we only need to sequentially
solve one unknown using one nonlinear equation.

OC.2 Additional Difficulties in Stochastic λ Model of Section OA

In our generalized learning model where the arrival rate is stochastic and unobservable, while
we still characterize the solution with four interconnected ODEs in the interior belief region
where π ∈ (0, 1), the boundary conditions are more complicated posing additional technical
and numerical challenges. To be precise, with stochastic transitions between the G and B
states, i.e., ϕG > 0 and/or ϕB > 0, the two belief boundaries, π = 0 and π = 1, are no longer
absorbing. Therefore, we can no longer first solve the four nonlinear equation system to pin
down the values of welfare b and policy functions (i, xe, and xd) at each boundary. To be

precise, consider the boundary π = 0, the term ϕGb
′(0)

b(0)
in the ODE (OA.8) is no longer zero.

Indeed, to solve for b(0), we need information about b′(0), which depends on the solution in
the interior region π ∈ (0, 1).

In sum, the interconnected ODE system in the π ∈ (0, 1) region and the nonlinear equation
systems at the boundaries, π = 0 and π = 1, are interdependent, as summarized in Proposition
6. This interdependence between the interior region and the boundary conditions further
complicate our numerical analysis. We can no longer solve the ODE by first solving the
boundary values and then focus on the ODE system for the interior region as we do for our
baseline model with constant unobservable λ.

Despite these challenges, we are able to obtain very high precision for our numerical solu-
tion.

OC.3 Additional Difficulties of External Habit Model of Section
7.7

Replacing Epstein-Zin recursive utility with Campbell-Cochrane external habit model invites a
new state variable and inevitably we face an optimization problem with three state variables:
(log) surplus consumption ratio s being the new state variable in addition to belief π and
capital stock K. As we have shown in Section OB, using the homogeneity property, we
can simplify our model to a two-dimensional problem, which yields an interconnected partial
differential equation (PDE) system.
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The interconnected PDE system in the π ∈ (0, 1) region and the nonlinear equation systems
at the two belief boundaries, π = 0 and π = 1, as well as the boundary conditions, (OA.30) and
(OA.18)-(OA.20) for s = smax have to be solved jointly. Proposition 7 summarizes the entire
PDE system with 4 interconnected PDEs in the interior region with 12 nonlinear (differential)
equations for the boundaries. This system is numerically quite challenging.

Moreover, we note that as the boundary s = smax is not absorbing, the value function
b(π, s) at s = smax depends on bs(π, smax) and other equilibrium objects, which have to be
solved jointly with the PDEs in the interior region where s ∈ (−∞, smax). This further
complicates our numerical analysis.

In sum, compared with our Epstein-Zin-utility-based models which require us to solve
interconnected ODE system, Campbell-Cochrane external-habit-based model is technically
much more challenging, as we have to solve an involved interconnected PDE problem described
above.
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Figure O-7: This figure plots the planner’s first-best solution for three values of the EIS
ψ: 1/γ = 0.125, 1, 1.5 for our baseline learning model (with Epstein-Zin utility). The other
parameter values are given in Table 4.

Summary. In this online appendix, we have summarized the numerical challenges for the
various models developed in this paper. The technical difficulties for our numerical solution are
substantial and our numerical solution is significantly different from the ones in the literature.
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OD Comparative Statics

OD.1 Elasticity of Intertemporal Substitution ψ

In Figure O-7, we plot the first-best solutions for three levels of the EIS ψ: γ = 0.125, 1, 1.5.
Panels A and B show that the larger the EIS ψ the higher both public mitigation xd and
private mitigation xe spendings. Quantitatively, these differences are not very large. Panel C
shows that the larger the EIS ψ the higher the investment-capital ratio i(π). Panel D shows
that the higher the EIS ψ the lower the consumption-capital ratio c(π), as c = A−(i+xd+xe).
Panel E shows that the larger the EIS ψ the higher Tobin’s average q(π). This follows directly
from the comparative static result of changing ψ on i (Panel C), as Tobin’s q is increasing with
i: q(π) = 1 + φ′(i(π)). Panel F shows that the larger the EIS ψ the higher the price-dividend
ratio q(π)/c(π), which follows from the comparative effects shown in Panels D and E.

The intuition for these results is as follows. The higher the EIS ψ, the more marginal
propensity to consume as in partial equilibrium model consistent with Ramsey/Friedman
consumption rule. As a result, the agent spends less on mitigation and also invests less for
the future.

Additionally, we show that whether the price-dividend ratio q(π)/c(π) increases or de-
creases when disaster arrives (which increases (worsens) belief π) crucially depends on whether
the EIS ψ is larger or smaller than one. In our baseline case where ψ = 1.5 > 1, the equilibrium
price-dividend ratio q(π)/c(π) decreases when a disaster arrives (i.e., when π increases). This
result is consistent with Bansal and Yaron (2004) and the subsequent long-run risk literature,
who show that the price-dividend ratio decreases in response to a negative growth shock when
the EIS parameter ψ is set to be larger than one. Unlike Bansal and Yaron’s pure exchange
economy, our model features production and hence we need to compute the endogenous divi-
dend c together with value of capital, Tobin’s q, in order to obtain the price-dividend ratio.
However, we obtain the same results for the effect of EIS on the price-dividend ratio.

For the unity EIS (ψ = 1) Epstein-Zin utility case, which is a generalized version of
expected logarithmic utility (with a flexible choice of risk aversion parameter γ), the wealth
and the substitution effects exactly offset each other. As a result, the equilibrium price-
dividend ratio remains constant, i.e., q(π)/c(π) = 1/ρ = 20 at all levels of π (See the dotted
line in Panel F.) Finally, with ψ = 1/γ = 0.125 < 1, the wealth effect is stronger than
the substitution effect. For this case, as belief worsens (increases), the price-dividend ratio
q(π)/c(π) increases, which is empirically counterfactual. This is one reason (among others)
why Epstein-Zin utility with an EIS larger than one (ψ > 1) is a more appealing utility
specification than commonly used expected utility for asset pricing.

In Figure O-8, we show that the the quantitative effects of EIS ψ on the WTP is large
(Panel A). In Panel B, the higher the EIS ψ, the higher the conditional damages `(π). This
is because the agent with a higher EIS mitigates less as we show in Panels A and B of Figure
O-7. As a result, the higher EIS the higher the conditional damages `(π).

Figure O-9 of Panel A shows that the higher the EIS ψ, the lower the expected growth
rate g(π). This result follows from 1.) the higher the EIS the lower investment result (as
shown in Panel C in Figure O-7) and 2.) the higher the EIS the larger damage `(π) (as shown
in Panel B of Figure O-8.)

Note that the effects of the EIS on the interest rate is ambiguous which depends on the
agent’s belief (Panel B). Panel C of Figure O-9 shows the higher the EIS the lower mitigation
in equilibrium the higher risk premium.
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Figure O-8: This figure plots the planner’s first-best solution for three values of the EIS
ψ: 1/γ = 0.125, 1, 1.5 for our baseline learning model (with Epstein-Zin utility). The other
parameter values are given in Table 4.

OD.2 Disaster Arrival Rate λB in State B

In Figure O-10, we plot the first-best solutions for three levels of the disaster arrival rate in
state B: λB = 0.4, 0.8, 1. Panel A shows that the higher the disaster arrival rate λB in state
B, the higher the public mitigation spending xd. Moreover, the more pessimistic the agent’s
belief the stronger this effect. Note that the wedge between the lines for two different levels
of λ widens as π increases.

Panel B shows that increasing the arrival rate λB has a highly nonlinear effect on the private
mitigation spending xe. Increasing λB from 0.4 to 0.8 significantly increases the mitigation
spending (for sufficiently large values of π.) However, further increasing λB from 0.8 to 1 has
limited effects on the mitigation spending.

Panel C shows that as λB increases, investment falls. The higher the belief level π (the
more pessimistic the agent) the larger the impact of λB on i. Panel D shows that the impact
of λB on consumption c(π) is ambiguous due to the general equilibrium effect.

In Figure O-11, we show that λB has a large effect on the WTP ζp (Panel A). For example,
when the belief changes from π = 0 to π = 1, the WTP increases from about 0 to 13% when
λB = 1. In contrast, when λB = 0.4, the WTP barely changes from 0 to 2% in response to the
same change of the belief. Panel B shows that the higher the arrival rate λB the smaller the
conditional damage `(π). This is intuitive as mitigation spending is higher when λB is larger.
However, as investment is lower when λB is larger, the impact of λB on the growth rate g(π)
is minimal as the two channels (investment and conditional damage) offset each other (Panel
C). Panel D shows that the higher the arrival rate λB the lower Tobin’s q, tracking the impact
of λB on i(π) as q(π) = 1 + θi(π). Panel E and Panel F show that the quantitative effects of
λB on the risk-free rate r and the market risk premium rp are moderate at best.
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Figure O-9: This figure plots the planner’s first-best solution for three values of the EIS
ψ: 1/γ = 0.125, 1, 1.5 for our baseline learning model (with Epstein-Zin utility). The other
parameter values are given in Table 4.
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Figure O-10: This figure plots the planner’s first-best solution for three values of the annual
disaster arrival rate λB: 0.4, 0.8, 1 for our baseline learning model (with Epstein-Zin utility).
The other parameter values are given in Table 4.

OD.3 Time Rate of Preference ρ

In our baseline calculation, we set the time rate of preference ρ at 5% per annum, a commonly
used value. Next, we compare our baseline model results with two other economies with lower
discount rates: ρ = 4.5% and ρ = 6%.

Panels A and B of Figure O-12 show that the higher the time rate of preference ρ, the less
the planner spends on both types of mitigation spendings, xd and xe. Similarly, Panel C of
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Figure O-11: This figure plots the planner’s first-best solution for three values of the annual
disaster arrival rate λB: 0.4, 0.8, 1 for our baseline learning model (with Epstein-Zin utility).
The other parameter values are given in Table 4.
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Figure O-12: This figure plots the planner’s first-best solution for three values of the annual
time rate of preference ρ: 4.5%, 5%, 6% for our baseline learning model (with Epstein-Zin
utility). The other parameter values are given in Table 4.

Figure O-12 shows that the higher the time rate of preference ρ, the less the planner invests
and Panel D shows that the higher the time rate of preference ρ the more the agent consumes.
The quantitative effects on consumption are large. For example increasing ρ from 4.5% to 6%
roughly increases consumption c from 12% to 15% per annum.

In Figure O-13, we show that the quantitative effects of the time rate of preference ρ on
the WTP is significant (Panel A). For example, when the belief changes from π = 0 to π = 1,
the WTP increases from about 0 to 6.7% when ρ = 6%, and increases from 0 to 10% when
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Figure O-13: This figure plots the planner’s first-best solution for three values of the annual
time rate of preference ρ: 4.5%, 5%, 6% for our baseline learning model (with Epstein-Zin
utility). The other parameter values are given in Table 4.

ρ = 4.5%.
The higher the time rate of preference ρ the higher the conditional damage `(π) (Panel B)

and the lower the Tobin’s q (Panel D) as the agent is less patient and puts a smaller weight
on the future. Since these two forces push towards the same direction, the higher the discount
rate ρ the lower growth rate g (Panel C).

Finally, Panel E shows that the quantitative effect of ρ on the risk-free rate r is moderate
at best and Panel F shows that the effect of ρ on the market risk premium rp is very small.

OD.4 Coefficient of Relative Risk Aversion γ

In our baseline calculation, we set the coefficient of relative risk aversion γ at 8, which is
within the range of widely used values (e.g., 2 to 10). Next, we compare our baseline model
results to two other economies with γ = 4 and γ = 10.

Panel A of Figure O-14 shows that the higher the coefficient of relative risk aversion γ,
the more the planner spends on distribution mitigation xd and the less the planner spends
on exposure mitigation xe. The higher the coefficient of relative risk aversion γ the less the
planner invests (Panel C), the more the agent consumes (Panel D).

In Figure O-15, we show that the quantitative effects of increasing risk aversion from γ = 4
to γ = 10 on the WTP is large (Panel A). For example, as we increase γ from 4 to 10, the
WTP ζp increases from 6.6% to 9.8% when the agent’s belief is π = 1.

The higher the coefficient of relative risk aversion γ the lower the conditional damage `(π)
(Panel B of Figure O-15) and the lower the growth rate g(π) (Panel C of Figure O-15). This is
because a more risk-averse agent mitigates more but invests less. Quantitatively, the negative
effect of increasing γ via investment on growth dominates the positive effect of increasing γ
via mitigation. As a result, the net effect of increasing γ on growth is negative.

Finally, Panels E and F of Figure O-15 show that the quantitative effects of γ on the
risk-free rate r and the market risk premium rp are very large, as we expect (in line with
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Figure O-14: This figure plots the planner’s first-best solution for three values of coefficient
of relative risk aversion γ: 4, 8, 10 for our baseline learning model (with Epstein-Zin utility).
The other parameter values are given in Table 4.
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Figure O-15: This figure plots the planner’s first-best solution for three values of the coefficient
of relative risk aversion γ: 4, 8, 10 for our baseline learning model (with Epstein-Zin utility).
The other parameter values are given in Table 4.

standard asset pricing results.)
Panel A of Figure O-14 shows that the higher the coefficient of relative risk aversion γ,

the more the planner spends on distribution mitigation xd and the less the planner spends
on exposure mitigation xe. The higher the coefficient of relative risk aversion γ the less the
planner invests (Panel C), the more the agent consumes (Panel D).
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Figure O-16: This figure plots the planner’s first-best solution for three values of adjust-
ment cost θ: 12, 17, 24 for our baseline learning model (with Epstein-Zin utility). The other
parameter values are given in Table 4.
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Figure O-17: This figure plots the planner’s first-best solution for three values of adjust-
ment cost θ: 12, 17, 24 for our baseline learning model (with Epstein-Zin utility). The other
parameter values are given in Table 4.

OE Carbon Stock Extension

OE.1 Asset Prices Under Planner’s Solution

Dynamics of s. Ito’s lemma gives

dst = d

(
St
Kt

)
=

dSt
Kt−

− St−dKt

K2
t−

+
St−dK

2
t

K3
t−

− < dSt, dKt >

K2
t−

= st−

[(
ht−
st−
− δS − it− + δK + σ2

K − ϑσKσS
)
dt+ σSdWS

t − σKdWK
t +Nt−(1− Z)dJt

]
= µs(πt−, st−)dt+ st−

[
σSdWS

t − σKdWK
t +Nt−(1− Z)dJt

]
, (OA.44)O-25



where

µs(πt−, st−) = ht− −
(
it− − δK + δS − σ2

K + ϑσKσS
)
st− . (OA.45)

Duffie and Epstein (1992) show that the SDF {Mt : t ≥ 0} implied by the planner’s
solution is given by:

Mt = exp

[∫ t

0

fV (Cs, Vs) ds

]
fC(Ct, Vt) . (OA.46)

Using the FOC for investment, the value function, and the resource constraint, we obtain:

fC(C, V ) =
1

1 + φ′(i(π, s))
b(π, s)1−γK−γ =

1

q(π, s)
b(π, s)1−γK−γ (OA.47)

and

fV (C, V ) =
ρ

1− ψ−1

[
(1− ω)C1−ψ−1

((1− γ))ω−1 V −ω − (1− γ)

]
= −ε(π, s) , (OA.48)

where

ε(π, s) = −ρ(1− γ)

1− ψ−1

[(
c(π, s)

b(π, s)

)1−ψ−1 (
ψ−1 − γ

1− γ

)
− 1

]
. (OA.49)

Using the equilibrium relation between b(π, s) and c(π, s), we simplify (OA.49) as:

ε(π, s) = ρ+
(
ψ−1 − γ

) [
i(π, s)− δK −

γσ2
K

2
+ µπ(π)

bπ(π, s)

b(π, s)

]
+
(
ψ−1 − γ

) [
(h(π, s)− δSs)

bs(π, s)

b(π, s)
+
σ2
Ss2

2

(
bss(π, s)

b(π, s)
− γ (bs(π, s))2

b(π, s)2

)
+ (1− γ)ϑσKσSs

bs(π, s)

b(π, s)

]

+
(
ψ−1 − γ

) λ(π)

1− γ

Exd(π,s)

(
(1−N(xe(π, s))(1− Z))b

(
πJ , sJ

)
b(π, s)

)1−γ

− 1

 , (OA.50)

Using Ito’s Lemma and the optimal allocation, we obtain

dMt

Mt−
= −ε(π, s)dt− γ [(i(π, s)− δK) dt+ σKdWt] +

[
(1− γ)

bπ(π, s)

b(π, s)
− qπ(π, s)

q(π, s)

]
µπ(π)dt

+

[
(1− γ)

bs(π, s)

b(π, s)
− qs(π, s)

q(π, s)

] [
(µs(π, s) + sγ(σ2

K − ϑσSσK))dt+ σSdWS
t − σKdWK

t

]
+
γ(γ + 1)

2
σ2
Kdt+

(σ2
S − 2ϑσSσK + σ2

K)s2

2

[
(1− γ)

(
bss
b
− γb2s

b2
− bs

b

qs

q

)
− qss

q
+

2q2
s

q2

]
dt

+
[
η(π, s;Z,xe,xd)− 1

]
dJt , (OA.51)

where

η(π, s;Z,xe,xd) =
q(π, s)

q(πJ , sJ )

(
b
(
πJ , sJ

)
b(π, s)

)1−γ

(1−N(xe(π, s))(1− Z))−γ . (OA.52)
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As the expected percentage change of Mt equals −rt per unit of time (Duffie, 2001), we
obtain the following expression for the interest rate:

r(π, s) = ρ+ ψ−1 (i− δK)−
γ(ψ−1 + 1)σ2

K

2
−
[
(1− ψ−1)

bπ

b
−

qπ

q

]
µπ(π)−

[
(1− γ)

bs

b
−

qs

q

]
(µs(π, s) + sγ(σ2

K − ϑσSσK))

+
(
ψ−1 − γ

) [
(h− δSs)

bs

b
+
σ2
Ss

2

2

(
bss

b
−
γb2s
b2

)
+ (1− γ)ϑσKσSs

bs

b

]

−
(σ2
S − 2ϑσSσK + σ2

K)s2

2

[
(1− γ)

(
bss

b
−
γb2s
b2
−
bs

b

qs

q

)
−

qss

q
+

2q2
s

q2

]

− λ(π)
[
Exd

(
η(π, s;Z,xe,xd)

)
− 1
]
− λ(π)

ψ−1 − γ
1− γ

1− Exd

( (1−N(xe)(1− Z))b
(
πJ , sJ

)
b(π, s)

)1−γ
 .

(OA.53)

Using the equilibrium SDF, we may calculate firm value, Q(K, π, s) by using

Q(Kt, πt, st) =

∫ ∞
t

Mv

Mt

(AKα
v H1−α

v − pHHv − Iv − Φ(Iv, Kv)−Xe
v −Xd

v)dv . (OA.54)

Applying the Ito’s Lemma to firm value Q(K, π, s) = q(π, s)K, we obtain the following
PDE for q(π, s):

r(π, s)q(π, s) = Ah1−α − pHh− i− φ(i)− xe − xd +
(
i− δK − ηkM(π, s)σK

)
q(π, s) + µπ(π)qπ

+
[
µs(π, s) + ϑσSσK − σ2

K − (ηsM(π, s)ϑσS − ηkM(π, s)σK)
]
sqs +

(σ2
S − 2ϑσSσK + σ2

K)s2

2
qss

+ λ(π)Exd [
η(π, s;Z,xe,xd)

(
q(πJ , sJ )(1−N(xe)(1− Z))− q(π, s)

)]
. (OA.55)

where

ηkM(π, s) = γσK +

[
(1− γ)

sbs(π, s)

b(π, s)
− sqs(π, s)

q(π, s)

]
(σK − ϑσS) , (OA.56)

and

ηsM(π, s) = γσK +

[
(1− γ)

sbs(π, s)

b(π, s)
− sqs(π, s)

q(π, s)

](
σK −

σS
ϑ

)
. (OA.57)

The cum-dividend return dRt over the period dt is given by

dRt =
(AKα

t−H1−α
t− − pHHt− − It − Φ(It−,Kt−)−Xe

t− −Xd
t−)dt

Qt−
+
dQt
Qt−

=
Ah1−α

t− − pHht− − it− − φ(it−)− xet− − xdt−
q(πt−, st−)

dt+
dq(πt, st)

q(πt−, st−)
+
dKt

Kt−
+
< dq(πt, st), dKt >

q(πt−, st−)Kt−

=
Ah1−α

t− − pHht− − it− − φ(it−)− xet− − xdt− + µs(πt−, st−)qs(πt−, st−) +
(σ2

S−2ϑσSσK+σ2
K)s2t−

2 qss(πt−, st−)

q(πt−, st−)
dt

+
µπ(πt−)qπ(πt−, st−)

q(πt−, st−)
dt+ (it− − δK)dt+

st−qs(πt−, st−)

q(πt−, st−)
(ϑσSσK − σ2

K)dt+ σKdWK
t

+
st−qs(πt−, st−)

q(πt−, st−)

[
σSdWS

t − σKdWK
t

]
+

[
(1−N(xet−)(1− Z))q

(
πJt , s

J
t−
)

q(πt−, st−)
− 1

]
dJt

=

[
r(πt−, st−) + ηkM(πt−, st−)σK + (ηsM(πt−, st−)ϑσS − ηkM(πt−, st−)σK)

st−qs(πt−, st−)

q(πt−, st−)

]
dt

−λ(π)Exd
t−

[
η(πt−, st−;Z,xet−,x

d
t−)

(
(1−N(xet−)(1− Z))q

(
πJt , s

J
t−
)

q(πt−, st−)
− 1

)]
dt

+σKdWK
t +

st−qs(πt−, st−)

q(πt−, st−)

[
σSdWS

t − σKdWK
t

]
+

[
(1−N(xet−)(1− Z))q

(
πJt , s

J
t−
)

q(πt−, st−)
− 1

]
dJt . (OA.58)
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Finally, using the equilibrium conditions q(π, s) = q(π, s) and xe(π, s) = xe(π, s), we write

dQt + Dt−dt

Qt−
=

(
µQ(πt−, st−) + λ(πt−)

(
QJt
Qt−

− 1

))
dt+ σKdWK

t +
st−qs(πt−, st−)

q(πt−, st−)

[
σSdWS

t − σKdWK
t

]
+

(
QJt
Qt−

− 1

)
(dJt − λ(πt−)dt) , (OA.59)

where

QJt
Qt−

=
(1−N(xet−)(1− Z))q

(
πJt , s

J
t−
)

q(πt−, st−)
, (OA.60)

and

µQ(πt−, st−) = r(πt−, st−) + ηkM(πt−, st−)σK + (ηsM(πt−, st−)ϑσS − ηkM(πt−, st−)σK)
st−qs(πt−, st−)

q(πt−, st−)

+λ(πt−)Exd
t−

[
η(πt−, st−;Z,xet−,x

d
t−)

(
1− QJt

Qt−

)]
. (OA.61)

The market risk premium is

rp(πt−, st−) = µQ(πt−, st−) + λ(πt−)

(
QJt
Qt−

− 1

)
− r(πt−, st−)

= ηkM(πt−, st−)σK + (ηsM(πt−, st−)ϑσS − ηkM(πt−, st−)σK)
st−qs(πt−, st−)

q(πt−, st−)

−λ(πt−)Exdt−

[(
η(πt−, st−;Z,xet−,x

d
t−)− 1

)(QJt
Qt−

− 1

)]
. (OA.62)

OE.2 Some technical details for numerical solutions

Variable transformation. Denote s = f
1−f , and b(π, s) = b(π, f) we could rewrite (74) as

0 =
ρ

1− ψ−1

[[
b(π, f)

ρ(1 + φ′(i(π, f)))

]1−ψ

− 1

]
+ i(π, f)− δK −

γσ2
K

2
+ µπ(π)

bπ(π, f)

b(π, f)

+

[
(1− f)h

f
− δS + (1− γ)ϑσKσS

]
f(1− f)bf

b
+
σ2
Sf

2(1− f)2

2

(
bff − 2bf

1−f

b
−
γb2

f

b2

)

+
λ(π)

1− γ

Exd(π,f)

(
(1−N(xe(π, f))(1− Z))b

(
πJ , fJ

)
b(π, f)

)1−γ

− 1

 , (OA.63)

or equivalently

0 =
ρ

1− ψ−1

[[
b(π, f)

ρ(1 + φ′(i(π, f)))

]1−ψ

− 1

]
+ i(π, f)− δK −

γσ2
K

2
+ µπ(π)

bπ(π, f)

b(π, f)

+

[
(1− f)h

f
− δS + (1− γ)ϑσKσS − σ2

Sf

]
f(1− f)bf

b
+
σ2
Sf

2(1− f)2

2

(
bff
b
−
γb2

f

b2

)

+
λ(π)

1− γ

Exd(π,f)

(
(1−N(xe(π, f))(1− Z))b

(
πJ , fJ

)
b(π, f)

)1−γ

− 1

 , (OA.64)
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where fJ = f
f+(1−N(xe(π,f))(1−Z))(1−f)

.

And we could rewrite (76) as

(1− f)2bf (π, f)

b(π, f)− f(1− f)bf (π, f)
=
pH − (1− α)Ah(π, f)−α

1 + φ′(i(π, f))
. (OA.65)

OE.3 Competitive Equilibrium Solution

Firm’s Optimization Problem. When making its decisions, the firm takes the equilibrium
risk-free rate rt given by (OA.53) and the market price of (diffusion and jump) risks as given
by (OA.52), we maximizes its market value, Q(K, π, s) as folows

Q(Kt, πt, st) = max
H,I,Xe,Xd

∫ ∞
t

Mv

Mt

(AKα
vH

1−α
v − pHHv − Iv − Φ(Iv, Kv)−Xe

v −Xd
v )dv .

(OA.66)

Applying the Ito’s Lemma to firm value Q(K, π, s) = q(π, s)K, we obtain the following
PDE for q(π, s):

r(π, s)q(π, s) = max
i, xe, xd,h

Ah1−α − pHh− i− φ(i)− xe − xd +
(
i− δK − ηkM(π, s)σK

)
q(π, s) + µπ(π)qπ

+
[
µs(π, s) + ϑσSσK − σ2

K − (ηsM(π, s)ϑσS − ηkM(π, s)σK)
]
sqs +

(σ2
S − 2ϑσSσK + σ2

K)s2

2
qss

+ λ(π)Exd [
η(π, s;Z,xe,xd)

(
q(πJ , sJ )(1−N(xe)(1− Z))− q(π, s)

)]
. (OA.67)

By using the FOC for i, xe, xd, we obtain

q(π, s) = 1 + φ′(i(π, s)) , (OA.68)

1 = −λ(π)Exd
[
(1− Z)η(π, s;Z,xe,xd)q(πJ , sJ )N ′(xe)

]
, (OA.69)

xd = 0 , (OA.70)

which are similarly with solutions of the baseline model under competitive equilibrium. And
then by using the FOC for h, we obtain

(1− α)Ah(π, s)−α = pH , (OA.71)

which implies

h(π, s) = h =

(
(1− α)A

pH

) 1
α

. (OA.72)

Recall that the optimal fossil fuel under planner problem is given by (72) as

(1− α)Y

H
= (1− α)Ah(π, s)−α = pH +m . (OA.73)

We have the wedge of the optimal fossil fuel between social planner and competitive equi-
librium is the SCC, m, as

m(π, s) = −VS(K, π,S)

fC(C, V )
= −bs(π, s)

ρ

(
c(π, s)

b(π, s)

)ψ−1

. (OA.74)
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Household’s Optimization Problem. When making its decisions, the household takes
the equilibrium risk-free rate rt given by (OA.53) and the market price of (diffusion and jump)
risks as given by (OA.52), we maximizes its value function Jt, and we show that household’s
value function Jt = J(Wt, πt, st) as follows

J(W,π, s) =
1

1− γ
(u(π, s)W )1−γ , (OA.75)

where u(π, s) is a welfare measure that will be endogenously determined. The HJB equation
for the household in our decentralized market setting is given by

0 = max
C, Ĥ,Xe, Xd

f(C, J) + µπ(π)Jπ + λ(π)

∫ 1

0

[
J
(
WJ , πJ , sJ

)
− J(W,π, s)

]
ξ(Z; xd)dZ

+
[
r(π, s)W + (µQ(π, s)− r(π, s))Ĥ − C

]
JW + µs(π, s)Js +

(σ2
S − 2ϑσSσK + σ2

K)s2Jss
2

+

((
q(π,s)−sqs(π,s)

q(π,s) σK

)2
+ 2ϑq(π,s)−sqs(π,s)

q(π,s)
sqs(π,s)
q(π,s) σKσS +

(
sqs(π,s)
q(π,s) σS

)2
)
Ĥ2JWW

2

+

(
sqs(π, s)

q(π, s)
(σ2
S − ϑσKσS) +

q(π, s)− sqs(π, s)

q(π, s)
(ϑσSσK − σ2

K)

)
ĤsJW s , (OA.76)

where µQ(π, s) is given by (OA.61).

OE.4 Firm and Household Optimization under Capital Taxation
and Carbon Taxation

The government taxes the firm’s capital stock Kt at a rate of τxt = xdfb,t, where xdfb,t is the
first-best mitigation spending to change the distribution of Z, obtained in Subsection 8.1.
Then, the government spends Xd

t = τxt Kt to reduce the tail risk of the disaster distribution.
Similarly, the government taxes the using of fossil fuel Ht at a rate of τht = hdfb,t, where hdfb,t
is the first-best using of fossil fuel, obtained in Subsection 8.1. We make the dependence
of the tax rate τxt and τht on πt explicit by writing τxt = τx(πt, st) = xdfb,t = xdfb(πt, st) and

τht = τh(πt, st) = m(πt, st) where m(π, s) ≡ −VS(K,π,S)
fC(C,V )

is the SCC given by (72).

Facing a capital tax rate of τx(πt, st) and a carbon tax rate of τh(πt, st), each firm solves
the following problem:

max
I,Xe, Xd, H

Exd

[∫ ∞
0

(
Mt

M0

[
AKα

t H
1−α
t − τx(πt, st)Kt − τh(πt, st)(Ht −Ht)− It − Φt −Xe

t−Xd
t − pHHt

])
dt

]
, (OA.77)

taking the equilibrium SDF Mt as given. First, the firm has no incentive to spend on disaster
distribution mitigation, again as doing so is costly but yields no benefit for the firm. Thus,
Xd = 0. The tax makes the firm behave as if its productivity is lowered from AKα

t H
1−α
t to

AKα
t H

1−α
t −τx(πt, st)Kt−τh(πt, st)Ht. Applying the Ito’s Lemma to firm value Q(Kt, πt, st) =

q(πt, st)Kt given in (6) and using (32), we obtain the following HJB equation for q(πt, st):

r(π, s)q(π, s) = max
i, xe, xd,h

Ah1−α − τx(π, s)− τh(π, s)h− pHh− i− φ(i)− xe − xd +
(
i− δK − ηkM(π, s)σK

)
q(π, s) + µπ(π)qπ

+ τh(π, s)h + µπ(π)qπ(π, s) +
[
µs(π, s) + ϑσSσK − σ2

K − (ηsM(π, s)ϑσS − ηkM(π, s)σK)
]
sqs

+
(σ2
S − 2ϑσSσK + σ2

K)s2

2
qss + λ(π)Exd

[
η(π, s;Z,xe,xd)

(
q(πJ , sJ )(1−N(xe)(1− Z))− q(π, s)

)]
. (OA.78)
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Note that the tax rate τx(π, s) and τh(π, s) appears in (OA.78). The FOCs for i and xe are
given by (OA.68) and (OA.69), respectively, the same as in the no-tax competitive-market
economy model of subsection OE.3. Importantly, the FOCs for h is given by

(1− α)Ah(π, s)−α = pH + τh(π, s) . (OA.79)

OE.5 Optimal Taxation in Markets Restores First-Best

In this section, we show that the household’s value function in the competitive economy with
optimal taxes is the same as the value function under the first-best. As the household’s
value function in a market economy depends on wealth W while the planner’s value function
depends on K, we use the equilibrium result Wt = q(πt, st)Kt to write the household’s value
function as J(Wt, πt) = J(q(πt, st)Kt, πt, st) in the market economy with taxation. Therefore,
the value functions in the two economies are equal, V (Kt, πt, st) = J(Wt, πt, st), if and only if
b(π, s) in the first-best economy equals the product u(π, s)q(π, s) in the competitive economy
with taxes.

Specifically, we show the following results: (1.) the first-order conditions for i(π, s) and
xe(π, s) in the competitive economy with an optimal tax rate (set at the planner’s first best
distribution mitigation xdfb,t) are the same as the corresponding first-order conditions in the
planner’s economy and carbon tax is the same as the SCC in the planner’s economy; (2.) the
implied ODE for u(π, s)q(π, s) in the competitive market economy is the same as the ODE
(74) for b(π, s) in the planner’s economy; (3.) all the boundary conditions at π = 0 and π = 1
in the two economies are the same. Below is a step-by-step proof.

First, combining the equilibrium aggregate investment FOC, q(π, s) = 1 + φ′(i(π, s)),
implied by (36) with the optimal scaled consumption rule c(π, s) = ρψu(π, s)1−ψq(π, s) =
(ρq(π, s))ψ [u(π, s)q(π, s)]1−ψ, implied by (41) and W = q(π, s)K, we obtain the following
expression for consumption:

c(π, s) = [ρ(1 + φ′(i(π, s)))]
ψ

[u(π, s)q(π, s)]1−ψ . (OA.80)

Using the goods market clear condition c(π, s) = Ah(π, s)1−α−τx(π, s)−τh(π, s)(h(π, s)−
h(π, s))− pHh(π, s)− i(π, s)− φ(i(π, s))−xe(π, s) and the conjecture b(π, s) = u(π, s)q(π, s),
we obtain the following expression:

b(π, s) = [Ah(π, s)1−α − τx(π, s)− τh(π, s)(h(π, s)− h(π, s))− pHh(π, s)− i(π, s)

−φ(i(π, s))− xe(π, s)]1/(1−ψ) [ρ(1 + φ′(i(π, s)))]
−ψ/(1−ψ)

, (OA.81)

which is the same as the investment FOC, given in (75), for the planner’s problem, provided
that the capital tax rate equals xdfb(π, s): τx(π, s) = xdfb(π, s), and h(π, s) = h(π, s) = hfb(π, s)

for τh(π, s) = m(π, s). Note that (OA.81) summarizes both the consumer’s and the firm’s
optimization FOCs in the market economy with optimal taxes.
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