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1 Introduction

Firm-level micro-data reveal large differences in cyclicality and hence, exposure to aggregate
risk. These patterns can have direct consequences for the micro-level allocation of capital: firms
that are more sensitive to aggregate shocks are riskier and face a higher cost of capital. All
else equal, these firms choose lower levels of capital and have higher marginal revenue products
of capital (MRPK).1 Aggregate total factor productivity (TFP) depends on the cross-sectional
distribution of capital and is thus a function of the micro-allocation. In this paper, we develop
these insights and explore their implications for (i) equilibrium business cycle dynamics and
(ii) the effects and optimal conduct of monetary stabilization policy.

Our point of departure is a workhorse New Keynesian business cycle model featuring shocks
to aggregate technology. We augment this framework with two key elements: (i) a cross-section
of heterogeneous firms that differ ex-ante in their cyclicality, i.e., exposure to these shocks,
and (ii) cyclical distortions in firm-level investment decisions that lead to inefficiencies in the
allocation of capital. We adopt a flexible specification for these distortions designed to capture
various types of capital market frictions, which show up as ‘wedges’ to the stochastic discount
factor (SDF) in firm-level investment Euler equations.2 Although for most our analysis we
remain agnostic as to the precise source of these frictions, we show that such a wedge arises
naturally in salient recent models of financial frictions in quantitative business cycle environ-
ments.3 Throughout the paper, we assume that the aggregate capital stock is an exogenous
fixed endowment, which is a standard approach in New Keynesian models and allows us to hone
in on the new allocational considerations in our framework. The heterogenous firm economy
can be recast in a representative firm formulation, but where aggregate TFP, usually taken
as an exogenous driving force, becomes in part endogenous and determined by the resource
allocation. Under our assumptions, we can derive a tractable log-linear representation of the
equilibrium system, enabling us to formally prove our main results.

At the heart of our model is the risk-return tradeoff governing firm-level capital investment
and hence the allocation of capital across firms. Firms equate the expected return to capital,
i.e., the MRPK, to a firm-specific cost of capital, which depends on its exposure to aggregate
risk and the nature of that risk. The latter is a function of movements in the discount factor
(and other state prices), which depend on the properties of capital market distortions and the

1We illustrate each of these facts in Figure 1 in Section 4.1 below.
2Our approach mirrors the large literature on the misallocation of resources across firms, which has persua-

sively documented the presence of micro-level mis-allocative distortions and models them in a similar vein, e.g.,
Hsieh and Klenow (2009) and Restuccia and Rogerson (2008), and in a business cycle context, Hall (2011).

3For example, we show that models of frictional financial intermediation as in Gertler and Karadi (2011)
or limited asset market participation as in Debortoli and Galí (2018) both lead to wedges in the relevant SDF
used to price assets and hence show up in investment Euler equations exactly as in our framework.
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path of aggregate output/consumption. In turn, output can be decomposed into (i) the natural
rate, or potential output, that would hold in a flexible price economy and depends on TFP
alone and (ii) the output gap stemming from nominal rigidities. Thus, the two inefficiencies –
fluctuations in the output gap and the capital wedge – distort the risk-return tradeoff and the
micro-level allocation. In the aggregate, TFP depends on the micro-allocation. We derive a
sharp expression expressing TFP as a function of two micro-level moments: the dispersion in
MRPK across firms and the covariance of firm-level capital with cyclical exposures. The first
pins down the long-run (average) level of TFP and the second its cyclical volatility. The micro-
allocation and aggregate TFP are both endogenous objects jointly determined in equilibrium.

The risk-return relationship at the micro-level implies a tradeoff between the long-run level
and volatility of TFP. In the face of aggregate risk, agents shift resources from risky, procyclical
firms to safer, less cyclical ones, reducing the covariance between firm-level capital and risk
exposures and hence the economy’s responsiveness to exogenous shocks. On the other hand,
shifting capital in response to aggregate risk introduces a wedge between firm-level capital
investment and productivity, which leads to dispersion in MRPK and reduces the level of
achieved TFP. The result can be understood as a form of self-insurance – although there are no
aggregate savings in the economy, insurance against business cycle risk is attained by shifting
capital to less cyclical firms, which endogenously reduces aggregate cyclicality. The cost of this
insurance is the foregone output caused by lower TFP due to the mis-alignment of firm-level
capital and productivity relative to the allocation that maximizes aggregate production. Note
that private insurance contracts do not undo these dynamics: the mechanism is consistent with
complete markets and relies on systematic risk, which cannot be diversified away.

The nature of aggregate risk and hence the amount of risk-taking depend on the dynamics
of TFP, capital distortions and the output gap. The latter is determined by the conduct of
monetary policy. Thus, monetary policy affects the macroeconomic risk that agents face and
plays a key role in shaping the allocation and behavior of TFP. Aggressive countercyclical policy
(e.g., output gap) reduces the volatility of output/consumption and the degree of aggregate risk.
The private sector responds by taking on more risk, i.e., shifting capital to more procyclical
firms, which improves the productivity of the allocation by reducing MRPK dispersion but
increases the volatility of TFP. Less countercyclical policy has the opposite effects.4 A striking
implication is that monetary policy is not neutral in the long-run – in particular, the degree of
monetary stabilization influences the distribution of capital across firms and hence shifts the
economy closer to/further from its long-run production possibilities frontier, captured by the
level of TFP. A second implication is that firm heterogeneity and reallocation opportunities

4The result extends the classic notion of the ‘Fed put’ in financial markets, e.g., Cieslak and Vissing-
Jorgensen (2021), Poole (2008) and Miller et al. (2002), to real resource allocations and macroeconomic outcomes.
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dampen the effects of stabilization policies. Consider again the case of countercyclical policy.
While the direct impact of such a policy is to reduce the cyclicality of the output gap and
hence output/consumption, agents endogenously take on more risk by shifting capital to more
procyclical firms, increasing the cyclicality of TFP and partially offsetting the direct effect.
These allocational effects of monetary policy rely only on the presence of nominal rigidities and
firm heterogeneity, irrespective of whether there are other (e.g., capital market) distortions at
play in the economy or not.

Capital market imperfections distort the allocation and so the behavior of TFP. The cyclical
nature of these distortions calls for a cyclical policy in response. We derive a representation of
the welfare criterion that can be decomposed into four terms – first, volatility in inflation and
the output gap, as in the standard representative firm setup. Second, the level and volatility of
TFP enter directly. Intuitively, these latter two forces determine the dynamics of the natural
rate of output. In the representative firm environment, monetary policy affects the output gap
but the natural rate is beyond its influence. Here, in contrast, monetary policy affects both
the output gap and the natural rate via the dynamics of TFP and so both terms are relevant
for understanding the welfare implications of policy. Optimal policy is chosen to best balance
these four objectives.

In an undistorted economy – i.e., without nominal rigidities or capital market frictions –
the capital allocation and behavior of TFP are efficient. Thus, the economy attains the socially
optimal tradeoff between volatility and the long-run level of production. The result has an
important implication: when nominal rigidities are the only inefficiency, a version of the ‘divine
coincidence’ holds – the monetary authority can attain the first best by completely stabiliz-
ing inflation and restoring the flexible price outcome. In contrast, when additional forces are
present that distort the allocation, e.g., financial frictions, complete price stabilization is no
longer optimal and the divine coincidence fails. For example, consider the case when these
distortions are countercyclical, which leads to an allocation that is overly conservative. Opti-
mal policy entails a countercyclical output gap that raises output in downturns/reduces it in
expansions. The usual arguments for stabilization are present, but there is a rationale for even
more aggressive countercyclical policy – such a policy helps alleviate the distortions to the allo-
cation by incentivizing risk-taking and more closely aligning firm-level capital and productivity.
The resulting redistribution of resources leads to a higher long-run level of TFP and output.
The larger the heterogeneity across firms, the more opportunities for reallocation and the more
costly are allocative distortions, further strengthening the motives for countercyclical policy.

The effects of heterogeneity and risk do not hinge on monetary policy as the tool of stabi-
lization or the presence of capital distortions per se. For example, similar results hold when
fiscal policy is the tool of stabilization (e.g., through cyclical labor income taxes) and with labor
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market rather than capital market distortions. Further, we show that heterogeneity affects the
standard tradeoff between output gap and inflation volatility in response to cost-push shocks,
even when nominal rigidities are the only distortion in the economy. Specifically, optimal policy
is more accommodative of these shocks, since acting to neutralize them is more costly – doing
so not only generates inefficient output gap fluctuations in the usual way, but also distorts the
resource allocation and dynamics of TFP.

In the second part of the paper, we provide a numerical evaluation of our findings. The key
new parameters govern the extent of firm heterogeneity and the properties of the capital distor-
tion. We calibrate these parameters to match two important aspects of the micro-data, namely,
the observed dispersion in cyclicality across firms and the slope of the relationship between firm-
level MRPK and cyclicality. This latter moment is a direct measure of the risk-return tradeoff
in firm-level capital choices. The data point to a strong positive (and statistically significant)
relationship that is steeper than that implied by preferences and observed aggregate dynamics
alone. This gap leads us to a significantly countercyclical estimate of the wedge. This finding is
further supported by direct quantification of two micro-founded models of financial frictions us-
ing different calibration approaches and data (i.e., household financial market participation and
financial sector leverage), which also imply a quantitatively significant countercyclical wedge.

Our results show, first, that heterogeneity and risk can have significant effects on TFP dy-
namics and welfare. For example, when monetary policy follows a standard Taylor rule, the
long-run level of TFP is lower by almost 1.4% and its unconditional volatility by almost 30%
(relative to the case with no heterogeneity and/or risk adjustments in the allocation). In con-
trast, in the first-best, these values are only 0.003% and 9%, respectively. These findings imply
that the equilibrium allocation is inefficiently conservative – there is excess shifting of capital
to less cyclical firms, which reduces TFP volatility but increases marginal product dispersion,
with detrimental effects on long-run TFP and output. Strikingly, of the total welfare losses in-
cluding from fluctuations in inflation and the output gap, the lion’s share – roughly 85% – stems
from the reduction in long-run TFP due to the distorted allocation. Thus, abstracting from
allocational considerations may miss important welfare effects of business cycle fluctuations. In
other words, the long-run allocational effects of stabilization policies seem to be first-order.

Second, we find an important role for policy to improve on equilibrium outcomes. For
example, relative to a Taylor rule, optimal policy increases welfare by about 0.65%. The gain
in long-run TFP is about 0.44%, which accounts for about two-thirds of the total welfare
improvement. In contrast, if the central bank were to set policy to the optimal one ignoring
heterogeneity – which, in our simple environment entails complete stabilization of inflation and
the output gap – the long-run TFP loss is close to (indeed, slightly larger than) the equilibrium
under the Taylor rule. The total welfare gain from such a policy is about 0.4% – thus, accounting
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for heterogenity and allocational effects adds a significant contribution to the potential gains
from policy, about 0.25% of lifetime steady state consumption.

Related literature. Our paper relates, first, to a burgeoning literature exploring the implica-
tions of micro-level heterogeneity for business cycle dynamics and the transmission mechanism
of monetary policy, important examples of which include Bilbiie (2008), Kaplan et al. (2018)
and Auclert (2019) among others, and for the implementation of optimal policy, e.g., Bilbiie
(2018), Challe (2020), Acharya, Challe, and Dogra (2020), Bilbiie and Ragot (2020) and Bhan-
dari et al. (2021).5 Recent papers studying the transmission of monetary policy through risk
premia and asset revaluations include Kekre and Lenel (2021) and Caramp and Silva (2021).
The focus of this work has in large part been on the role of household heterogeneity, whereas
our paper focuses on the reallocative effects of policy on the production side of the economy.
Our results echo a number of important lessons from this literature as forcefully summarized
in Kaplan (2021), namely: (i) reallocation opportunities can reduce the effectiveness of policy;
(ii) the distributional consequences of policy can be just as – if not more – important than
the direct effects; and (iii) under reasonable calibrations, optimal policy entails a redistribution
towards agents (in our case, firms) that are more exposed to the business cycle.

Our theory linking monetary policy to capital (mis)allocation and TFP relates to Baqaee
et al. (2021) and González et al. (2022), who draw a similar connection in heterogeneous firm
models with markup dispersion and financial frictions, respectively, and Kurtzman and Zeke
(2020), who highlight the mis-allocative effects of central bank large-scale asset purchases of cor-
porate securities. Relatedly, David et al. (2021) link marginal product dispersion to aggregate
risk exposures in a partial equilibrium setting and calculate the implications for measures of mis-
allocation and TFP. More broadly, our paper connects to recent work studying monetary policy
in distorted economies with production-side heterogeneity, recent examples of which include Ot-
tonello and Winberry (2020), who study the investment channel of policy with heterogeneous
firms and financial frictions, and Angeletos and La’O (2020) and La’O and Tahbaz-Salehi (2020)
and Rubbo (2020), who study optimal policy in environments with dispersed private informa-
tion held by firms and input-output linkages, respectively. We contribute to this line of work
by exploring the implications of a different dimension of heterogeneity, namely, the risk-return
tradeoff highlighted in the asset pricing literature, which is a robust feature of the micro-data.
Our theoretical framework incorporates heterogeneous risk premia into a workhorse business
cycle environment. Our findings point to an important role for this form of heterogeneity in
determining the equilibrium effects and optimal conduct of monetary policy via its impact on

5A large body of work studies optimal monetary policy in a rich variety of representative agent business
cycle settings. For a textbook treatment see Galí (2015) and for a recent review of the literature see Woodford
(2010). Barlevy (2005) surveys the literature on the benefits of stabilization.
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the resource allocation and behavior of aggregate TFP.
A large literature has studied the link between volatility and the level and/or growth rate of

economic activity.6 We build on this body of work by studying the role of micro-level allocations
in influencing both aggregate volatility and the level of aggregate activity. Our framework shows
that when volatility and long-run outcomes are jointly determined in equilibrium, understanding
the underlying primitives is crucial – for example, insufficient policy stabilization leads to more
volatile output and lower TFP, whereas cyclical distortions dampen both. Relatedly, a number
of recent papers have linked monetary policy and TFP growth in models with endogenous
innovation.7 In contrast, we tease out this relationship in an environment where volatility and
long-run outcomes are jointly determined by (re)distributions across heterogeneous agents and
explicitly assess the role of monetary stabilization policies in shaping the resulting equilibrium.

2 The Model

Preferences and technology. A continuum of households indexed by j ∈ [0, 1] seek to
maximize expected lifetime utility from consumption and leisure, given by

U = (1− ρ)E−1

[
∞∑
t=0

ρt

(
C1−γ
jt

1− γ
− χ

L1+ϕ
jt

1 + ϕ

)]
, (1)

where ρ denotes the time discount factor and all other notation is standard. Because we are
studying the effects of risk, we assume throughout that households are sufficiently risk averse,
specifically, γ > 1.

We assume nominal rigidities in the form of sticky wages. The setup is standard and we
provide only a brief overview. Households monopolistically supply differentiated labor services,
which are then bundled into the final labor input using a CES aggregator with elasticity of
substitution νw. Wage changes are subject to quadratic adjustment costs θw

2
(Πw

t − 1)2 Yt, where
Πw
t denotes gross nominal wage inflation. Following Auclert et al. (2018), we assume these costs

enter as an extra additive disutility term in (1).8 Households receive labor income, income from
capital that they rent to firms, the return on holdings of nominally risk-free bonds and any
distributed profits from firms.

6Examples include Kormendi and Meguire (1985), Ramey and Ramey (1991, 1995), Obstfeld (1994), Ace-
moglu and Zilibotti (1997), Barlevy (2004), Jones et al. (2005), Koren and Tenreyro (2007), Aghion et al. (2010)
and Koren and Tenreyro (2013).

7For example, Moran and Queralto (2018), Garga and Singh (2021) and Jordà et al. (2020).
8Although not necessary for any of our results, this assumption ensures that aggregate output exactly

equals total consumption (else the equality only holds up to a first-order approximation). The framework also
accommodates Calvo pricing frictions with a modified slope of the Phillips Curve.
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The household optimality conditions lead to a standard New Keynesian wage Phillips curve
(discussed in more detail below) and to aggregate labor supply that satisfies

MtWt = χLϕt C
γ
t , (2)

where Wt is the real wage (relative to the price of the final consumption good), Lt and Ct

aggregate labor supply and consumption, respectively, and Mt > 0 denotes a labor ‘wedge’
or (inverse) markup between the real wage and the marginal rate of substitution between
consumption and labor that stems from the household wage-setting problem. The household’s
intertemporal marginal rate of substitution, or stochastic discount factor (SDF), is given by

Λt = ρ

(
Ct
Ct−1

)−γ
.

To ease notation later, define the log SDF as λt ≡ log Λt.
The final consumption good is produced by a competitive representative firm, which bun-

dles a continuum of intermediate goods, indexed by i ∈ [0, 1], using a constant elasticity of
substitution (CES) aggregator:

Yt =

(∫
Y ν
it di

) 1
ν

, (3)

where ν ∈ (0, 1] and 1
1−ν is the elasticity of substitution between intermediate goods.

Intermediate goods are produced using capital and labor according to

Yit = AitK
α1
it L

α2
it , α1 + α2 ≤ 1 .

Importantly, intermediate good firms are heterogeneous in productivity, where Ait denotes the
productivity of firm i in period t.

Throughout the paper, we abstract from accumulation considerations and assume the total
capital stock is an exogenous and fixed endowment, i.e., Kt = K ∀ t.9 This is a common
assumption in the New Keynesian literature and allows us to hone in on the new allocational
effects in our framework. With this assumption, the economy here exactly nests the standard
New Keynesian model without capital.

The resource constraints in the economy are then given by

Ct = Yt,

∫
Kitdi = Kt = K,

∫
Litdi = Lt .

9The value of K plays no role in the analysis.
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Demand and revenue. Profit maximization by the final good producer yields a demand
function for intermediate good i:

Pit =

(
Yit
Yt

)ν−1

,

where Pit denotes the relative price of good i in terms of the final good. Revenues for interme-
diate firm i at time t are

PitYit = Y 1−ν
t Y ν

it = Y 1−ν
t AνitK

α1ν
it Lα2ν

it .

Input choices. Intermediate firms hire labor period-by-period to maximize current profits.
The optimal choice of labor satisfies

α2ν
Y 1−ν
t Y ν

it

Lit
= Wt , (4)

which shows that firms equalize the marginal revenue product of labor. Operating profits
(revenues less labor expenses) are proportional to revenues and are equal to

Πit = PitYit −WtLit = (1− α2ν)PitYit = GY
1−ν

1−α2ν

t A
ν

1−α2ν

it W
− α2ν

1−α2ν

t Kα
it , (5)

where α ≡ α1ν
1−α2ν

is the effective curvature of operating profits with respect to capital and

G ≡ (1− α2ν) (α2ν)
α2ν

1−α2ν .
At the end of period t − 1, firms rent capital for use in period t at rate RK

t−1. The firm
chooses capital to maximize expected discounted profits, i.e., to solve

max
Kit

Et−1 [ΛtTΛtΠit]−RK
t−1Kit .

Firms discount the payoffs from capital using the household’s discount factor, Λt. The term
TΛt denotes a capital or financial ‘wedge’ that distorts firms’ investment choices and hence
the allocation of capital. The wedge is meant to capture a broad set of cyclical distortions in
capital markets that influence firms’ investment decisions. Rather than take a stand on the
exact source of these distortions, we adopt this flexible – albeit reduced-form – specification
designed to encompass various types of capital market frictions. We show below that such a
wedge arises naturally across a range of detailed models of financial or capital market frictions.10

10Hall (2011) takes a similar approach to modeling financial frictions in a business cycle context and contains
a detailed discussion of the mapping of such a financial wedge to theories of financial frictions.
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The optimal choice of capital satisfies

Et−1 [ΛtTΛtMRPKit] = RK
t−1, MRPKit ≡ α

Πit

Kit

, (6)

which shows that firms equalize the expected discounted marginal revenue product of capital.

Capital market frictions – examples. Our formulation of the wedge in firms’ capital deci-
sions is designed to capture many potential inefficiencies in the functioning of capital markets.
Here, we give two concrete examples based on salient recent models of financial frictions in
quantitative business cycle environments. We show that these more detailed models lead to
exactly such a wedge, which in these cases manifests itself as a distortion to the stochastic dis-
count factor. We give a brief description of each setup and provide further details in Appendix
A. In Section 4.3 we quantitatively evaluate the contribution of these channels to the capital
wedge we infer from the firm-level micro-data.

Example 1: frictional financial intermediation – Consider a model of frictional financial in-
termediation along the lines of Gertler and Karadi (2011) (GK). Firms issue equity liabilities
to financial intermediaries in order to finance their capital. Intermediaries borrow from house-
holds at the risk-free rate in order to provide this financing. Intermediary assets include the
total market value of firm liabilities. Intermediary liabilities consist of deposits and equity,
or net worth. Intermediaries exit at exogenous rate σ and are immediately replaced by new
entrants. Intermediaries act to maximize the expected discounted stream of dividends payed
out to households. Due to a moral hazard/costly enforcement problem, intermediaries face col-
lateral constraints that limit their ability to obtain deposits. Specifically, a fraction θ of assets
can be diverted, which implies an incentive constraint limiting intermediary collateral.

Assuming that the collateral constraint binds, the intermediary’s optimality conditions yield
an expression analogous to (6), where

TΛt = 1− σ + σ
∂Vt
∂Nt

. (7)

Here, Vt and Nt denote the market value and net worth of the intermediary, respectively. The
expression shows that models of frictional financial intermediation lead to a capital wedge –
specifically, a distortion to the relevant SDF pricing assets – that reflects the shadow marginal
value of net worth to the intermediary, ∂Vt

∂Nt
.

Example 2: limited asset market participation – Next, consider a model of limited asset market
participation on the part of households as in the two agent New Keynesian (TANK) model
of Debortoli and Galí (2018). A constant fraction θ of households are financially constrained,
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i.e., they do not participate in financial markets and simply consume their labor income in
each period. The relevant SDF for pricing assets is then ΛU

t = ρ
(

CUt
CUt−1

)−γ
, where CU

t denotes
the consumption of an unconstrained household. Firms face (common) price markup shocks
denoted T pt , which leads to variation in the share of output paid to labor vs. capital and profits.11

Using a first-order approximation to the resource constraint, unconstrained consumption (in
logs, henceforth denoted with lowercase) is equal to

cUt = ct +
α2

1− α2

θτ pt , τ pt ≡ log T pt ,

where ct is (log) total consumption. Using the resulting SDF to price assets yields (6), where

log TΛt = − α2

1− α2

γθ∆τ pt , ∆τ pt ≡ τ pt − τ
p
t−1 . (8)

Thus, a simple TANK model featuring limited asset market participation and price markup
shocks leads to a capital wedge, which shows up as a distortion to the SDF that reflects the
proportion of constrained households and time-variation in their share of aggregate income.12

In this simple setup, the capital wedge is purely exogenous. However, this may not be the
case in more complicated versions (e.g., with sticky output prices in addition to sticky wages)
and for other possible frictions (e.g., the GK model), where the wedge may be endogenous to
policy. For simplicity, and given the wide range of distortions likely at play in the data, we
abstract from these issues here and consider the problem of a monetary authority which takes
the wedge as given.

Additional examples – Although financial frictions are a natural candidate (and, as just shown,
connect closely to recent work studying financial frictions in New Keynesian environments),
the capital wedge can capture a wide range of potential distortions in the capital choice. For
instance, it clearly picks up any cyclical tax on operating profits. Appendix A provides two
additional examples based on theories of externalities in preferences and expectational biases.

Aggregation and equilibrium. The following result shows that from a macroeconomic
perspective, the equilibrium of the heterogeneous firm economy is observationally equivalent to
a representative firm economy with endogenous TFP (proof in Appendix B.1):

Proposition 1. The aggregate variables of the heterogenous firm economy behave identically
to a representative firm economy with TFP Ψt, where (i) the log of aggregate output obeys the

11Although we micro-found these shocks as stemming from markups, this interpretation is not strictly nec-
essary, only that there is time-variation in the distribution of output between labor and capital/profits.

12The result is reminiscent of Longstaff and Piazzesi (2004) who show that fluctuations in the corporate
earnings/consumption ratio can explain a significant portion of the equity premium.
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following stochastic process:

yt = φψψt + µt, where ψt ≡ log Ψt, µt ≡ φl logMt (9)

and (ii) aggregate TFP is defined by:

Yt = ΨtK
α1
t Lα2

t , Ψt =

(∫
A

ν
1−α2ν

it

(
Kit

Kt

)α
di

) 1−α2ν
ν

,
Kit

Kt

=
Et−1 [ΛtTΛtΠit]∫
Et−1 [ΛtTΛtΠit] di

, (10)

where φψ > 0 and φl > 0 are constant composites of production and preference parameters.

Expression (9) decomposes fluctuations in output into (i) the ‘natural rate’ or potential
output, ynt ≡ φψψt, which is a function of TFP only and (ii) the output gap, denoted µt,
which is a function of the markup coming from the nominal wage rigidities. Because it is a
pre-determined state variable when shocks are realized, our definition of the output gap holds
the capital allocation fixed across actual and potential output. An implication of this definition
is that the natural rate of output is not independent of monetary policy since, as we describe
below, the conduct of policy affects the allocation and hence TFP. Although other notions
of the output gap exist in the presence of endogenous state variables, this definition is most
appropriate in our context since it explicitly accounts for the current productive capacity of
the economy (which depends on the allocation) and will turn out to be exactly the gap that
determines the inflation/real activity tradeoff facing the monetary authority.13

The left-hand expression in (10) defines aggregate TFP through a reduced-form aggregate
production function, which inherits the form of the micro-level production function and is
identical to a representative firm economy with TFP Ψt. The middle expression shows the
key result: though the economy can be written as if there was a representative firm, TFP of
that firm is endogenous and depends on the efficiency of the capital allocation across firms. In
particular, TFP is equal to an average of firm-level productivities, weighted by their shares of
the aggregate capital stock. The right-hand expression shows that these shares are determined
by individual firm expected discounted profits relative to average expected discounted profits.

The remaining equilibrium conditions are the Phillips curve and consumption Euler equation
(IS curve). Because the household side of the model is standard, these take the usual form and
we provide the expressions in Appendix B.1.

13Our definition follows that advocated by Woodford (2003) in the presence of pre-determined state variables
(Chapter 5, Section 3.4) and is equivalent to one where the natural rate of output is defined as the level of
output that would be obtain if prices in period t onward were flexible, given the actual allocation of capital
entering t. An alternative would be to define the natural rate as the level of output that would hold if prices
had always been flexible, which would place deviations in TFP from the efficient level into the output gap, but
would imply a disconnect between the natural rate and the actual current productive capacity of the economy.
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Proposition 1 reveals the first main insight of our paper: macroeconomic dynamics depend
on the micro-level allocation of capital via the behavior of TFP, Ψt. In reverse, the allocation
itself depends on aggregate dynamics – the SDF (which is a function of aggregate consump-
tion/output) directly enters firms’ capital decisions, as do other aggregate variables (i.e., the
wage and aggregate output) through movements in expected profitability, Πit. Thus, the allo-
cation and dynamics of aggregate TFP are both endogenous objects that are jointly determined
in equilibrium. We show below that under our assumed processes for firm and aggregate shocks,
aggregation in our model is exact and we can obtain an exact analytical expression for TFP.

Stochastic processes. Firm productivity (in logs) is given by

ait = β̂iat +Oit, at = δat−1 + εt where εt ∼ N
(
0, σ2

ε

)
, β̂i ∼ N

(
1, σ2

β̂

)
. (11)

Here, at is an aggregate shock to technology that follows an AR(1) process with persistence δ
and variance of the innovations σ2

ε . Crucially, firms are heterogeneous in their sensitivity, or
exposure, to movements in at and hence their degree of cyclicality, captured by β̂i.14 The mean
beta is unity. The cross-sectional variance in beta, σ2

β̂
, captures the extent of this heterogeneity.

The term Oit denotes a number of adjustments to offset Jensen’s inequality terms when
taking expectations both over time and across firms and maintain log-linearity of the economy.
These ensure that when agents are risk-neutral with respect to all state prices and/or firms are
homogeneous, TFP equals the exogenous aggregate shock. Since these terms are independent
of risk and policy, they play no other role in the analysis and can safely be ignored for purposes
of exposition. We detail the adjustment terms in our derivations in Appendix B.1.

The capital wedge is a constant elasticity function of the aggregate shock, i.e.,15

τΛt ≡ log TΛt = −τΛaat . (12)

We refer to the wedge as countercyclical when τΛa > 0, in which case it acts like a countercyclical
tax on firm profits. For intuition, consider the case where the wedge distorts the SDF (as in
the two examples laid out above). A countercyclical wedge implies a discount factor that is
inefficiently countercyclical, i.e., it falls (rises) excessively in expansions (downturns) relative
to what preferences and the dynamics of consumption would dictate. In this case agents act

14For simplicity, we abstract from firm-level idiosyncratic shocks. Although important for matching micro-
level investment moments, with complete markets, agents can perfectly diversify these shocks, implying that
they bear no risk premium. Additionally, they are independent of policy. Thus, they would play no role in the
analysis (other than adding constant terms to a number of the equilibrium equations).

15We assume optimal time-invariant subsidies are in place to offset goods and labor market monopoly dis-
tortions. This ensures an efficient steady-state and that only the time-varying distortions play a role.
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excessively averse to bearing aggregate risk. The opposite holds when the wedge is procyclical.
For simplicity, the remainder of the analytical analysis considers the special case when the

aggregate shock is i.i.d., i.e., δ = 0. Under this special case, we obtain particularly sharp
expressions for our main theoretical results. We relax this assumption in our quantitative
exercises in Section 4, but show that the same intuition from this simpler case carries through.

The conduct of monetary policy. We assume the central bank conducts policy to directly
control the output gap. In particular, the monetary authority chooses a value µa that determines
the cyclicality of the output gap such that16

µt = µaat . (13)

More aggressive countercyclical policy entails a more negative µa, i.e., a more countercyclical
output gap that falls in expansions and rises in downturns. In Appendix B.2 we show that
common interest rate rules imply an output gap of exactly this form, e.g., choosing the cyclicality
of the nominal interest rate (the response of the interest rate to the aggregate shock) or the
reaction coefficients in standard Taylor rules. More aggressive countercyclical policy entails a
more procyclical nominal interest rate, i.e., a nominal rate that rises (falls) more in response to
positive (negative) realizations of the aggregate shock. Given the behavior of the output gap
in (13), the path of inflation is determined by the Phillips curve.

Log-linear solution. Under an output gap of the form in (13), the model allows for exact
aggregation and the aggregate quantity variables (e.g., TFP and output) have an exact solu-
tion that is log-linear in the shock, at. The nominal variables are determined by the non-linear
Phillips curve and Euler equation. However, conditional on the behavior of the output gap,
these expressions do not affect any of the real variables, but only the behavior of inflation and
the nominal interest rate. We exploit this feature to derive exact expressions for all quantity
variables. We then perform a standard log-linearization of the Phillips curve and Euler equa-
tion.17 This approach yields analytic tractability of the equilibrium system and ensures that
our framework and solution fully nest the standard representative firm New Keynesian model.

Proposition 2. Under (i) the assumed stochastic processes on the exogenous shocks and capital
16Our results do not depend on this precise specification – for example, Section 4 shows that optimal policy

under full commitment and more complicated rules lead to similar qualitative effects of policy.
17As is standard in this class of model, a first-order approximation to the the Phillips curve is sufficient to

obtain a second-order approximation to the utility function for our welfare analysis in Section 3.
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wedge and (ii) the conduct of monetary policy, (log) aggregate TFP is equal to

ψt = ψ + ψaat , (14)

where ψ and ψa are endogenous constants that depend on the capital allocation. The log-linear
equilibrium is characterized by (9), (14) and the log-linearized Phillips curve and Euler equation:

πwt = ρEt
[
πwt+1

]
+ λwµt (15)

yt = Et [yt+1]− 1

γ

(
it − Et

[
πpt+1

])
. (16)

The Phillips curve relates wage inflation, πwt , to expected wage inflation and the output
gap, µt. The slope is determined by the composite parameter λw ≡ α2νw

θwφl
. The Euler equation

relates expected output/consumption growth to the nominal interest rate, it, and expected price
inflation, πpt+1. The proposition shows that the log-linear equilibrium is completely characterized
by the path of output, the definition of TFP, the Phillips curve and the Euler equation. Notice
that this system is identical to the textbook representative firm New Keynesian model (e.g.,
Galí (2015)), the only difference being the endogeneity of TFP. As discussed above, conditional
on the assumed form of monetary policy, expressions (9) and (14) are exact. Expressions (15)
and (16) are approximated and pin down the path of the nominal variables (the nominal interest
rate and inflation). For much of our analysis, we can focus on the former set of exact equations
characterizing the real variables. The latter set come into play when characterizing the behavior
of the nominal rate that supports a given policy and the path of inflation for our welfare results.

Proposition 2 introduces two endogenous constants – ψ and ψa – that determine (i) the
long-run average level of TFP and (ii) the loading, or responsiveness, of TFP to exogenous
shocks. In particular, the long-run level of TFP is equal to ψ and its standard deviation to
σ (ψt) = ψaσε. We provide exact solutions for these constants in expressions (62) and (63) in
Appendix B.1 and show that they both depend on the micro-level capital allocation. Note that
they are not in general equal to zero and one, respectively, implying that endogenous TFP is
not equal to exogenous technology. Characterizing TFP entails characterizing these two terms.
The next subsection lays out in detail how these terms are determined and in particular, how
they depend on aggregate risk and the micro-allocation.

2.1 Micro Allocations and Aggregate TFP

As described above, Proposition 2 presents an exact solution for aggregate TFP with explicit
characterizations for ψ and ψa in Appendix B.1. It turns out, however, that we can derive
particularly sharp expressions using a series of first and second-order approximations, and
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hence for this section only, we use such an approximation simply to provide as transparent
intuition as possible. We provide detailed derivations of this approach in Appendix B.3, which
ensures that we retain the effects of aggregate risk while at the same maintaining analytical
clarity by ensuring linearity of firm-level variables in beta.18 We return to the exact solution
for our welfare results and quantitative work in Sections 3 and 4.

First, we can approximate aggregate TFP in (10) to obtain

ψt ≡ log Ψt = −1

2
ωvar (mrpki)︸ ︷︷ ︸

ψ

+ (1 + α1cov (ki, βi))︸ ︷︷ ︸
ψa

at , (17)

where ω ≡ α1(1−α2ν)
1−(α1+α2)ν

and βi ≡ ν
1−α2ν

β̂i. The expression shows that the endogenous terms
determining TFP depend on two moments of the micro-allocation evaluated at the ergodic mean
(denoted without time subscripts), namely (i) the cross-sectional variance of mrpki and (ii) the
covariance of ki with βi. The level term, ψ, reflects a familiar result from the misallocation
literature, e.g., Hsieh and Klenow (2009) and David and Venkateswaran (2019): in log-linear
environments, the variance ofmrpk is a sufficient statistic for the TFP losses from mis-allocated
capital. The loading of TFP on the shock, ψa, is novel to our setting but also intuitive: from
Proposition 1, aggregate TFP is an average of firm-level productivities weighted by their shares
of the aggregate capital stock. When highly cyclical firms are larger, TFP is more cyclical. In
the approximate expression, the covariance between firm-level capital and cyclicality (beta) is a
sufficient statistic for this effect. Clearly, the behavior of TFP – its long-run mean and cyclical
volatility – depends crucially on the micro-allocation, specifically, moments (i) and (ii).

Risk-taking and capital allocation. The capital allocation is shaped by the risk-return in
firm-level capital choices. To gain intuition, approximate the optimality condition (6) to obtain

Et−1 [mrpkit] +
1

2
vart−1 (mrpkit) = −covt−1

(
mrpkit, λ̃t

)
, (18)

where λ̃t = λt + τΛt is the log of the (distorted) discount factor. The expression shows that
the capital allocation is determined by a standard asset pricing equation relating the expected
mrpk (i.e., the return on capital) to a firm-specific risk premium in the cost of capital. The
risk premium equals the negative of the conditional covariance of the return with the (log of
the) distorted SDF, λ̃t. More procyclical firms have mrpk that is high in good times, i.e., when
marginal utility and the SDF are low. Thus, these firms are riskier and must offer a higher

18Specifically, we use second-order approximations to evaluate expectations that involve aggregate risk and
first-order approximations to linearize any remaining non-linear terms.
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expected return as compensation. Less procyclical firms have higher mrpk in downturns when
marginal utility is high and thus are safer and offer a lower expected return.

The capital wedge leads to inefficiencies in the pricing of risk and hence distorts the risk-
return tradeoff and capital allocation. If τΛa > 0, i.e., the distortion is countercyclical, it
augments movements in the SDF and the risk-return slope is excessively steep – agents act
inefficiently averse to bearing risk, which implies the cost of capital is too high for risky firms
and too low for safe ones and an allocation that is overly conservative. If the wedge is procyclical,
agents are taking on excessive risk and the allocation is too aggressive.

The following proposition characterizes the allocation as a function of a single object –
an equilibrium ‘risk adjustment,’ κ – that jointly determines the risk-return tradeoff and the
allocation of capital and hence the dynamics of TFP:

Proposition 3. (i) The optimal choice of capital satisfies

mrpkit = log Ãit − logEt−1

[
Ãit

]
︸ ︷︷ ︸

uncertainty

+ βiκσ
2
ε︸ ︷︷ ︸

risk

, kit =
1

1− α

(
logEt−1

[
Ãit

]
︸ ︷︷ ︸

productivity

− βiκσ2
ε︸ ︷︷ ︸

risk

)
. (19)

(ii) The endogenous terms in TFP are given by

ψa = 1− ωκσ2
εσ

2
β, ψ = −1

2
ω
(
κσ2

ε

)2
σ2
β , (20)

where (iii) κ is an equilibrium risk adjustment equal to

κ = κψψa︸ ︷︷ ︸
TFP

+ τΛa︸︷︷︸
capital wedge

+ κlµa︸︷︷︸
output gap

(21)

and Ãit = A
ν

1−α2ν

it and κψ and κl are positive constants.

The term κ is a risk adjustment in the capital allocation and indeed, is a sufficient statistic
that captures the effects of all sources of aggregate risk in the cross-sectional allocation. Specif-
ically, Appendix B.4 shows that κ measures the (negative of the) elasticity of the discounted
profitability of capital to aggregate shocks operating through discount factor effects and via
equilibrium effects on the wage, Wt, and aggregate demand, Yt. Put another way, κ captures
the aggregate risk facing the firm through the joint movement of all relevant state prices. The
price of risk is positive when κ > 0.

Expression (21) makes clear that aggregate risk stems from movements in (i) TFP (e.g., the
natural rate of output), (ii) the capital distortion and (iii) the output gap. In Appendix B.4
we explicitly characterize and provide further intuition for the constants κψ and κl. The risk
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adjustment κ plays the same role in the exact solution in Appendix B.1 and takes precisely the
form in (21), i.e., that expression is exact. Although the remaining expressions are somewhat
more complicated, the intuition from the approximate expressions carry through. In particu-
lar, κ is a sufficient statistic for the role of aggregate risk in determining the allocation and TFP.

Risk-taking and dispersion – Expression (19) illustrates the two key effects of aggregate risk on
micro-level resource allocations. First, the right-hand equation shows how firm-level risk affects
the capital choice, which depends on expected productivity and the firm-specific risk premium,
which is linear and increasing in the firm’s exposure to aggregate risk, βi: conditional on
expected productivity, more procyclical firms are riskier, face a higher cost of capital and hence,
choose a lower level of capital. Thus, the risk premium drives a wedge between firm-level capital
and expected productivity. The strength of this effect is determined by the risk adjustment, κ,
and the degree of aggregate volatility, σ2

ε . The extent of aggregate risk determines the amount
of risk-taking at the micro-level, with more aggregate risk, i.e., larger κ, leading capital to shift
towards less cyclical low beta firms, reducing the risk profile of the capital allocation.

Second, there is a dispersion effect – the left-hand equation in (19) shows thatmrpk depends
on the realization of unexpected shocks (‘uncertainty’) and the risk premium. Riskier firms must
offer a higher rate of return on capital as compensation for bearing that risk. The expression
shows that κσ2

ε is the ‘price’ of aggregate risk exposure in capital decisions: for each unit increase
in βi, the return on capital must increase by this amount. By introducing a wedge between
capital choices and expected productivity, exposure to aggregate risk induces differences in
mrpk. The effects of aggregate risk on firm-level mrpk and capital are two sides of the same
coin: greater exposure to aggregate risk leads to a higher expected mrpk; due to diminishing
marginal returns to capital in production, higher mrpk entails a smaller capital stock.

The level and volatility of TFP – In turn, expression (20) reveals the two key effects of aggregate
risk on macroeconomic dynamics via the micro-allocation. First, there is a smoothing effect:
in the absence of heterogeneity and/or risk adjustments in the allocation, the term ψa, which
captures the elasticity of TFP to the exogenous shock, is equal to one – exogenous technology
and endogenous TFP are the same. With heterogeneity and risk, ψa is strictly less than one and
is decreasing in κ, i.e., ∂ψa

∂κ
< 0. In the face of exogenous shocks, the endogenous reallocation of

capital from more to less procyclical firms lowers cov (ki, βi) in (17), reducing the responsiveness
of TFP to those shocks. The larger the risk adjustment, the less is risk-taking at the micro-level
(i.e., the lower/more negative this covariance) and the lower the sensitivity of TFP. Second,
there is a level effect: by inducing dispersion in mrpk, the risk adjustment lowers the long-run
level of TFP, ψ. In the absence of heterogeneity and/or risk, ψ is equal to zero. With these
elements, it is negative and decreasing in κ, i.e., ∂ψ

∂κ
< 0 – when the risk adjustment is larger, the
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capital allocation depends more on firm-level risk than expected productivity, which increases
var (mrpki) in (17) and depresses long-run productivity.

Heterogeneity in risk generates a tradeoff between the long-run level and cyclical volatility
of TFP. A smaller risk adjustment leads to a more productive allocation of resources, but more
volatile TFP. A larger risk adjustment the opposite. The result can also be understood as a
form of self-insurance. There are no savings in the economy (the aggregate capital stock is
fixed and bonds are in zero net supply). Yet agents can partially self-insure against cyclical
fluctuations by shifting capital to less cyclical firms, which endogenously reduces the extent of
aggregate risk. The cost of doing so is higher marginal product dispersion, which reduces the
productiveness of the resource allocation and hence the long-run level of output/consumption.

The risk adjustment, κ, determines and is in turn determined by both the micro-level allo-
cation and the nature of macroeconomic dynamics. Thus, these are both endogenous objects
that are jointly determined in equilibrium, as is κ itself: from expressions (19) and (20), κ de-
termines the allocation and hence ψa, the loading of TFP on exogenous shocks; from expression
(21), κ is determined by ψa. In Appendix B.3 we provide an explicit solution for κ under our
approximation in terms of model primitives (and the exact analog in Appendix B.1).

Simple example. We can use an even simpler example to sharply illustrate these links be-
tween risk, macroeconomic dynamics and resource allocations. Consider the special case where
α2 = 0 so that capital is the only factor of production; ν = 1 so that intermediate goods are
perfect substitutes; all prices are flexible so thatMt = 1; and capital markets are efficient, i.e.,
TΛt = 1. Under these assumptions, there are no aggregate movements in factors of production
at all, yet the economy features rich dynamics arising from the resource allocation alone.

Proposition 1 implies that the equilibrium is fully determined by the following system:

Yt = ΨtK
α1
t , Ψt =

∫
Ait

(
Kit

Kt

)α1

di,
Kit

Kt

=
(Et−1 [ΛtAit])

1
1−α1∫

(Et−1 [ΛtAit])
1

1−α1 di
, (22)

and using the form of TFP from Proposition 2, the discount factor satisfies

log Λt − Et−1 log Λt = −γyt = −γψaat = −κat , (23)

where κ ≡ γψa is the (negative) elasticity of the discount factor, Λt, to the aggregate shock, At.
In this simple environment where goods are perfect substitutes and capital is the only factor of
production, the only aggregate state price that affects capital decisions is the SDF.

The capital allocation satisfies a simplified version of (19) with modifications to the relevant
curvature, specifically, βi = β̂i, Ãit = Ait and α = α1. Similarly, TFP is determined by (17) with
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ω = α1

1−α1
. Evaluated at the ergodic mean, the variance of mrpk is approximately var (mrpki) =

(κσ2
ε)

2
σ2
β and the covariance of firm-level capital and beta is cov (ki, βi) = 1

1−α1
κσ2

εσ
2
β.

We can use this simplified example to clearly highlight the equilibrium nature of the risk
adjustment, κ. First, from its definition, κ = γψa, i.e., κ depends on the nature of macro
dynamics, specifically, the endogenous response of TFP to exogenous shocks. On the other
hand, applying (17) yields ψa = 1 − α1

1−α1
κσ2

εσ
2
β, i.e., this responsiveness is itself a function of

κ. Combining yields κ in terms of model primitives:

κ =
γ

1 + γ α1

1−α1
σ2
εσ

2
β̂

. (24)

The interpretation of the expression is straightforward. The numerator captures the direct
(partial equilibrium) effect of risk, which is simply the coefficient of relative risk aversion. The
denominator captures the general equilibrium effects that work through the resource allocation,
which smooth TFP and hence lower the extent of aggregate risk. The larger the heterogeneity
across firms, the greater the opportunities for reallocation and hence the larger these effects.

2.2 Aggregate Risk, Monetary Policy and TFP

At the heart of our model is the risk-return tradeoff in firm-level capital choices, which depends
on the nature of aggregate risk in the economy as captured by κ. Expression (21) makes
explicit the key role of monetary policy in determining the slope of this tradeoff: monetary
policy pins down the behavior (i.e., the cyclicality) of the output gap, µa, and thus directly
affects κ. Intuitively, the cyclicality of the economy, e.g., aggregate output – the source of
aggregate risk – depends on both the natural rate of output and the output gap. A procyclical
output gap increases the cyclicality of realized output and thus the amount of aggregate risk; a
countercyclical output gap has the opposite effects. Formally, ∂κ

∂µa
> 0. Thus, the allocational

effects of policy boil down to its impact on a single object, κ.
Expressions (19) and (20) show that the effects of policy feed through to the resource

allocation and via this channel, to the behavior of TFP, i.e., ψa and ψ. Through its choice of
the output gap, the monetary authority determines (i) the effective degree of aggregate risk
facing firms and the slope of the risk-return tradeoff, (ii) the amount of risk-taking and the
micro-level capital allocation and (iii) the dynamics of TFP. As an example, consider the case
of more aggressive countercyclical policy, i.e., a lower value of µa and hence κ. From (19), such
a policy reduces the slope of firm-level mrpk on beta, which causes a reallocation of capital
towards more cyclical high beta firms, increasing the covariance of firm-level capital and beta
and lowering mean mrpk dispersion. From (17) and (20), this reallocation leads to (i) a higher

20



value of ψa – TFP becomes more volatile as more cyclical firms become larger – and (ii) a
higher value of ψ – the long-run level of TFP increases as mrpk dispersion falls. Intuitively,
more aggressive stabilization by the central bank mitigates the extent of aggregate risk by
reducing the cyclicality of aggregate output. This incentivizes further risk-taking on the part
of the private sector, which leads to more volatile TFP, but also a more productive allocation.

A striking implication is that monetary policy has permanent effects – the long-run level
of TFP (and hence output/consumption) is in part determined by the extent of stabilization,
which, by influencing the capital allocation and dispersion in mrpk, moves the economy closer
to/further from its production possibilities frontier. In the heterogeneous firm environment,
aggregate production possibilities depend not only on the state of aggregate technology, but
also on how resources are allocated at the micro-level. Thus, monetary policy is not neutral
in the long-run but instead affects the economy’s long-run level of production via the resource
allocation. More formally, we have ∂ψ

∂µa
< 0, which shows that long-run TFP depends on the

monetary policy regime. The result holds despite our standard formulation of nominal rigidities.
A second implication is that through the endogenous behavior of TFP, firm heterogeneity

and reallocation opportunities dampen the effectiveness of stabilization policies. In particular,
the standard deviation of output is equal to

σ (yt) = (φψψa + µa)σε ,

which shows that output fluctuations stem from movements in TFP and the output gap. In a
representative firm environment, ψa is simply equal to one and outside the influence of policy
– the central bank can act to smooth output through its choice of µa leaving the dynamics
of TFP (e.g., the natural rate of output) unchanged. Here, in contrast, TFP depends on the
actions of the central bank. As the central bank acts to smooth fluctuations through a more
countercyclical output gap (lower/more negative µa), it reduces aggregate risk (κ), which causes
capital to shift towards more procyclical firms, increasing ψa and so the volatility of TFP. More
formally, we have ∂ψa

∂µa
< 0, i.e., increased risk-taking by the private sector in response to the

attempted stabilization mitigates the effects of the policy. Thus, if the central bank is targeting
the overall volatility of output, a more aggressive countercyclical policy is required. This is a
form of the Lucas Critique at work – in the representative firm setup, the dynamics of TFP are
assumed to be exogenous and invariant to policy; in the heterogenous firm economy, this is no
longer the case and the central bank must take into account the effects of its actions on TFP
and the natural rate of output.19

19It is straightforward to show that ∂σ(yt)
∂µa

> 0, i.e., the direct stabilizing effect of countercyclical policy on
output always dominates the indirect effect through the response of TFP. The result simply implies that such
policies are less effective when the private sector is able to reallocate resources in response to the policy rule.
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The effects of monetary policy are independent of the capital wedge and hold even in
economies that are otherwise undistorted. As evidenced by (21) distortions in capital markets
are also a source of aggregate risk and impact the risk-return tradeoff – e.g., a countercyclical
distortion that worsens in bad times (τΛa > 0) increases the effective amount of risk that firms
face with all the accompanying ramifications for the allocation and TFP. The result also bears
relevance for the large literature studying the relationship between volatility and growth – com-
parative statics exercises show that ∂σ(yt)

∂µa
> 0 and ∂ψ

∂µa
< 0, i.e., less countercyclical policy leads

to higher output volatility and lower long-run TFP/output, while ∂σ(yt)
∂τΛa

< 0 and ∂ψ
∂τΛa

< 0, i.e.,
larger countercyclical capital distortions dampen both. Thus, the two distortions – fluctuations
in the output gap and the capital wedge – can point to either a positive or negative sign on this
relationship, which depends crucially on the nature of the distortions at work in the economy.

3 Optimal Policy

In this section, we study the optimal conduct of monetary policy in the presence of heterogene-
ity and distortions to the capital allocation. Appendix C derives the following second order
approximation to the welfare loss function, expressed in terms of the equivalent consumption
decline measured as a fraction of consumption in the non-stochastic steady state:

W = (1− ρ)E−1

∞∑
t=0

ρt
[
−ψ +

1

2
(γ − 1)φψ

(
ψt − ψ

)2
+

1

2

1

φl
µ2
t +

1

2

α2νw
λwφl

(πwt )2

]
, (25)

which expresses the loss as a function of (i) the long-run level of TFP, (ii) the volatility of
TFP, (iii) the volatility of the output gap, and (iv) the volatility of wage inflation, all with
appropriate weights. It is straightforward to verify that the last two terms correspond exactly
to the welfare function in the textbook representative firm New Keynesian model and capture
the standard losses from output gap and inflation fluctuations, respectively, conditional on the
dynamics of TFP.20 The effects of heterogeneity enter the loss function through the first two
terms, which are new to our setting – welfare is increasing in the level of TFP and decreasing in
its volatility.21 With heterogeneity, these two terms are endogenous, dependent on the conduct
of monetary policy and are not independent – indeed, they are both pinned down by the risk
adjustment, κ. Optimal policy thus trades off four considerations: the volatility of inflation

Further, the result highlights that monetary policy has different effects on TFP and output: the former is only
affected through the allocation, while the latter is also affected directly by the policy.

20For example, compare these terms to the welfare function in Galí (2015), equation (26) of Chapter 6, and
note that 1

φl
= γ + ϕ+1−α2

α2
.

21We can also interpret the first two terms as capturing the level and volatility of the natural rate of output,
ynt : multiply and divide to obtain − 1

φψ
yn +

var(ynt )
2

γ−1
φψ

, where yn is the long-run mean of the natural rate.
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and the output gap as in a representative firm model and the level and volatility of TFP.
The policy maker chooses the behavior of the output gap to minimize the welfare loss

subject to the responses of the private sector to its choice, i.e., the definitions of ψ and ψa and
the Phillips curve. To obtain intuitive expressions, for our analytic results in this section we
study optimal policies among the class that satisfy the simple rule in (13). This is the set of
policies that are implementable by standard Taylor rules.22 In our numerical work in Section 4
we solve for the unrestricted full commitment optimal policy and show that it is approximated
quite well by the optimal one among the restricted class studied here.

Optimal risk adjustment. Before turning to our analysis of monetary policy, we study as
a benchmark the allocation chosen by a social planner in two cases: first, when the planner has
access to enough instruments to correct both distortions in the economy, i.e., sticky prices and
the capital wedge, and second, a constrained planner who faces, but takes as given, the sticky
price distortion, µt. Because the allocation is summarized by κ, the planner’s solution can be
characterized by the choice of this single object. The solution is the same in both cases: the
planner sets κ∗ = κψψ

∗
a, where ψ∗a is the value of ψa in an economy with no distortions.

The result has two implications. First, in the absence of distortions, the economy is at first-
best, yet the value of κ is not zero. The economy faces a tradeoff between the long-run level
of TFP and its volatility, but this tradeoff is efficient. Reducing the risk adjustment further
is possible and may be effective in raising long-run TFP/output, but would cause a shifting
of capital towards more procyclical firms and inefficient volatility of TFP. Increasing the risk
adjustment would have opposite effects, smoothing TFP but reducing its long-run level. Thus,
even at first-best, the economy features both TFP volatility and marginal product dispersion.
Both are symptoms of the economy’s efficient response to fundamental shocks.

Second, even when aggregate dynamics are distorted, i.e., due to sticky prices, the con-
strained optimal risk adjustment is independent of those distortions. In other words, even
though the economy may exhibit inefficiencies on other other margins (e.g., labor supply), the
optimal κ does not further distort the allocation of capital across firms.

Optimal monetary policy. As a single policy tool, optimal monetary policy does not attain
the first-best value for κ. Intuitively, monetary policy alone cannot fully correct the inefficiencies
in the allocation without further distorting the economy on other margins and must balance
these considerations. Appendix C.1 derives the optimal policy, which is fully characterized by

22We derive the mapping between (13) and interest rate rules in Appendix B.2. More generally, this is the
class in which policy is a function only of current state variables, but cannot condition on lagged states. In
contrast, the optimal policy under full commitment that we solve for in Section 4 will require committing to a
response to the infinite sequence of realized shocks.
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the elasticity of the output gap to the realization of the exogenous shock:

Proposition 4. Optimal monetary policy satisfies

µt = µ∗aat where µ∗a = −τΛaσ
2
βΦΛ (26)

and ΦΛ > 0 is a constant composite of model parameters.

To build intuition, consider first the representative firm model where σ2
β = 0. Clearly,

we have µ∗a = 0: TFP is exogenous and thus outside the control of policy, optimal policy
completely stabilizes both inflation and the output gap, and the economy is at first-best. Thus,
in the usual way, the ‘divine coincidence’ holds and the central bank faces no tradeoff in setting
policy. The result also holds in the presence of heterogeneity, but when the capital distortion
is absent (i.e., τΛa = 0), but for a different reason – in this case, TFP is endogenous but other
than the output gap distortion it is efficient, and again the central bank is able to achieve the
first-best by eliminating the output gap. In other words, when the flexible price allocation is
efficient, output gap fluctuations are unambiguously distortionary and an extended version of
the divine coincidence holds – complete stabilization of the output gap eliminates distortionary
fluctuations in labor supply and inflation in the usual way, but now also ensures the micro-
allocation and aggregate TFP attain the first-best.

This logic breaks down when firms are heterogeneous (σ2
β > 0) and the allocation is dis-

torted (τΛa 6= 0). If the distortion is countercyclical, i.e., τΛa > 0, it strengthens the incentives
for countercyclical policy. From expression (21), the wedge generates an inefficiently high risk
adjustment, which leads to an overly conservative allocation, an inefficiently low cyclicality of
TFP and excessively high marginal product dispersion, depressing the level of TFP. Thus, the
optimal policy response entails more aggressive countercyclical policy – specifically, a counter-
cyclical output gap (negative value for µ∗a) that leans against cyclical fluctuations to partially
offset these effects. The opposite holds if the capital distortion is procyclical.

Because µ∗a 6= 0 in the distorted heterogeneous firm economy, optimal policy allows for fluc-
tuations in inflation and the output gap. By doing so, it helps correct the inherent inefficiencies
in the allocation. However, policy does not deviate so far from complete stabilization as to
fully correct the allocational distortions – doing so would lead to an overly cyclical output gap
that would lead to costly volatility in that object and inflation.23 Thus, the divine coinci-
dence does not hold – optimal policy takes on an intermediate value that balances allocational
considerations against inflation/output gap volatility.24

23More formally, we can show that |µ∗a| < |− 1
κl
τΛa|, which from (21) is the value of µa that would completely

correct the capital wedge.
24In this sense, capital market distortions in conjunction with heterogeneity generate an endogenous cost-

24



Finally, note that the (absolute value of the) cyclicality of the output gap under the optimal
policy is strictly increasing in the extent of heterogeneity, i.e., ∂µ∗a

∂σ2
β
< (>) 0 if τΛa > (<) 0,

which shows that the policy response to the real friction is more aggressive when there is more
heterogeneity – with larger differences across firms, the distortionary effects of the wedge on the
allocation and TFP are more costly relative to output gap and inflation volatility and optimal
policy calls for larger deviations from complete stability in response. In contrast, in the case of
no heterogeneity, the capital wedge has no effects at all and optimal policy can safely ignore it.

Optimal nominal interest rate. Appendix C.1 derives the nominal interest rate that im-
plements the optimal output gap as a function of the exogenous shock:

i∗t =
(
Φi + i∗a

)
at where i∗a = τΛaσ

2
βΦi

Λ, Φi
Λ > 0 .

Further, we can show ∂i∗a
∂σ2
β
> (<) if τΛa > (<) 0. The result aligns closely with Proposition 4: (i)

the cyclicality of the optimal nominal rate is a linear and increasing (in absolute value) function
of the capital wedge, so that a countercyclical wedge (τΛa > 0) leads to a more aggressive rise
in the nominal rate in response to expansionary shocks and (ii) the strength of this effect is
increasing in heterogeneity, i.e., for a given value of the wedge, more heterogeneity leads the
optimal nominal rate to be more procyclical. Indeed, i∗a is zero in the absence of heterogeneity,
in which case i∗t = Φiat, which sets the nominal rate (which is also the real rate since µt = 0

and thus there is no inflation) equal to the natural interest rate. The same result clearly holds
in an economy with nominal rigidities but no capital market distortion. The cyclicality of the
nominal rate thus provides a natural metric to gauge the cyclicality of policy.

Costs of policy mistakes. As we have seen, the combination of firm heterogeneity and dis-
tortions to the resource allocation changes the prescription for optimal policy. A corollary to the
result is that deviations from the optimal policy are more costly in the presence of heterogene-
ity (with or without capital distortions). Formally, assume that policy is set according to (13)
where µa 6= µ∗a, i.e., policy is not set to the optimal one.25 Appendix C.1 proves that the welfare
losses from such a deviation are increasing in the extent of heterogeneity, i.e., ∂(W(µa)−W(µ∗a))

∂σ2
β

> 0.

push shock. Indeed, defining xt as the difference between actual and efficient output, i.e., xt = yt − yet , we can
write the Phillips curve as πwt = ρEt

[
πwt+1

]
+ λwxt + λwφψ (ψet − ψt) where the last term resembles a standard

cost-push shock. Different than an exogenous cost-push shock, however, (e.g., of the type studied in Section
3.1), (i) this ‘shock’ is endogenous and depends on the conduct of policy and (ii) because ψet − ψt enters the
welfare function in addition to its effects on inflation, xt is not the main welfare-relevant object; rather µt is.

25We can write such a policy as µt = (µ∗a + ea) at, where the first term in the parentheses is the optimal
policy and the second term is an error, which when positive implies that the output gap is not countercyclical
enough relative to the optimum and when negative the opposite. Note that the error captures a systematic bias
in policy, i.e., it is known and anticipated by the private sector.
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The intuition is clear: in a representative firm environment, the costs of policy mistakes stem
from their effects on inflation and the output gap. With heterogeneity, these mistakes lead to
a sub-optimal amount of aggregate risk that distorts the resource allocation. As an example,
consider the case where µa > µ∗a, i.e., the output gap is less countercyclical than the opti-
mal policy prescribes. In addition to the costs of higher output gap/inflation volatility (which
are independent of heterogeneity), aggregate output/consumption are also overly volatile and
hence there is excessively high aggregate risk. The private sector responds by taking on a more
conservative capital allocation, which reduces TFP and welfare.

3.1 Other Distortions/Policies

Thus far, we have focused on cyclical capital market imperfections that directly distort the
capital allocation and the role of monetary policy as a stabilization tool in an economy with
nominal rigidities. The effects of aggregate risk and firm heterogeneity are not limited to
these considerations. Here, we show that heterogeneity affects the optimal policy response to a
broader class of distortions, i.e., labor market distortions and traditional cost-push shocks that
generate an output/inflation tradeoff even in the absence of heterogeneity and/or additional
distortions. We also show that our main results hold when fiscal policy (modeled as cyclical
labor income taxes) is the tool of stabilization, both in flexible and sticky price economies.

Additional distortions. We add two additional distortions: (i) a cost-push shock to the
Phillips curve that generates a trade-off for the central bank even in the absence of heterogeneity
and (ii) a labor market distortion (‘labor wedge’) that generates inefficient movements in labor
supply.26 The Phillips curve and aggregate labor supply conditions then take the form:

πwt = ρEt
[
πwt+1

]
+ λwµt + ηt

wt +
1

φl
µt + τlt = γyt + ϕlt ,

which are augmented versions of (15) and (2). We specify the cost-push shock as a constant
elasticity function of at, i.e., ηt = ηaat, where ηa > 0 captures a procyclical shock to (wage) infla-
tion and ηa < 0 the opposite. We specify the labor wedge as τlt = τlaat, where τla > 0 captures
a countercyclical distortion to labor supply (i.e., labor supply is inefficiently procyclical).

26Together, the capital and labor wedges and cost-push shock span the set of possible aggregate distortions
to the three choice variables, aggregate labor, wage setting and capital allocation, i.e., although additional
distortions could be added, they would be redundant.
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With these additional distortions, optimal policy takes the form (proof in Appendix C.1):

µ∗a = −τΛaσ
2
βΦΛ − ηaΦη − τlaΦl, where Φη > 0,

∂Φη

∂σ2
β

< 0, Φl > 0,
∂Φl

∂σ2
β

> 0 , (27)

which is an extended version of (26) that incorporates the optimal policy response to the capital
wedge (which is the same as before), but additionally to the labor wedge and cost-push shock.

Because of the cost-push shock, in the standard way, the central bank faces a tradeoff
and cannot simultaneously stabilize inflation and the output gap. Stabilizing the output gap
requires setting µ∗a = 0, but this implies complete accommodation of the cost-push shock. In
reverse, stabilizing inflation requires setting µ∗a = − ηa

λw
6= 0, so clearly allows for fluctuations in

the output gap. The slope of the optimal tradeoff between inflation and the output gap is given
by Φη. Expression (27) shows that Φη is strictly decreasing in σ2

β – with more heterogeneity, the
central bank responds less aggressively to the inflationary pressure from the cost-push shock.
The typical cost of offsetting this shock is output gap volatility; here, there is an additional cost
– allowing µa to depart from zero to lean against the shock distorts the capital allocation. For
example, consider the case where τΛa = 0. The allocation and dynamics of TFP are efficient
without the effects of policy and the impact of the policy response to the cost-push shock
on these margins is unambiguously distortionary. Thus, heterogeneity reduces the magnitude
of the optimal response to the cost-push shock and affects the tradeoff between inflation and
output gap volatility (even with no additional distortions). The central bank must account for
the fact that responding to this shock induces an inefficient reallocation of capital across firms.

The effect of the labor wedge is similar to the capital wedge: if the wedge is countercyclical
(τla > 0), it further strengthens the incentives for countercyclical policy.27 For example, consider
the case with no other distortions and flexible prices, i.e., τΛa = ηa = λw = 0. We can show
that optimal policy entails completely neutralizing the labor distortion, i.e., µ∗a = −τla.28 With
nominal rigidities, the optimal response is less than one-for-one, i.e., Φl < 1: countercyclical
policy aimed to stabilize the labor wedge generates costly inflation volatility. The positive
derivative of Φl with respect to σ2

β shows that more heterogeneity strengthens the response of
policy to the labor wedge. Intuitively, the cost of the wedge is increasing in heterogeneity: it not
only has a direct effect on the cyclicality of labor supply, but also leads to inefficient aggregate
risk, which distorts the allocation and dynamics of TFP. This latter effect is larger when there
are more opportunities for reallocation, i.e., σ2

β is large. Thus, optimal policy responds more
aggressively than in the case of a representative firm.

27A large body of work dating back at least to Chari et al. (2007) documents a countercyclical labor wedge.
28Of course, with flexible prices, monetary policy cannot achieve this outcome. However, fiscal policy can.
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Fiscal policy. The main insights do not hinge on nominal rigidities, or monetary policy as
the instrument of stabilization – here we show that similar results go through with cyclical
fiscal policy, both in sticky and flexible price economies.

The fiscal authority chooses a cyclical labor income tax/subsidy, which in some abuse of
notation, we denote τlt. Optimal fiscal policy sets the cyclicality of the tax, i.e., a value τla such
that τlt = −τlaat, to maximize household welfare. The sign convention implies that τla < 0

captures a procyclical tax, i.e., a tax rate that increases in expansions and falls in downturns.
τla > 0 implies the opposite. It is straightforward to verify (see Appendix C.1) that with flexible
prices, the equilibrium and policy objective function are special cases of the environment laid
out above where (i) the nominal side of the economy is completely disentangled from real
quantities and the macro dynamics are fully characterized by (9) and (14) with the output gap
driven by the labor tax so that φlτla replaces µa and (ii) the welfare function takes the form
in (25) with no costs of inflation. From here, we can show that the optimal policy takes an
analogous form to (26), i.e., τ ∗la = −τΛaσ

2
βΦf

Λ where Φf
Λ > 0 and ∂τ∗la

∂σ2
β
< 0 if τΛa > 0.

The intuition is the same as with monetary policy. In the absence of distortions, the optimal
policy is a laissez-faire one – the policy-maker sets the tax to zero. With countercyclical
distortions, i.e., τΛa > 0, the optimal policy is countercyclical (a procyclical tax rate) – the
distortion implies an inefficiently high amount of aggregate risk and the fiscal authority reduces
the cyclicality of labor supply in order to (partially) correct this inefficiency, even though such
a policy distorts labor supply. The strength of the policy response is increasing in the degree of
heterogeneity. Even with flexible prices, however, the policy-maker cannot replicate the first-
best allocation – although within the set of attainable allocations, doing so would be overly
costly due to the distortionary effect on labor supply margin.29

Fiscal-monetary coordination. A last case we consider is when fiscal and monetary policy
are set optimally in tandem, i.e., there is coordination between the fiscal and monetary au-
thorities. In this case, we can prove (i) optimal monetary policy sets µa = 0, i.e., completely
stabilizes inflation, and (ii) optimal fiscal policy is the same as in the flexible price economy.
Thus, when both fiscal and monetary policy are jointly put to work, a natural ordering emerges:
first, monetary policy is set to replicate the flexible price outcome. Then, fiscal policy is set as
it would be if prices were indeed truly flexible.

29Replicating the first-best capital allocation would entail setting τla such that τΛa+κlτla = 0 or τla = − 1
κl
τΛa.

We can show, however, that optimal fiscal policy under flexible prices is more aggressively countercyclical than
the corresponding monetary policy in the sticky price economy. This is because there are no costs of inflation
in the flexible price economy and hence this countervailing force is absent in the policy-maker’s objective.
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4 Quantitative Exercise

In this section, we provide a numerical evaluation of the policy effects studied analytically in
the last section.

First, we return to the more general case of persistent aggregate shocks, i.e., we allow δ in
(11) to be non-zero. With this modification, the equilibrium conditions in Proposition 2 remain
unchanged with the exception of aggregate TFP, which now takes the form

ψt = ψ + δat−1 + ψaεt , (28)

which is easily shown to be an ARMA(1,1). In other words, although the exogenous shock fol-
lows an AR(1), endogenous TFP follows an altered dynamic process. The other macroeconomic
variables, such as output and labor, follow a similar process.

We assume that monetary policy in the baseline equilibrium follows a Taylor rule in expected
price inflation and the output gap (see, e.g., Clarida et al. (2000)), given by

it = φyµt + φπEt
[
πpt+1

]
. (29)

Appendix D shows that such a rule implies an output gap that satisfies

µt = µa−1at−1 + µaεt , (30)

i.e., the coefficients in the rule map to a pair of values µa−1 and µa that govern the response of
the output gap to the two natural state variables of the model, at−1 and εt.30

Last, rather than restricting the form of optimal policy to a rule like (13), we solve for the
unrestricted optimal policy under full commitment (derivation in Appendix C.2). We discuss the
important role of commitment in more detail below and additionally show that the appropriate
choice of coefficients in a simple rule of the type in (13) studied above can approximate quite
well the full unrestricted policy.

4.1 Calibration

We begin by assigning values to the more standard preference and production function param-
eters of our model. Given our focus on capital investment decisions, we assume a period length
of one year and set the annual discount factor, ρ, to 0.96. We set the inverse Frisch elasticity
of labor supply, ϕ, to 1 and risk aversion, γ, to 10. Although this is somewhat high for the
macro literature (and at the upper bound of what is typically deemed the ‘reasonable’ range,

30We obtain similar results using a rule in the output gap and realized wage inflation.
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e.g., Mehra and Prescott (1985)), it is a standard value (indeed, at the lower end) in the finance
literature studying issues of risk premia (e.g., Bansal and Yaron (2004)) as do we.31 We assume
constant returns to scale in production and set α1 and α2 to values of one-third and two-thirds,
respectively. We set the substitution parameter across intermediate goods to ν = 0.8, which
is a common value in the literature, e.g., Atkeson and Burstein (2010). Following, e.g., Broer
et al. (2020) and Galí (2015), we set the elasticity of substitution across labor types, νw, to 6.
The coefficients in the Taylor rule are set to φy = 0.5 and φπ = 1.5.

The remaining parameters are calibrated jointly to match five salient moments of the data.
The parameters governing the aggregate shock process, δ and σ2

ε , are chosen to match the
persistence of observed aggregate TFP and the standard deviations of TFP growth rates, re-
spectively, which yields δ = 0.7 and σε = 0.05.32 The wage adjustment cost parameter, θw, is
chosen to match the slope of the wage Philips curve. Specifically, we regress wage inflation on
measures of the output gap both in the model and data, and set θw so that the estimated coef-
ficients are identical.33 Note that the coefficient from this regression does not directly map into
a structural parameter, since from equation (15), inflation expectations, which are correlated
with the output gap, are in the error term. Rather, the identification is indirect and follows
from matching a salient moment from the model and data. This procedure yields a value of
θw = 866 to match the flat slope of the empirical wage Phillips curve (see, e.g., Hazell et al.
(2020) for related evidence on the flat slope of the price Phillips curve).

The key new parameters of the model are (i) the degree of heterogeneity across firms, σβ̂,
and (ii) the cyclicality of the capital market distortion, τΛa. We set σβ̂ to match the observed
dispersion in cyclicality among Compustat firms. Specifically, we estimate firm-by-firm time-
series regressions of firm-level productivity growth on aggregate TFP growth. The coefficients
from these regressions yield an observable measure of firm cyclicality. We denote this ‘observed
beta’ βobsi (relative to the ‘true beta’, βi). Because TFP is not equal to the exogenous shock,
βobsi 6= βi. However, Appendix D shows how we can use the equilibrium process on TFP in (28)
to derive an adjustment factor mapping the two, allowing us to recover the true betas (up to

31Our results are not sensitive to using even much higher values for γ. The reason is that due to partial
equilibrium and general equilibrium effects, γ appears both in the numerator and denominator of κ (see (24)
for a simple example and (65) for the exact expression) and κ asymptotes to a constant when γ becomes large.
Thus, further increases have little effect. We have also experimented with Epstein-Zin preferences: increasing
γ under these preferences while holding the elasticity of intertemporal substitution fixed also has little effect.

32We use annual HP-filtered aggregate TFP calculated from data on real GDP and aggregate capital and
labor from the Bureau of Economic Analysis, which has a standard deviation of about 0.03.

33We use the difference between potential real GDP as computed by the BEA and realized real GDP as a
measure of the output gap. Using various (annual, HP-filtered) measures of wages from the Bureau of Labor
Statistics yields slope coefficients ranging from about 0.1 (average hourly earnings of production and nonsuper-
visory employees) to 0.3 (business sector compensation per hour). We target a slope of 0.2, approximately the
midpoint of this range.
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an additive constant). An important concern is that these estimates may be affected by issues
of sampling and measurement error. Appendix D outlines an approach to adjust the estimated
distribution for these types of errors. Implementing this procedure yields a value of σβ̂ = 3.2

(the value without correcting for measurement/sampling error would have been over 7).34

Last, to pin down the capital distortion, τΛa, we continue to use the micro-data and directly
target the covariance of firm-level mrpk and beta. This is the slope of the micro-level risk-
return tradeoff that is at the heart of the allocational mechanism in our theory. For intuition,
consider the following regression of mrpk on beta:

mrpkit = const. + λββi + ξit . (31)

From (19), we have that the time-averaged coefficient from such a regression is approximately
λβ ≈ κσ2

ε .35 Given values for the other parameters, we can invert the expression for κ (e.g.,
(21)) and solve for τΛa, which is the only remaining unknown. The estimated τΛa is increasing
in the estimated regression coefficient, i.e., holding other parameters fixed, a steeper slope of
mrpkit on βi implies a larger risk adjustment driven by a more countercyclical capital distortion.

Properly implementing the regression in (31) requires a panel of betas. To obtain such a
panel, we estimate shorter horizon (10 year) backwards-looking rolling window regressions of
firm-level TFP growth on aggregate TFP growth. However, just as with our estimates of the
cross-sectional dispersion in betas, estimation of (31) is complicated by issues of measurement
and sampling error in these measures of beta, which would lead to attenuation bias in the
resulting coefficient.36 To address this challenge, we develop a two-stage instrumental vari-
able approach in which we instrument for the observed TFP betas (βobsi ) we estimate from
production-side data with stock market betas calculated from financial data on firm and aggre-
gate stock market returns. First, we estimate firm-level stock market betas, βsi , using a standard
market model of the form rit = const + βsitrmt + ζit, which relates firm-level stock returns, rit,
to the aggregate market return, rmt (with exposure βsit) and an idiosyncratic component, ζit.
Again, we estimate this model using backwards-looking rolling window regressions for each
individual firm (we use quarterly data and 10 year horizons), which yields a panel of stock
market betas, βsit. We then use these values as instruments for the observed TFP betas, βobsit .

34Firm-level data are obtained from Compustat over the period 1964-2019. We include firms with at least 40
observations (the data are at the annual frequency). The estimated dispersion is on par with that in David et al.
(2021) who find a value of 3.4, which they estimate using stock market returns in conjunction with a structural
model (there are other differences in the estimation approaches as well, e.g., assumptions on curvature, the
sample of firms studied and the frequency of the data).

35Specifically, the coefficient from a single cross-section is approximately κσ2
ε + εt 6= κσ2

ε . However, pooling
observations over time eliminates the mean zero term εt. To derive the approximation, we use Et−1

[
Ãit

]
≈

1 + Et−1 [ãit]. We provide the exact expression in Appendix D.
36Error in measured mrpk is less of a concern since it is the left-hand side variable.
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Table 1: Slope of MRPK on Observed Betas

mrpkit+1

OLS IV
(1) (2)

βobsit 0.008*** 0.116***
[4.09] [3.07]

Observations 71546 57165
First stage F-statistic 16.86

Notes: This table reports regressions of firm mrpk on observed beta, βobs. Column (1) displays OLS estimates.
Column (2) displays IV estimates with stock market betas as an instrument. Standard errors are clustered two
ways by firm-year. t-statistics in brackets. Significance levels denoted by: * p < 0.10, ** p < 0.05, *** p < 0.01.

Specifically, the first-stage regression is one of the observed TFP betas, βobsit , on stock market
betas, βsit. The second stage regression is of mrpkit on the predicted values from the first stage
(to avoid issues of simultaneity, we use one period lagged betas in the second stage regression).
Scaling by the adjustment factor mapping the observed βobsi to the true βi yields the slope of
mrpk on beta. This two-stage approach is designed to address measurement concerns in the
direct estimates of TFP betas – as long as the errors are uncorrelated across the production
and financial-side data, using the covariance between the two measures will eliminate them.37

Table 1 displays the results of these regressions. Column (1) presents the OLS estimate from
a regression ofmrpkit+1 on the directly observed βobsit . Column (2) presents the IV estimates (we
also include a full set of industry-by-year fixed effects). Although the OLS estimate is positive
and statistically significant at standard levels, the IV estimate is substantially larger, in line
with the presence of measurement errors that artificially amplify beta dispersion and attenuate
the OLS coefficient.38 The IV strategy addresses this concern. Note that this approach does not
constitute a test of a particular asset pricing theory, but rests only on the fact that the exposure
of firm-level variables to aggregate shocks should be reflected in the sensitivity of stock market
returns. This connection is evidenced by the large first-stage F-statistic reported in Table 1,
which verifies that stock market betas are a strong instrument for the production-side betas.
The coefficient estimate is also significant in economic magnitude: a one-unit increase in the
observed cyclicality measure, βobsit , is associated with a 12% increase in MRPK. The adjustment
factor mapping βobsit to the true βit is roughly 0.44 and so a one unit increase in βit is associated
with a 5% increase in MRPK. Because this slope is steeper than can be explained by preferences
and aggregate dynamics alone, the data point to inefficiently low risk-taking at the micro-level

37In the case of positively correlated errors, the regression estimate would be biased downward, leading our
results to be conservative.

38Indeed, our direct correction for sampling error in calculating the cross-sectional dispersion accounts for
roughly one-half of the difference in the OLS and IV estimates.

32



0
.0

5
.1

.1
5

.2
D

en
si

ty

-10 -5 0 5 10 15
Observed TFP Beta

Figure 1: Firm Cyclicality and MRPK

Notes: Panel A displays the cross-sectional distribution of observed firm cyclicality (βobsi ) obtained from regressions of firm-level
productivity growth on aggregate TFP growth as described in the text. The vertical bars show the histogram of the distribution
and the solid lines the result of kernel smoothing with a bandwidth of 0.25. Panel B displays a bin-scatter of mrpkit+1 on the
predicted values of βobsit obtained from a regression of βobsit on stock market betas, βsis.

and a strongly countercyclical capital market distortion.
Figure 1 illustrates the two main features of the micro-data that are informative for σβ and

τΛa. The left-hand panel plots the cross-sectional distribution of the raw estimates of βobsi (i.e.,
before adjusting for sampling error) and shows the wide dispersion in observable measures of
firm cyclicality. The right-hand panel of the figure displays a bin-scatter ofmrpkit+1 against the
predicted values of βobsit from the first stage of the IV (because the predicted values are linear
functions of the instrument, the plot is essentially showing the reduced form of the IV) and
illustrates the strong positive relationship between MRPK and beta. Table 2 summarizes the
full set of parameter values and Appendix D provides further details of the calibration strategy.

4.2 Policy Evaluation

Table 3 presents the equilibrium and counterfactual policy exercises. Each column displays wel-
fare losses (top panel) and a number of equilibrium statistics (bottom panel) under alternative
policy regimes. We report the total welfare loss, as well as a decomposition of the loss into
its four components: the level of TFP and the volatilities of TFP, the output gap and (wage)
inflation. We report four salient statistics of the equilibrium under each policy: the reduction
in TFP volatility relative to the case with no risk adjustment in the capital allocation, i.e.,
where κ = 0 (denoted ∆σ (ψt)), the volatilities of the output gap and inflation, and lastly, a
measure of the cyclicality of monetary policy, namely, the elasticity of the nominal interest rate
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Table 2: Calibration – Summary

Parameter Description Value
Preferences
ρ Discount factor 0.96
ϕ Inverse Frisch elasticity 1
γ Risk aversion 10

Production
α1 Capital share 1/3
α2 Labor share 2/3
ν Intermediate good substitutability 0.8
δ Persistence of agg. shock 0.7
σε Std. dev. of agg. shock 0.05
σβ̂ Std. dev. of risk exposures 3.2

Wage-setting & distortions
νw Labor elasticity of substitution 6
θw Wage adjustment cost 866
τΛa Capital wedge 14.7

to the realization of TFP (denoted εit,ψt).39 Column (1) corresponds to the equilibrium under
the Taylor rule; column (2) reports results from the first-best allocation; column (3) reports
results under optimal policy with full commitment; and column (4) when monetary policy is
set to the optimal one in the representative firm case, i.e., when the central bank acts as if there
was a representative firm, ignoring micro-level heterogeneity and allocational concerns.

The results suggest (i) firm-level heterogeneity and risk can have sizable effects on TFP
dynamics and welfare, and (ii) accounting for this heterogeneity can have important implications
for the conduct of monetary policy through its effects on the resource allocation.

First, column (1) shows that under the Taylor rule, long-run TFP is lower by almost 1.4%
(relative to the case with no risk adjustment in the allocation). At the same time, the volatility
of TFP is also lower, by about 29%. The welfare costs of depressed TFP are directly equal
to the TFP loss itself. The welfare costs of TFP volatility turn out to be relatively small.
Column (2), the first-best allocation, provides a natural benchmark for these values. In this
case, TFP losses are extremely small, only about 0.003%. TFP is more volatile, only about
9% less so than in the case with no risk adjustment. These findings imply that due to capital
market distortions, the equilibrium allocation is inefficiently conservative – there is an excessive
shifting of capital towards less cyclical firms, which reduces TFP volatility relative to the first-
best, but generates excessively high marginal product dispersion, which reduces the level of
long-run TFP. In contrast, the first-best allocation features a more productive allocation of

39The case with κ = 0 is equivalent to one with a representative firm facing the same exogenous shocks. We
can also show that this is the allocation that maximizes expected TFP, taken to an appropriate power.
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Table 3: Heterogeneity and Optimal Monetary Policy

Taylor Rule First-Best Optimal Policy Ignoring Hetero.
(1) (2) (3) (4)

Welfare loss (%)
Total 1.784 0.193 1.146 1.393
TFP level 1.357 0.003 0.925 1.385
TFP volatility 0.009 0.190 0.026 0.008
Output gap volatility 0.100 0.000 0.171 0.000
Inflation volatility 0.318 0.000 0.025 0.000

Equilibrium statistics
∆σ(ψt) (%) -28.88 -8.59 -26.72 -28.97
σ(µt) 1.34 0.00 1.69 0.00
σ(πwt ) 0.28 0.00 0.08 0.00
εit,ψt 0.25 - 0.78 -0.25

capital with higher long-run TFP, but also higher TFP volatility. In total, welfare under the
Taylor rule is about 1.6% (1.8% − 0.19%) lower than in the first-best. Strikingly, of the total
loss, the vast majority – roughly 85% (calculated as 1.36%−0.003%

1.6%
) – is due to the losses in long-

run TFP. Since the first-best allocation features higher TFP volatility than the Taylor rule,
equilibrium welfare losses from this source are smaller than in the first-best. The remaining
welfare difference is due to changes in inflation and output gap volatility – these are modest but
non-negligible under the Taylor rule and zero in the first-best, which is completely undistorted.

Second, the results suggest an important role for policy to improve on equilibrium outcomes
and further, highlight the importance of accounting for heterogeneity when setting optimal
policy. Column (3) shows that relative to the Taylor rule in column (1), the optimal monetary
policy increases long-run TFP by 0.44%. The central bank achieves these gains through a
more countercyclical policy, which reduces the extent of aggregate risk and induces the private
sector to take on an allocation that more closely aligns firm-level capital and productivity – for
example, the elasticity of the nominal interest rate to the realization of TFP is roughly three
times larger under optimal policy than under the Taylor rule, i.e., the optimal nominal rate
is significantly more procyclical. At the same time, there is an increase in TFP volatility, but
this offsetting effect turns out to be small (the standard deviation of TFP is about 2% higher
than under the Taylor rule), as are the resulting welfare losses. The total welfare gain from
implementing the optimal policy relative to the Taylor rule is about 0.65%, of which about two-
thirds is due to the effects on long-run TFP. Thus, the optimal policy eliminates about 40%
of the gap between equilibrium and first-best welfare (1.80%−1.15%

1.80%−0.19%
). Monetary policy cannot

achieve the first-best since using cyclical policy to influence the resource allocation also affects
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the output gap and inflation (under this calibration, optimal policy reduces inflation volatility
but increases output gap volatility relative to the Taylor rule).

Finally, how does the presence of heterogeneity change the conduct of optimal policy? Com-
paring columns (3) and (4) shows that if the central bank were to set policy to the optimal
one ignoring heterogeneity – which, in this simple environment entails complete stabilization of
inflation and the output gap – the welfare gain relative to the Taylor rule is about 0.4%, almost
entirely due to the elimination of fluctuations in these variables. The properties of TFP change
only minimally so that the central bank is almost entirely missing out on the gains from improv-
ing the resource allocation (indeed, the level of TFP under this policy is slightly lower than the
Taylor rule). Thus, accounting for micro-level heterogeneity makes a significant contribution
to the potential gains from policy, about 0.25% (1.40%− 1.15%) of lifetime consumption in the
steady state. These gains come wholly from an improved allocation and higher long-run TFP –
TFP under optimal policy is almost 0.5% higher than under the policy ignoring heterogeneity.
The cost of this gain is somewhat higher volatility on all dimensions, with inflation volatility
being the costliest form. Again, the central bank achieves this gain through a more aggressively
countercyclical policy – the interest rate elasticity to TFP is not procyclical enough when not
accounting for heterogeneity (indeed, the optimal nominal rate ignoring heterogeneity tracks
the natural interest rate, which in this setup is countercyclical).

The role of commitment and simple rules. Monetary policy affects the capital allocation
primarily through anticipation effects – in particular, it is not unexpected policy shocks that
shape the allocation, but rather the private sector’s expectations of the systematic stabilization
component of policy. Thus, the ability to commit to future policy is crucial to the policy
maker’s ability to affect the allocation. To see this most clearly, consider the case with no
commitment, which is the polar opposite of the full commitment case in Table 3. In the absence
of commitment, the policy maker cannot influence private sector expectations and simply acts
to maximize welfare on a period-by-period basis, but must take as given the resource allocation
and dynamics of TFP. Thus, without the ability to commit, the policy maker’s problem is
exactly the same as the case of discretion in the representative firm environment and the best
it can do is set µt = 0, i.e., completely stabilize the output gap and inflation. Because this is
precisely the same outcome as the case of ignoring heterogeneity in column (4) of Table 3, we
can equivalently interpret the welfare losses in that column relative to the optimal policy in
column (3) as the welfare costs of lack of commitment.

Although commitment is crucial, it turns out that full commitment to responses to the entire
sequence of realized shocks is not. To see this, consider a ‘simple’ rule of the form in (28), which
sets the output gap as a function of the lagged and current realizations of the shock only, the
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two state variables in the economy. This form includes the set of policies implementable with
standard Taylor rules. In Appendix C.2 we solve for the optimal policy within this class and
find that welfare losses are only negligibly larger than under the unconstrained policy in Table
3. The result implies that the lion’s share of the allocational gains from optimal policy can
be attained by the appropriate choice of coefficients in a simple rule that conditions only on
current states. Full commitment to the entire sequence of shocks adds only little.40

Fiscal policy. In Appendix C.2, we show that similar results hold for optimal fiscal policy.
First, even under flexible prices and no cyclical fiscal policy, there are large welfare losses
relative to the first-best, which are largely driven by depressed TFP. Second, in response to
countercyclical capital market distortions, optimal policy is strongly countercyclical (i.e., sets
a countercyclical output gap via a procyclical labor income tax). The welfare gains from such
a policy are significant and stem largely from increasing TFP (by roughly 0.5%). Last, we
find that the gains from fiscal/monetary coordination are modest: once monetary policy is
optimally determined accounting for heterogeneity, there is only small scope for further welfare
improvements from labor market fiscal policies.

4.3 Financial Frictions and Capital Wedges

In this section, we delve into two detailed examples of financial frictions and directly evaluate
their role in contributing to the capital market distortion we infer from the firm-level micro-data.
Specifically, we build on the examples outlined in Section 2 and study (i) a model of frictional
financial intermediation and (ii) a TANK model featuring limited asset market participation.

Frictional intermediation. We consider the GK model extension laid out in Section 2 (full
details of the intermediary block are in Appendix A.1). From (7), the capital distortion reflects
the shadow marginal value of net worth to financial intermediaries, ∂Vt

∂Nt
. Due to homogeneity

of the intermediary value function, we can show ∂Vt
∂Nt

= θQt
Nt
, i.e., the unobservable shadow value

can be related to the observable (book) leverage ratio, Qt
Nt
, scaled by the limit on collateral, θ.

Using this result and log-linearizing, we can write the unexpected shock to the distortion as41

τΛt − Et−1 [τΛt] = −τΛaεt ,

where the key elasticity, τΛa, depends on the parameters of the financial sector. In Appendix A
we show how we can pin down these parameters using two steady state moments: the observed

40The result echoes previous findings of small gains from commitment vs. optimal simple rules in represen-
tative agent New Keynesian models (e.g., Taylor (2007) and Taylor and Williams (2010)).

41From (10), the anticipated piece of the distortion will cancel and thus has no effect on the allocation.
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book leverage ratio of the financial sector and the price/earnings ratio of the aggregate market.
Thus, we can calculate a value for τΛa (as implied by this specific channel) using a wholly
different approach and different data types than in our baseline analysis, which relied on a
more indirect (but likely more general) method from firm-level micro-data. Using data from
the Federal Reserve Flow of Funds, the average book leverage ratio in recent years has been
about 12. Using data from Robert Shiller’s website, the average price/earnings ratio has been
about 23.42 Calibrating the financial sector parameters so that the steady state matches these
moments, we solve the model including the GK block numerically and obtain a value for τΛa of
about 3.6, which represents about one-quarter of the estimate in Table 2.43 The result suggests
that frictions in the financial intermediation process along the lines of the GK model imply a
quantitatively significant capital wedge.

Limited participation. Next, we consider the TANK model laid out in Section 2 (full details
in Appendix A.2). From (8), the capital distortion is a function of two new objects, namely, the
share of households that are financially constrained and do not participate in capital markets,
θ, and shocks to the price markup, τ pt . Denoting the cyclicality of these shocks as τ pa (so that
τ pt = τ paat), we can use (8) to write the unexpected shock to the distortion as

τΛt − Et−1 [τΛt] = − α2

1− α2

γθτ pa︸ ︷︷ ︸
τΛa

εt . (32)

Expression (32) directly relates the capital wedge to two observables – the share of house-
holds who participate in capital markets and the cyclicality of price markups – and thus suggests
a calibration strategy matching these two moments. To place a value on θ, we use data from
the Survey of Consumer Finances, which reports that over the past few decades, approximately
50% of households held stock either directly or indirectly through actively managed mutual
funds, index funds and retirement plans.44 This statistic implies a value of θ of 0.50.

The parameter τ pa represents the elasticity of the price markup to the exogenous shock, at.
Although this shock is unobservable, the stochastic processes of the markup and endogenous
TFP (expression (28)) imply that a regression of the former on the latter yields a coefficient
βτp,ψ = τ pa

δ2(1−ψa)+ψa
δ2(1−ψ2

a)+ψ2
a
. As is standard in this class of model, the markup is equal to the inverse

of labor’s share of income.45 Hence, we can estimate the parameter τ pa from a regression of the
42Flow of funds data were obtained from https://www.federalreserve.gov/releases/z1/ and

price/earnings data from http://www.econ.yale.edu/~shiller/data.htm.
43Note that since the aggregate capital stock is fixed in our model, the dynamics of the intermediary sector

only affect the other aggregate variables through the wedge τΛt.
44Data were obtained from https://www.federalreserve.gov/econres/scfindex.htm, Table 7.
45Indeed, it is variation in labor’s share that is important, not the markup interpretation per se.
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(log) inverse labor share on endogenous TFP and applying this expression, which translates
the coefficient into the elasticity on at. The regression of inverse labor share on TFP yields a
statistically significant coefficient of 0.41, which translates into a value of τ pa of 0.36.46 Using this
value in (32), we obtain a value of τΛa of 3.7, slightly over one-quarter of our baseline estimate
in Table 2. Thus, the combination of limited asset market participation and fluctuations in
labor’s share of income lead to a significant capital wedge. Taken together, the two detailed
frictions studied here account for about one-half of the total wedge that we measure from the
firm-level data, which illustrates their important role, but also suggests other factors are likely
at play in the data as well.

5 Conclusion

In this paper, we have studied the implications of firm heterogeneity – specifically, differences
in cyclicality – for business cycle dynamics and optimal monetary stabilization. The heteroge-
neous firm economy can be recast in a representative firm formulation but where the resource
allocation and hence aggregate TFP are endogenous. The monetary policy regime determines
the nature of aggregate risk and in part shapes the allocation and dynamic behavior of TFP,
i.e., its long-run level and cyclical volatility. Empirically estimated capital market frictions lead
optimal policy to be more aggressively countercyclical than in an observationally equivalent
representative firm model. Thus, firm heterogeneity tends to strengthen the rationale for such
stabilization policies. A quantitative exercise suggests that the welfare gains from implementing
policies that account for allocational considerations can be significant.

We have deliberately kept our framework simple in order to highlight the new insights
while taking only small departures from textbook business cycle models. A fruitful, though
challenging next step would be to add additional ingredients that enable the model to match a
wider set of business cycle and micro-level moments, e.g., adjustment costs, financial frictions,
more complicated preferences, etc., and evaluate the effects of heterogeneity in a state-of-the-
art quantitative DSGE model. Of particular interest would be the implications for capital
accumulation and the dynamics of aggregate investment, as well as the inclusion of additional
distortions/shocks that have been highlighted in the literature (for example, such as those
studied qualitatively in Section 3.1). One broader lesson of our paper is that understanding the
properties of inefficiencies – in particular, their heterogeneous effects – is crucial to reaching
accurate conclusions regarding effective macroeconomic policies.

46We use data on labor share for employees in the non-financial corporate sector from the BEA (downloaded
from the St. Louis FRED database). The coefficient estimate is likely conservative, as a similar regression in
growth rates (with a suitably modified correction term) implies a larger value for τpa .
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Appendix: For Online Publication
A Capital Wedges – Examples
This appendix provides detailed examples of frictions that lead to a capital wedge of the form described
in Sections 2 and 4.3.

A.1 Frictional Financial Intermediation
The setup builds closely on that in Gertler and Karadi (2011). At any point in time, a fraction
f of households work as bankers that manage a financial intermediary. Intermediary earnings are
transferred back to households and thus households effectively own the intermediaries, i.e., they hold
all claims on intermediary equity and liabilities. Bankers exit exogenously with probability 1− σ and
are immediately replaced by new bankers, keeping the relative proportion of bankers fixed. The average
survival time of a banker is equal to 1

1−σ .
Intermediaries own the capital stock, which they rent to firms for use in production. Firms finance

their capital by issuing equity claims to intermediaries equal to the amount of capital to be financed,
Kit+1, at price Qit. Thus intermediaries receive both the return on capital and any economic profits
that stem from firm monopoly power, which sum to firm operating profits Πit+1 as defined in (5).
Intermediaries borrow from households at the risk-free rate in order to provide funding to firms.

The balance sheet of intermediary j is given by∫
QitSijtdi = Njt +Djt (33)

Intermediary assets consist of the total market value of its ownership claims on firms, where Qit and
Sijt denote the price and quantity of claims held by intermediary j on firm i. Intermediary liabilities
consist of deposits, Djt, and book equity, or net worth, Njt. Net worth is equal to the gross return on
assets less costs of borrowing:

Njt =

∫
ReitQit−1Sijt−1di−RtDjt−1 (34)

Combining (33) and (34), we have

Njt+1 =

∫
Reit+1QitSijtdi+

(
Njt −

∫
QitSijtdi

)
Rt+1 (35)

The intermediary acts to maximize the expected discounted stream of dividends payed out to
households:

Vjt = Et [Λt+1 ((1− σ)Njt+1 + σVjt+1)] (36)

Due to a moral hazard/costly enforcement problem, intermediaries face collateral constraints that
limit their ability to obtain deposits. Specifically, the intermediary can divert a fraction θ of its assets,
which leads to the the following incentive constraint that limits its collateral:

Vjt ≥ θ
∫
QitSijtdi (37)

The intermediary chooses its holdings of firms’ securities, Sijt, to maximize (36) subject to (35)
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and (37). Substituting for Njt+1, we can set up the Lagrangian as

L = max
Sijt

Vjt + ζt

(
Vjt − θ

∫
QitSijtdi

)
which yields a first order condition

∂Vjt
∂Sijt

= θ
ζt

1 + ζt
Qit

and using the fact that

∂Vjt
∂Sijt

= QitEt
[
Λt+1

(
1− σ + σ

∂Vjt+1

∂Njt+1

)(
Reit+1 −Rt+1

)]
we can write the first order condition as

Et
[
Λt+1

(
1− σ + σ

∂Vjt+1

∂Njt+1

)(
Reit+1 −Rt+1

)]
= θ

ζt
1 + ζt

As in GK, we can show that the intermediary problem is homogeneous of degree one in Njt and
thus ∂Vjt+1

∂Njt+1
= ∂Vt+1

∂Nt+1
= Vt+1

Nt+1
, where variables without j subscripts denote aggregates of the entire

intermediary sector. Using this, we have

Et
[
Λt+1TΛt+1

(
Reit+1 −Rt+1

)]
= θ

ζt
1 + ζt

where
TΛt = 1− σ + σ

∂Vt
∂Nt

which shows that the relevant SDF pricing assets takes the form described in the text and is equal to
the household SDF, Λt, multiplied by a wedge, TΛt, that captures the shadow marginal value of net
worth to the intermediary sector. Combining this result with the optimality conditions for Kit+1 from
firm profit maximization yields an equation analogous to (6).

Aggregation and equilibrium dynamics of TΛt. The remainder of this section pertains to
the analysis in Section 4.3.

The aggregate net worth of intermediaries satisfies

Nt = σ

(∫
ReitQit−1Sit−1di+

(
Nt−1 −

∫
Qit−1Sit−1di

)
Rt

)
+Net

where Net denotes the wealth of new bankers. Defining Qt =
∫
Qitdi and the total return as Ret =∫

ReitQit−1di∫
Qit−1di

and noting that since intermediaries hold all financial claims, Sit = 1, we can write this as

Nt = σ (RetQt−1 + (Nt−1 −Qt−1)Rt) +Net

and defining aggregate book leverage as φt = Qt
Nt

,

Nt = σNt−1 ((Ret −Rt)φt−1 +Rt) +Net

Following GK, we assume that Net = neQt, i.e., a fraction ne of the total value of the assets held by
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the intermediary sector is held by new bankers.
Using homogeneity of the value function, we can write the aggregate value of intermediaries and

the shadow value of net worth as

Vt = NtEt
[
Λt+1TΛt+1

((
Ret+1 −Rt+1

)
φt +Rt+1

)]
TΛt = 1− σ + σ

Vt
Nt

The return on the aggregate portfolio is equal to Ret+1 = Πt+1+Qt+1

Qt
, where Πt+1 =

∫
Πit+1di is the

aggregate over all firm profits.
Combining these expressions and assuming the collateral constraint binds so that Vt = θQt, the

intermediary sector is characterized by

Et [Λt+1TΛt+1Rt+1] =
Qt
Nt

(
θ − Et

[
Λt+1TΛt+1

(
Ret+1 −Rt+1

)])
TΛt = 1− σ + σθ

Qt
Nt

Ret =
Πt +Qt
Qt−1

Nt = σ ((Ret −Rt)Qt−1 +Nt−1Rt) + neQt

which is a system of four equations in four unknowns – Nt, Qt, TΛt and Ret – given Πt, Rt and Λt,
which are pinned down from the firm and household problems. As discussed in the text, since the
aggregate capital stock is fixed in our model, the dynamics of the intermediary sector only affect the
other aggregate variables through TΛt.

Log-linearizing these equations, we obtain an expression for τΛt ≡ log TΛt of the form

τΛt − Et−1 [τΛt] = τΛaεt

The elasticity to the shock, τΛa, depends on the parameters of the baseline model in the text and
the three new parameters of the financial sector, θ, σ and ne. First, we follow GK and calibrate σ
directly to target an average horizon of bankers of a decade, which yields σ = 0.9724. We pin down
the remaining two parameters so that the steady state of the model matches (i) the average book
leverage ratio of the intermediary sector, which corresponds to Q

N and (ii) the price/earnings ratio on
the aggregate stock market, which corresponds to Q

Π . We obtain data on the book leverage ratio from
the Federal Reserve Flow of Funds Table F.108 (‘Domestic Financial Sectors’), calculated as the value
of financial assets divided by bank book equity. We use the average value over the period 2000-2019
of 12.3. This value is conservative – the post World War II average is 18.9 and the post-1980 average
is even higher at 20.6 (the aggregate leverage ratio was extremely high in the 1980’s and fell gradually
through about 2000, the initial year we consider). We obtain data on the price/earnings ratio from
Robert Shiller’s website and use the average value since 1980 of about 23.

To see how we use these two moments, note that the steady state equations of the financial sector
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are given by

θ =
ΛTΛR
Q
N

+ ΛTΛ (Re −R)

TΛ = 1− σ + σθ
Q

N

Re =
1
Q
Π

+ 1

1 = σ

(
(Re −R)

Q

N
+R

)
+ ne

Q

N

which can be solved for the two unknowns, θ and ne, as a function of known parameters and the two
moments. Using these values, we solve the log-linearized system for τΛa.

A.2 Limited Asset Market Participation
The setup follows closely the two agent New Keynesian (TANK) model developed in Debortoli and
Galí (2018). There are two types of households of time invariant measures θ and 1 − θ, respectively.
The first type – ‘constrained’ households – do not participate in financial markets and simply consume
their labor income in each period. The second type – ‘unconstrained’ – hold all capital and equity
shares in firms. Under Rotemberg wage setting frictions, wages are common across households. We
assume that employment is uniformly distributed across households.

Because only unconstrained households own capital, the relevant SDF for pricing capital returns

is given by ΛUt = ρ
(
CUt
CUt−1

)−γ
, where CUt denotes the consumption of an unconstrained household. By

definition, aggregate consumption is the sum of consumption across constrained and unconstrained
households:

Ct = θCKT + (1− θ)CUT

Define Gt =
CUt −CKt
CUt

as the gap between the consumption of unconstrained and constrained households.
We can rewrite this as

Ct = CUt (1− θGt)

and log-linearizing and rearranging yields an expression for unconstrained consumption as a function
of aggregate consumption and the consumption gap

cUt = ct +
θ

1− θG
gt (38)

where G denotes the gap in the non-stochastic steady state.
Next, we can also write the gap as a function of the ratio of profits to labor income:

Gt = 1− CKt
CUt

=
Πt
WtLt

1− θ + Πt
WtLt

Firms face a common shock to their price markup, denoted T pt , and choose labor to satisfy

max
Lit

PitYit − T pt WtLit
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Taking first-order conditions, aggregating and rearranging yields

Πt

WtLt
=

Yt
WtLt

− 1 =
1

α2
T pt − 1

where we assume a constant subsidy is in place to correct the steady state markup. Use this expression
to rewrite the consumption gap as

Gt =
1
α2
T pt − 1

1
α2
T pt − θ

, G =
1
α2
− 1

1
α2
− θ

and log-linearizing,

gt = Θτpt where Θ =
1
α2

(1− θ)(
1
α2
− θ
)(

1
α2
− 1
) > 0

Substituting into (38) gives
cUt = ct +

α2

1− α2
θτpt

and from here, we can obtain an expression for the relevant SDF:

log ΛUt = λt + log TΛt

where
λt = −γ (yt − yt−1)

log TΛt = − α2

1− α2
γθ∆τpt

which is expression (8).

A.3 Externalities in Preferences
Assume that the period utility function over consumption is given by

C1−γ
jt Cγλt

1− γ

a la Gali (1994), where Cjt is own consumption of individual j and Ct aggregate consumption.
The SDF for individual j is

Λ̃t = ρ
C−γjt C

γλ
t

C−γjt−1C
γλ
t−1

and since Cjt = Ct in equilibrium, we have the relevant SDF as

Λ̃t = ρ

(
Ct
Ct−1

)−γ ( Ct
Ct−1

)γλ
= ΛtTΛt

where TΛt =
(

Ct
Ct−1

)γλ
. Here, the wedge depends on the dynamics of aggregate consumption and the

extent of the externality, i.e., λ.
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A.4 Expectational Biases
Following Shefrin (2008) and Barone-Adesi et al. (2012), we define ‘bias’ or ‘sentiment’ as the ratio of a
biased subjective probability distribution over aggregate shocks used by agents to the true probability
distribution, i.e.,

ξ (εt) =
f b (εt)

f (εt)

where f b (εt) is the biased distribution and f (εt) the true one. We parameterize the bias as

ξ (εt) = e
− µ

σ2
ε
εt− µ2

2σ2
ε

Then,

f b (εt) = f (εt) ξ (εt) =
1√

2πσ2
ε

e
− (εt+µ)2

2σ2
ε

i.e., the subjective distribution is normal with a shifted mean equal to −µ and unbiased variance σ2
ε .

If µ is positive, the bias is positive for εt small enough and negative for εt large enough implying
that agents overweight bad states and underweight good ones. This is a case of over-pessimism. The
opposite holds if µ is negative, which is a case of over-optimism.

The Euler equation for firm-level investment is then

RKt−1 =

∫
ρ

(
Ct+1 (εt)

Ct−1

)−γ
MRPKit (εt) f

b (εt) dεt

and substituting,

RKt−1 =

∫
ρ

(
Ct+1 (εt)

Ct−1

)−γ
MRPKit (εt) ξ (εt) f (εt) dεt

= Et−1

[
ρ

(
Ct
Ct−1

)−γ
TΛtMRPKit

]

where the expectation is taken using the true probability distribution and the wedge is given by
TΛt = ξ (εt).

B Derivations and Proofs
This appendix provides detailed derivations and proofs for the results in Section 2.

B.1 Aggregation and Exact Solution for TFP
Here we prove Propositions 1 and 2. The proof of Proposition 2 details our assumptions on firm-level
TFP in (11) and derives exact expressions for the terms κ, ψa and ψ.

Proof of Proposition 1. To derive expression (10), aggregate the labor demand condition (4) to obtain

α2νYt = WtLt (39)
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which implies Lit
Lt

=
(
Yit
Yt

)ν
and substituting into the firm-level production function,

Yit = AitK
α1
it

((
Yit
Yt

)ν
Lt

)α2

so that
Y ν
it =

(
AitK

α1
it

(
Y −νt Lt

)α2
) ν

1−α2ν

Substituting into the final good production function (3) and rearranging yields

Yt = ΨtK
α1
t Lα2

t

where

Ψt =

(∫ (
A

ν
1−α2ν

it

(
Kit

Kt

)α)
di

) 1−α2ν
ν

To solve for relative capital, rewrite (6) as

αEt−1 [ΛtTΛtΠit] = RKt−1Kit

and integrating and imposing market clearing,

α

∫
Et−1 [ΛtTΛtΠit] di = RKt−1Kt

Combining yields the right-hand expression in (10).
To derive (9), combine (39) with the labor supply condition (2) and resource constraint to obtain

Lt =

(
α2ν

χ

) 1
1+ϕ

M
1

1+ϕ

t Y
1−γ
1+ϕ

t (40)

Substituting into the aggregate production function in (10) gives

Yt =

(
α2ν

χ

)φl
Ψ
φψ
t M

φl
t K

α1φψ
t (41)

where

φψ =
1

1− α2
1−γ
1+ϕ

φl =
α2

1 + ϕ

1

1− α2
1−γ
1+ϕ

Taking logs (and suppressing constants) yields (9).
The equilibrium is completed with the Phillips curve and consumption Euler equation. The house-
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hold problem is standard. The household solves:

max
Cjt,Wn

jt,Bjt,Kjt
E−1

∞∑
t=0

ρt

C1−γ
jt

1− γ
− χ

L1+ϕ
jt

1 + ϕ
− θw

2

(
Wn
jt

Wn
jt−1

− 1

)2

Y 1−γ
t


s.t.

Ljt =

(
Wjt

Wt

)−νw
Lt

PtCjt +Bjt + PKt (Kjt+1 −Kjt) = (1− τnt)Wn
jtLjt + (1 + it−1)Bjt−1 +RKt−1Kjt + Πjt

where Pt denotes the price of the final good, Wn
jt the nominal wage, PKt the price of capital and Πjt

distributed profits. Note that we have scaled the wage adjustment costs by the marginal utility of
consumption, C−γt , in order to express them in utility units.

The Phillips curve is given by:

0 = νw

(
MRSt
Wt

− 1

)
− θw (Πw

t − 1)
Yt
Nt

Pt
Pt−1

1

Wt−1
+ Et

[
Λt+1θw

(
Πw
t+1 − 1

)
Πw
t+1

Yt+1

NtWt

]
(42)

where we have used the assumption of a constant labor subsidy 1− τ̄n = νw
νw−1 to correct the monopoly

distortion and MRSt ≡ χLϕt
C−γt

. Without wage stickiness, i.e., when θw = 0, we have MRSt = Wt, i.e.,
the MRS always equals the real wage.

The Euler equation is given by:

C−γt = (1 + it) ρEt
[
C−γt+1

1

Πp
t+1

]
(43)

where it denotes the nominal interest rate and Πp
t+1 gross price inflation.

Proof of Proposition 2. We prove that TFP takes the form in expression (28), which nests (14) in the
case of i.i.d. shocks, i.e., δ = 0.

We assume firm-level productivity takes the form of (11), specifically,

ait = β̂iat +Oit

where Oit is defined as

Oit = ξ0 + ξββ̂
2
i + ξε2ε

2
t + ξa2

−1
Et−1 [at]

2 + ξa−1,εEt−1 [at] εt + ξa−1Et−1 [at] (44)

with

ξ0 =
α1

2
log
(
1 + σ2

βσ
2
ε

)
+ α1

(
ν

1− α2ν

)2
σ2
ε

2
, ξβ = −α1

(
ν

1−α2ν

)2
σ2
ε

2

1 + σ2
βσ

2
ε

ξε2 = −1− α2ν

ν

σ2
β

2
, ξa2−1

= −1− (α2 + α2) ν

ν

(
1 + σ2

βσ
2
ε

1− α+ σ2
βσ

2
ε

)2
σ2
β

2

ξa−1,ε = −1− α2ν

ν

1 + σ2
βσ

2
ε

1− α+ σ2
βσ

2
ε

σ2
β , ξa−1

=
ασ2

βσ
2
ε

1− α+ σ2
βσ

2
ε
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We assume the following forms for the capital wedge and the output gap:

τΛt = −τΛaεt + Et−1 [τΛt] (45)
µt = µaεt + Et−1 [µt] (46)

which are more general versions of (12) and (13). These generalizations ensure that the result holds
across all classes of monetary policy studied in the paper (e.g., the simple rules in (13) and (30) and
the full commitment optimal policy in Section 4).

We conjecture (and later verify) the following log-linear form for TFP:

ψt = Et−1 [ψt] + ψaεt (47)

Substituting the form of the profit function in (5) into (6) and rearranging yields the following
expression for the capital choice

Kit =

(
αG

(
RKt−1

)−1 Et−1

[
ΛtTΛtA

ν
1−α2ν

it Y
1−ν

1−α2ν

t W
− α2ν

1−α2ν

t

]) 1
1−α

. (48)

and relative capital stocks:

Kit

Kt
=

(
Et−1

[
ΛtTΛtA

ν
1−α2ν

it Y
1−ν

1−α2ν

t W
− α2ν

1−α2ν

t

]) 1
1−α

∫ (
Et−1

[
ΛtTΛtA

ν
1−α2ν

it Y
1−ν

1−α2ν

t W
− α2ν

1−α2ν

t

]) 1
1−α

di

(49)

Next, combine (39) with the labor supply condition (2) and resource constraint to obtain

Wt = (α2ν)
1− 1

1+ϕ χ
1

1+ϕY
1− 1−γ

1+ϕ

t M
− 1

1+ϕ

t (50)

Substituting for Yt and Wt using (41) and (50) and rearranging, we can write the expectation in (48)
as

Et−1

[
ΛtTΛtA

ν
1−α2ν

it Y
1−ν

1−α2ν

t W
− α2ν

1−α2ν

t

]
= Const.× Et−1

[
TΛtA

ν
1−α2ν

it M−κlφlt Ψ
−κψ
t

]
(51)

where Const. is a homogeneous term that picks up terms that may vary through time but are common
across firms and are known at time t− 1 and

κψ = −
(

1− ν
1− α2ν

− γ − α2ν

1− α2ν

(
1− 1− γ

1 + ϕ

))
φψ

= (γ − 1)φψ +
ν

1− α2ν
(52)

κlφl = − 1

1 + ϕ

α2ν

1− α2ν
−
(

1− ν
1− α2ν

− γ − α2ν

1− α2ν

(
1− 1− γ

1 + ϕ

))
φl

= (γ − 1)φl

⇒ κl = γ − 1 (53)

We provide further intuition for these terms in Appendix B.4.
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Using (45), (46), (47) and the definition of µt in (9), we can substitute to write

Et−1

[
TΛtA

ν
1−α2ν

it M−κlφlt Ψ
−κψ
t

]
= Const.× Et−1

[
A

ν
1−α2ν

it e−κεt
]

(54)

where κ is as defined in equation (21) and again Const. picks up terms that may vary through time
but are common across firms and known at time t− 1. Substituting into (49),

Kit

Kt
=

(
Et−1

[
A

ν
1−α2ν

it e−κεt
]) 1

1−α

∫ (
Et−1

[
A

ν
1−α2ν

it e−κεt
]) 1

1−α
di

(55)

and into the expression for TFP in (10), we obtain:

Ψt =

∫ (Ait(Et−1

[
A

ν
1−α2ν

it e−κεt
])α1

1−α2ν
1−(α1+α2)ν

) ν
1−α2ν

di


1−α2ν
ν

(∫ (
Et−1

[
A

ν
1−α2ν

it e−κεt
]) 1−α2ν

1−(α1+α2)ν

di

)α1
(56)

Substituting for ait from (44), we can write

Et−1

[
A

ν
1−α2ν

it e−κεt
]

= e
ν

1−α2ν

(
β̂iEt−1[at]+ξ0+ξββ

2
i +ξ

a2
−1

Et−1[at]
2+ξa−1Et−1[at]

)

× Et−1

[
e
εt
(

ν
1−α2ν

(β̂i+ξa−1,εEt−1[at])−κ
)

+ ν
1−α2ν

ξε2ε
2
t

]
(57)

To explicitly evaluate the integral, we make use of the fact that for a normal random variable
x ∼ N

(
x̄, σ2

x

)
where 1− 2bσ2

x > 0, the properties of Gaussian integrals imply

E
[
eax+bx2

]
=

1√
1− 2bσ2

x

e
ax̄+a2

2 σ2
x+bx̄2

1−2bσ2
x (58)

Therefore, the expectational term in (57) can be written as:

Et−1

[
e
εt
(

ν
1−α2ν

(β̂i+ξa−1,εEt−1[at])−κ
)

+ ν
1−α2ν

ξε2ε
2
t

]
=
e

1
2

(
ν

1−α2ν
(β̂i+ξa−1,εEt−1[at])−κ

)2
σ2
ε

1−2σ2
ε

ν
1−α2ν

ξ
ε2√

1− 2σ2
ε

ν
1−α2ν

ξε2
(59)
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and substituting, together with (57), into (56) and simplifying yields:

Ψt =

∫
Ait

e ν
1−α2ν

(β̂iEt−1[at]+ξβ β̂
2
i )+ 1

2

( ν
1−α2ν

(β̂i+ξa−1,ε
Et−1[at])−κ)

2
σ2ε

1−2σ2ε
ν

1−α2ν
ξ
ε2


α1(1−α2ν)

1−(α1+α2)ν


ν

1−α2ν

di


1−α2ν
ν

∫
e ν

1−α2ν
(β̂iEt−1[at]+ξβ β̂2

i )+ 1
2

( ν
1−α2ν

(β̂i+ξa−1,ε
Et−1[at])−κ)

2
σ2ε

1−2σ2ε
ν

1−α2ν
ξ
ε2


1−α2ν

1−(α1+α2)ν

di


α1

Substituting for Ait and the definitions of ξβ , ξε2 and ξa−1,ε and rearranging yields

Ψt = Aht

∫
eβ̂i ν

1−α2ν

εt+Et−1[at]
(

1−α2ν

1−(α1+α2)ν

)
− α1ν

1−(α1+α2)ν

κσ2ε
1+σ2εσ

2
β

− α1ν

1−(α1+α2)ν

Et−1[at]σ
2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν)

+σ2εσ
2
β

 di


1−α2ν
ν

∫
eβ̂i ν

1−(α1+α2)ν

Et−1[at]−
κσ2ε

1+σ2εσ
2
β

−
Et−1[at]σ

2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν)

+σ2εσ
2
β

+
1
2 ( ν

1−α2ν
)
2
σ2ε

1+σ2εσ
2
β

β̂2
i

 di


α1

where Aht = e
ξ0+ξε2ε

2
t+ξa2

−1
Et−1[at]

2+ξa−1εEt−1[at]εt+ξa−1Et−1[at]
consists of terms that are common across

firms.
Thus, we can write

log Ψt = logAht + In − Id (60)

where

In =
1− α2ν

ν
log

∫ e
β̂i

ν
1−α2ν

εt+Et−1[at]
(

1−α2ν

1−(α1+α2)ν

)
− α1ν

1−(α1+α2)ν

κσ2ε
1+σ2εσ

2
β

− α1ν

1−(α1+α2)ν

Et−1[at]σ
2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν)

+σ2εσ
2
β


di



Id = α1 log

∫ e
β̂i

ν
1−(α1+α2)ν

Et−1[at]−
κσ2ε

1+σ2εσ
2
β

−
Et−1[at]σ

2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν)

+σ2εσ
2
β

+
1
2 ( ν

1−α2ν
)
2
σ2ε

1+σ2εσ
2
β

β̂2
i

di


Both terms are Gaussian integrals over β̂i which is normally distributed, and therefore we can apply

result (58) to obtain

In = εt + Et−1 [at]
1− α2ν

1− (α1 + α2) ν
−

α1ν

1− (α1 + α2) ν

κσ2
ε

1 + σ2
εσ

2
β

−
α1ν

1− (α1 + α2) ν

Et−1 [at]σ
2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν)

+ σ2
εσ

2
β

+

(
ν

1− α2ν

)εt + Et−1 [at]
1− α2ν

1− (α1 + α2) ν
−

α1ν

1− (α1 + α2) ν

κσ2
ε

1 + σ2
εσ

2
β

−
α1ν

1− (α1 + α2) ν

Et−1 [at]σ
2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν)

+ σ2
εσ

2
β


2
σ2
β̂

2
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Id =
α1

2
log
(
1 + σ2

εσ
2
β

)
+ α1

ν
1−(α1+α2)ν

(
Et−1 [at]− κσ2

ε

1+σ2
εσ

2
β
− Et−1[at]σ2

εσ
2
β

(1−ν(α1+α2))
(1−α2ν)

+σ2
εσ

2
β

)
1

1+σ2
εσ

2
β

+ α1

(
ν

1−(α1+α2)ν

(
Et−1 [at]− κσ2

ε

1+σ2
εσ

2
β
− Et−1[at]σ2

εσ
2
β

(1−ν(α1+α2))
(1−α2ν)

+σ2
εσ

2
β

))2 σ2
β̂

2 +
1
2

(
ν

1−α2ν

)2
σ2
ε

1+σ2
εσ

2
β

1
1+σ2

εσ
2
β

Substituting into (60) yields an expression for TFP of the form

ψt = ψ + ψaεt + ψa−1Et−1 [at] + ψa−1,εEt−1 [at] εt + ψε2ε
2
t + ψa2

−1
Et−1 [at]

2

When ψa−1,ε = ψε2 = ψa2
−1

= 0 and ψa−1 = 1, we have

ψt = ψ + ψaεt + Et−1 [at] (61)

where

ψa = 1− α1 (1− α2ν)

1− (α1 + α2) ν

κσ2
εσ

2
β

1 + σ2
εσ

2
β

(62)

ψ = κσ2
ε

α1ν

1− (α1 + α2) ν

σ2
εσ

2
β

1 + σ2
εσ

2
β

−
σ2
β

2
κ2

(
1

1− α
σ2
ε

1 + σ2
εσ

2
β

)2

α1

(
1− α+ σ2

εσ
2
β

)
(63)

which verifies our conjecture in (47) and yields (14) in the i.i.d. case and (28) when at follows an AR(1)
process with persistence δ. From here, we can substitute for κ from (21) to solve for

ψa =
1− (τΛa + κlµa)ωΥ

1 + κψωΥ
(64)

and
κ =

κψ + τΛa + κlµa
1 + κψωΥ

(65)

where we have used the definition of ω = α1(1−α2ν)
1−(α1+α2)ν and to ease notation, we define Υ ≡ σ2

εσ
2
β

1+σ2
εσ

2
β
.

The remainder of the proof consists in showing that ψa−1,ε = ψε2 = ψa2
−1

= 0 and ψa−1 = 1 so that
(61) holds, and derives (62) and (63).

Proof that ψa−1,ε = 0: Combining the terms in (60),

ψa−1,ε = ξε,a−1 +
ν

1− α2ν

 1− α2ν

1− (α1 + α2) ν
− α1ν

1− (α1 + α2) ν

σ2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν) + σ2

εσ
2
β

σ2
β̂
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and substituting for the definition of ξa−1,ε:

ψa−1,ε = − ν

(1− α2ν)

1 + σ2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν) + σ2

εσ
2
β

σ2
β̂

+
ν

1− α2ν

 1− α2ν

1− (α1 + α2) ν
− α1ν

1− (α1 + α2) ν

σ2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν) + σ2

εσ
2
β

σ2
β̂

=
ν

1− α2ν
σ2
β̂

(
− (1− α2ν)

1− (α1 + α2) ν
+

1− α2ν

1− (α1 + α2) ν

)
= 0

Proof that ψε2 = 0: Combining the terms in (60),

ψε2 = ξε2 +

(
ν

1− α2ν

) σ2
β̂

2

and substituting for the definition of ξε2 :

ψε2 = −1− α2ν

ν

σ2
β

2
+

1− α2ν

ν

σ2
β

2
= 0

Proof that ψa2
−1

= 0: Combining the terms in (60),

ψa2
−1

= ξa2
−1

+
ν

1− α2ν

 1− α2ν

1− (α1 + α2) ν
− α1ν

1− (α1 + α2) ν

σ2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν) + σ2

εσ
2
β

2
σ2
β̂

2

− α1

(
ν

1−(α1+α2)ν

(
1− σ2

εσ
2
β

(1−ν(α1+α2))
(1−α2ν)

+σ2
εσ

2
β

))2 σ2
β̂

2

1
1+σ2

εσ
2
β

and substituting for the definition of ξa2
−1
:

ψ
a2−1

= −
σ2
β

2

1− ν (α1 + α2)

ν

 1 + σ2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν)

+ σ2
εσ

2
β


2

− α1

 ν
1−(α1+α2)ν

1−
σ2εσ

2
β

(1−ν(α1+α2))
(1−α2ν)

+σ2εσ
2
β

2 (
1−α2ν
ν

)2 σ2β
2

1
1+σ2εσ

2
β

+
1− α2ν

ν

 1− α2ν

1− (α1 + α2) ν
−

α1ν

1− (α1 + α2) ν

σ2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν)

+ σ2
εσ

2
β


2
σ2
β

2

=
σ2
β

2

 1 + σ2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν)

+ σ2
εσ

2
β


2 (
−

1− ν (α1 + α2)

ν
+

1− ν (α1 + α2)

ν

)
= 0
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Proof that ψa−1 = 1: Combining the terms in (60),

ψa−1
= ξa−1

+
1− α2ν

1− (α1 + α2) ν
−

α1ν

1− (α1 + α2) ν

σ2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν)

+ σ2
εσ

2
β

−
α1ν

1− (α1 + α2) ν

κσ2
ε

1 + σ2
εσ

2
β

ν

1− α2ν

 1− α2ν

1− (α1 + α2) ν
−

α1ν

1− (α1 + α2) ν

σ2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν)

+ σ2
εσ

2
β

σ2
β̂

− α1

ν
1−(α1+α2)ν

1−
σ2εσ

2
β

(1−ν(α1+α2))
(1−α2ν)

+σ2εσ
2
β


1

1+σ2εσ
2
β

− α1

− κσ2ε
1+σ2εσ

2
β

(
ν

1−(α1+α2)ν

)21−
σ2εσ

2
β

(1−ν(α1+α2))
(1−α2ν)

+σ2εσ
2
β

σ2
β̂

1
1+σ2εσ

2
β

and simplifying,

ψa−1 = ξa−1 +
1 + σ2

εσ
2
β

(1−ν(α1+α2))
(1−α2ν) + σ2

εσ
2
β

1− ν (α1 + α2)

1− α2ν

and substituting for the definition of ξa−1 :

ψa−1 =

1−ν(α1+α2)
1−α2ν

+ σ2
εσ

2
β

(1−ν(α1+α2))
(1−α2ν) + σ2

εσ
2
β

= 1

Derivation of ψa: Combining the terms in (60),

ψa = 1− ν

1− α2ν

α1ν

1− (α1 + α2) ν

κσ2
ε

1 + σ2
εσ

2
β

σ2
β̂

= 1− α1 (1− α2ν)

1− (α1 + α2) ν

κσ2
εσ

2
β

1 + σ2
εσ

2
β

Derivation of ψ: Combining the terms in (60),

ψ = ξ0 −
α1ν

1− (α1 + α2) ν

κσ2
ε

1 + σ2
εσ

2
β

+
ν

1− α2ν

 α1ν

1− (α1 + α2) ν

κσ2
ε

1 + σ2
εσ

2
β

2 σ2
β̂

2

−
α1

2
log
(
1 + σ

2
εσ

2
β

)
+ α1

(
ν

1−(α1+α2)ν

κσ2ε
1+σ2εσ

2
β

)
1

1+σ2εσ
2
β

− α1

(
ν

1−(α1+α2)ν

(
κσ2ε

1+σ2εσ
2
β

))2 σ2
β̂
2

+

1
2

(
ν

1−α2ν

)2
σ2ε

1+σ2εσ
2
β

1
1+σ2εσ

2
β

and substituting for the definition of ξ0:

ψ = κσ
2
ε

α1ν

1− (α1 + α2) ν

σ2
εσ

2
β

1 + σ2
εσ

2
β

+
1

2
σ
2
εκ

2
σ2
βσ

2
ε

1 + σ2
εσ

2
β

(
1− α2ν

ν

)2
( ν

1− α2ν

)(
α1ν

1− (α1 + α2) ν

)2
1

1 + σ2
εσ

2
β

− α1

(
ν

1− (α1 + α2) ν

)2


= κσ
2
ε

α1ν

1− (α1 + α2) ν

σ2
εσ

2
β

1 + σ2
εσ

2
β

−
σ2
β

2
κ
2

 1

1− α
σ2
ε

1 + σ2
εσ

2
β

2

α1

(
1− α + σ

2
εσ

2
β

)

which completes the proof of (14).
The proof of Proposition 2 is completed with the linearized Phillips curve and Euler equation.

Log-linearizing (42) yields expression (15):

πwt = ρEt
[
πwt+1

]
+ λwµt
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where λw ≡ α2νw
θwφl

and 1
φl
µt = mrst − wt = ϕlt + γyt − wt.

Log-linearizing (43) and combining with the resource constraint, ct = yt, yields (16):

yt = Et [yt+1]− 1

γ

(
it − Et

[
πpt+1

])

B.2 Monetary Policy Implementation
Interest rate rule. Here we show that a policy of the form (13) can be implemented with a nominal
interest rate rule that sets the nominal rate as a function of the exogenous shock. We stay within the
i.i.d. case for simplicity, but a similar result holds with persistence.

From (16), the log-linearized Euler equation is

yt = Et [yt+1]− 1

γ

(
it − Et

[
πpt+1

])
From (15) the log-linearized Phillips curve is

πwt = ρEt
[
πwt+1

]
+ λwµt

and using this along with (13), we can guess and verify that

πwt = ζwa εt, ζwa = λwµa

From (50), in deviations,

wt =

(
1− 1− γ

1 + ϕ

)
yt −

1

1 + ϕ

1

φl
µt

and from (9) and (14), in deviations,

yt = yaεt, ya = φψψa + µa

Combining,

wt = waεt, wa =

(
1− 1− γ

1 + ϕ

)
φψψa −

1− α2

α2
µa

By definition
πpt+1 = wt − wt+1 + πwt+1 = wa (εt − εt+1) + ζwa εt+1

so
Et
[
πpt+1

]
= waεt

and substituting into the Euler equation:

it = (wa − γya) εt

=

(
ϕ (1− γ)

1 + ϕ
φψψa −

1− α2 (1− γ)

α2
µa

)
εt

= iaεt
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Last, substitute for ψa from (64) to obtain

ia =
ϕ (1− γ)

1 + ϕ
φψ

1− τΛaωΥ

1 + κψωΥ
−
(
ϕ (1− γ)

1 + ϕ
φψ

κlωΥ

1 + κψωΥ
+

1− α2 (1− γ)

α2

)
µa (66)

= Φi − Φi
µµa (67)

which shows that any choice of µa in (13) can be implemented by a nominal interest rate rule, ia, that
satisfies (66).

To prove that Φi
µ > 0, we can use the fact that κψ = φψκl + ν

1−α2ν
to write

Φi
µ = (1− γ)

(
ϕ

1 + ϕ

φψκlωΥ

1 + φψκlωΥ + ν
1−α2ν

ωΥ
− 1

)
+

1

α2

Because both fractions in braces are less than one, the entire term in braces is negative and because
γ > 1, the entire term is unambiguously positive. Thus, Φi

µ > 0 and a more procyclical output gap is
associated with a less procyclical nominal interest rate.

Taylor Rule. Here we show that a policy of the form (13) can be implemented with standard
formulations of a Taylor Rule. First, we consider a rule in the output gap and expected price inflation
which is what we use in our quantitative exercise in Section 4. Next we show that a similar mapping
holds when the rule is formulated in terms of the output gap and realized wage inflation.

Consider a rule of the form
it = φyµt + φπEt

[
πpt+1

]
From the Euler equation, expression (66) gives one expression for ia, the responsiveness of the

nominal rate to the exogenous shock. Substituting for µt and Et
[
πpt+1

]
in the Taylor rule, we can

derive

it =

(
φπ

(
1− 1− γ

1 + ϕ

)
φψ

1− τΛaωΥ

1 + κψωΥ
+

(
φy − φπ

((
1− 1− γ

1 + ϕ

)
φψ

κlωΥ

1 + κψωΥ
+

1− α2

α2

))
µa

)
εt

= iTRa εt

which is a second representation of the responsiveness of the nominal rate. Equating coefficients yields

µa =

1−τΛaωΥ
1+κψωΥ φψ

(
ϕ(1−γ)

1+ϕ − φπ
(

1− 1−γ
1+ϕ

))
ϕ(1−γ)

1+ϕ φψ
κlωΥ

1+κψωΥ + 1−α2(1−γ)
α2

+ φy − φπ
((

1− 1−γ
1+ϕ

)
φψ

κlωΥ
1+κψωΥ + 1−α2

α2

)
which shows that any µa can be implemented via an appropriate choice of coefficients in the Taylor
rule, φy and φπ.

Taylor rule in wage inflation. As a second example, consider a rule that reacts to the output
gap and wage inflation, i.e.,

it = φyµt + φππ
w
t

Following similar steps as above, we can derive

µa =

ϕ(1−γ)
1+ϕ φψ

1−τΛaωΥ
1+κψωΥ

ϕ(1−γ)
1+ϕ φψ

κlωΥ
1+κψωΥ + 1−α2(1−γ)

α2
+ φy + φπλw
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B.3 Approximate Solution
Here we derive the approximate expressions in Section 2.1.

To derive (17), we use (10):

Ψt =

(∫
A

ν
1−α2ν

it

(
Kit

Kt

)α
di

) 1−α2ν
ν

For purposes of the approximation, assume Oit = 0 in (11) so that ait = β̂iat. Substituting and
approximating the TFP expression around the ergodic mean where Kit = Ki and at = 0 yields

Ψt =

(∫ (
Ki

K

)α(
1 +

ν

1− α2ν
β̂iat

)
di

) 1−α2ν
ν

Taking logs,

ψt =
1− α2ν

ν
log

(∫ (
Ki

K

)α(
1 +

ν

1− α2ν
β̂iat

)
di

)
and approximating using log x ≈ x− 1,

ψt =
1− α2ν

ν

(∫ (
Ki

K

)α(
1 +

ν

1− α2ν
β̂iat

)
di− 1

)
=

1− α2ν

ν

(∫ (
Kit

K

)α
di− 1

)
+

∫ (
Ki

K

)α
β̂idiat

=
1− α2ν

ν
log

(∫ (
Kit

K

)α
di

)
+

∫ (
Ki

K

)α
β̂idiat

= ψ + ψaat (68)

Turning to the first term, we have

ψ =
1− α2ν

ν
log

(∫ (
Kit

K

)α
di

)
At the ergodic mean, MRPKi = Const.×αKα−1

i where Const. is constant across firms, and rearrang-
ing,

Ki =

(
1

α

MRPKi

Const.

) 1
α−1

Capital market clearing gives

K =

(
1

α

1

Const.

) 1
α−1

∫
MRPK

1
α−1

i di

and combining,

Ki

K
=

MRPK
1

α−1

i∫
MRPK

1
α−1

i di
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so that

ψ =
1− α2ν

ν
log


∫
MRPK

α
α−1

i di(∫
MRPK

1
α−1

i di

)α


=
1− α2ν

ν
log

(∫
MRPK

− α1ν
1−(α1+α2)ν

i di

)
− α1 log

(∫
MRPK

− 1−α2ν
1−(α1+α2)ν

i di

)
and taking a second-order approximation to the integral terms:

ψ = −1

2

α1 (1− α2ν)

1− (α1 + α2) ν
var (mrpki)

Turning to the second term in (68), we have

ψa =

∫ (
Ki

K

)α
β̂idi

and rewriting and approximating,

ψa =

∫
eα(ki−k)β̂idi

=

∫ (
1 + α

(
ki − k

))
β̂idi

Notice that ∫ (
ki − k̄

)
β̂idi = E

[(
ki − k̄

)
β̂i

]
= E

[
ki − k̄

]
E
[
β̂i

]
+ cov

(
ki − k̄, β̂i

)
= cov

(
ki, β̂i

)
since Et

[
ki − k̄

]
≈ 0. Thus,

ψa = 1 + αcov
(
ki, β̂i

)
= 1 + α1cov (ki, βi)

To derive expression (18), write (6) as

Et−1

[
eλ̃t+mrpkit

]
= RKt−1

Taking a second-order approximation yields

Et−1 [mrpkit] +
1

2
vart−1 (mrpkit) + covt−1

(
mrpkit, λ̃t

)
+ Const. = logRKt−1

where the constant picks up terms that are common across firms. Suppressing constants gives (18).
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Proof of Proposition 3. To derive (19), use expression (55) to write

Kit = Const.×
(
Et−1

[
e

ν
1−α2ν

ait−κεt
]) 1

1−α

= Const.×
(
e

ν
1−α2ν

Et−1[ait]+
1
2

(
ν

1−α2ν

)2
vart−1(ait)+

1
2
κ2σ2

ε− ν
1−α2ν

κcovt−1(ait,εt)
) 1

1−α

where we have used ait = β̂iat and the properties of the log-normal distribution. Taking logs, rear-
ranging and suppressing constants,

kit =
1

1− α

(
logEt−1

[
A

ν
1−α2ν

it

]
− βiκσ2

ε

)
From (5) and (6),

mrpkit = Const. +
ν

1− α2ν
ait + (α− 1) kit

and substituting for kit, rearranging and suppressing constants,

mrpkit = logA
ν

1−α2ν

it − logEt−1

[
A

ν
1−α2ν

it

]
+ βiκσ

2
ε

To derive (20), approximate Et−1

[
e

ν
1−α2ν

ait
]
≈ Et−1

[
1 + ν

1−α2ν
ait

]
so that at the ergodic mean

where Et [ait] = ait = 0,

ki ≈ − 1

1− α
βiκσ

2
ε ⇒ cov (ki, βi) = − 1

1− α
κσ2

εσ
2
β

mrpki ≈ βiκσ
2
ε ⇒ var (mrpki) =

(
κσ2

ε

)2
σ2
β

and substituting into (17) yields (20).
The derivation of (21) is the same as in expression (54), which shows that that expression is exact.

B.4 Interpretation of κ
To gain intuition for κ, consider again the optimality condition for capital in (48):

Kit =

(
αG

(
RKt−1

)−1 Et−1

[
Λ̃tA

ν
1−α2ν

it Y
1−ν

1−α2ν

t W
− α2ν

1−α2ν

t

]) 1
1−α

where Λ̃t = ΛtTΛt. Taking logs and suppressing constants,

kit =
1

1− α
log

(
Et−1

[
Λ̃tA

ν
1−α2ν

it Y
1−ν

1−α2ν

t W
− α2ν

1−α2ν

t

])
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and taking a second-order approximation,

kit =
1

1− α

(
logEt−1

[
A

ν
1−α2ν

it

]
+

ν

1− α2ν
covt−1

(
ait, λ̃t +

1− ν
1− α2ν

yt −
α2ν

1− α2ν
wt

))
=

1

1− α

(
logEt−1

[
A

ν
1−α2ν

it

]
+ βi

∂

∂εt

(
λ̃t +

1− ν
1− α2ν

yt −
α2ν

1− α2ν
wt

)
σ2
ε

)
and comparing to (19), we can see

κ = − ∂

∂εt

(
λ̃t +

1− ν
1− α2ν

yt −
α2ν

1− α2ν
wt

)
i.e., κ measures the negative of the elasticity of the discounted profitability of capital to unexpected
shocks operating through the (distorted) discount factor, wage and aggregate demand.

Expressions (51) and (54) show that using the equilibrium conditions to substitute, we obtain

κ = κψψa + τΛa + κlµa

where

κψ = −
(

1− ν
1− α2ν

− γ − α2ν

1− α2ν

(
1− 1− γ

1 + ϕ

))
φψ

κl = − 1

1 + ϕ

α2ν

1− α2ν

1

φl
−
(

1− ν
1− α2ν

− γ − α2ν

1− α2ν

(
1− 1− γ

1 + ϕ

))
First, κψ captures the effects of εt through changes in endogenous aggregate TFP, ψt. The term

in parentheses measures the (negative) elasticity of discounted profitability to movements in aggregate
output, Yt. These come through movements in aggregate demand and so firm-level prices (the term

1−ν
1−α2ν

), in the (undistorted) SDF (γ) and in the wage (− α2ν
1−α2ν

(
1− 1−γ

1+ϕ

)
). Multiplying by φψ trans-

lates this elasticity with respect to output into the elasticity with respect to TFP, ψt, and multiplying
through by ψa translates the entire term into the elasticity with respect to the exogenous shock, εt.

Second, movements in εt affect the capital wedge with elasticity τΛa.
Third, κl capture the effects of εt through the output gap. The first term in the expression captures

the direct effect of µt on profitability through changes in the wage, which is the product of the elasticity
of profits with respect to the wage, − α2ν

1−α2ν
and the elasticity of the wage with respect to the output

gap, − 1
1+ϕ

1
φl
. The second term captures the effect of the wedge on profitability through changes in

output. Multiplying through by µa translates this term into an elasticity with respect to εt.
As shown in (52) and (53), these expressions reduce to

κψ = (γ − 1)φψ +
ν

1− α2ν
κl = γ − 1

C Welfare and Optimal Policy
Welfare criterion. The period utility function inclusive of the costs of adjusting wages is equal to

Ut =
C1−γ
t

1− γ
− χL

1+ϕ

1 + ϕ
− θw

2
(πwt )2 Y 1−γ

t
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and a second-order approximation around the ergodic mean (denoted subscript m) yields

Ut − Um = C1−γ
m

(
ct +

1− γ
2

c2
t −

θw
2

(πwt )2

)
− χL1+ϕ

m

(
lt +

1 + ϕ

2
l2t

)
Under our assumption that the optimal time-invariant production subsidy, 1

ν , is in place, we have
χL1+ϕ

m = α2C
1−γ
m so that

Ut − Um = C1−γ
m

(
ct − α2lt +

1− γ
2

c2
t − α2

1 + ϕ

2
l2t −

θw
2

(πwt )2

)
and using the fact that

Um =
C1−γ
m

1− γ
− χL

1+ϕ
m

1 + ϕ
=

1

φψ

1

1− γ
C1−γ
m

we can write

logUt − logUm ≈
Ut − Um
Um

= (1− γ)φψ

(
ct − α2lt +

1− γ
2

c2
t − α2

1 + ϕ

2
l2t −

θw
2

(πwt )2

)
Next, from (41), in the non-stochastic steady state (denoted with bars),

C̄ = Ȳ =

(
α2

χ

)φl
K̄α1φψ

where we have used the fact Ā = 1. At the ergodic mean,

Cm = Ym =

(
α2

χ

)φl
K̄α1φψΨ̄φψ

so that
Um
Ū

=

(
Cm
C̄

)1−γ
= Ψ̄(1−γ)φψ ⇒ logUm − log Ū = (1− γ)φψψ

and combining,

logUt − log Ū = (1− γ)φψ

(
ψ + ct − α2lt +

1− γ
2

c2
t − α2

1 + ϕ

2
l2t −

θw
2

(πwt )2

)
Define

Ut =
1

1− γ
1

φψ
log

(
Ut
Ū

)
= ψ + ct − α2lt +

1− γ
2

c2
t − α2

1 + ϕ

2
l2t −

θw
2

(πwt )2

Using

ct = φψψt + µt

lt =
1− γ
1 + ϕ

φψψt +
1

α2
µt
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we have

1− γ
2

c2
t − α2

1 + ϕ

2
l2t =

1− γ
2

(
φ2
ψψ

2
t + 2φψψtµt + µ2

t

)
− α2

1 + ϕ

2

((
1− γ
1 + ϕ

)2

φ2
ψψ

2
t +

2 (1− γ)

1 + ϕ

1

α2
φψψtµt +

(
1

α2

)2

µ2
t

)

=
1− γ

2

(
φ2
ψψ

2
t + µ2

t

)
− α2

1 + ϕ

2

((
1− γ
1 + ϕ

)2

φ2
ψψ

2
t +

(
1

α2

)2

µ2
t

)

and

1− γ
2

φ2
ψψ

2
t

(
1− α2

1− γ
1 + ϕ

)
=

1

2
(1− γ)φψψ

2
t

1

2
µ2
t

(
1− γ − 1 + ϕ

α2

)
= −1

2

1

φl
µ2
t

Last,

ct − α2lt =

(
1− α2

1− γ
1 + ϕ

)
ct −

α2

1 + ϕ

1

φl
µt

=
1

φψ
ct −

α2

1 + ϕ

1

φl
µt

=
1

φψ
(φψψt + µt)−

α2

1 + ϕ

1

φl
µt

= ψt −
(

1

φψ
− 1

φψ

)
µt

= ψt

and substituting these expressions back into Ut and using the definition of λw,

Ut = ψt −
1

2
(γ − 1)φψ

(
ψt − ψ

)2 − 1

2

1

φl
µ2
t −

1

2

α2νw
λwφl

(πwt )2

Since E−1 [ψt] = ψ, the negative of the expression is the period loss function in (25).

C.1 I.I.D. Shocks
In the i.i.d. case we have

(1− ρ)E−1

[∑
ρtψt

]
= ψ

since E−1 [ψt] = ψ. Next,

(1− ρ)E−1

[∑
ρt

1

2
(γ − 1)φψ

(
ψt − ψ

)2]
= (1− ρ)

1

2
(γ − 1)φψψ

2
aE−1

[∑
ρtε2

t

]
=

1

2
(γ − 1)φψψ

2
aσ

2
ε
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since E−1

[
ε2
t

]
= σ2

ε . Similarly,

(1− ρ)E−1

[∑
ρt

1

2

1

φl
µ2
t

]
=

1

2

1

φl
µ2
aσ

2
ε

To solve for πwt in terms of µt we use the Phillips Curve. Conjecture that

πwt = ζwa εt

Then,
ζwa εt = λwµaεt ⇒ ζwa = λwµa

and thus,

(1− ρ)E−1

[∑
ρt

1

2

α2νw
λwφl

(πwt )2

]
= (1− ρ)

1

2

α2νw
λwφl

λ2
wµ

2
aE−1

[
ρtε2

t

]
=

1

2

α2νwλw
φl

µ2
aσ

2
ε

Finally, substituting into (25),

W = −ψ + (γ − 1)φψψ
2
a

σ2
ε

2
+

1

φl
µ2
a

σ2
ε

2
+
α2νwλw
φl

µ2
a

σ2
ε

2
(69)

Optimal risk adjustment. The optimal risk adjustment solves the problem of a planner who
chooses κ to minimize (69), taking all else as given. The first order condition yields

−∂ψ
∂κ

+ (γ − 1)φψψaσ
2
ε

∂ψa
∂κ

= 0

From (62) and (63), the derivatives of ψt with respect to κ are

∂ψa
∂κ

= −ωΥ (70)

∂ψ

∂κ
= ω

ν

1− α2ν
σ2
εΥ− α1κ

(
1

1− α
σ2
ε

1 + σ2
βσ

2
ε

)2 (
1− α+ σ2

βσ
2
ε

)
σ2
β (71)

Using these expressions (along with the definitions of ω,Υ and α) and equation (62), some lengthy but
straightforward algebra yields

− ∂ψ

∂κ
+ (γ − 1)φψψaσ

2
ε

∂ψa
∂κ

= −ωΥσ2
ε (κψ − κ (1 + ωΥκψ)) (72)

and setting equal to zero and rearranging,

κ∗ =
κψ

1 + κψωΥ

which satisfies
κ∗ = ψ∗aκψ

where ψ∗a denotes the value of ψa at κ∗.
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Proof of Proposition 4. Optimal policy in the i.i.d case within the class (13) is characterized by a value
µ∗a that minimizes (69), accounting for the effects on ψ and ψa. The first order condition gives

0 = − ∂ψ

∂µa
+ (γ − 1)φψσ

2
εψa

∂ψa
∂µa

+
1

φl
σ2
εµa +

α2νwλw
φl

σ2
εµa

which we can rewrite as

0 =

(
−∂ψ
∂κ

+
γ − 1

1− α2
1−γ
1+ϕ

σ2
εψa

∂ψa
∂κ

)
∂κ

∂µa
+

1

φl
σ2
εµa +

α2νwλw
φl

σ2
εµa

Using (72) along with the definition of κ in (65) and the fact that

∂κ

∂µa
=

κl
1 + κψωΥ

we can substitute into the first order condition to derive

0 = (τΛa + κlµa)
κlωΥσ2

ε

1 + κψωΥ
+

1

φl
σ2
εµa +

α2νwλw
φl

σ2
εµa (73)

and rearranging,

µ∗a = − κlΩτΛa

1
φl

+ α2νwλw
φl

+ κ2
l Ω

= −τΛaσ
2
βΦΛ, where ΦΛ ≡

κlω
1+κψωΥ

σ2
ε

1+σ2
εσ

2
β

1
φl

+ α2νwλw
φl

+ κ2
l Ω

(74)

and Ω ≡ ωΥ
1+κψωΥ . Note that σ2

β also appears in the composite ΦΛ, but it is straightforward to verify

that ∂µ∗a
∂σ2
β
takes on the signs discussed in the text.

Costs of policy mistakes. From (73), we have the first derivative of the welfare function with
respect to µa:

∂W
∂µa

= (τΛa + κlµa)
κlωΥσ2

ε

1 + κψωΥ
+

1

φl
σ2
εµa +

α2νwλw
φl

σ2
εµa

so that the second derivative is

∂2W
∂µ2

a

=
κ2
l ωΥσ2

ε

1 + κψωΥ
+

1

φl
σ2
ε +

α2νwλw
φl

σ2
ε

which is a constant. By the fundamental theorem of calculus, can write

W (µa) =

∫ µa

x=µ∗a

W′ (x) dx+ W (µ∗a)

W′ (µa) =

∫ µa

x=µ∗a

W′′ (x) dx

where there is no constant in the second line since W′ (µ∗a) = 0.
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Then,

W (µa) =

∫ µa

x=µ∗a

∫ x

y=µ∗a

W′′ (y) dydx+ W (µ∗a)

=

(
κ2
l ωΥσ2

ε

1 + κψωΥ
+

1

φl
σ2
ε +

α2νwλw
φl

σ2
ε

)∫ µa

x=µ∗a

∫ x

y=µ∗a

dydx+ W (µ∗a)

=

(
κ2
l ωΥσ2

ε

1 + κψωΥ
+

1

φl
σ2
ε +

α2νwλw
φl

σ2
ε

)∫ µa

x=µ∗a

(x− µ∗a) dx+ W (µ∗a)

=

(
κ2
l ωΥσ2

ε

1 + κψωΥ
+

1

φl
σ2
ε +

α2νwλw
φl

σ2
ε

)
(µa − µ∗a)

2

2
+ W (µ∗a)

so that

W (µa)−W (µ∗a) =

(
κ2
l ωΥσ2

ε

1 + κψωΥ
+

1

φl
σ2
ε +

α2νwλw
φl

σ2
ε

)
(µa − µ∗a)

2

2

Since the first term is increasing in σ2
β , the expression is increasing in the extent of heterogeneity.

Optimal nominal interest rate. Combining (26) and (67), we obtain an equation for the optimal
nominal rate of the form it = i∗aat, where

i∗a = Φi + τΛaσ
2
βΦi

Λ, Φi
Λ = ΦΛΦi

µ

Substituting for ΦΛ and Φi
µ from those expressions, we can show Φi

Λ > 0 and ∂i∗a
∂σ2
β
> (<) if τΛa > (<) 0.

Optimal fiscal policy. Under fiscal policy in a flexible price environment, there are no costs of
inflation and the output gap is given by φlτlaat where τla captures the cyclicality of the labor income
tax. Following similar steps as above, we can derive the welfare loss function as

W = −ψ + (γ − 1)φψψ
2
a

σ2
ε

2
+ φlτ

2
la

σ2
ε

2
(75)

which is the analog to (69). Again following similar steps as with optimal monetary policy, we can
take the first order condition to obtain the optimal fiscal policy:

τla = − κlΩτΛa

1 + κ2
l φlΩ

= −τΛaσ
2
βΦf

Λ, where Φf
Λ ≡

κlω
1+κψωΥ

σ2
ε

1+σ2
εσ

2
β

1 + κ2
l φlΩ

(76)

Fiscal-monetary coordination. With both fiscal and monetary policy active in the sticky price
economy, the welfare function is given by

W = −ψ + (γ − 1)φψψ
2
a

σ2
ε

2
+

1

φl
(µa + φlτla)

2 σ
2
ε

2
+
α2νwλw
φl

µ2
a

σ2
ε

2

Taking first order conditions with respect to µa and τla, we can show that µ∗a = 0 and τ∗la satisfies (76),
i.e., monetary policy restores the flexible price economy by completely stabilizing inflation and fiscal
policy is set to the same value as in a flexible price economy.
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Additional distortions. With labor market distortions, the output gap is given by (µa + φlτla) εt.
With cost push shocks, we can use the Phillips curve and the method of undetermined coefficients to
show that wage inflation satisfies

πwt = (λwµa + ηa) εt

Using these, the welfare function is given by

W = −ψ + (γ − 1)φψψ
2
a

σ2
ε

2
+

1

φl
(µa + φlτla)

2 σ
2
ε

2
+
α2νw
λwφl

(λwµa + ηa)
2 σ

2
ε

2

Taking the first order condition with respect to µa, we can derive

µ∗a = −τΛaσ
2
βΦΛ − ηaΦη − τlaΦl

where

Φl =
1 + κ2

l φlΩ
1
φl

+ α2νwλw
φl

+ κ2
l Ω

Φη =

α2νw
φl

1
φl

+ α2νwλw
φl

+ κ2
l Ω

and ΦΛ is as defined in (74). Taking derivatives with respect to σ2
β verifies the signs in the text.

C.2 Persistent Shocks
Full commitment optimal policy. We assume that the policy maker has full commitment and
can specify any policy that is linear in current and past state variables. We can write such a policy as
an output gap that loads on arbitrary – and potentially infinite – lags of the exogenous shocks, i.e.,

µt =
∞∑
s=0

ζµs εt−s

Through the Phillips curve, these loadings have a one-to-one mapping into loadings of (wage) inflation
on the shocks, i.e., we can write

πwt =

∞∑
s=0

ζπs εt−s

We work with this latter formulation for much of our derivations below.
Substituting this policy function and the Phillips curve into the welfare loss function (25) and

evaluating the summations yields

W = −ψ + (γ − 1)φψψ
2
a

σ2
ε

2
+

1

φl

σ2
ε

2

∞∑
s=0

ρs
(
ζπs − ρζπs+1

λw

)2

+
α2νw
λwφl

σ2
ε

2

∞∑
s=0

ρs (ζπs )2 (77)

The risk adjustment, κ, and thus TFP (i.e., ψ and ψa) depend on the response of the output gap
to the shock at time t, ζµ0 . Using the Phillips curve, we can write

ζµ0 =
ζπ0 − ρζπ1
λw
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which shows that the TFP terms are affected by ζπ0 and ζπ1 , but not by any ζπs where s ≥ 2. Using
(72) and (65), we have

−∂ψ
∂κ

+ (γ − 1)φψψaσ
2
ε

∂ψa
∂κ

= ωΥσ2
ε

(
τΛa + κl

ζπ0 − ρζπ1
λw

)
and

∂κ

∂ζπ0
=

1

λw

κl
1 + κψωΥ

∂κ

∂ζπ1
= − ρ

λw

κl
1 + κψωΥ

Using these, the first order conditions from (77) yield

0 =
ζπs − ρζπs+1

λw
−
ζπs−1 − ρζπs

λw
+ α2νwζ

π
s , s ≥ 2

0 = −
(
τΛa + κl

ζπ0 − ρζπ1
λw

)
κlωΥ

1 + κψωΥ
+

1

φl

ζπ1 − ρζπ2
λw

− 1

φl

ζπ0 − ρζπ1
λw

+
α2νw
φl

ζπ1 , s = 1

0 =

(
τΛa + κl

ζπ0 − ρζπ1
λw

)
κlωΥ

1 + κψωΥ
+

1

φl

ζπ0 − ρζπ1
λw

+
α2νw
φl

ζπ0 , s = 0

The first order condition for s ≥ 2 can be rearranged to obtain

0 = ζπs (1 + ρ+ α2νwλw)− ρζπs+1 − ζπs−1

which is a second order difference equation with a solution of the form

ζπs =

2∑
j=1

cjb
s
j

The method of undetermined coefficients then gives

bj =

1+ρ+α2νwλw
ρ ±

√(
1+ρ+α2νwλw

ρ

)2
− 4

ρ

2

The larger root is bigger than one which would imply unbounded inflation and thus the relevant solution
is given by

ζπs = cbs, b =

1+ρ+α2νwλw
ρ −

√(
1+ρ+α2νwλw

ρ

)2
− 4

ρ

2
for s ≥ 1

Finally, substituting into the first order conditions for s = 1, 0 yields two equations in the two unknowns,
c and ζπ0 :

0 = −
(
τΛa + κl

ζπ0 − ρcb
λw

)
κlωΥ

1 + κψωΥ
+

1

φl

cb− ρcb2

λw
− 1

φl

ζπ0 − ρcb
λw

+
α2νw
φl

cb

0 =

(
τΛa + κl

ζπ0 − ρcb
λw

)
κlωΥ

1 + κψωΥ
+

1

φl

ζπ0 − ρcb
λw

+
α2νw
φl

ζπ0
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Table 4: Full Commitment vs. Optimal Simple Rule

Full Commitment Simple Rule
(1) (2)

Welfare loss (%)
Total 1.1462 1.1463
TFP level 0.9245 0.9248
TFP volatility 0.0258 0.0258
Output gap volatility 0.1709 0.1702
Inflation volatility 0.0249 0.0256

Equilibrium statistics
∆σ(ψt) (%) -26.723 -26.724
σ(µt) 1.690 1.686
σ(πwt ) 0.076 0.077
εit,ψt 0.784 0.808

which completes the characterization of optimal policy. We can map this back to obtain the optimal
loadings of the output gap on past and current shocks using the Phillips curve:

ζµs =
ζπs − ρζπs+1

λw

Optimal simple rule. Assume that monetary policy follows (30). Because κ only depends on µa,
the definitions of ψ and ψa are unchanged. Substituting the policy rule into the Phillips curve, the
method of undetermined coefficients yields

πwt =
λwµa−1

1− ρδ
at−1 +

(
ρλwµa−1

1− ρδ
+ λwµa

)
εt

Substituting in (25) and evaluating the summations, we can express the welfare loss as

W = −ψ + (γ − 1)φψψ
2
a

σ2
ε

2
+

1

φl

(
ρ

1− ρδ2
µ2
a−1

+ µ2
a

)
σ2
ε

2

+
α2ν

λwφl

(
ρ

1− ρδ2

(
λwµa−1

1− ρδ

)2

+

(
ρλwµa−1

1− ρδ
+ λwµa

)2
)
σ2
ε

2

Taking first order conditions with respect to µa−1 and µa gives two equations in two unknowns that
characterize the optimal policy.

Table 4 compares the optimal simple rule to the unconstrained full commitment optimal policy
from Table 3. Equilibrium outcomes and welfare are extremely close under the two policies, implying
that an appropriately chosen rule can approximate very well the unconstrained policy.

Full commitment fiscal policy. As with monetary policy, under a general fiscal policy with
full commitment, the fiscal authority chooses a labor market tax that loads on the full sequence of
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exogenous shocks, i.e.,

τlt =
∞∑
s=0

ζsεt−s

Following similar steps as above and assuming flexible prices, we can derive the welfare loss as

W = −ψ + (γ − 1)φψψ
2
a

σ2
ε

2
+ φl

σ2
ε

2

∞∑
s=0

ρsζ2
s

which is the analog of (77). It is easily seen that the first order conditions give ζs = 0 for s > 0, i.e.,
the optimal tax depends only on the current shock and is completely independent of lagged shocks.
Using this result and noting that ζ0 = τla in (75), we can see that the welfare loss is the same as in
that equation and optimal policy satisfies (76).

Table 5 presents the effects of optimal fiscal policy under perfectly flexible wages. Column (1)
reports results from a baseline equilibrium where we assume that there are no cyclical labor income
taxes, i.e., τla = 0. In column (2), we show outcomes under the optimal fiscal policy and in column
(3) under the optimal policy ignoring heterogeneity.47 In this case, since the capital wedge is the only
distortion (in contrast to the environment above with the pricing friction), the optimal fiscal policy
when not accounting for heterogeneity is a laissez-faire one, i.e., τla = 0. Thus, columns (1) and (3)
coincide. The first-best allocation is the same as in Table 3 so we do not repeat it here. We use ỹt to
denote the output gap, which is equal to ỹt = φlτlaεt.

The results are qualitatively (and quantitatively) similar to those in Table 3. In the baseline
equilibrium, long-run TFP is 1.4% lower than in the case with no risk adjustment in the allocation and
TFP is 29% less volatile. Notice that these outcomes are identical to column (4) in Table 3 – the flexible
price economy with laissez-faire fiscal policy is the same as the sticky price economy with complete
stabilization of inflation and the output gap (and inactive fiscal policy). Optimal fiscal policy works
to reduce both of these effects: long run TFP increases by over 0.5% and TFP volatility also rises,
though quite modestly by about 3%. In total, welfare under the optimal policy is 0.28% higher than
in the baseline equilibrium. The value of τla shows that these gains are achieved through aggressive
countercyclical tax policy (a procyclical tax): the elasticity of the tax with respect to TFP shocks is
large and positive (the negative of τla). Further, the flexible price economy gives a particularly sharp
illustration of the importance of accounting for heterogeneity when setting policy – optimal policy when
ignoring heterogeneity corresponds to the policy in the baseline equilibrium and thus, the entirety of
the welfare gains from the true optimal policy stem from addressing allocational considerations.

We can also use Table 5 to gauge the benefits from monetary-fiscal coordination. In this case, it is
straightforward to verify that just as with i.i.d. shocks, monetary policy completely stabilizes inflation
and optimal fiscal policy is then set as it would be in a flexible price economy, i.e., the optimal fiscal
policy continues to satisfy (76). This is exactly the scenario in column (2) in Table 5. Thus, comparing
the results in that column to column (3) in Table 3 gives the incremental gains of monetary-fiscal
coordination over monetary policy alone. It turns out that these gains are modest, about 0.03% of
lifetime steady state consumption. The TFP gain is also only modest, about 0.05%. In other words,
once monetary policy is optimally determined accounting for heterogeneity, the scope for additional
improvements from labor market fiscal policies is small.48

47For purposes of comparison, we do not recalibrate the value of τΛa in Table 5 versus Table 3. However,
doing so leads to only small changes in the results.

48In the simple environment here, the result largely follows from our focus on labor income taxes. If the
fiscal authority had access to two distinct cyclical taxes that did not have exactly proportional effects on labor
supply and the capital allocation (e.g., a cyclical tax on firm profits), the first-best allocation could be achieved.

72



Table 5: Heterogeneity and Optimal Fiscal Policy

Baseline Optimal Policy Ignoring Hetero.
(1) (2) (3)

Welfare loss (%)
Total 1.393 1.115 1.393
TFP level 1.385 0.873 1.385
TFP volatility 0.008 0.029 0.008
Output gap volatility 0.000 0.213 0.000

Equilibrium statistics
∆σ(ψt) (%) -28.97 -26.35 -28.97
σ(ỹt) 0.00 1.89 0.00
τla 0.00 -4.52 0.00

D Calibration
Given the behavior of the output gap in (30), there are five parameters to calibrate internally, namely,
the persistence and volatility of exogenous aggregate shocks, δ and σ2

ε , the dispersion in firm exposures
to these shocks, σ2

β̂
, the cost of changing wages, θw and the capital wedge, τΛa. Here, we first show

that the Taylor rule in (29) maps to an output gap that satisfies (30). We then detail how we set the
five remaining parameters jointly to match five moments.

Monetary policy rule. From (9), (28) and assuming (30) holds,

yt =
(
δφψ + µa−1

)
at−1 + (φψψa + µa) εt

= ya−1at−1 + yaεt

In deviations,

wt =

(
1− 1− γ

1 + ϕ

)
yt −

1

1 + ϕ

1

φl
µt

=

(
1− 1− γ

1 + ϕ

)(
ya−1at−1 + yaεt

)
− 1

1 + ϕ

1

φl

(
µa−1at−1 + µaεt

)
=

((
1− 1− γ

1 + ϕ

)
φψδ −

1− α2

α2
µa−1

)
at−1 +

((
1− 1− γ

1 + ϕ

)
φψψa −

1− α2

α2
µa

)
εt

= wa−1at−1 + waεt

Using the Phillips curve (15) along with (30), we can guess and verify that

πwt = ζwa−1
at−1 + ζwa εt (78)

However, this would not be the case in a richer environment with additional distortions, such as the labor
market distortions and cost-push shocks we study in Section 3.
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where

ζwa−1
=

λwµa
1− ρδ

ζwa =
ρλwµa−1

1− ρδ
+ λwµa

By definition

πpt+1 = wt − wt+1 + πwt+1

= wa−1 (at−1 − at) + wa (εt − εt+1) + ζwa−1
at + ζwa εt+1

=

((
1− 1− γ

1 + ϕ

)
φψδ (1− δ)− 1− α2

α2
(1− δ)µa−1 +

δλwµa−1

1− ρδ

)
at−1

+

((
1− 1− γ

1 + ϕ

)
φψ (ψa − δ)−

1− α2

α2

(
µa − µa−1

)
+
λwµa−1

1− ρδ

)
εt

−
((

1− 1− γ
1 + ϕ

)
φψψa −

1− α2

α2
µa −

ρλwµa−1

1− ρδ
− λwµa

)
εt+1

= ζpa−1
at−1 + ζpaεt + ζpε εt+1

so
Et
[
πpt+1

]
= ζpa−1

at−1 + ζpaεt

Substituting into the Taylor Rule, along with the definition of ψa gives one representation of the
nominal rate:

it = φy
(
µa−1at−1 + µaεt

)
+ φπ

(
ζpa−1

at−1 + ζpaεt

)
=

(
φy + φπ

(
1− 1− γ

1 + ϕ

)
φψδ (1− δ) + φπ

(
δλw

1− ρδ
− 1− α2

α2
(1− δ)

)
µa−1

)
at−1

+

(
φπ

(
1− 1− γ

1 + ϕ

)
φψ

(
1− τΛaωΥ

1 + κψωΥ
− δ
)

+ φπ

(
λw

1− ρδ
+

1− α2

α2

)
µa−1

+

(
φy − φπ

((
1− 1− γ

1 + ϕ

)
φψ

κlωΥ

1 + κψωΥ
+

1− α2

α2

))
µa

)
εt

= iTRa−1
at−1 + iTRa εt

Next, using the Euler equation (16),

it = γ (Et [yt+1]− yt) + Et
[
πpt+1

]
= γ

(
ya−1at −

(
ya−1at−1 + yaεt

))
+ ζpa−1

at−1 + ζpaεt

=

(
ϕ (1− γ)

1 + ϕ
φψδ (1− δ) +

(
δλw

1− ρδ
− 1− α2 (1− γ)

α2
(1− δ)

)
µa−1

)
at−1

+

(
ϕ (1− γ)

1 + ϕ
φψ

(
1− τΛaωΥ

1 + κψωΥ
− δ
)

+

(
λw

1− ρδ
+

1− α2 (1− γ)

α2

)
µa−1

−
(
ϕ (1− γ)

1 + ϕ
φψ

κlωΥ

1 + κψωΥ
+

1− α2 (1− γ)

α2

)
µa

)
εt

= iEEa−1
at−1 + iEEa εt
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which is a second representation of the nominal rate. Equating coefficients and grouping terms yields
an equation of the form

A

[
µa−1

µa

]
= B (79)

where the elements of the matrices A and B are functions of the Taylor rule coefficients, which shows
that any pair φπ and φy maps to a pair of values µa−1 and µa.

Aggregate shock process. From expression (28), we can derive the serial correlation of aggregate
TFP and the standard deviation of TFP growth as

corr (ψt+1, ψt) =
δ3σ2

a + δψaσ
2
ε

δ2σ2
a + ψ2

aσ
2
ε

(80)

std. dev. (∆ψt) =
(
δ2 (δ − 1)2 σ2

a +
(

(δ − ψa)2 + ψ2
a

)
σ2
ε

) 1
2 (81)

where σ2
a = σ2

ε
1−δ2 . For a given value of ψa (which is a function of the other parameters of the model),

these two expressions pin down the two parameters δ and σ2
ε .

Firm exposures to aggregate shocks. To estimate firm-level exposures to aggregate shocks,
we first use expression (5) to calculate firm-level capital productivity (up to a term that is time-varying
but constant across firms) as

zit = log (PitYit)− αkit = const. +
ν

1− α2ν
ait

= const. + βiat

where, as in the text, βi = ν
1−α2ν

β̂i, and the constant term captures the effects of movements in
aggregate output and wages.

Next, for each firm we estimate a time-series regression of ∆zit on aggregate TFP growth, ∆ψt.
Using expressions (11) and (28), the coefficient from this regression is equal to

βobsi = βi
δ2 − δ + 2ψa + ψaδ − ψaδ2

2ψ2
a + 2δ2 − 2ψaδ + 2ψ2

aδ − 2ψaδ2
+ const. (82)

From here, we can derive the cross-sectional standard deviation of β̂ as

σ
(
β̂i

)
= σ

(
βobsi

) 1− α2ν

ν

2ψ2
a + 2δ2 − 2ψaδ + 2ψ2

aδ − 2ψaδ
2

δ2 − δ + 2ψa + ψaδ − ψaδ2
(83)

We trim the 0.5% tails of the estimates and adjust for sampling error by applying the following
procedure: we assume that we estimate the betas with error so that

βobsi = βtruei + ei

where ei denotes the error. Assuming the error is uncorrelated with the true beta, we can write the
cross-sectional variance of the true betas as

σ2
(
βtruei

)
= σ2

(
βobsi

)
− σ2 (ei)
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and since E [ei] = 0, we have

E
[
σ2 (ei)

]
=

1

N

∑
i

E
[
e2
i

]
=

1

N

∑
i

σ̂2 (ei)

where σ̂2 (ei) denotes an unbiased estimator of the variance of the estimation error for firm i.
Finally, using the fact that the mean squared standard error of the beta estimates represents just

such an unbiased estimator, i.e., 1
N

∑
i σ̂

2 (ei) = 1
N

∑
i

(
s.e.

(
βobsi

))2, we correct the estimate of the
cross-sectional dispersion as

E
[
σ2
(
βtruei

)]
= σ2

(
βobsi

)
− 1

N

∑
i

(
s.e.

(
βobsi

))2

i.e., we substitute E
[
σ2
(
βtruei

)]
for σ2

(
βobsi

)
in equation (83).

Wage adjustment cost. From (30), the output gap is equal to

µt = µa−1at−1 + µaεt

and from (78), wage inflation is given by

πwt =
λwµa−1

1− ρδ
at−1 +

(
ρλwµa−1

1− ρδ
+ λwµa

)
εt

From here, we can derive the coefficient from the regression of wage inflation on the output gap,
e.g., the ‘slope’ of the Phillips curve as

cov (πwt , µt)

var (µt)
= λw

µ2
a−1

(1−ρδ)(1−δ2)
+ µa

(
ρµa−1

1−ρδ + µa

)
µ2
a−1

1−δ2 + µ2
a

(84)

Recalling that λw = α2νw
θwφl

, the coefficient is decreasing in the adjustment cost, θw. Note that µa−1 and
µa are functions of the other model parameters, including the coefficients in the Taylor rule.

Capital wedge. Using (82), we can calculate βi (up to a constant) from the regressions of firm-level
on aggregate productivity growth. To derive an exact solution for mrpkit, use (5) and (6) to write

MRPKit = αGY
1−ν

1−α2ν

t A
ν

1−α2ν

it W
− α2ν

1−α2ν

t Kα−1
t

(
Kit

Kt

)α−1

Substituting from (55),

MRPKit = αGY
1−ν

1−α2ν

t A
ν

1−α2ν

it W
− α2ν

1−α2ν

t Kα−1
t


(
Et−1

[
A

ν
1−α2ν

it e−κεt
]) 1

1−α

∫ (
Et−1

[
A

ν
1−α2ν

it e−κεt
]) 1

1−α
di


α−1
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Using (59), collecting terms and taking logs,

mrpkit = Ht + βi

(
εt −

ξa−1,ε
ν

1−α2ν
Et−1 [at]

1 + σ2
βσ

2
ε

+
κσ2

ε

1 + σ2
βσ

2
ε

)
− 1

2
β2
i

σ2
ε

1 + σ2
βσ

2
ε

where Ht collects all terms that are common across firms.
As a normally distributed random variable with mean ν

1−α2ν
, we have cov

(
β2
i , βi

)
= 2 ν

1−α2ν
σ2
β and

hence,

cov (mrpkit, βi) =
κ− ν

1−α2ν

1 + σ2
βσ

2
ε

σ2
εσ

2
β

where we have used the fact that Et−1 [at] and εt are mean zero and so do not affect the expected
covariance. Thus, the coefficient from a regression of mrpkit on βi as specified in (31) is equal to

λβ =
κ− ν

1−α2ν

1 + σ2
εσ

2
β

σ2
ε

which is the exact analog of the approximate slope described in the text. Substituting for κ from (65)
and rearranging,

τΛa =
(
1 + σ2

εσ
2
β (1 + κψω)

)(λβ
σ2
ε

+
1

1 + σ2
εσ

2
β

ν

1− α2ν

)
− κψ − κlµa (85)

Expressions (80), (81), (83), (84), (85) and the mapping between the two Taylor rule and output
gap coefficients derived in (79) yield seven equations in the seven parameters to be calibrated that can
be jointly solved for their values.
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