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The Agreement Theorem (Aumann, 1976) states that if
two Bayesian agents start with a common prior, then
they cannot have common knowledge that they hold
different posterior probabilities of some underlying
event of interest. In short, the two agents cannot
“agree to disagree.” This result applies in the classical
domain where classical probability theory applies. But
in non-classical domains, such as the quantum world,
classical probability theory does not apply. Inspired
principally by their use in quantum mechanics,
we employ signed probabilities to investigate the
epistemics of the non-classical world. We find that
here, too, it cannot be common knowledge that two
agents assign different probabilities to an event of
interest. However, in a non-classical domain, unlike
the classical case, it can be common certainty that
two agents assign different probabilities to an event
of interest. Finally, in a non-classical domain, it cannot
be common certainty that two agents assign different
probabilities, if communication of their common
certainty is possible – even if communication does not
take place.
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1. Introduction
In the domain of classical probability theory, Aumann (1976) proved the fundamental result that
Bayesian agents cannot agree to disagree. Two agents Alice and Bob begin with a common prior
probability distribution on a state space. Next, they each receive different private information
about the true state and form their conditional (posterior) probabilities qA and qB of an
underlying event of interest. Then, if these two values qA and qB are common knowledge
between Alice and Bob, they must be equal: qA = qB . By “common knowledge“ is meant that
Alice knows Bob’s probability is qB , Bob knows Alice’s probability is qA, Alice knows Bob knows
her probability is qA, Bob knows Alice knows his probability is qB , and so on indefinitely. This is
the Agreement Theorem.

The role of common knowledge in this result is crucial. To conclude that qA = qB , it is not
sufficient that Alice and Bob know each other’s probabilities. It is not even enough that they
know these probabilities, and know they know them to some high finite order. Examples in
which this condition allows qA ̸= qB are well known in the interactive epistemology literature
(Geanakoplos and Polemarchakis, 1982; Aumann and Brandenburger, 1995). The condition of
common knowledge is tight.

The Agreement Theorem is considered a basic requirement in classical epistemics. It has been
used to show that two risk-neutral agents, starting from a common prior, cannot agree to bet with
each other (Sebenius and Geanakoplos, 1983), to prove “no-trade” theorems for efficient markets
(Milgrom and Stokey, 1982), and to establish epistemic conditions for Nash equilibrium (Aumann
and Brandenburger, 1995).

In this paper we ask what is the status of the Agreement Theorem when classical probability
theory does not apply. In the physical domain, the canonical case is quantum mechanics, where
the fundamental Bell’s Theorem (Bell, 1964) says that no “local hidden-variable” theory can model
the results of all quantum experiments. However, it can be shown (Abramsky and Brandenburger,
2011) that if signed probabilities on states are allowed, then there is a phase-space representation
for all no-signaling models (Popescu and Rohrlich, 1994), which is a family of models that
(strictly) includes those realizable within quantum mechanics. A phase-space model can be
thought of as a canonical hidden-variable model, where the different states are precisely the
different values the hidden variable can take. A signed probability measure is a measure that
can assign negative values to certain events, while still assigning probability 1 to the whole space.

In fact, the use of signed probabilities in quantum mechanics goes back even earlier, to
the Wigner “quasi-probability distribution” (Wigner, 1932), which is widely used in quantum
mechanics – for example, in the field of quantum optics (Kenfack and Życzkowski, 2004). Dirac
(1942) and Feynman (1987) also promoted the use of quasi- or signed probabilities in quantum
mechanical calculations. Kaszlikowski and Kurzyński (2023) continue this tradition with their
proposal for treating the “nebit,” which is a negative bit, as the basic unit of stochastic negativity.

Bell’s Theorem applies to a two-qubit system. Signed probabilities also arise in phase-space
representations of a one-qubit system, under certain conditions. Brandenburger, La Mura, and
Zoble (2022) derive the qubit from an entropic uncertainty principle stated on phase space. In
their framework, there are quantum states whose only phase-space representations that respect
the uncertainty bound involve negative probabilities. Onggadinata, Kurzyński, and Kaszlikowski
(2023) derive the qubit with its full dynamics via an entropic invariance principle involving signed
probabilities.

In probability theory, there is a finite analog to the de Finetti representation theorem for
infinite sequences of exchangeable random variables (de Finetti, 1931), if mixing is via a
signed probability measure (Dellacherie and Meyer, 1982, pp.46-47; Jaynes, 1986; Kearns and
Székely, 2006; Janson, Konstantopoulos, and Yuan, 2016). Turning again to physics, this permits
an exchangeability derivation of Fermi-Dirac statistics, paralleling an infinite exchangeability
derivation of Bose-Einstein statistics (Bach, Blank, and Francke, 1985; Kearns and Székely, 2006).
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Decision theory is another area in which signed probabilities have emerged. Perea (2022)
axiomatizes expected utility theory for conditional preference relations, where such a relation
assigns to every possible probability measure on a (finite) set of states that the decision maker
might hold, a preference relation over the decision maker’s (finite) set of actions. The motivation
is game theory, where one typically specifies the game matrix, and hence the players’ payoff
or utility functions, but one thinks of a player as contemplating different beliefs (probability
measures) they might hold concerning the actions chosen by other players. The question is
when is such a conditional preference relation representable by a single utility function, with
the expectation of utility taken under the given probability measure. Perea (2022) proposes a set
of axioms that yields such a representation, but the axiomatization requires the decision maker to
entertain signed as well as ordinary probability measures on the states.

Ke and Zhao (2022) includes new representation results for decision making under
ambiguity. In their set-up, a preference relation satisfies the Gilboa and Schmeidler (1989)
certainty-independence axiom if and only if it has a “cautiously optimistic linear utility”
representation (equivalent to a utility function that is locally exactly linear almost everywhere).
The representation involves a possibly signed (subjective) probability measure over states.

A crucial common feature in the quantum mechanical and statistical mechanical applications
of signed probabilities is that all observable events must receive probability between 0 and 1. It is
less clear-cut in the decision-theoretic application that this condition must hold, since the setting
might be a one-off decision and probabilities could be subjective rather than frequentist. This said,
in the subjective case, too, it would be decidedly unorthodox to allow negative probabilities on
observable events. To be “conservative,” we shall require all observable events in the formalism
of this paper to receive probability in [0, 1].

Returning to the classical Agreement Theorem as our starting point, we establish three results,
where the second and third use the “common certainty” modality (to be defined later) in place of
common knowledge:

(i) In a non-classical domain, with signed probabilities, and as in the classical domain, it
cannot be common knowledge that two agents assign different probabilities to an event
of interest.

(ii) In a non-classical domain, and unlike the classical domain, it can be common certainty
that two agents assign different probabilities to an event of interest.

(iii) In a non-classical domain, it cannot be common certainty that two agents assign different
probabilities to an event of interest, if communication of their common certainty is
possible – even if communication does not take place.

We formulate and prove these results in the following sections of the paper.

2. Example
Figure 1 depicts an epistemic state space that contains a non-classical component. There are four
states, labeled ω1 through ω4. There is a common prior, and the prior probabilities of the states are
given in parentheses. Notice that the (prior) probability of state ω3 is negative, which cannot, of
course, happen in a classical setting. There are two agents, Alice and Bob. Alice receives private
information about the true state as represented by the red sets partitioning the state space, while
Bob receives private information as represented by the blue sets. Finally, we are interested in the
agents’ respective (conditional) probabilities of the event E = {ω1, ω3, ω4} when the true state of
the world is ω1.
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Figure 1: Singular disagreement in the non-classical world

Let p denote the common prior (which is a signed probability measure). When the true state is
ω1, Alice’s information is {ω1}, so that her conditional probability of E is equal to

p({ω1, ω3, ω4} ∩ {ω1})
p({ω1})

=
p({ω1})
p({ω1})

=
+ 1

4

+ 1
4

= 1.

Bob’s information is {ω1, ω2, ω3}, so that his conditional probability of E is equal to

p({ω1, ω3, ω4} ∩ {ω1, ω2, ω3})
p({ω1, ω2, ω3})

=
p({ω1, ω3})

p({ω1, ω2, ω3})
=

+ 1
4 − 1

4

+ 1
4 + 1

2 − 1
4

=
0

+ 1
2

= 0.

Thus, at state ω1, Alice assigns probability 1 to E and Bob assigns probability 0 to E. Next,
we find the event, which we depict F , that Bob assigns probability 0 to E. We know that ω1 ∈ F .
Bob’s probability of E is again 0 at states ω2 or ω3. At state ω4, Bob’s probability of E is

p({ω1, ω3, ω4} ∩ {ω4})
p({ω4})

=
p({ω4})
p({ω4})

=
+ 1

2

+ 1
2

= 1,

so that F = {ω1, ω2, ω3}. At state ω1, Alice’s probability of F is

p({ω1, ω2, ω3} ∩ {ω1})
p({ω1})

=
p({ω1})
p({ω1})

=
+ 1

4

+ 1
4

= 1.

Thus, at state ω1, Alice assigns probability 1 to E while at the same time she assigns probability
1 to Bob’s assigning probability 0 to E. Say Alice is certain of an event E at a state ωi if she
assigns probability 1 to E, conditional on the information she has at state ωi. Then the scenario
we have just constructed is one where there is a state at which Alice is certain of an event
E, and Alice is certain Bob is certain of the complementary event Ec. Call this a situation of
singular disagreement (like calling two probability measures mutually singular). Evidently, this
phenomenon can arise in a non-classical environment. In the next section, we will verify that
singular disagreement cannot arise in a classical environment.

In a model with negative probabilities, events that receive probability in [0, 1] are observable
in the sense that they can be associated to frequencies. In the example, all partition cells, namely
{ω1} , {ω2, ω3, ω4} , {ω1, ω2, ω3}, and {ω4}, receive probability in (0, 1]. So, they are observable
and, in fact, strict positivity of these events ensures that the agents can also condition on them.
The event E receives probability in (0, 1], which means it is observable and non-trivial. We will
consider observability further in Section 4.
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3. General Formulation
For the general case, let the state space be a finite set Ω, and let Alice and Bob have partitions
of Ω denoted by PA and PB , respectively. For ω ∈Ω, the event PA(ω) consists of the member of
Alice’s partition that contains ω; similarly for PB(ω). Let p denote the common (possibly signed)
prior probability measure on Ω. We will assume throughout that all members of the partitions PA

and PB receive non-zero probability, so that conditioning is well defined.
We begin with a remark about the classical domain.

Remark 3.1. Suppose that p is non-negative and fix an event E. Let F be the event that Bob assigns
probability 0 to E, i.e.,

F =
{
ω′ ∈Ω : p(E | PB(ω′)) = 0

}
.

Then there is no state ω at which Alice assigns probability 1 to E ∩ F .

Proof. Suppose there is such a state ω. Then p(E | PA(ω)) = 1 and p(F | PA(ω)) = 1. Note that we
can write F =

⋃
i∈I πi where each πi ∈PB and I is a (finite) index set. In particular, there is a

πi ∈PB such that p(E | πi) = 0 and p(πi | PA(ω))> 0.
We now have three events A (=PA(ω)), B (=E), and C (= πi) such that p(B |A) = 1, p(B |

C) = 0, and p(C |A)> 0. From p(B |A) = 1 we get p(A ∩ (C\B)) = 0. From p(B |C) = 0 we get
p(A ∩ (B ∩ C)) = 0. It follows that p(A ∩ C) = 0, contradicting p(C |A)> 0.

Remark 3.1 says that singular disagreement is impossible in the classical domain, verifying
that this phenomenon is non-classical. The example of the previous section makes use of the fact
that signed probability measures do not satisfy monotonicity. Specifically, in the proof just given,
the step p(A ∩ (B ∩ C)) = 0 because p(B |C) = 0 fails with signed probabilities.

Next, we provide formal definitions of knowledge, common knowledge, certainty, and
common certainty.

Definition 3.1. Alice knows an event E at state ω if PA(ω)⊆E.

At state ω, Alice’s information is that the true state lies in PA(ω). It follows that the true state
therefore lies in any superset of PA(ω), i.e., that Alice knows all such events obtain. This is the
standard definition of knowledge in the interactive epistemology literature. Some notation: The
meet (finest common coarsening) of Alice’s and Bob’s partitions is written PA ∧ PB . The member
of the meet that contains state ω is written (PA ∧ PB)(ω).

Definition 3.2. An event E is common knowledge between Alice and Bob at a state ω if (PA ∧
PB)(ω)⊆E.

This definition of common knowledge is easily shown to be equivalent to the recursive
definition (Alice knows E occurs, Bob knows E occurs, Alice knows Bob knows E occurs, etc.).
Aumann (1976) proves this fact.

Definition 3.3. Alice is certain of an event E at state ω if p(E | PA(ω)) = 1.

At state ω, Alice’s information is that the true state lies in PA(ω). She is certain of E if
she assigns probability 1 to E, conditional on this information. This is the standard epistemic
definition of certainty.

Next, fix an event E and probabilities qA and qB . We define the event that it is common
certainty that Alice assigns probability qA to E and Bob assigns probability qB to E. To do so,
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let

A0 = {ω ∈Ω : p(E | PA(ω)) = qA} ,

B0 = {ω ∈Ω : p(E | PB(ω)) = qB} ,

and, in addition, let

An+1 =An ∩ {ω ∈Ω : p(Bn | PA(ω)) = 1} ,

Bn+1 =Bn ∩ {ω ∈Ω : p(An | PB(ω)) = 1} ,

for n≥ 0. The set A0 contains all the states where Alice assigns probability qA to E. The set A1

contains all the states where the previous statement for Alice is true and, in addition, Alice is
certain “Bob assigns probability qB to E.” The set A2 contains all the states where the previous
statement for Alice is true and, in addition, Alice is certain “Bob assigns probability qB to E and
he is certain she assigns probability qA to E.” And so on. In this way, the set An contains all the
states where Alice has nth-order certainty. Likewise for Bob and the sets Bn, for all n.

Definition 3.4. It is common certainty at a state ω∗ that Alice assigns probability qA to E and Bob
assigns probability qB to E if

ω∗ ∈
∞⋂

n=0

An ∩
∞⋂

n=0

Bn.

A special case is where qA = qB = 1. Then we can simply say that the event E is common
certainty between Alice and Bob at ω∗.

It is clear that if Alice knows an event E at state ω, then she is certain of E at ω. It is also true that
common knowledge of E implies common certainty of E. (Proof: We just gave the first step. Next,
if Alice knows Bob knows E, then she knows Bob is certain of E, since knowledge is monotonic.
From this, Alice is certain Bob is certain of E. The argument can be continued to all higher levels.)
But certainty is a strictly weaker modality than knowledge. (Also, common certainty is strictly
weaker than common knowledge, as we will see in Theorem 4.2 below.) Figure 2 demonstrates
this claim in two different instances – the first classical and the second non-classical. In both
instances, Alice is certain of E but she does not know E.

Figure 2: Classical and non-classical knowledge-certainty distinction

4. Agreement and Disagreement
We can now state and prove a knowledge-based Agreement Theorem for both the classical and
non-classical domains.

Theorem 4.1. Fix a common prior (which may be a signed probability measure) and an event E. Suppose
at a state ω∗ it is common knowledge that Alice’s probability of E is qA and Bob’s probability of E is qB .
Then qA = qB .
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Proof. The hypothesis of the theorem is that

(PA ∧ PB)(ω∗)⊆A0 ∩B0.

Now, we can write (PA ∧ PB)(ω∗) =
⋃

i∈I πi where each πi ∈PA and I is a (finite) index set.
Since (PA ∧ PB)(ω∗)⊆A0, we have p(E | πi) = qA for all i∈ I . We also have

p(E | (PA ∧ PB)(ω∗)) =
∑
j∈I

p(πj |
⋃
i∈I

πi)× p(E | πj),

so that p(E | (PA ∧ PB)(ω∗)) is an affine combination of qA’s and is therefore equal to qA. We can
run exactly the same argument with B in place of A to conclude that p(E | (PA ∧ PB)(ω∗)) = qB .
It follows that qA = qB .

It is of note that we did not need to impose any observability conditions in this theorem,
making it fully general. (If we did add the condition that members of PA and PB receive strictly
positive – as opposed to non-zero – probability, then the affine combination in the proof would
become a convex combination and the proof would be exactly that in Aumann, 1976.)

Theorem 4.1 is similar to results in Leifer and Duarte (2022) on the impossibility of common
knowledge of disagreement, established in the setting of generalized probability theory or GPT
(Barrett, 2007). GPT is a multi-purpose operational framework for describing physical theories,
including quantum mechanics.

In the classical domain, with a non-negative prior, there is also an Agreement Theorem for the
certainty modality: If two agents have common certainty of each other’s probabilities of E, then
these probabilities must be equal, just as with common knowledge. We do not give a direct proof
here, since the result will be a corollary to our Theorem 5.1 later. Taken together, Theorem 4.1
(for the classical case of a non-negative prior) and the analog for common certainty indicate that
the distinction between the knowledge and certainty modalities is “small” – at least, for current
purposes – in the classical domain. But the distinction is very significant in the non-classical
domain, because the Agreement Theorem for certainty no longer holds there, as we are about
to see.

We suggest that the certainty modality in epistemics is at least as interesting as the knowledge
modality. Certainty is subjective in that an agent can be certain of an event E, but E need not
happen. Knowledge is objective and satisfies the truth axiom: If an agent knows E, then E must
occur. The subjective modality seems more in line with the idea that Alice and Bob are Bayesian
agents forming their personalistic beliefs, beliefs about beliefs, and so on, about some event. For
Alice to know Bob’s beliefs (or knowledge) requires that she have direct information about his
epistemic state. This introduces an ex post element to the analysis in the sense that Bob’s epistemic
state would need to be observed by Alice (via some information flow). The certainty modality
allows an ex ante analysis where agents form prospective beliefs about events, just as in Bayesian
decision theory (Savage, 1954). In any case, we think the point is made that the certainty modality
is important to study and, as we now show, it is very different from the knowledge modality in
the non-classical world.

Theorem 4.2. There is a structure (Ω, p,PA,PB), where p is a signed prior, and there is an event E and
a state ω such that it is common certainty at ω that Alice and Bob hold different probabilities of E.
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Figure 3: Common certainty of disagreement in a non-classical world

Proof. The state space and prior are depicted in Figure 3. As in our earlier example, Alice’s
partition comprises the red sets and Bob’s partition comprises the blue sets. The event E =

{ω2, ω4, ω5, ω6} and the true state is ω5. The numbers ϵ and η are small and positive with ϵ ̸= η.
Set

A0 = {ω ∈Ω : p(E | PA(ω)) = 1− 2ϵ}= {ω1, ω2, ω5},

B0 = {ω ∈Ω : p(E | PB(ω)) = 1− 2η}= {ω3, ω4, ω5},
so that

A1 =A0 ∩ {ω ∈Ω : p(B0 | PA(ω)) = 1}= {ω1, ω2, ω5},

B1 =B0 ∩ {ω ∈Ω : p(A0 | PB(ω)) = 1}= {ω3, ω4, ω5},

from which An+1 =An and Bn+1 =Bn for all n≥ 1. It follows that ω5 ∈
⋂∞

n=0 An ∩
⋂∞

n=0 Bn.
At state ω5, it is common certainty between Alice and Bob that she assigns probability 1− 2ϵ to
E while he assigns probability 1− 2η to E, which proves the theorem.

Note that, by Theorem 4.1, the agents’ probabilities of E cannot be common knowledge at
ω5 (because then the probabilities must be the same). Alternatively, this can be checked directly
via the definition of common knowledge in terms of the join of PA ∧ PB (which is the whole
space). So, this example also serves to establish the claim that common certainty is strictly weaker
than common knowledge. Note also that the example exhibits a high degree of observability:
All members of PA and PB get strictly positive probability (+1/2). The event of interest E gets
probability 1− ϵ− η > 0.

5. Communication
Common knowledge and common certainty are different from communication between agents.
If Alice announces the probability she assigns to an event of interest E, then this communicates
information to Bob and he can update his partition PB to incorporate this information. Vice versa
if Bob communicates to Alice, who can then announce new probabilities. This process could
continue. The communication of probabilities this way was first studied by Geanakoplos and
Polemarchakis (1982).

Let us try to go down this road in the non-classical environment of this paper. Go back to
the structure in Figure 3. The event of interest is E = {ω2, ω4, ω5, ω6} as before, but now the true
state is ω1. Alice begins by announcing her probability 1− 2ϵ of E to Bob. When Bob hears this
announcement, he tries to make an inference about what information Alice has – specifically,
whether she has the information {ω1, ω2, ω5} (as, in fact, she does) or the information {ω3, ω4, ω6}
(which she does not), or whether he cannot tell which piece of information she has. Start with the
second case. Bob can reason that, in this case, Alice would have announced a probability 1− 2η of
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E. Since she did not, he can infer that she did not observe {ω3, ω4, ω6}. Next is the case that Alice
has the information {ω1, ω2, ω5}. Bob can reason that, in this case, Alice would have announced a
probability 1− 2ϵ of E. Since she did just this, he can infer that she indeed observed {ω1, ω2, ω5}.
Summing up, Bob will update his own information to

{ω1, ω2, ω6} ∩ {ω1, ω2, ω5}= {ω1, ω2}.

Now ask what probability of E will Bob announce. We can try to calculate this as

p(E ∩ {ω1, ω2})
p({ω1, ω2})

=
−ϵ

0
,

which is obviously ill-defined.
What has gone “wrong” in this process is that Bob is unable to process the information

contained in Alice’s announcement in a meaningful way. There is the negative number −ϵ in
the numerator and the zero in the denominator. We argue that both features pose a conceptual
problem. In systems where the agents are able to communicate about an event of interest,
we propose that those communications should lead to well-defined and classical conditional
probabilities regarding that event. That is, the resulting conditional probabilities should all lie
in the interval [0, 1]. Communication – even if it concerns a non-classical system – should be
considered observable and therefore classical.

We next impose a condition on our epistemic structures that ensures all communication
regarding an event of interest is classical. In doing this, we depart from the Geanakoplos
and Polemarchakis (1982) protocol in a key way. We focus on the initial announcements that
Alice and Bob can make, i.e., announcements relative to their initial partitions PA and PB ,
respectively. But we allow that these announcements might be of any order. That is, Alice might
announce her probability of E, or she might announce her certainty (or not) of what Bob’s
probability of E is, or she might announce her certainty (or not) about Bob’s certainty, and
so on. Likewise for Bob. This is different from the Geanakoplos-Polemarchakis protocol, which
permits announcements only of (conditional) probabilities of E, but allows these announcements
to continue, as Alice and Bob successively update their information. With our approach, we are
able to (re-)establish an agreement theorem even in the non-classical domain. We leave it as open
whether or not such a result is possible if an appropriate notion of classicality is imposed on the
Geanakoplos-Polemarchakis protocol adapted to our setting.

Formally, for all n≥ 0, let

M(n)
A = {An, A

c
n},

M(n)
B = {Bn, B

c
n},

where An and Bn are the sets defined back in Section 3.

Definition 5.1. For any π,E ⊆Ω, say π is regular with respect to E if p(π)≥ 0 and p(π ∩ E) lies in
[0, p(π)].

Definition 5.2. A structure (Ω, p,PA,PB) is communication-enabled with respect to E if, for each
n≥ 0, all π ∈PA ∨M(n)

B and all π′ ∈PB ∨M(n)
A are regular with respect to E.

These definitions capture our requirement that if an agent were to communicate their initial
certainty at any level, the calculation that the other agent would then make is classical.

Remark 5.1. Fix π, π′ ⊆Ω with π ∩ π′ = ∅. Then if π and π′ are both regular with respect to E, so is
π ∪ π′.

We have assumed throughout that all members of PA and PB receive non-zero probability.
Definition 5.2 assumes nonnegative probabilities. So, at this point, we are assuming that all
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members of PA and PB receive strictly positive probability. This implies that the agents are able
to observe and condition on their own information using the rules of ordinary probability.

Theorem 5.1. Fix a structure (Ω, p,PA,PB) that is communication-enabled with respect to E and
suppose that at a state ω∗ it is common certainty that Alice’s probability of E is qA and Bob’s probability
of E is qB . Then qA = qB .

Proof. Begin by defining An and Bn, for n≥ 0, as before. Since Ω is finite, there is an N (finite)
such that for all n≥N , An+1 =An and Bn+1 =Bn. We have

AN+1 =AN ∩ {ω ∈Ω : p(BN | PA(ω)) = 1}=AN ,

from which p(BN | PA(ω)) = 1 for all ω ∈AN .
Now AN =

⋃
i∈I πi where each πi ∈PA and I is a (finite) index set. We just saw that p(BN |

πi) = 1 for all such πi. But p(BN |AN ) is a convex combination of the p(BN | πi)’s, so p(BN |
AN ) = 1. It follows that p(AN\BN ) = 0, which we will use shortly.

Observe that AN ⊆A0 and so p(E | πi) = qA for these same πi. By a second convex
combination argument, p(E |AN ) = qA.

Next, observe that {AN , Ac
N} is a coarsening of PA (by definition of the An’s). From this and

M(N)
B = {BN , Bc

N}, it follows that {AN\BN , (AN\BN )c} is a coarsening of PA ∨M(N)
B . By the

hypothesis of the theorem and Remark 5.1, it follows that AN\BN is regular with respect to
E. Using p(AN\BN ) = 0, it follows that p((AN\BN ) ∩ E) = 0, and so p(E ∩AN ∩BN ) = p(E ∩
AN ). Again using p(AN\BN ) = 0, we get p(AN ∩BN ) = p(AN )> 0 (the set AN is a union of
members of PA). We conclude that p(E |AN ∩BN ) = p(E |AN ) = qA. We can run exactly the
same argument with B in place of A to conclude that p(E |AN ∩BN ) = qB . It follows that qA =

qB .

We are not committed to Theorem 5.1 over Theorem 4.2. There is no formal or even obvious
conceptual inconsistency in the set-up of Theorem 4.2. Still, it is interesting to discover from
Theorem 5.1 that if we impose the requirement that each agent be able to process classically
an announcement by the other agent of their certainty at any level, then the non-classical
phenomenon of common certainty of disagreement disappears. There is a subtle point here. No
actual communication needs to take place. Rather, we can think of our requirement as saying
that it would be possible for the two agents to confirm their disagreement, not just have common
certainty of their disagreement, if they wanted to.

A corollary to Theorem 5.1 is that common certainty of disagreement is impossible in
the classical world, as we mentioned earlier. This follows because the condition of being
communication-enabled is automatically satisfied in the case of non-negative probabilities.

Consider another communication scenario: There is a third agent, Charlie, who starts out with
no information about the true state. Alice and Bob are able to communicate with Charlie, but
not with each other. (They do not necessarily undertake the communication.) We can ask if this
scenario, too, rules out common certainty of disagreement. Here is the appropriate analog to
Definition 6.

Definition 5.3. A structure (Ω, p,PA,PB) is third-party communication-enabled with respect to
E if, for each n≥ 1, each π ∈M(n)

A ∨M(n)
B is regular with respect to E.

The idea is that the third party, Charlie, starts with the trivial partition {Ω, ∅} and is then able
to make classical calculations with the information which announcements by Alice and Bob might
give him. Alice and Bob do not communicate with each other.

Theorem 5.2. Fix a structure (Ω, p,PA,PB) that is third-party communication-enabled with respect
to E and suppose that at a state ω∗ it is common certainty that Alice’s probability of E is qA and Bob’s
probability of E is qB . Then qA = qB .
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Proof. From M(N)
A = {AN , Ac

N} and M(N)
B = {BN , Bc

N} it follows that {AN\BN , (AN\BN )c} is

a coarsening of M(N)
A ∨M(N)

B . Using the hypothesis of the theorem and Remark 2, we conclude
that AN\BN is regular with respect to E. The rest of the proof follows exactly the proof of
Theorem 5.1.

Finally, in this section, we note that a complete treatment of updating of probabilities in the
non-classical domain would require the development of some new probability theory. The issue
is that, as can happen in a classical setting, an agent may come to learn that an event to which
they had assigned probability 0 actually obtains. We saw this in the example above where we got
a zero in the denominator of Bob’s updated probability. In the classical domain, the answer to
the probability-0 problem is to move to the concept of a conditional probability system (Rényi,
1955). This is a family of probability measures – one measure for each event an agent might learn,
including events to which the agent assigns probability 0. What would be needed in our non-
classical domain is an extension of the concept of a conditional probability system to signed
probabilities, which would be an exercise in pure probability theory that, to the best of our
knowledge, has not been undertaken.

6. Conclusion
We end with some comments on the realizability of common certainty of disagreement (CCD)
as in Theorem 4.2. In the physical domain, it can be shown that CCD is impossible when
observing quantum systems, but possible when observing superquantum (no-signaling) systems
(Contreras-Tejada et al., 2021). In the language of this paper, we can say that quantum mechanics
somehow controls the “extent” of negativity in phase-space probability representations so that
CCD cannot arise. This finding suggests there may be promise in proposing the impossibility
of CCD (of “agreeing to disagree”) as an axiom in the program to derive quantum mechanics
from underlying physical principles. (See Contreras-Tejada et al., 2021 for further discussion and
references to the axiomatization program.)

It would be interesting to connect this paper to the study of contextuality scenarios in quantum
and superquantum systems. In particular, Cabello (2013) extends the usual contextuality scenario
involving a single observer to allow for a copy of the system with a second observer. He identifies
a principle he calls “global exclusivity” that exactly identifies the maximum quantum violation of
certain non-contextuality inequalities. Combining formal epistemics as in the current paper with
this physical principle could be a promising direction.

In the setting of decision theory – more precisely, multi-person decision theory – Theorem 4.2
indicates that if we equip agents with signed probability measures, we can get highly non-classical
behavior, such as betting between risk-neutral agents. With this in mind, we wonder whether it
might be interesting to elevate the impossibility of CCD to an (epistemic) multi-person decision-
theoretic principle. This might offer a disciplined departure from classical behavior and appears
to be an open direction.

A preference basis for a decision theory with signed probabilities (perhaps, building on Perea,
2022 or Ke and Zhao, 2022) would be of interest in its own right and might also lead to a preference
basis for certainty in a non-classical environment. There is a preference basis for certainty in
classical decision theory. An agent is certain of an event E if and only if the complementary event
Ec is Savage-null; that is, if all acts conditional on Ec are deemed indifferent. An open question
is what would be the analogous definition in the signed case. (We are grateful to Miklós Pintér for
raising this question.)

A different non-classical examination of the Agreement Theorem is undertaken by Khrennikov
and Basieva (2014) and Khrennikov (2015). They consider quantum-like observers of a quantum
system who employ either the knowledge or certainty modality. Their approach does not deliver
an Agreement Theorem even for quantum systems.

Summing up, our Theorem 4.2 establish a new kind of non-classical strangeness in the form of
the possibility of CCD. At the same time, we also prove that common knowledge of disagreement
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and CCD in communication-enabled structures remain impossible (Theorems 4.1, 5.1, and 5.2).
We believe these results open the door to further investigation of epistemics in non-classical
worlds.
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Kaszlikowski, Shaowei Ke, Paveł Kurzyński, Andrés Perea, Miklós Pintér, Takuro Yamashita, Noson Yanofsky,
and Chen Zhao provided valuable comments. We thank two referees and the editor for proposing substantial
improvements to the paper. Eduardo Zambrano provided initial inspiration for this project. Our results were
first announced in an extended abstract published in Proceedings of the 2019 Workshop on Logics for the Formation
and Dynamics of Social Norm (LFDSN 2019), ed. by Beishui Liao, Fenrong Liu, and Huimin Dong, at https://
www.xixilogic.org/events/wp-content/uploads/2022/05/lfdsn2019-proceedings.pdf.

References
1. Abramsky S, Brandenburger A. 2011. The sheaf-theoretic structure of non-locality and

contextuality. New Journal of Physics, 13.
2. Aumann R. 1976. Agreeing to disagree. Annals of Statistics, 4.
3. Aumann R, Brandenburger A. 1995. Epistemic conditions for Nash equilibrium. Econometrica,

63.
4. Bach A, Blank H, Francke H. 1985. Bose-Einstein statistics derived from the statistics of classical

particles. Lettere al Nuovo Cimento, 43.
5. Barrett J. 2007. Information processing in generalized probabilistic theories. Physical Review A,

75.
6. Bell J. 1964. On the Einstein Podolsky Rosen paradox. Physics, 1.
7. Brandenburger A, La Mura P, Zoble S. 2022. Rényi entropy, signed probabilities, and the qubit.

Entropy, 24.
8. Cabello A. 2013. Simple explanation of the quantum violation of a fundamental inequality.

Physical Review Letters, 110.
9. Contreras-Tejada P, Scarpa G, Kubicki A, Brandenburger A, La Mura P. 2021. Observers of

quantum systems cannot agree to disagree. Nature Communications, 12.
10. De Finetti B. 1931. Funzione caratteristica di un fenomeno allatorio. Atti della R. Accademia

Nazionale dei Lincii Ser. 6, Memorie, Classe di Scienze, Fisiche, Matematiche e Naturali, 4.
11. Dellacherie C, Meyer PA. 1982. Probabilities and Potential B. Amsterdam: North-Holland.
12. Dirac P. 1942. The physical interpretation of quantum mechanics. Proceedings of the Royal

Society of London (Series A: Mathematical and Physical Sciences), 180.
13. Feynman R. 1987. Negative probability. In Hiley B, Peat F (eds.), Quantum Implications: Essays

in Honour of David Bohm. London: Routledge and Kegan Paul.
14. Geanakoplos J, Polemarchakis H. 1982. We can’t disagree forever. Journal of Economic Theory,

28.
15. Gilboa I, Schmeidler D. 1989. Maxmin expected utility with non-unique prior. Journal of

Mathematical Economics, 18.



13

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

16. Janson S, Konstantopoulos T, Yuan L. 2016. On a representation theorem for finitely
exchangeable random vectors. Journal of Mathematical Analysis and Applications, 442.

17. Jaynes E. 1986. Some applications and extensions of the de Finetti representation theorem. In
Goal P, Zellner A (eds.), Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de
Finetti. Amsterdam: North-Holland.
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