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Abstract

This paper examines how market power affects coverage in markets with adverse

selection. We show that market power decreases coverage for individuals who are less

willing to pay for insurance but increases coverage for those with a higher willingness to

pay. Under weak conditions, a monopolist always excludes a positive mass of customers,

whereas competitive firms do not. However, to avoid cream skimming, competitive firms

provide less coverage than a monopolist for consumers who are willing to pay more.

The welfare comparison between competitive and monopolistic markets depends on

whether the distortion at the bottom (higher under monopoly) exceeds the distortion

at the top (higher under competition). Using simulations based on an empirical model

of preferences and costs, we find that both effects are quantitatively important although

the effect at the bottom dominates. Therefore, the market power distortion exceeds

the cream skimming distortion from competition in our calibrated model.
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1 Introduction

Access to insurance coverage is crucial for both efficiency and equity reasons. For instance, in

the past century, all high-income countries implemented measures to ensure access to health

insurance. While most of them opted for public provision, the United States chose to keep

health insurance privately provided. Several policies were introduced to increase insurance

coverage, including tax benefits for employer-provided plans, free health insurance for the

poor, elderly, and disabled, risk adjustments, penalties for lacking coverage through individual

and employer mandates, and setting up health insurance exchanges. While these policies have

considerably reduced the number of uninsured individuals, over 30 million Americans remain

without coverage. Understanding why so many people do not have health insurance is a key

policy issue.

In this paper, we show that a general prediction of market power in insurance is that a

positive fraction of the population does not purchase any coverage. In contrast, under mild

assumptions, all consumers buy some coverage in competitive markets. These theoretical

predictions suggest that market power may be an important feature of health insurance

markets in the United States. This is consistent with a large body of empirical work, which

finds that health insurance markets are highly concentrated and insurers have substantial

market power.1

A monopolist faces a trade-off between efficiency and rent extraction. Reducing cover-

age is costly because risk-averse customers would pay more than the actuarially fair price

to increase their coverage. However, this reduction in coverage allows the firm to charge

higher premiums to those willing to pay more. We show that the rent-extraction effect al-

ways dominates for customers at the lower end of the willingness-to-pay spectrum. Thus, a

monopolistic insurer profits from excluding a positive mass of customers. In contrast, in a

competitive market with endogenous contracts, there is no exclusion of risk-averse consumers.

Therefore, consumers with lower willingness to pay buy less coverage under monopoly than

in a competitive market, with some not purchasing coverage at all.

However, the effect of market power on coverage is heterogeneous across consumers. Those

with a high willingness to pay obtain higher coverage under monopoly than in competitive

markets (see Figure 1). This is because competitive firms have an incentive to cream skim,

stealing safer consumers from other firms by offering less coverage. A monopolist does not

face the risk of losing its safest customers to other firms, so it can provide more coverage to

those at the higher end of the willingness-to-pay spectrum.

We illustrate the quantitative importance of these effects in a calibrated health insurance

model based on Einav et al. (2013). As depicted in Figure 2, there is substantial exclusion

1See Dafny (2010); Dafny et al. (2012); Starc (2014); Ho and Lee (2017); Cabral et al. (2018); Cicala et al.
(2019); Polyakova and Ryan (2021; 2023); Saltzman et al. (2021); and Tebaldi (Forthcoming).



3

Figure 1: Coverage under Monopoly and Perfect Competition (Rothschild & Stiglitz)
Notes: Coverage in example 2. Consumers have CARA utility with risk aversion A = 1

2 and face a loss of
L = 1. The horizontal axis depicts each consumer’s loss probability, which is uniformly distributed between
5 and 95 percent. The blue line depicts each consumer’s coverage with perfect competition. The red line
depicts coverage with a monopoly. A monopolist provides less coverage for types with a low loss probability
and excludes those with low enough loss probabilities. Competitive firms provide more coverage for those
types and do not exclude any types. However, consumers with high loss probabilities receive less coverage
under perfect competition than with a monopolist.

with monopoly, with 70 percent of consumers not purchasing any coverage. In contrast, with

perfect competition, all consumers buy coverage. At the top, 12 percent of consumers pur-

chase a higher coverage under monopoly than under perfect competition. In our simulations,

both consumer and total surplus are higher under perfect competition than under monopoly.

Specifically, the average annual consumer surplus equals $3,047 in the competitive equilib-

rium and $1,308 under monopoly. The average annual total surplus is again $3,047 in the

competitive equilibrium (insurers make zero profits) and $2,223 with a monopolist.

While our simulation considers a model of health insurance, our theoretical results apply

to many other markets with adverse selection, including other insurance and credit markets.

See Einav et al. (2021) for a survey of the literature.

Our paper is structured as follows. In Section 2, we introduce the general model, ex-

amples, and main definitions. Section 3 presents the results for one-dimensional types. We

then generalize the results to multi-dimensional types in Section 4. Section 5 illustrates the

quantitative implications of our results using a calibrated health insurance model. We review

the related literature in Section 6. Then, Section 7 concludes. Intuitive proofs are presented

in the text, whereas more technical proofs are in the appendix.
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Figure 2: Coverage under Monopoly and Perfect Competition (Calibrated Model)
Notes: Distribution of coverage choices in the numerical example from Section 5. The horizontal axis depicts

the contracts chosen by consumers, with coverage ranging between 0 to 100 percent of expenses. Blue

bars represent the distribution of coverage in the competitive equilibrium. Orange bars represent coverage

with a monopolist. With monopoly pricing, approximately 70 percent of consumers are uninsured. With

perfect competition, all consumers purchase some coverage. However, more consumers purchase policies with

coverage levels above 70 percent with monopoly than with perfect competition.

2 Model

2.1 The Model

Following a large applied literature, we assume that consumers have quasi-linear utility. This

assumption is consistent with insurance models in which consumers have constant absolute

risk aversion.2 Consumer private information is represented by a K-dimensional type θ drawn

from Θ ≡ [θ1, θ1] × ... × [θK , θK ] ⊂ RK
+ . Types are distributed according to an absolutely

continuous measure µ on Θ with a continuous probability density function f with full support.

A type-θ consumer’s utility from buying a policy with coverage level x ∈ [0, 1] and pre-

mium p ∈ R is:

u(θ, x)− p. (1)

The firm’s expected profit from selling a policy with coverage x to a type-θ consumer is:

p− c(θ, x). (2)

2Constant absolute risk aversion is a common assumption in the applied literature (see, for example,
Cardon and Hendel (2001), Handel (2013), Einav et al. (2013), Handel et al. (2015), and Hackmann et al.
(2015)). All of our results hold with arbitrary utility in the standard setting of Rothschild and Stiglitz (1976).
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The surplus from providing coverage x to type θ is:

S(θ, x) ≡ u(θ, x)− c(θ, x).

The willingness to pay and the cost of providing zero coverage are both zero: u(θ, 0) =

c(θ, 0) = 0 for all θ.

We maintain the following assumptions throughout the paper:3

Assumption 1. The utility function u : RK
+ × [0, 1]→ R+ is twice continuously differentiable

and is strictly increasing in θ for each x > 0. The cost function c : RK
+ × [0, 1] → R+ is

continuously differentiable.

This framework is general enough to allow for multidimensional heterogeneity, as formu-

lated in many empirical models. Ex-post moral hazard can be incorporated through the

definitions of the utility and cost functions. By specifying the utility function appropriately,

it also allows for other types of consumer behavior, such as overconfidence, inertia to abandon

a default choice, or misunderstanding the benefits from being insured.4

2.2 Examples

The following examples clarify how our general framework can be applied to different settings.

The first example is the model we use in our simulations (Figure 2 and Section 5):

Example 1. (Einav et al. (2013); Azevedo and Gottlieb (2017)) Consumers face a stochastic

health shock l, which is normally distributed with mean M and variance S2.5 After the shock,

they decide how much to spend on health services e. Consumers are heterogeneous in their

distribution of health shocks (parametrized by M and S2), risk aversion parameter A, moral

hazard parameter H, and initial wealth W . Utility after the shock equals

CE(e, l;x, p,H) = [W − p− (1− x)e] + [(e− l)− 1

2H
(e− l)2].

Substituting the privately optimal health expenditure, e = l + Hx, we can write the utility

after the shock as

CE∗(l;x, p,H) = W − p− l + l · x+
H

2
· x2.

3Note that u and c are also defined for types outside of the type space Θ. This allows us to obtain
conditions on the type space Θ, while ensuring that preferences and costs are well defined.

4See Handel (2013) and Polyakova (2016) for inertia and Handel and Kolstad (2015) and Handel et al.
(2019) for other frictions.

5Appendix A generalizes the model for arbitrary distributions and presents simulations for the truncated
normal.
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Consumers have constant absolute risk aversion (CARA), so their expected ex-ante utility

equals

E[−e−A·CE∗(l;x,p,H)|l ∼ N(M,S2)].

Using the expression for the normal distribution, the model can be described as in (1) and

(2) with

u(θ, x) = xM + x(2− x)
S2A

2
+ x2H

2
, and (3)

c(θ, x) = xM + x2H.

The consumer’s willingness to pay for coverage depends on three terms: average covered

expenses xM , utility from risk-sharing x(2 − x) · S2A/2, and utility from overconsumption

of health services x2H/2. Since the firm has to pay the covered expenses, the first term

is subtracted from the firm’s profits. Over-consuming health services (moral hazard) costs

firms twice as much as consumers are willing to pay for it. Risk neutral firms have no cost

of absorbing risk. The value of risk-sharing is increasing in coverage, in the consumer’s risk

aversion, and in the variance of health shocks.

Farinha Luz et al. (2023) consider a special case of example 1 without moral hazard (H = 0

for all consumers). We now turn to simpler, one-dimensional models.

Example 2. (Rothschild and Stiglitz, 1976; Chade and Schlee, 2021) Consumers have initial

wealth W and face a potential loss of L ∈ (0,W ). They have heterogeneous loss probabilities

θ ∈ [θ, θ], which is their private information, where 0 ≤ θ < θ < 1. Risk-neutral firms

sell insurance policies. An insurance policy with coverage x repays x · L if the consumer

experiences a loss.

Consumers have constant absolute risk aversion, so their preferences can be represented

as in equation (1) with

u(θ, x) =
ln
[
1− θ + θeAL

]
− ln

[
1− θ + θeAL(1−x)

]
A

, (4)

where A > 0 is the coefficient of risk aversion.6 Firm profits can be written as in (2) with

c(θ, x) = xθL.

The next example follows Rothschild-Stiglitz in assuming that types are one-dimensional,

but does not restrict losses to be binary:

6All of our results hold in this model with arbitrary concave utility functions.
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Example 3. (Levy and Veiga, 2022) Consider the following willingness to pay and cost of

providing coverage functions

u(M,x) = xM + g(x), and (5)

c(M,x) = xM,

where g : [0, 1] → R+ is a strictly concave function satisfying g(0) = 0, g′(x) > 0 for x < 1,

and g′(1) = 0. In this model, types are one-dimensional and correspond to the consumer’s

expected loss: θ = M .

The two examples below help illustrate results that hold beyond insurance.

Example 4. (Lemons Market with a Divisible Asset) Buyers are privately informed about

the quality of an asset, represented by the type θ.7 The valuations of buyers and sellers are:

u(θ, x) = αθx, and (6)

c(θ, x) = θx,

where α > 1 (so there are positive gains from trade).

Example 5. (Non-Linear Pricing) In models of non-linear pricing, the seller’s cost does not

depend on the buyer’s type: c(θ, x) = c(θ̃, x) for all θ, θ̃.

2.3 Definitions

An allocation is a measure α over Θ × [0, 1] such that the marginal distribution satisfies

α|Θ = µ. That is, α({θ, x}) is the measure of θ types who purchase contract x. A price is

a measurable function p : [0, 1]→ R with p(0) = 0, with p(x) denoting the premium charged

for coverage x.8 A mechanism (p, α) consists of a price p and an allocation α. A mechanism

(p, α) is incentive compatible if for almost every (θ, x) with respect to α, consumers pick

their contracts optimally:

u(θ, x)− p(x) = sup
x′∈X

u(θ, x′)− p(x′).

An allocation α is deterministic if for each θ, there exists x(θ) such that α(θ, [0, 1]) =

α(θ, x(θ)). That is, a deterministic allocation assigns the same contract to each type.

7This example assumes that buyers are the informed party. It is straightforward to relabel players and
renormalize prices and quantities to allow buyers to be uninformed and sellers to be informed.

8The requirement that zero coverage has a premium of zero corresponds to the standard participation
constraint.
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The monopolist’s expected profits from a mechanism (p, α) are given by the expectations

over the firm’s profits (2) with respect to the measure α. A mechanism maximizes the mo-

nopolist’s profits if: (a) it is incentive compatible, and (b) no other incentive-compatible

mechanism gives higher expected profits. We use the following shorthand notation for con-

ditional moments:

Ex[c|α] = E[c(θ̃, x̃)|α, x̃ = x].

That is, Ex[c|α] is the expectation of c(θ̃, x̃) according to the measure α and conditional on

coverage x̃ = x. Our competitive equilibrium concept is based on Azevedo and Gottlieb

(2017):

Definition 1. The pair (p∗, α∗) is a competitive equilibrium if

1. For each contract x, firms make zero profits: p∗(x) = Ex[c|α∗] almost everywhere

according to α∗.

2. Consumers select contracts optimally: for almost every (θ, x) with respect to α∗, we

have

u(θ, x)− p∗(x) = sup
x′∈X

u(θ, x′)− p∗(x′).

3. For every contract x′ ∈ X with strictly positive price, there exists (θ, x) in the support

of α∗ such that

u(θ, x)− p∗(x) = u(θ, x′)− p∗(x′) and c(θ, x′) ≥ p∗(x′).

That is, every contract that is not traded in equilibrium has a low enough price for

some consumer to be indifferent between buying it or not, and the cost of this consumer

is at least as high as the price.

Conditions 1 and 2 state that consumers and firms to optimize taking prices as given.

Since condition 1 only requires prices to be equal to the average cost of consumers almost

everywhere, it does not place restrictions on the prices of contracts that are not traded.

Therefore, these two conditions alone do not rule out unreasonable equilibria where firms

do not offer a contract because they fear that it will attract overly risky consumers when,

in fact, if they offered this contract, they would attract consumers with much lower risk.

Condition 3 is a refinement that rules out this type of “unreasonably pessimistic” beliefs. It

requires contracts that are not traded to be such that, if their prices were slightly reduced,

some consumers would choose to purchase them and the firm would not make money.9

9As Azevedo and Gottlieb (2017) show, condition 3 can be obtained from requiring the equilibrium to be
robust to small perturbations in the spirit of proper equilibrium (Myerson (1978)). Moreover, competitive
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Existence of competitive equilibrium follows from Theorem 1 and Proposition 1 in Azevedo

and Gottlieb (2017). Existence of a mechanism that maximizes the monopolist’s profits fol-

lows from Theorem 5.11 in Kadan et al. (2017). The following lemma will be useful in our

characterization of competitive equilibria.

Lemma 1. Suppose Assumption 1 holds and let (p∗, α∗) be a competitive equilibrium. Then,

p∗ is Lipschitz continuous and, therefore, Lebesgue almost everywhere differentiable.

3 One-Dimensional Types

To illustrate our results, we start with the case of one-dimensional types: Θ = [θ, θ] ⊂ R+.

We establish three results: (i) there is no exclusion with perfect competition, (ii) a monopolist

excludes a positive mass of consumers if θ is low enough, and (iii) high enough types get more

coverage with a monopolist than with perfect competition. These results are generalized in

Section 4.

3.1 No Exclusion with Perfect Competition

We impose the following assumption:

Assumption 2. There exist ε > 0 and bounded functions v, κ : [0, 1] → R such that
∂u
∂x

(θ, x) ≥ θv(x) and c(θ, x) ≤ θκ(x) for all x < ε and all θ > θ. Moreover, κ is differ-

entiable at 0 and v(0) > κ′(0) ≥ 0.

The first part of the assumption is technical. It requires marginal utility to be bounded

from below and cost to be bounded from above for coverages close to zero. The second part

is more economically substantial. It states that a small amount of coverage increases surplus,

implying that exclusion is not a property of the first best.10

Proposition 1. Suppose Assumptions 1 and 2 hold and let (p∗, α∗) be a competitive equilib-

rium. Then there is no exclusion: α∗ (Θ, 0) = 0.

Proof. Fix a competitive equilibrium in which a positive mass of types are excluded. Suppose

that for every ε > 0 there exists x ∈ (0, ε) such that no type is indifferent between their

equilibrium contract and x. Then, by condition 3 of Definition 1, the price of that contract

equilibrium corresponds to the limit of a game in which horizontally differentiated firms with small scales
compete through prices, as the amount of horizontal differentiation vanishes. For one-dimensional settings
with single crossing, competitive equilibrium gives the same allocation as in Riley (1979) (see Subsection
3.3).

10It is perhaps not surprising that if there is exclusion in the first-best allocation, some types may be
excluded in the competitive equilibrium. However, in most applications, it is not first-best optimal to exclude
a positive mass of types (for example, because consumers are risk averse and firms are risk neutral).
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must be zero, which implies that no type can be excluded (since any such type prefers to

purchase x > 0 small enough at price zero over zero coverage). Thus, for any contract in a

neighborhood of zero, there must exist some type for whom picking that contract maximizes

utility. Moreover, again by condition 3, the cost of selling x to that type must be weakly

higher than the price. Letting m(x) ≥ θ denote such a type, we must have:

(p∗)′(x) =
∂u

∂x
(m(x), x) ≥ m(x)v(x) (7)

at all points of differentiability of x (where the equality follows from the first-order condition

and the inequality uses the bound in Assumption 2), and

p∗(x) ≤ c(m(x), x) ≤ m(x)κ(x) (8)

where the first inequality follows from condition 3 of Definition 1 and the second uses the

bound in Assumption 2.

Integrate (7) and use p∗(0) = 0 to obtain:∫ x

0

m(x̃)v(x̃)dx̃ ≤ p∗(x) ≤ m(x)κ(x),

where the last inequality uses (8). Divide both sides by x > 0 and rearrange:

m(x)
κ(x)

x
−
∫ x

0
m(x̃)v(x̃)dx̃

x
≥ 0.

Note that this condition must hold for all x > 0. We consider the limit of this expression as

x ↘ 0. By the Fundamental Theorem of Calculus, limx↘0

∫ x
0 m(x̃)v(x̃)dx̃

x
= m(0+)v(0), where

m(0+) ≡ limx↘0m(x). Therefore, the condition above for x in a neighborhood of x = 0

requires:

m(0+) [κ′(0)− v(0)] ≥ 0.

Since v(0) > κ′(0) (Assumption 2), this condition requires m(0+) ≤ 0. Since m(x) ≥ θ for

all x, this is a contradiction if θ > 0. If instead θ = 0, it implies m(0+) = 0, so at most

the lowest type (if θ = 0), which has zero measure, can be excluded. Therefore, there is no

equilibrium in which a positive mass of types is excluded.

Note that allowing contracts to be endogenously determined is key for the no-exclusion

result. With a single exogenous contract, the competitive equilibrium often excludes some

types, and it may even exclude almost all types, as in Akerlof (1970).11

11Other restrictions to the contract space, such as a minimum coverage, may also generate exclusion (see
Azevedo and Gottlieb (2017) and Levy and Veiga (2022)). However, maximum coverage regulations, which set
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3.2 Exclusion with Monopoly

In this subsection, we show that exclusion is optimal whenever the type space includes types

with low enough surplus from coverage. To make this statement formal, we need to define

what it means for a type to have low enough surplus. This is done by considering a “safe

type” (θ = 0), which may not be in the type space (since we may have θ > 0):

Assumption 3. (Safe type) ∂S
∂x

(0, x) ≤ 0 for all x > 0 and ∂2u
∂θ∂x

(0, 0) > 0.

Assumption 3 states that providing coverage does not increase the safe type’s surplus

(∂S
∂x

(0, x) ≤ 0), and types close enough to the safe type have a higher willingness to pay for

coverage than the safe type ( ∂2u
∂θ∂x

(0, 0) > 0).12

To understand Assumption 3, consider the Rothschild and Stiglitz (1976) model, where

a type corresponds to the loss probability. An individual with θ = 0 has probability zero of

having a loss and therefore has both a zero willingness to pay and zero cost of coverage. If

θ > 0, all types have a positive probability of experiencing a loss, so they all have a positive

surplus from purchasing coverage. In fact, the surplus-maximizing contract for all types is

full insurance. Nevertheless, as we show next, a monopolist excludes a positive mass of types

as long as θ is close enough to zero.

Proposition 2. Suppose Assumptions 1 and 3 hold. There exists θ∗ > 0 such that if θ < θ∗,

then any mechanism that maximizes the monopolist’s profits excludes a set of types with

positive measure: α∗(Θ, 0) > 0.

Proof. For simplicity, we restrict attention to deterministic allocations here (see the Sup-

plementary Appendix D for the general proof, which also allows for stochastic allocations).

Fix an incentive-compatible allocation x(·) and let U(θ) ≡ u(θ, x(θ)) − p(x(θ)) denote the

indirect utility of type θ. By the envelope theorem, incentive compatibility implies:

U̇(θ) =
∂u

∂θ
(θ, x(θ)) > 0. (9)

Since U(·) is increasing in θ, the exclusion region is an interval: [θ, θ∗]. If all types participate

(θ∗ = θ ), any allocation that maximizes the firm’s profits must give zero utility to the lowest

type. If there is exclusion (θ∗ > θ), all types who do not participate get zero utility. So in

either case we have U(θ∗) = 0.

the contract space as [0, x̄] for x̄ < 1, can be accommodated by renormalizing the coverage level x. Therefore,
the no-exclusion result from Proposition 1 generalizes to settings in which regulators ban sufficiently generous
plans (“cadillac plans”). Note that the no-exclusion result is immediate if there is no adverse selection (such as
in example 5), since the competitive equilibrium has each good supplied at its marginal cost, so all consumers
with a positive surplus buy positive amounts.

12This second requirement is related to but substantially weaker than the single-crossing property (see
Assumption 4 below).
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Integrate equation (9) to obtain:

U(θ)− U(θ∗)︸ ︷︷ ︸
0

=

∫ θ

θ∗

∂u

∂θ̃
(θ̃, x(θ̃))dθ̃.

Substituting in the firm’s expected profits and integrating by parts, we obtain the virtual

surplus expression: ∫ θ

θ∗

[
S(θ, x(θ))− ∂u

∂θ
(θ, x(θ)) · 1− F (θ)

f(θ)

]
f(θ)dθ.

For the moment, suppose θ = 0. To show that any optimal allocation excludes some types,

we verify that the integrand of the expression above is negative for θ close enough to zero.

The integrand evaluated at θ = 0 equals

S(0, x(0))− ∂u

∂θ
(0, x(0)) · 1

f(0)
.

Note that S(0, x) ≤ 0 for all x (Assumption 3) and ∂u
∂θ

(0, x) > 0 for all x > 0 (Assumption 1).

Therefore, the expression above is strictly negative if x(0) > 0, implying that it is optimal to

set θ∗ > 0. If x(0) = 0, the expression above equals zero. Its derivative with respect to x(0)

equals:
∂S

∂x
(0, 0)− ∂2u

∂x∂θ
(0, 0) · 1

f(0)
< 0,

where the inequality follows from ∂S
∂x

(0, 0) ≤ 0 and ∂2u
∂x∂θ

(0, 0) > 0 (Assumption 3). Since

x(θ) > 0 for all θ > θ∗ = 0 (types above θ∗ are not excluded), by the continuity of the expres-

sion on the LHS, it follows that the integrand is strictly negative for all θ in a neighborhood

of θ∗ = 0. Since S is continuously differentiable and u is twice continuously differentiable,

and the integrand remains negative if θ is sufficiently small.

3.3 Monopoly provides more coverage at the top

Propositions 1 and 2 imply that low types buy more coverage in a competitive market than

with a monopolist. We now consider the coverage purchased by high types. We impose the

following conditions:

Assumption 4. (Single Crossing) The utility function satisfies ∂2u
∂θ∂x

(θ, x) > 0 for all θ, x.

Assumption 4 is standard in one-dimensional models. It states that higher types to have

a higher marginal utility from coverage and implies that incentive-compatible mechanisms

are non-decreasing.
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Assumption 5. (Monotonicity) The utility function u is strictly increasing in x for all θ > θ.

The cost function c is strictly increasing in x for all θ > θ, and strictly increasing in θ for

all x > 0.

In addition to stating that customers like coverage but providing coverage is costly, As-

sumption 5 states that there is adverse selection, so that it costs more to provide coverage

to types who are willing to pay more for coverage.

Assumption 6. ∂S
∂x

(θ, x) = 0 where x ≡ arg maxx S(θ, x) > 0 and ∂2S
∂x2

(θ, x) < 0 for all θ.

Assumption 6 states that the efficient contract for the highest type solves a first-order

condition. Intuitively, this assumption precludes exogenous upper bounds on the space of con-

tracts. It requires that either the efficient coverage of the highest type is interior (0 < x < 1)

or that it would be inefficient to offer a coverage greater than 100 percent (so the consumer

makes money by incurring a loss). Our last assumption imposes technical smoothness con-

ditions:

Assumption 7. The PDF f is continuously differentiable and u is three times continuously

differentiable.

The least-costly separating allocation is the deterministic allocation that solves the

following ordinary differential equation:

ẋ(θ) =
∂c
∂θ

(θ, x(θ))
∂S
∂x

(θ, x(θ))
, (10)

with boundary condition x(θ̄) = x̄.13 To understand this equation, note that incentive

compatibility requires type x(θ) to maximize type the utility of type θ, giving the necessary

first-order condition:
∂u

∂x
(θ, x(θ)) = p′(x(θ)) (11)

at all points in which p is differentiable. Since types are separated, the zero profits condition

gives:

p(x(θ)) = c(θ, x(θ)).

Differentiating and substituting back in equation (11), gives (10). Note that the least costly

separating allocation has x(θ) = x and limθ↗θ ẋ(θ) = +∞. Therefore, coverage is very steep

close to the top.

The lemma below shows that this is the allocation in the unique competitive equilibrium:

13Formally, equation (10) is not well defined at θ = θ̄. However, one can define the least-costly separating
allocation in terms of its inverse, the “type-assignment function,” which specifies the type that picks each
coverage. Existence and uniqueness then follow from the Picard-Lindelöf Theorem.
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Lemma 2. Suppose Assumptions 1 and 4-7 hold. The competitive equilibrium is unique and

its allocation xc(·) is the least-costly separating allocation.

To illustrate the reason for screening in a competitive market, suppose the surplus-

maximizing coverage does not depend on types: ∂S
∂x

(θ, x̄) = 0 for all θ. This is the case,

for example, in the Rothschild and Stiglitz model, where full insurance maximizes the sur-

plus of each type. The problem is that competitive firms cannot prevent cream skimming

by other firms. If multiple types purchase the same coverage level, a firm can always profit

by offering slightly less coverage at a lower premium, attracting only the less risky types.

The competitive equilibrium allocation distorts each type’s coverage downwards by the exact

amount needed to prevent cream skimming while preserving zero profits.

To understand the amount of distortion needed to prevent cream skimming, note that

each type equates the marginal utility from coverage with the price of an additional cov-

erage, as in equation (11). The price of an additional unit of coverage p′(x(θ)) has two

components: the marginal cost of coverage holding selection constant, ∂c
∂x

(θ, x(θ)), and the

increase in cost due to adverse selection,
∂c
∂θ

(θ,x(θ))

ẋ(θ)
. Since the first best equates marginal utility

with the marginal cost of coverage, ∂u
∂x

(θ, x(θ)) = ∂c
∂x

(θ, x(θ)), adverse selection distorts the

equilibrium allocation downwards. Moreover, as types increase, we approach the efficient al-

location. Close to the efficient allocation, the loss in surplus from reducing coverage becomes

arbitrarily small. Therefore, in order to prevent cream skimming, firms must substantially

reduce coverage: limθ↗θ̄ ẋ(θ) = +∞.

We now turn to the monopolist’s program. For simplicity, we restrict ourselves to deter-

ministic allocations (that is, we focus on mechanisms that maximize the monopolist’s profits

among those with deterministic allocations). In the appendix, we generalize the analysis to

allow for stochastic allocations.

Lemma 3. Suppose Assumptions 1 and 4-7 hold and suppose xm(·) maximizes the monopo-

list’s profits among deterministic allocations. Then, xm(θ) ≥ x and ẋm(θ) <∞.

The proof solves the monopolist’s program and shows that there are two cases. If the

monotonicity constraint associated with incentive compatibility does not bind, the solution

has the same boundary condition xm(θ) = x (no distortion at the top) but has a flatter slope

ẋm(θ) < +∞. If the monotonicity constraint does not bind, there is bunching at the top at

a point above the efficient coverage: xm(θ) ≥ x and ẋm(θ) = 0.14

A monopolist offers partial insurance for a different reason than competitive firms. A

monopolist does not face the risk of cream skimming. However, providing the efficient cover-

age to all types would require the monopolist to charge the willingness to pay of the lowest

14In the Rothschild-Stiglitz model (example 2), the allocation that maximizes profits is deterministic and
has no bunching at the top, so the solution entails xm(θ) = x and ẋm(θ) < +∞.
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type, leaving excessive informational rents. The monopolist balances the efficiency gain from

increasing coverage against informational rents that are left to higher types. As long as the

distribution of types is continuously differentiable around θ̄, the optimal policy has a finite

slope.

From Lemmas 2 and 3, it follows that the monopolist always provides more coverage for

high enough types:

Proposition 3. Suppose Assumptions 1 and 4-7 hold. There exists θ∗ < θ such that xm(θ) >

xc(θ) for all θ ∈ (θ∗, θ).

Recall that Assumption 5 requires costs to be increasing in types, ruling out non-linear

pricing models (example 5). If instead costs were constant in consumer types, the competi-

tive equilibrium would feature each product being sold at cost and the allocation would be

efficient. Under standard regularity conditions on the distribution of types, the monopolist

would distort quantity downwards. Therefore, Proposition 3 does not generalize to private

values settings.

4 Multidimensional Model

This section generalizes the results from Section 3 to settings with multidimensional types.

4.1 No Exclusion with Perfect Competition

The following assumption generalizes Assumption 2:

Assumption 2′. There exist ε > 0 and bounded functions v0, vk, κk : [0, 1] → R such that

for all x < ε and all θ ∈ Θ:

a. (Bounded marginal utility) ∂u
∂x

(θ, x) ≥ v0(x) +
∑K

k=1 θkvk(x) > 0;

b. (Bounded cost) c(θ, x) ≤
∑K

k=1 θkκk(x);

c. (Positive surplus) v0(0) +
∑K

k=1 θk [vk(0)− κ′k(0)] > 0.

Part (a) is a technical condition requiring the marginal utility of a small amount of

coverage to be bounded from below by functions that are linear in types. Part (b) is also

a technical condition requiring the cost of a small amount of coverage to be bounded above

by a function that is linear in types. Part (c) states that the marginal utility of a small

amount of coverage exceeds the marginal cost for each type, so exclusion is not a property

of the first best. Note that Assumption 2’ does not impose an order on marginal utility of
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coverage (such as the single-crossing property), so incentive-compatible allocations may be

non-monotonic.

It is straightforward to verify Assumption 2’ in all the examples from Subsection 2.2.15

The theorem below establishes that there is no exclusion in competitive equilibrium:

Theorem 1. Suppose Assumptions 1 and 2’ hold and let (p∗, α∗) be a competitive equilibrium.

Then there is no exclusion: α∗ (Θ, 0) = 0.

The proof follows similar steps as in the one-dimensional case and is presented in the

appendix.

4.2 Exclusion with Monopoly

Next, we show that a monopolist always excludes a positive mass of consumers if some types

have low enough surplus from coverage. Let ‖·‖ denote the Euclidean norm and let ∇θu

denote the gradient of u with respect to θ.

We impose the following technical conditions on the marginal utility of coverage for types

close enough to zero:

Assumption 8. There exist κ > 0 and ε > 0 such that θ · ∇θu(θ, x) ≥ κu(θ, x) for all x ≥ 0

and all θ with ‖θ − θ‖ < ε.

It is straightforward to verify Assumption 8 in examples 1-4. If types are one-dimensional,

the assumption states that the utility function increases faster than some power function.16

Assumption 8 is useful as it allows us to obtain a lower bound on the consumer’s informational

rent using a homogeneous function.

Our second assumption generalizes the requirement that there exist some types with low

enough surplus in Assumption 3. Before stating the assumption, we need to introduce some

notation. For each θ ∈ Θ, let `(θ) ≡ max{t : t ≥ 1 and tθ ∈ Θ} denote the length of the ray

connecting θ to the boundary of Θ. For each ε > 0, let

Θε ≡ {θ ∈ Θ : ||θ − θ|| < ε}

denote the set of types distanced less than ε from θ. Let ` ≡ inf{`(θ) : θ ∈ Θε} > 1 denote

the shortest ray connecting a type in Θε and the boundary of Θ and let f ≡ min{f(θ) : θ ∈
Θ} > 0 denote the lowest density of types. Finally define the following constant:

η ≡ 1

1− κ `
K−1
K

f

f(θ)

> 1, (12)

15In example 1, we have θ = (M,S2A,H), and the conditions are satisfied with v0(x) = 0, v1(x) = 1,
v2(x) = 1− x, v3(x) = x, κ1(x) = x, κ2(x) = 0, and κ3(x) = x2.

16That is, there exists κ > 0 such that u(θ,x)
θκ is increasing in θ for all x and all θ < ε.
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where θ ≡ (θ1, ..., θK). Note that η depends on the geometry of the type space (through `

and K), the distribution of types (through f and f(θ)), and the utility function (through κ

and ε).

Assumption 3′. (Safe type) ηc(θ, x) ≥ u(θ, x) for all x > 0 and η ∂c
∂x

(θ, 0) ≥ ∂u
∂x

(θ, 0).

Note that Assumption 3’ always holds if the lowest type has non-positive surplus and

marginal surplus: c(θ, x) ≥ u(θ, x) and ∂c
∂x

(θ, 0) ≥ ∂u
∂x

(θ, 0). With the terminology of As-

sumption 3, this condition always holds if the “safe type” belongs to the type space. But just

as with Assumption 3, we do not require that the safe type belongs to the type space. Since

η > 0, Assumption 3’ allows for all types to have a positive surplus and marginal surplus

from coverage, as long as they are “not too high” for the lowest type.

Theorem 2. Suppose Assumptions 1, 3’, and 8 hold. Then, any mechanism that maximizes

the monopolist’s profits excludes a set of types with positive measure: α∗(Θ, 0) > 0.

As in the one-dimensional model, a monopolist balances the efficiency gain in providing

additional coverage to some consumers against the ability to change more from those with

a higher willingness to pay for coverage. When consumers with the lowest willingness to

pay have low enough surplus, the efficiency gain from excluding them is lower than the rent

extraction. Equation (12) provides an upper bound on the surplus of those consumers. It

is increasing in the range of types for which informational rents can be bounded by a power

function (since ` is increasing in ε) and is decreasing in the density of lowest types f(θ)

(which makes exclusion more costly to the firm). Finally, note that Theorem 2 also applies

to economies without adverse selection since it does not require any assumptions about how

costs depend on θ.

4.3 Distortions at the Top

Theorems 1 and 2 imply that a monopolist provides less coverage to individuals with a low

willingness to pay than competitive firms. We now consider the coverage offered to those

with a high willingness to pay with multidimensional types.

In this subsection, we assume that utility and costs are separable:

u(θ, x) =
K∑
i=1

θiφi(x) and c(θ, x) =
K∑
i=1

θiκi(x), (13)

where φi(·) and κi(·) are continuously differentiable with κi(x) > 0 for all x > 0, for all i.
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With this specification, the surplus from providing coverage x to type θ becomes

S(θ, x) =
K∑
i=1

θi [φi(x)− κi(x)] .

We assume that the total surplus S(θ, ·) : [0, 1] → R is strictly concave in coverage with a

second derivative uniformly bounded away from zero:

γ ≡ inf

{∣∣∣∣∂2S

∂x2
(θ, x)

∣∣∣∣ : (θ, x) ∈ Θ× [0, 1]

}
> 0. (14)

It is straightforward to verify that this condition holds in all the insurance models in Sub-

section 2.2 (Examples Einav et al. (2013), 2, and 3).

In this section, we focus on deterministic allocations (see the online appendix for a gener-

alization to stochastic allocations). Recall that an allocation α is deterministic if there exists

x̃ : Θ→ [0, 1] such that α(θ, [0, 1]) = α(θ, x̃(θ)). In this case, we abuse of notation and refer

to the function x̃(·) as a deterministic allocation.17

In the one-dimensional model, the restriction on prices of non-traded contracts imposed

by Condition 3 of Definition 1 rules out any pooling. If an multiple types buy the same

contract, a firm can profit by offering a slightly lower coverage at a discounted price, stealing

only the safest types (“cream skimming”). With multidimensional types, some pooling is

unavoidable. For instance, a consumer with high risk and low risk aversion may end up

buying the same coverage as a low-risk, high-risk-aversion consumer. We therefore need

to generalize the concept of cream skimming for settings in which necessarily involve some

pooling.

Fix an incentive-compatible, deterministic mechanism. At any point of differentiability

of p, if θ chooses to purchase an interior coverage x, the following first-order condition must

hold
∂u

∂x
(θ, x) =

∑
θiφ
′
i(x) = p′(x),

where we used separable utility function from equation (13). Therefore, at points of differ-

entiability of p, types choosing the same contract will have the same marginal utility from

coverage.

Formally, let

Θν
x ≡

{
θ̃ ∈ Θ :

∑
θ̃iφ
′
i(x) = ν

}
denote the set of types with the same marginal utility ν from coverage x. The set Θν

x includes

17We are abusing notation here because the allocation α also specifies distributions conditional on contracts
that are not chosen by any type. Intuitively, these distributions correspond to “beliefs” conditional on
contracts that off the equilibrium path. Such beliefs are not included in x̃(·), which only specifies contracts
on the equilibrium path, but need to satisfy the equilibrium refinement (Condition 3 from Definition 1).
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all types that choose contract x when the marginal price is ν. In the model of Farinha Luz

et al. (2023), this set is a hyperplane that combines types with different levels of risk and risk

aversion. In Example 1, this hyperplane combines individuals with different levels of risk,

risk aversion, mean and variance of losses, and moral hazard. In the one-dimensional model

with single crossing (Subsection 3.3), Θν
x is a singleton, since there is at most one type with

a given marginal utility from coverage x (all types above this type have a higher marginal

utility and all types below have a lower marginal utility).

Since pooling is generally unavoidable with multidimensional types, we need to consider

which type among those buying the same coverage has the highest incentive to deviate from

a contract. At all points of differentiability of p, all pooled types have the same marginal

utility from coverage. Therefore, their incentive to deviate is given by the convexity of their

utility function. As we show in the appendix, the type with the highest incentive to increase

coverage is the one with the most convex utility function:

arg max
θ̃∈Θνx

{∑
θ̃iφ
′′
i (x)

}
.

Reciprocally, the types with the highest incentive to decrease coverage is the one with the

most concave utility function.

The following condition states that by offering a slightly higher coverage, a firm attracts

the type with the highest cost among those who were originally choosing the same coverage.

Assumption 9. (Strong Adverse Selection) For all ν, x,∑
θνi κi(x) ≥

∑
θiκi(x)

for each θ ∈ Θν
x and θν ∈ arg maxθ̃∈Θνx

{∑
θ̃iφ
′′
i (x)

}
.

For example, in Farinha Luz et al. (2023), each pool combines types with different levels of

risk and risk aversion. Among those, the type with the highest risk and lowest risk aversion is

the most willing to increase coverage. This is also the type with the highest cost. In Example

1, the type who is most willing to increase coverage among those in the same pool is the one

with the lowest risk aversion and the highest moral hazard. This is again the type with the

highest cost.

An implication of strong adverse selection is that a firm that offers a slightly lower cov-

erage at a discounted price steals only the cheapest types. Therefore, as we show in the

appendix, with strong adverse selection all types who purchase the same contract have the

same marginal utility from coverage. In particular, we cannot have a positive mass of types

picking the same contract.
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While it is often straightforward to check for strong adverse selection directly, the following

proposition gives an intuitive sufficient condition:

Proposition 4. Suppose that for all i, j ∈ {1, ..., K} and all x ∈ [0, 1],

φ′′j (x)

φ′j(x)
≥ φ′′i (x)

φ′i(x)
⇐⇒ κj(x)

φ′j(x)
≥ κi(x)

φ′i(x)
.

Then, Assumption 9 holds.

The condition in Proposition 4 relates the curvature of the utility function with the

cost per marginal willingness to pay. The dimension in which consumers have the highest

incentive to increase coverage is the one with the most convex willingness to pay. Strong

adverse selection requires an increase in that direction to be the one that raises cost the

most.

Fix a deterministic allocation x̃(·). Let x̃+ ≡ sup{x̃(θ) : θ ∈ Θ} denote the highest

contract chosen by any type in this allocation. For each ε > 0, let Nx̃,ε ≡ {θ ∈ Θ : x̃(θ) >

x̃+ − ε} denote the set of types who pick contracts in an ε-neighborhood of this highest

contract. We can now state the main result from this section:

Theorem 3. Suppose Assumption 9 holds. Let x̃(·) be a deterministic equilibrium allocation

and let x be an incentive-compatible deterministic allocation. Suppose there exists ε > 0 such

that:

• x(θ) ≤ x̃(θ) for all θ ∈ Nx̃,ε, and

• x(θ) < x̃(θ) in a subset of Nx̃,ε with positive measure.

Then, there exists a contract assignment that coincides with x̃(·) in Nx̃,ε and gives the prin-

cipal a strictly higher profit.

Theorem 3 shows that starting from a competitive allocation, a firm with market power

profits by providing greater coverage for those with a high willingness to pay.

5 Illustrative Calibration

To illustrate the quantitative implications of our results, we calibrated the multidimensional

health insurance model from example 1 based on Einav et al. (2013)’s estimates from em-

ployees in a large US corporation.18 In the appendix, we present results for when losses are

18Our simulations are not aimed at matching any specific market, which would take the estimates from
Einav et al. (2013) too far from the range of contracts in their data. Our goal is to illustrate that the
theoretical effects obtained previously can be quantitatively important in a realistic setting.
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Figure 3: Monopoly and Efficient Coverage
Notes: The figure depicts the distribution of coverage choices in the numerical example. The horizontal

axis depicts the contracts chosen by consumers, with coverage ranging between 0% (uninsured) to 100% of

expenses. The blue bars represent the distribution of coverage in the competitive equilibrium. The orange

bars represent coverage under monopoly pricing. With monopoly pricing, over 70 percent of consumers

remain uninsured. In the surplus-maximizing allocation, all consumers purchase coverage.

distributed according to a truncated normal, which are similar to the ones discussed here.

Consumers are heterogeneous along four dimensions: expected value of the health shock,

standard deviation of the health shock, moral hazard, and risk aversion. We assumed that

the distribution of parameters in the population is log-normal and picked the same parame-

ters as in Azevedo and Gottlieb (2017), which were chosen to match the central estimates of

Einav et al. (2013).

Figure 2 (in the introduction) contrasts the coverage under monopoly and perfect com-

petition. Under monopoly, there is substantial exclusion, with 70 percent of the population

choosing not to purchase any coverage. In contrast, with perfect competition, all customers

purchase some coverage. This pattern reverses when considering higher levels of coverage,

with 12 percent of customers opting for more coverage under monopoly compared to perfect

competition. Nevertheless, as Figure 3 illustrates, coverage under monopoly is still lower

than the level that maximizes total surplus (second-best).

Due to these offsetting effects, it is theoretically possible to have a higher surplus either

under a monopoly or perfect competition. In our simulations, we consistently observed a

higher total surplus under perfect competition (see Table 1). With parameter values con-

sidered here, the total surplus amounts to $3,047 per consumer per year in the competitive

equilibrium and $2,223 under a monopoly. There is a substantial difference in consumer sur-

plus ($1,308 with monopoly versus $3,047 with perfect competition) because a monopolist
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charges much higher prices. With perfect competition, there is approximately 8 percent loss

in total surplus relative to the second-best optimum. A monopoly results in a much larger

loss, approximately 32 percent of the surplus.

No coverage ≥ 70% coverage ≥ 80% coverage CS Profit
Competition 0.0 11.1 4.1 3,047 0
Monopoly 70.8 11.4 5.7 1,308 915
Efficient 0.0 89.4 62.8 5,769 -2476

Table 1: Coverage with Perfect Competition, Monopoly, and Maximum Surplus
Notes: The table presents the coverage, consumer surplus (CS), and profits in the numerical example with

perfect competition, monopoly, and surplus maximization. The first column corresponds to the percentage

consumers excluded in each market structure. The second and third columns describe the proportion of

consumer who purchase at least 70% and 80% coverage. The two last columns correspond to consumer

surplus and profits.

6 Related Literature

A large theoretical literature studies competitive markets with adverse selection. Most of

this literature follows two distinct approaches, building on either Rothschild and Stiglitz

(1976) or Akerlof (1970). Models that build on Rothschild and Stiglitz allow contracts to

be endogenously determined, while restricting consumers to be heterogeneous along a single

dimension. This is an important limitation when considering applications, since there is

abundant evidence that multiple dimensions of private information are important.19

Models that build on Akerlof consider a market with a single insurance contract with

exogenous characteristics.20 This setting allows for rich consumer heterogeneity, which is

important to capture realistic insurance demand patterns. However, the assumption of a

single exogenous contract makes it impossible to use the model to study which policies are

offered in equilibrium. In particular, the model cannot distinguish between effects at the

extensive and intensive margin (such as in Figure 1). More recently, Azevedo and Gottlieb

(2017), Levy and Veiga (2022), and Farinha Luz et al. (2023) consider competitive models

with multiple dimensions of consumer heterogeneity and endogenous contracts. Our paper

19Since pure strategy Nash equilibria often fails to exist in their model, a large literature has studied
alternative equilibrium concepts to capture competitive markets (Wilson (1977), Miyazaki (1977), Riley
(1979), Bisin and Gottardi (1999), Gale (1992), Dubey and Geanakoplos (2002), Azevedo and Gottlieb
(2017)). Farinha Luz (2017) characterizes the mixed strategy equilibria of the original Rothschild and Stiglitz
game.

20See Einav and Finkelstein (2011), Hackmann et al. (2015), Spinnewijn (2017), Scheuer and Smetters
(2018), Fang and Wu (2018), and Handel et al. (2019). Handel et al. (2015) and Landais et al. (2021)
consider a choice between two exogenous contracts, while allowing for rich consumer heterogeneity. Einav
et al. (2021) survey the recent industrial organization literature on selection markets.
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builds on this literature by studying the effect of market power in these settings.21

There is also some work on models with market power. Stiglitz (1977) considers op-

timal pricing for a monopolist facing consumers with two risk types. Chade and Schlee

(2021) consider a continuum of consumers.22 Mahoney and Weyl (2017) generalize the Einav

et al. (2010) model to allow for imperfect competition among symmetric firms, retaining the

assumption that firms offer a single exogenous contract. They study how changes in the

degree of selection affects consumer surplus and profits and show that some intuitions from

competitive markets do not carry over to settings with market power.

Veiga and Weyl (2016) allow for endogenous quality, while retaining the assumption that

firms cannot offer multiple contracts. This single-contract assumption leads to a tractable

model in which exclusion is determined by an intuitive first-order condition. They find that

market power has an ambiguous impact on coverage, due to two conflicting effects. On

the one hand, as in settings without selection, a monopolist that cannot price discriminate

would like to cut quantity to increase prices. On the other hand, since market power limits

the firms’ incentives to engage in cream skimming, firms with market power can offer more

coverage. Our results show these two effects persist when firms can offer multiple policies,

and each of them dominates at each end of the distribution of coverage. At the bottom,

the rent extraction motive dominates, making coverage lower under monopoly than under

competition. At the top, the cream skimming effect dominates, making coverage higher under

monopoly.

Chade et al. (2022) consider a multidimensional model with a finite set of contracts. They

show that the unrestricted optimum can be approximated with a finite number of contracts

and contrast policies that maximize social welfare with those that maximize monopoly profits.

They also consider a simplified program, show that a monopolist has higher incentives to

exclude than a utilitarian social planner, and obtain conditions for exclusion. Our numerical

results suggest that our model and Chade et al. (2022) agree on many qualitative predictions.

For example, both our simulations find substantial exclusion (39 percent in their simulations

versus 70 in ours).

As illustrated in example 5, our framework is also related to the literature on non-linear

pricing with a single instrument.23 The main difference between non-linear pricing and

21Working in the Rothschild and Stiglitz setting, Hendren (2013, 2014) obtains conditions for consumers
not to obtain any coverage in incentive-compatible mechanisms that break even. The conditions require the
type space to include a type that incurs the loss with certainty. When no type incurs a loss with certainty,
the competitive equilibrium features the least costly separating allocation. Shutdown does not happen in
Proposition 1 because Assumption 2 rules out models in which it is efficient for the highest type to purchase
zero coverage.

22Castro-Pires et al. (Forthcoming) propose a decoupling method to study the monopolist’s problem with
both adverse selection and moral hazard.

23Examples of such models include Mussa and Rosen (1978) and Maskin and Riley (1984) for one-
dimensional types and Laffont et al. (1987) for two-dimensional types. See Rochet and Stole (2003) for



24

insurance is that values are private in non-linear pricing, whereas common values play an

important role in insurance due to adverse selection. Since the exclusion results do not rely

on common values, they still apply in non-linear pricing settings. Without adverse selection,

a monopolist still excludes a positive mass of consumers if some of them have low enough

willingness to pay (Proposition 2 and Theorem 2).24 On the other hand, since competitive

firms set prices equal to marginal cost and sell the efficient quantity, there is no exclusion with

perfect competition. However, because there are no incentives to cream skim, monopolists

do not provide greater coverage at the top if there is no adverse selection (Proposition 3 and

Theorem 3 do not hold).

7 Conclusion

This paper studies how market power affects insurance policies in a general class of models.

We show that market power creates different distortions compared to perfect competition,

with each distortion dominating at different ends of the willingness-to-pay spectrum.

A monopolist faces a trade-off between efficiency and rent extraction. Reducing coverage

results in an efficiency loss, as customers would be willing to pay more than the actuarially

fair price to increase their coverage. However, this reduction in coverage allows the firm to

extract higher rents by increasing the premiums charged from those willing to pay more. At

the lower end of the willingness-to-pay spectrum, the rent extraction effect dominates, so a

monopolist prefers not to sell to a positive mass of customers.

In a competitive market, firms are concerned about cream skimming by other firms.

With cream skimming, a competitor steals the less risky customers, leaving the original firm

only with the riskier, less profitable ones. The competitive equilibrium allocation distorts

coverage downwards to prevent cream skimming. At the higher end of the willingness-to-pay

spectrum, the incentives to cream skim are very high, so the competitive allocation provides

less coverage than a monopolist.

The welfare effect of market power depends on whether the distortion at the bottom

exceeds the one at the top. Using simulations based on an empirical model of preferences, we

find that those both effects are quantitatively important, although the effect at the bottom

a survey.
24Armstrong (1996) shows the optimality of exclusion in a non-linear pricing model with multidimensional

types. His result is distinct from our Proposition 2 and Theorem 2 in multiple ways. First, he considers
a monopolist selling multiple goods, so the instrument has as many dimensions as the type, whereas we
consider the allocation of a one-dimensional object (coverage). Second, he assumes that the utility function
is homogeneous of degree one, while we consider more general utility functions. Third, he considers private
values. And fourth, he considers types that are bounded away from zero, so there may not be exclusion in
the one-dimensional version of his model. However, we build on his approach of integrating along rays in our
proof of Theorem 2.
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usually dominates. Consequently, in our simulations, total surplus is higher under perfect

competition than under monopoly.
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Appendix: Proofs

Proof of Lemma 1

Since u is twice continuously differentiable and x lies in the compact space [0, 1], u(θ, ·) has a

bounded derivative and must therefore be Lipschitz continuous. So, there exists K > 0 such

that

|u(θ, x)− u(θ, x′)| ≤ K ‖x− x′‖

for all θ, x, x′.

Consider two contracts x and x′. Without loss of generality, suppose that p∗(x) > p∗(x′).

Since prices are non-negative, we must have p∗(x) > 0 so there must be some type who

prefers x to x′:

u(θ, x)− p∗(x) ≥ u(θ, x′)− p∗(x′).

By monotonicity of u(θ, ·), we must have x > x′. Rearrange this expression and use the

Lipschitz continuity of u to obtain:

p∗(x)− p∗(x′) ≤ u(θ, x)− u(θ, x′) = |u(θ, x)− u(θ, x′)| ≤ K ‖x− x′‖ .

The fact that p∗ is Lebesgue almost everywhere differentiable follows from Rademacher’s

Theorem.

Proof of Lemmas 2 and 3

See Appendix B.

Proof of Theorem 1

Fix a competitive equilibrium in which a positive mass of types are excluded. By consumer

optimization (condition 2 of Definition 1), whenever (θ, x) is in the support of α∗, we must

have:

p′(x) =
∂u

∂x
(θ, x) ≥ v0(x) +

K∑
k=1

θkvk(x) (15)

for all points of differentiability of p. Since the inequality holds for each θ picking x, it must

also hold for the expected θ among those choosing x:

p′(x) ≥ v0(x) +
K∑
k=1

mk(x)vk(x), (16)

where mk(x) ≡ Ex[θk|α∗].
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Suppose that for every ε > 0 there exists x ∈ (0, ε) such that no type is indifferent

between their equilibrium contract and x. Then, by condition 3 of Definition 1, the price of

that contract must be zero, which implies that no type can be excluded (since any such type

prefers to purchase x > 0 at price zero over zero coverage). Thus, for any contract x in a

neighborhood of zero, there must exist some type for whom picking that contract maximizes

utility. Therefore, x must also maximize some type θ’s utility, satisfying condition (15).

Moreover, the cost of selling x to θ must be weakly higher than the price p(x). For each such

x, let m(x) ≡ (m1(x), ...,mK(x)) denote that type, so that (16) must again hold.

Integrate and use p(0) = 0 to obtain:

p(x) ≥
∫ x

0

[
v0(x̃) +

K∑
k=1

mk(x̃) · vk(x̃)

]
dx̃.

By Conditions 1 and 3 of Definition 1,

p(x) ≤ Ex[c|α∗] ≤
K∑
k=1

Ex[θk|α∗]κk(x) =
K∑
k=1

mk(x)κk(x)

(where the first inequality holds as an equality if (θ, x) is in the support of α∗ and we extend

the conditional expectation to assign full mass to some selection m(x) if there is no (θ, x) is

in the support of α∗). Combine both of these inequalities to obtain:

K∑
k=1

mk(x)κk(x) ≥
∫ x

0

[
v0(x̃) +

K∑
k=1

mk(x̃) · vk(x̃)

]
dx̃.

Divide both sides by x > 0 and rearrange:

K∑
k=1

mk(x)
κk(x)

x
−
∫ x

0
v0(x̃)dx̃

x
−

K∑
k=1

∫ x
0
mk(x̃) · vk(x̃)dx̃

x
≥ 0.

Note that this condition must hold for all x > 0 in a neighborhood of 0.

We consider the limit of the expression on the LHS as x↘ 0. By the Fundamental The-

orem of Calculus, we have limx↘0

∫ x
0 v0(x̃)dx̃

x
= v0(0) and limx↘0

∫ x
0 mk(x̃)·vk(x̃)dx̃

x
= mk(0+)vk(0),

where mk(0+) ≡ limx↘0mk(x). Therefore, the condition above for x in a neighborhood of

x = 0 requires:

0 ≥ v0(0) +
K∑
k=1

mk(0+) [vk(0)− κ′k(0)] ,

which contradicts part 3 from Assumption 2’. Therefore, there is no equilibrium with a

positive mass of excluded types.
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Proof of Theorem 2:

The proof of Theorem 2 has three steps. First, we construct a family of subsets of the

type space Θξ ⊂ Θ ≡ [θ1, θ1] × ... × [θK , θK ] that converges to the whole type space Θ as

ξ ↘ 0. Second, we show that, for any mechanism that excludes a zero measure set of types

in the original type space Θ, a small enough increase in prices raises the firm’s profits in the

economy with type space Θξ uniformly in ξ. Lastly, since this increase is uniform in ξ, it also

applies to Θ.

Without loss of generality, we can consider an economy with type space equal to RK
+ by

assigning zero mass to all types outside Θ.25 Let α be an incentive compatible allocation and

let U(θ) be the informational rent of type θ associated to α. Since U is differentiable a.e.

along rays, we can write

U(θ) = U(0) +

∫ 1

0

d

dr
U(rθ)dr. (17)

By the envelope condition,

d

dr
U(rθ) = θ · E

[
∇θu(θ̃, x̃)|α, θ̃ = rθ

]
, (18)

where the Leibniz integral rule is justified by the Dominated Convergence Theorem.

By the monotonicity of u(·, x), it follows that U is non-decreasing, so the lowest value of

U is attained at θ = 0. Thus, any mechanism that maximizes the monopolist’s profits must

have U(0) = 0. Also by monotonicity, if U(θ) = 0 for any θ >> θ, then U(θ̃) = 0 for all

θ̃ ∈ {θ̃; θ ≤ θ̃ ≤ θ}, which is a positive-measure set. Therefore, in any incentive-compatible

mechanism in which the set of excluded types has measure zero, any excluded type (θ1, ..., θK)

must have at least one coordinate equal to the lowest value θk.

To introduce the family of subsets of the type space mentioned previously, it is helpful to

introduce some terminology. For each set of vectors {a1, ..., aK} ⊂ RK , let

C(a1, ..., aK) ≡

{
K∑
k=1

λkak : λk ≥ 0, k = 1, ..., K

}

denote the convex cone generated by {a1, ..., aK}. For each ξ > 0, let eξk = (ξ, ..., 1, ..., ξ)

denote the vector with ξ ∈ R in all but the k-th coordinate, where it equals 1. Finally, for

25Every incentive-compatible mechanism with type space Θ can be mapped into an incentive compatible
mechanism with type space RK+ such that its restriction to Θ coincides with the original mechanism. For
instance, we can assign for each type θ /∈ Θ a contract that maximizes this type’s payoff among those offered
to types in Θ. By construction, this new mechanism is also incentive compatible. Since all such types have
zero mass, this extension does not affect the firm’s profits.
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each ξ > 0, let

Θξ ≡ Θ ∩
(
θ + C(eξ1, ..., e

ξ
K)
)

denote the ξ-perturbed type space. Note that Θξ ⊆ Θ, and Θξ converges to Θ0 = Θ as ξ ↘ 0

in the Hausdorff distance.

An economy is defined by a pair (Θ, µ). A ξ-perturbed economy consists of an economy

with the ξ-perturbed type space Θξ and a distribution of types given by the restriction of µ

to Θξ. We first consider mechanisms in ξ-perturbed economies. The first lemma shows that

any incentive-compatible mechanism that excludes a set of measure zero of types can only

exclude at most the lowest type θ.

Lemma 4. Fix an incentive-compatible mechanism for the ξ−perturbed economy, where ξ ∈
(0, 1). Let E be the set of excluded types and suppose µ(E) = 0. Then, E ⊆ {θ}.

Recall that, by monotonicity, if θ is excluded then any θ̃ << θ must also be excluded.

The proof below shows that, in any ξ−perturbed economy, for any θ 6= θ, the set of types

θ̃ ∈ Θξ such that θ̃ << θ has positive measure. Therefore, the firm cannot exclude a measure

zero of types while excluding any type other than θ.

Proof. By the definition of Θξ, if θ ∈ Θξ\{θ}, then θ = θ+
∑K

k=1 λke
ξ
k, for some λ0

1, ..., λ
0
K ≥ 0.

Moreover, since θ 6= θ, we must have λ0
k′ > 0 for some k′. Let θ̂ ≡ θ +

∑
k 6=k′ λ

0
ke
ξ
k +

λ0
k′
2
eξk′ ∈

Θξ\{θ}. Since ξ > 0, each coordinate of the vector
∑K

k=1 λke
ξ
k is strictly positive. Therefore,

θ̂ = θ +
∑
k 6=k′

λ0
ke
ξ
k +

λ0
k′

2
eξk′ << θ +

∑
∀k

λ0
ke
ξ
k = θ.

Since the expression on the LHS is linear (and therefore continuous) in (λ0
1, ..., λ

0
K), there

exists r > 0 small enough such that

θ +
K∑
k=1

λke
ξ
k << θ, if λk < λ0

k + r, for all k 6= k′ and λk′ <
λ0
k′

2
+ r. (19)

Let Λ ≡ {(λ1, ..., λK) ∈ RK
++ such that (19) holds}. It is straightforward to see that Λ is a

non-empty open subset of RK
+ . Finally, if ξ ∈ (0, 1), then the affine transformation T : RK →

RK given by T (λ1, ..., λK) = θ+
∑K

k=1 λke
ξ
k is a bijection (i.e., an affine isomorphism). Hence,

T (Λ) ⊂ Θξ is a non-empty open set such that θ̂ << θ for all θ̂ ∈ T (Λ). Therefore, if type θ

is excluded, every type in T (Λ) is also excluded, which is a set with positive measure.

Let Eθ [S|α] ≡ E
[
S(θ̃, x̃)|α, θ̃ = θ

]
denote the expected surplus according to measure α

conditional on type θ. We use analogous notation for the conditional expectation of other
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functions. For each Θ̃ ⊂ RK
+ , let πα(Θ̃) denote the firm’s expected profit under allocation α

among types in Θ̃:

πα(Θ̃) ≡
∫

Θ̃

{Eθ [S|α]− U(θ)} f(θ)dθ. (20)

For each ε > 0, let Θξ
ε ≡ {θ ∈ Θξ : ||θ − θ|| < ε} denote the set of types in the perturbed

type space that are close to the lowest type. The lemma below provides an upper bound on

the firm’s profits restricted to Θξ
ε :

Lemma 5. For every ε > 0 and ξ > 0, we have

πα(Θξ
ε) ≤

∫
Θξε

{
Eθ [S|α]− κg(θ)

f(θ)
Eθ [u|α]

}
f(θ)dθ, (21)

where g(θ) ≡
∫∞

1
tK−1f(tθ)dt.

Proof. By the envelope condition (18) and the Assumption 8 for type rθ, we have:

d

dr
U(rθ) = θ · Eθ [∇θu(rθ, x)|α] ≥ κ

r
Eθ [u(rθ, x)|α] ,

for all θ ∈ Θε. Substitute in (17) to obtain:

U(θ) ≥
∫ 1

0

κ

r
E
[
u(θ̃, x̃) | α, θ̃ = rθ

]
dr.

Taking expectations gives:∫
Θξε
U(θ)f(θ)dθ ≥

∫
Θξε

{∫ 1

0
κ
r
E
[
u(θ̃, x̃) | α, θ̃ = rθ

]
dr
}
f(θ)dθ

=
∫ 1

0

[∫
Θξε

κ
r
E
[
u(θ̃, x̃) | α, θ̃ = rθ

]
f(θ)dθ

]
dr.

(22)

Apply the change of variables θ̂ = rθ and use the fact that dθ̂ = rKdθ to get

∫
Θξε

1

r
E
[
u(θ̃, x̃) | α, θ̃ = rθ

]
f(θ)dθ =

∫
Θξε

1

rK+1
Eθ̂ [u|α] f

(
θ̂

r

)
dθ̂

where, as defined previously, Eθ̂ [u|α] ≡ E
[
u(θ̃, x̃) | α, θ̃ = θ̂

]
. Substituting in (22), gives:

∫
Θξε
U(θ)f(θ)dθ ≥

∫ 1

0

[∫
Θξε

κ
rK+1Eθ̂ [u|α] f

(
θ̂
r

)
dθ̂
]
dr

=
∫

Θξε

κ
rK+1Eθ̂ [u|α]

[∫ 1

0
1

rK+1f
(
θ̂
r

)
dr
]
dθ̂.

(23)
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Substitute t = 1/r to obtain:

∫ 1

0

1

rK+1
f

(
θ̂

r

)
=

∫ ∞
1

tK−1f(tθ̂)dt.

Plugging this expression back into (23) gives:∫
Θξε

U(θ)f(θ)dθ ≥ κ

∫
Θξε

Eθ [u|α] g(θ)dθ, (24)

where g(θ) is as defined in the statement of the lemma. Substitute (24) in (20) to obtain

(21).

Lemma 6. Fix an incentive-compatible mechanism (pξ, αξ) for the ξ−perturbed economy,

where ξ ∈ (0, 1). If the set of excluded types has measure zero (α(Θ, 0) = 0) then the

mechanism does not maximize the firm’s profits.

Proof. Let U denote the informational rent function associated with the mechanism. By

Lemma 4, this mechanism can only exclude type θ. Now consider a small uniform price

increase of δ > 0 for all x 6= 0. There are two effects. First, types who were getting surplus

below the price increase choose not to participate, i.e., types in

Aξδ ≡ {θ ∈ Θξ;U(θ) < δ}.

Second, the firm increases profits by δ from all types who remain, i.e., types in Θξ\Aδ. So

the increase in the firm’s profits from those who remain is equal to

δ.

∫
Θξ\Aξδ

f(θ)dθ. (25)

For the first effect, we will show that it also leads to a positive gain for the firm when δ is

small enough. For this, we claim that there exists ε > 0, uniform in ξ, such that[
1− κg(θ)

f(θ)

]
Eθ [u|α]− Eθ [c|α] < 0, (26)

for all θ ∈ Θξ
ε . Indeed, let x ≡ inf{x : x ∈ support α(θ, ·); θ ∈ Θξ} denote the lowest

coverage among the coverages in the support of the mechanism distributions. Recall that by

the definition of η in the text, we have η <
[
1− κ g

f(θ)

]−1

, where g := inf{g(θ) : θ ∈ Θε} > 0.

If x > 0, Assumption 3’ implies that[
1− κ

g

f(θ)

]
u(θ, x)− c(θ, x) < 0.
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By the continuity of the above expression at (θ, x) and the definition of x, we can find ε

sufficiently small so that inequality (26) holds for all θ ∈ Θε. Since Θξ
ε ⊂ Θε, the choice of ε

is uniform in ξ.

If x = 0, Assumption 3’ again implies that[
1− κ

g

f(θ)

]
∂u

∂x
(θ, 0)− ∂c

∂x
(θ, 0) < 0.

By the continuity of the above expression at (θ, 0), we can find ε > 0 sufficiently small such

that (26) holds for all θ ∈ Θε. Thus, as before, the choice of ε is uniform in ξ.

Integrating (26) on Θξ
ε , we conclude that the right hand side of (21) (see Lemma 5)

restricted to Θξ
ε is negative, where ε is determined in the two cases considered above (x > 0

and x = 0) and is uniform on ξ. Finally, since the only excluded type is θ, for such ε > 0,

there exists δ > 0 sufficiently small such that Aξδ ⊂ Θξ
ε . By increasing the price by δ, the

firm excludes types that lead to ex-post losses (i.e., types in Aξδ ⊂ Θξ
ε) and gain extra profit

with one that are still participating (i.e., types in
(
Aξδ

)c
). Therefore, the firm can ensure

a positive gain of at least (25), which is uniformly (in ξ) bounded away from zero, which

implies the result.

Proof of Theorem 2. Fix an incentive compatible mechanism that excludes a zero measure

set of types in Θ. For each ξ ∈ (0, 1), consider the restriction of this mechanism to Θξ. By

Lemma 6, there exists a uniform increase in price δ > 0 that ensures that the firm increases

profits by at least (25) in each ξ−perturbed economy. Since this gain is uniform in ξ > 0,

taking ξ ↘ 0, this uniform increase in prices also increases profits by at least (25) for ξ = 0,

which concludes the proof.

Distortions at the Top and Proof of Theorem 3:

Recall that in the one-dimensional model, the competitive equilibrium is characterized by

zero profits, separation, and no distortion at the top.

The proof of Proposition 3 used these three conditions to show that the allocation becomes

infinitely steep as we approach the highest type: limθ↗θ̄ ẋ(θ) = +∞. This condition can

alternatively be written in terms of the type assignment function θ̃ : x (Θ) → [0, 1], which

indicates the type that chooses each contract θ̃ = x−1. The equivalent statement is that the

type assignment function becomes flat as we approach the efficient contract: limx↗x̄
˙̃
θ(x) = 0.

With multiple dimensions, we cannot have full separation (as the dimension of types

exceeds the dimension of instruments), so the allocation function is no longer an injection

and its inverse (the type assignment function) is not well defined. Instead, we work with the

expectation of types choosing each contract.
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For a fixed allocation α, let mi(x) ≡ Ex[θi|α] denote the expected i-th dimension of the

types choosing contract x and let x̃+ ≡ sup{x : (θ, x) ∈ supp α} denote the highest contract

chosen by some type.

Definition 2. An allocation α has separation at the top if limx↗x̃+ mi(x) = θi for all

i = 1, ..., K.

Separation at the top means that, as we approach the highest contract chosen by some

type, the expected type picking that contract converges to the highest type. It is immediately

satisfied in the one-dimensional model with single crossing, in which case the expected type

coincides with the type assignment function θ̃.

Definition 3. An allocation α has no insufficient coverage at the top if

Ex
[
∂S

∂x
(θ, x̃+) | α

]
=

K∑
i=1

mi(x̃+) [φ′i(x̃+)− κ′i(x̃+)] ≤ 0.

It has no distortion at the top if the inequality above holds as an equality.

Recall that the surplus is a concave function of coverage. No insufficient coverage at the

top means that the highest coverage x̃+ is weakly higher than the level that maximizes the

average surplus (among types who pick that coverage). No distortion at the top means that

the highest coverage maximizes the average surplus for those who pick the highest coverage.

No distortion at the top is also trivially satisfied in the one-dimensional model with single

crossing.

Definition 4. An allocation α has high incentives to cream skim at the top if limx↗x̃+
mi(x)−θi
x−x̃+ =

0 for all i = 1, ..., K.

High incentives to cream skim at the top is related to the slope of the type assignment

function at the top. Recall that in the one-dimensional model, the type assignment function

becomes flat as we approach the highest contract: limx↗x̃+
˙̃x(x) = 0. This condition is

equivalent to the allocation function becoming infinitely steep as we approach the highest

type. Definition 4 is the multidimensional counterpart of this condition, using expected types

rather than the allocation function, which is not well defined in multidimensional settings.

As discussed in the text, fact that the type assignment function becomes arbitrarily flat

as we approach the efficient contract arises from the incentives to cream skim. It is very

easy to convince a type who is close to his efficient contract to deviate by offering a lower

coverage at a discounted price. So, to prevent cream skimming close to the top, firms must

substantially reduce coverage, making the allocation function very steep or, equivalently, the
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type allocation function very flat. Definition 4 is analogous, except that it replaces the unique

type picking each contract in the one-dimensional model by the average type.

The lemma below shows that in any deterministic equilibrium, those three conditions are

equivalent.

Lemma 7. Let (p, α) be a competitive equilibrium. Suppose α is deterministic and let x̃

denote its on-path coverage. The following statements are equivalent:

(a) x̃ has separation at the top;

(b) x̃ has no insufficient coverage at the top;

(c) x̃ has high incentives to cream skim at the top;

(d) x̃ has no distortion at the top.

Proof. (a =⇒ b) By single crossing and Condition 3 from Definition 1, the highest type θ

must be indifferent between his equilibrium contract x̃+ and each off-path contract x > x̃+:

p(x)− p(x̃+) =
K∑
i=1

θi [φi(x)− φi(x̃+)] .

Moreover, the profits from each such contract cannot be positive:

p(x) ≤
K∑
i=1

θiκi(x). (27)

By the zero profits condition of on-path contract x̃+ and separation at the top, we have

p(x̃+) =
∑K

i=1 θiκi(x̃+). Therefore, the previous equation becomes:

p(x) =
K∑
i=1

θi [φi(x)− φi(x̃+) + κi(x̃+)] .

Using (27), we obtain:

K∑
i=1

θi [φi(x)− φi(x̃+) + κi(x̃+)] ≤
K∑
i=1

θiκi(x)

∴
K∑
i=1

θi [φi(x)− κi(x)]︸ ︷︷ ︸
S(θ,x)

≤
K∑
i=1

θi [φi(x̃+)− κi(x̃+)]︸ ︷︷ ︸
S(θ,x̃+)

.

Therefore, the highest contract on the equilibrium path cannot have less coverage than the

surplus-maximizing contract, i.e., x̃ has excess coverage at top.
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(b =⇒ c) Suppose that x̃ has excess coverage at the top. Let p be the equilibrium price.

Consumer optimization requires that at all points of differentiability of p, we have

p′(x) = ux(θ, x) =
K∑
i=1

θiφ
′
i(x) =

K∑
i=1

mi(x)φ′i(x), (28)

where the first equality uses the necessary FOC, the second substitutes the expression for

the utility function, and the third takes expectations among all types who pick contract x.

Recall the zero profits condition:

p(x) = Ex[c(θ, x)|α] =
K∑
i=1

mi(x)κi(x). (29)

Differentiate this condition with respect to x, take the limit as x↗ x̃+, and use the previous

equation to obtain:

K∑
i=1

mi(x̃+)φ′i(x̃+) = p′(x̃+) =
K∑
i=1

mi(x̃+)κ′i(x̃+) +
K∑
i=1

lim
x→x̃+

mi(x)−mi(x̃+)

x− x̃+

κi(x). (30)

Since there is excess of coverage at the top, the expression in (30) cannot exceed
∑K

i=1mi(x)κ′i(x),

so that:
K∑
i=1

lim
x↗x̃+

mi(x)−mi(x̃+)

x− x̃+

κi(x) ≤ 0.

By the single-crossing property in each dimension, x̃ must be weakly increasing in each

dimension. Hence, mi(x) ≤ mi(x̃+), for all x < x̃+ and, consequently, mi(x)−mi(x̃+)
x−x̃+ ≥ 0 and

κi(x̃+) > 0 by assumption, then

lim
x↗x̃+

mi(x)−mi(x̃+)

x− x̃+

= 0,

for all i.

(c =⇒ d) Using the same argument of (a), we will get equality (30). If x̃ has high

incentive to cream skim at top, the last term on the right hand side of (30) is zero. Hence,

it is immediate that x̃ has no distortion at the top.

(d =⇒ a) From Definition 3 it follows that (d) implies (b). We have already proved that

(b) implies (c), which, from Definition 4, obviously implies (a).

Let (p, α) be an allocation satisfying condition 3 from Definition 1. Then, for any contract
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x′ ∈ X with strictly positive price, there exists (θ, x) in the support of α such that

u(θ, x)− p(x) = u(θ, x′)− p(x′) and c(θ, x′) ≥ p(x′).

This condition trivially holds if x′ is on the equilibrium path. For off-path contracts (i.e.

those that are not chosen by any type according to α), prices must be: (i) low enough to

make some type θ indifferent between deviating to x′ or keeping the equilibrium contract x,

and (ii) a deviation by this type would make firms (weakly) lose money.

Suppose p is not differentiable at some contract x that is on the equilibrium path, so that

p′(x−) 6= p′(x+). Since x is chosen by some type, it must be the case that p′(x−) < p′(x+), so

there is a small neighborhood of contracts around x that are not chosen by any type. The

lemma below identifies the types who are most willing to deviate from any such contract:

Lemma 8. Let (p, α) be a competitive equilibrium and suppose p is not differentiable at some

on-path contract x. Then, there exists ε > 0 such that for each x′ ∈ (x− ε, x), there exists θ

with

θ ∈ arg min
θ̃∈Θ

p′(x+)
x

∑
θ̃iφ
′′
i (x)

and

u(θ, x)− p(x) = u(θ, x′)− p(x′) and p(x′) ≤ c(θ, x′). (31)

Next, we establish that strong adverse selection rules out pooling by types with different

marginal utility of coverage:

Lemma 9. Suppose Assumption 9 holds and let x̃(·) be the on-path coverage in a deterministic

competitive equilibrium. If x̃(θ) = x̃(θ̃) = x then
∑
θiφ
′
i(x) =

∑
θ̃iφ
′
i(x).

Proof. At any point of differentiability of p, the result follows from the necessary first-order

condition. We claim that p cannot have kinks.

To see this, consider a point x in which p is not differentiable. Lemma 8 determines the

the consumer types who are most willing to deviate. By condition 3 of Definition 1, we need

to verify that the price obtained by the indifference condition (31) for any such type exceeds

the cost of selling to that type. By strong adverse selection (Assumption 9), this type is also

the one with the lowest cost among those purchasing x. By the zero profits condition for

(on-path) contract x, it follows that, for x′ close enough to x, the price exceeds the cost.

A direct implication of Lemma 9 is that any competitive equilibrium with a deterministic

allocation, prices are differentiable at all points in which they are positive.

Lemma 10. Suppose Assumption 9 holds and let (p, α) be a deterministic competitive equi-

librium. Then, α has separation at the top.
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Proof. We first show that p′(·) does not have a kink at the top. Suppose first that limx↘x̃+ p
′(x) >

limx↗x̃+ p
′(x), so that no type chooses contracts in a small neighborhood around x̃+. Suppose,

to obtain a contradiction, that a positive mass of types different from θ picks x̃+. By single

crossing, the contracts x < x̃+ in this neighborhood of x̃+ must be priced at the indifference

curve of some type θ < θ in that pool, which contradicts Lemma 9.

So we must have limx↘x̃+ p
′(x) ≤ limx↗x̃+ p

′(x). Of course, if this holds as a strict

inequality, no one would pick x̃+ and some types would instead prefer x > x̃+, contradicting

the fact that it is the highest contract on path. So the solution cannot have a kink at x̃+.

Since there is no kink at x̃+, all types θ choosing this contract must satisfy:

p′(x̃+) =
K∑
i=1

θiφ
′
i(x̃+),

which cannot simultaneously hold for θ and θ < θ.

From the consumer’s optimality condition calculated at the top type θ and since p′(·) is

continuous at x̃+ we get

K∑
i=1

lim
x↗x̃+

mi(x)φ′i(x) =
K∑
i=1

θi lim
x↗x̃+

φ′i(x).

Since mi(x̃+) ≤ θi, for all i, we must have that limx→x̃+ mi(x) = θi. That is, mi(x) is

continuous at x̃+ and mi(x̃+) = θi.

Lemma 11. Consider a deterministic competitive equilibrium with on-path coverage x̃.

(a) Suppose mi(x) = θi for all i for x in a neighborhood of x̃+. Then, there exists ξ > 0

such that x̃(θ) < x̃+ − ξ, for almost all θ ∈ Θ\{θ}.
(b) Suppose there exists i0 such that mi0(·) is not equal to θi0 (constant) in a neighborhood

of x̃+. Then, there exists i such that the ratio Rj,i(x) :=
θj−mj(x)

θi−mi(x)
is uniformly bounded for

all j 6= i.

Proof. (a) Let ξ > 0 be such that mi(x) = θi, for all x ∈ [x̃+ − ξ, x̃+]. Suppose, in order to

obtain a contradiction, that Pr [x̃(θ) ∈ [x̃+ − ξ, x̃+)] is positive (where the probability is with

respect to α). This implies that

K∑
i=1

θi > E

[
K∑
i=1

θi|x̃(θ) ∈ [x̃+ − ξ, x̃+];α

]
.

However, by the law of interacted expectation we have that the conditional expectation on



41

right hand side is ∫ x̃+
x̃+−ξ

∑K
i=1 Ex[θi|α]dα(x)∫ x̃+
x̃+−ξ dα(x)

,

where α is the equilibrium allocation, whose realization is x̃(·), and α(x) =
∫
α(x, θ)f(θ)dθ

is the marginal distribution. Notice that mi(x) = Ex[θi|α] = θi, for all i, which gives us a

contradiction.

(b) If K = 2, then this condition is trivially satisfied because either R1,2(x) or R2,1(x)

is bounded since we cannot have both the numerator and denominator identical to zero in

a neighborhood of x̃+. By induction, suppose that the result is true for some K. Take a

model with K + 1 dimensions. By induction, without loss of generality we can assume that

the result holds for the first K dimensions. If RK+1,i(x) is bounded, then the condition holds

for the model of K + 1 dimensions. If not, we have that RK+1,i(x) is unbounded as x→ x̃+.

Since Rj,K+1(x) = Rj,i(x)/RK+1,i(x), then by the induction hypothesis Rj,K+1(x) must be

bounded for all j 6= K + 1,which concludes the proof.

Next, we adapt the bounds from the proof of Theorem 2 to obtain an expression for the

firm’s profits restricted to contracts close to the top.

Proof of Theorem 3:

By the same argument as in the proof of Theorem 2 (and the homogeneity of degree one of

u(·, x)), the monopolistic profit restricted to Nx̃,ε is

π(x) =

∫
Nx̃,ε

[
S(θ, x(θ))− g(θ)

f(θ)
u(θ, x(θ))

]
f(θ)dθ,

where g(θ) ≡
∫∞

1
tK−1f(tθ)dt. The Gateaux derivative in the direction h > 0 equals:

δπ(x, h) =

∫
Nx̃,ε

[
∂S

∂x
(θ, x(θ))− g(θ)

f(θ)

∂u

∂x
(θ, x(θ))

]
h(θ)f(θ)dθ. (32)

By Proposition 10 and Lemma 7 we have that ∂S
∂x

(θ, x̃+) = 0. By the mean value theorem,

there exists z(θ) ∈ [x(θ), x̃+] such that

∂S

∂x
(θ, x(θ)) =

∂S

∂x
(θ, x̃+) +

∂2S

∂x2
(θ, z(θ)) [x(θ)− x̃+]

and there exists θ̃i ∈ [θi, θi] such that

∂S

∂x
(θ, x̃+) =

∂2S

∂x∂θi
(θ̃i, θ−i, x̃+)(θi − θi).
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By the assumption (14), we have

δπ(x, h) ≥
∫
Nx̃,ε

[
∂S

∂x
(θ, x̃+)− γ(x(θ)− x̃+)− g(θ)

f(θ)

∂u

∂x
(θ, x(θ))

]
h(θ)f(θ)dθ.

By Lemma 11, we have two possibilities: (i) there exists i such that mi(x) < θi for all x < x̃+

and

m′i(x̃+) = lim
x→x̃+

mi(x)− θi
x− x̃+

= 0;

or (ii) mi(x) = θi in a neighborhood of x̃+, for all i. Let us consider each case:

(i) Since x(θ) < x̃(θ) < x̃+we have

δπ(x, h) >
∫
Nx̃,ε

∂2S
∂x∂θi

(θ̃i, θ−i, x̃+)
(
θi−mi(x̃(θ))

θi−mi(x̃(θ))
− 1
)

[θi −mi(x̃(θ))]h(θ)f(θ)dθ

+
∫
Nx̃,ε

[
γ x̃+−x̃(θ)

θi−mi(x̃(θ))
− l g(θ)

θi−mi(x̃(θ))

]
[θi −mi(x̃(θ))]h(θ)f(θ)dθ,

(33)

where i is the type that has high incentive to cream skim according to Lemma 11 (b) and l

is a uniform bound on ∂u
∂x

(θ, x)/f(θ).

Let us prove that the first term on the right hand side of (33) is bounded. From the

first-order condition of the consumer’s problem, let θmi be the minimum value of θi which is

achieved at θ−i = θ−i, i.e,

θmi φ
′
i(x) +

∑
j 6=i

θjφ
′
j(x) =

∑
j

mj(x)φ′j(x)

or

(mi(x)− θmi )φ′i(x) =
∑
j 6=i

(
θj −mj(x)

)
φ′j(x).

Now dividing both sides by θi −mi(x), by Lemma 11 (b) and the choice of i we have that

the right hand side is uniformly bounded in x. Therefore,

|θi −mi(x)|
θi −mi(x)

≤ max

{
mi(x)− θmi
θi −mi(x)

, 1

}
(34)

is uniformly bounded.

For the second term on the right hand side of (33), notice that

lim
θ→θ

x̃+ − x̃(θ)

θi −mi(x̃(θ))
= lim

θ→θ

x̃+ − x̃(θ)

θi −mi(x̃(θ))
= lim

x→x̃+

1

(θi −mi(x))/(x̃+ − x)
=

1

m′i(x̃+)
=∞.

By the mean value theorem, there exists ηθ,x̃(θ) between θi and mi(x̃(θ)) such that g(θ) =
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g(mi(x̃(θ), θ−i) + ∂θig(ηθ,x̃(θ), θ−i)(θi −m(x̃(θ))). Hence,

lim
θi→θi

g(θ)

θi −mi(x̃(θ))
≤ lim

x→x̃+
sup

[
g(mi(x), θ−i)

θi −mi(x)
+ ∂θig(ηθ,x, θ−i)

|θi −mi(x)|
θi −mi(x)

]
,

and the first term of the right hand is clearly bounded because g is differentiable at dimension

i and g(θi, θ−i) = 0. The second term is also bounded because of the argument that leads to

the conclusion of (34).

Therefore, for ε > 0 sufficiently small, the second term on the right hand side of (33) is

strictly positive on a positive measure subset of Nx̃,ε where h(θ) > 0.

(ii) Lemma 11 (a) gives x̃(θ) < x̃+ − ξ, for almost all θ ∈ Θ\{θ}. From the strict

concavity of S(θ, ·), we have that ∂S
∂x

(θ, x(θ)) ≥ ∂S
∂x

(θ, x̃(θ)) ≥ ∂S
∂x

(θ, x̃+ − ξ) > 0, for ε < ξ,

since ∂S
∂x

(θ, x̃+ − ξ) ≥ ∂S
∂x

(θ, x̃(θ)) ≥ 0 and x(θ) ≤ x̃(θ) for all θ ∈ Nx̃,ε. From the expression

(32), this implies that

δπ(x, h) ≥
∫
Nx̃,ε

[
∂S

∂x
(θ, x̃+ − ξ)−

g(θ)

f(θ)

∂u

∂x
(θ, x(θ))

]
h(θ)f(θ)dθ.

Since ∂u
∂x

(θ, x)/f(θ) is bounded and g(θ) → 0 when θ → θ, we have the term in the bracket

will strictly positive on a positive measure subset of Nx̃,ε where h(θ) > 0, if we take ε > 0

sufficiently small.

Therefore, for sufficiently small ε > 0, increasing from the allocation x(·) to x̃(·) at top

generates profit gains for the monopolist whenever x(θ) < x̃(θ) in a positive measure set at the

top. We have to show that there exists an incentive-compatible allocation that implements

this improvement. Let U denote the informational rent associated with mechanism x and

let V denote the rent associated with x̃. Notice that the utility function considered here

(separable and with non-decreasing φi(·), for each i) imply that ∇V (θ) ≥ ∇U(θ) if and

only if x̃(θ) ≥ x(θ). Applying Lemma 14 below restricted to the domain Nx̃,ε, we find that

U = max{U, V τ} for some τ ∈ R is the informational rent associated with an incentive-

compatible mechanism that increases the monopolist’s profit in the domain Nx̃,ε. Finally,

we can extend the informational rent (and the allocation) outside of Nx̃,ε to coincide with

U (coincide with x). By construction, this mechanism satisfies the participation constraint

because its informational rent is greater or equal to U .

Lemma 12. U is an informational rent function from an incentive compatible mechanism if

and only if U is a convex function and the consistency condition is satisfied (i.e., there exists

a mechanism (p, x) that leads to the informational rent U).

Proof. (Necessity) Fix an incentive compatible mechanism (p, x). The informational rent
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associated to this mechanism is

U(θ) = max
θ̂∈Θ

u(θ, x(θ̂))− p(θ̂).

Since for each θ̂ ∈ Θ, the function θ → u(θ, x(θ̂))− p(θ̂) is convex by assumption, U(θ) is the

upper envelope of convex functions. Therefore, U(θ) is a convex function.

(Sufficiency) By the subgradient inequality, we have that

U(θ)− U(θ̂) ≥ ∇U(θ̂) · (θ − θ̂) = uθ(θ̂, x(θ̂)) · (θ − θ̂),

where the equality is a consequence of the envelope theorem. By separability of u, uθ(θ̂, x(θ̂))·
(θ − θ̂) = u(θ, x(θ̂)− u(θ̂, x(θ̂)). Hence, using the definition of U and consistency condition,

the previous inequality is equivalent to

U(θ) ≥ u(θ, x(θ̂))− p(θ̂),

which shows that the incentive compatibility holds for the mechanism (p, x).

In the next lemma, we denote by ∇V and ∇U the gradients of functions V and U .

Lemma 13. Let U, V : Θ → R be functions such that ∇V ≥ ∇U . If V (θ) ≥ U(θ), then

V (θ̂) ≥ U(θ̂), for all θ̂ ≥ θ.

Proof. The result follows by considering the restriction of functions V and U to the line

segment connecting θ and θ̂.

Lemma 14. Suppose that Θ is a convex set with a maximal type θ. Let U, V : Θ → R be a

convex functions such that ∇V ≥ ∇U . Denote V τ := V + τ the τ -translation of V , for each

τ ∈ R. Then:

(i) there exists τ0 ∈ R such that V τ0(θ) = U(θ);

(ii) for every ε > 0, there exists δ > 0 such that V τ ≥ U in an open neighborhood

contained in the ball B(θ, ε), for all τ ∈ (τ0, τ0 + δ);

(iii) if u is a separable function and U and V are informational rent functions associ-

ated with incentive-compatible mechanisms, then U = max{U, V τ} is an informational rent

function associated with an incentive-compatible mechanism.

Proof. (i) Define τ0 as the supremum of τ such that V τ ≤ U . The result follows from Lemma

13.

(ii) Since U and V are continuous functions in the interior of Θ, the result follows imme-

diately from item (i) and Lemma 13.
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(iii) Notice that U is a convex function. By Lemma 12, it is an informational rent

function of an incentive-compatible mechanism because the consistency condition is satisfied

in each region where U = U or U = V τ . Moreover, U ≥ U implies that it also satisfies the

participation constraint.

Proof of Proposition 4:

Before presenting the proof, we start with a helpful result. Let a ∈ RK , ν ∈ R and P =

×Ki=1[θi, θi] ⊂ RK
+ . Consider the following minimization problem M(a, ν):

minθ∈P a · θ
s.t. 1 · θ = ν

, (35)

where 1 = (1, ..., 1) and a1 ≤ ... ≤ aK . If 1 · θ ≤ ν ≤ 1 · θ, let us define the lowest k̃ such

1 · (θ1, ..., θk̃, θk̃+1, ..., θK) ≥ ν.

Definition 5. We say that vector ã preserves the order of a with respect to k̃ when ai ≤ ak̃
if and only if ãi ≤ ãk̃, for all i ∈ {1, ..., K}.

Lemma 15. Suppose that 1 · θ ≤ ν ≤ 1 · θ. The solutions of problems M(a, ν) and M(ã, ν)

coincide if and only if a and ã have the same order with respect to k̃.

Proof. Suppose that the order property holds. By the assumption and Definition 5 of k̃,

let θ̃k̃ ∈ [θk̃, θk̃] satisfy 1 · (θ1, ..., θk̃, θk̃+1, ..., θK) = ν. It is straightforward to see that

θ∗ = (θ1, ..., θ̃k̃, θk̃+1, ..., θK) is the optimal solution of M(a, ν). Moreover, for every ã that

preserves the order of a w.r.t. k̃, the problem M(ã, ν) has exactly the same solution θ∗.

Reciprocally, if a and ã do not preserve the same order with respect to k̃, then there exists

a permutation ϕ of {1, ..., K} such that ai ≤ aj if and only if ãϕ(i) ≤ ãϕ(j) and ϕ(i) > k̃ for

some i ≤ k̃. By the solution characterization above, we have that the solutions for problems

M(a, ν) and M(ã, ν) must be different since ϕ permutes a type below k̃ with a type above

it.

We now turn to the proof of the proposition. From the definition of strong adverse

selection, we need to show that the following minimization problems have the same solutions:

minθ̃∈Θ

∑
θ̃iφ
′′
i (x)

s.t.
∑
θ̃iφ
′
i(x) = ν

and
minθ̃∈Θ

∑
θ̃iκi(x)

s.t.
∑
θ̃iφ
′
i(x) = ν

.
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Applying a change of variables, we can write these problems as:

minθ̃∈Θ(x)

∑
θ̃iai(x)

s.t.
∑
θ̃i = ν

and
minθ̃∈Θ(x)

∑
θ̃iãi(x)

s.t.
∑
θ̃i = ν

where ai(x) := φ′′i (x)/φ′i(x), ãi(x) := κi(x)/φ′i(x) and Θ(x) is an adjusted hyperrectangle.26

Fix x and, without loss of generality, suppose that a1(x) ≤ a2(x) ≤ ... ≤ aK(x). By

Lemma 15, the problems above have the same solutions if

ai(x) ≤ aj(x) ⇐⇒ ãi(x) ≤ ãj(x).

Using the definition of these functions, we find that the problems above have the same

solution
φ′′j (x)

φ′j(x)
− φ′′i (x)

φ′i(x)
≥ 0 ⇐⇒ κj(x)

φ′j(x)
− κi(x)

φ′i(x)
≥ 0,

for all i, j ∈ {1, ..., K} and all x ∈ [0, 1].

A Numerical Simulations

A.1 Normal Distribution

We followed the algorithm from Azevedo and Gottlieb (2017) to calculate a competitive

equilibrium. We used a perturbation with 26 evenly spaced contracts and a 1% mass of

behavioral consumers that have zero cost. We then applied a fixed-point algorithm. In each

iteration, consumers picked their favorite contracts taking prices as given. Then, we adjusted

prices according to their profitability. Prices consistently converged to the same equilibrium

for different initial values.27

Table 2 summarizes the parameters used in the calibration presented in the text, which

are the same as in Azevedo and Gottlieb (2017). The monopolist and efficient allocations

were computed numerically. As usual with arbitrary nonlinear maximization problems, it

is impossible to guarantee that a local optimum is a global optimum. We calculated lo-

cal optima starting from the equilibrium allocation, using both an ad-hoc procedure and

the commercial optimization package KNITRO. We also calculated local optima from 300

random starting values in each simulation. The random starting values did not outper-

form the optimization starting at the equilibrium prices. Replication code is available at

26Notice that by changing variables θ̃i to η̃i = θ̃iφ
′
i(x), the hyperrectangle Θ becomes another hyperrect-

angle, which is now a function of x.
27Since the model may have multiple equilibria, it is important to consider different initial values to verify

that the predictions do not depend on the initial value in the computations.
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Table 2: Consumer Types (Normal Distribution)
A H M S

Mean 1× 10−5 1, 330 4, 340 24, 470
Log covariance

A 0.25 -0.01 -0.12 0
H 0.28 -0.03 0
M 0.20 0
S 0.25

Notes: The table presents the parameters used for the simulation described in the text. Consumer types are
log normally distributed with the moments in the table.

https://github.com/diogowolff/ag-monopoly.

A.2 Truncated Normal Distribution

In example 1, we assumed that losses were normally distributed. While this assumption led to

the transparent representation of preferences and costs in equations (3), it has the undesirable

feature that it allows for negative losses. However, our results can still be applied for general

distributions of losses.

Suppose losses are distributed according to a CDF Fκ, where κ is a vector of parameters

that represent the consumer’s private information about the distribution of losses. Prefer-

ences and costs can still be described with quasilinear preferences as in (1) and (2) with

u(θ, x) =
ln
(
E
[
eAl|l ∼ Fκ

])
− ln

(
E
[
eA(1−x)l|l ∼ Fκ

])
A

+
H

2
x2, and (36)

c(θ, x) = x E [l|l ∼ Fκ] + x2H,

where θ = (κ,A,H) denotes the consumer’s type.28

Table 3: Consumer Types (Truncated Normal Distribution)
A H M S

Mean 65× 10−5 1, 330 1, 500 4, 500
Log covariance

A 0.25 -0.01 -0.12 0
H 0.28 -0.03 0
M 0.20 0
S 0.25

Notes: The table presents the parameters used for the simulation described in the text. Consumer types are
log normally distributed with the moments in the table.

28When using this model, one must ensure that the moments in (1) and (2) exist.

https://github.com/diogowolff/ag-monopoly
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Figure 4: Coverage under Monopoly and Perfect Competition (Truncated Normal)

Notes: The figure depicts the distribution of coverage choices in example 1 with a truncated Normal distri-

bution (losses are truncated at zero). The horizontal axis depicts the contracts chosen by consumers, with

coverage ranging between 0% (uninsured) to 100% of expenses. The blue bars represent the distribution of

coverage in the competitive equilibrium. The orange bars represent coverage under monopoly pricing. With

monopoly pricing, approximately 78 percent of consumers remain uninsured. With perfect competition, all

consumers purchase coverage. However, 7.9 percent of consumers purchase policies with coverage levels above

70 percent with monopoly, compared with only 5.8% with perfect competition.

Figure 5: Coverage under Monopoly and Perfect Competition (Truncated Normal)

Notes: The figure depicts the distribution of coverage choices in example 1 with a truncated Normal distri-

bution (losses are truncated at zero). The horizontal axis depicts the contracts chosen by consumers, with

coverage ranging between 0% (uninsured) to 100% of expenses. The blue bars represent the distribution of

coverage in the competitive equilibrium. The orange bars represent coverage under monopoly pricing. With

monopoly pricing, over 70 percent of consumers remain uninsured. In the surplus-maximizing allocation, all

consumers purchase coverage.
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To ensure that losses are non-negative, we considered a truncated normal distribution,

truncated at zero. We calculated the competitive equilibrium, the profit-maximizing allo-

cation for the monopoly, and the surplus-maximizing allocation using the same algorithm

described in the previous subsection. Table 3 describes the parameter values used.

Due to the truncation at zero, the parameter M no longer corresponds to the mean of the

loss distribution. Keeping it at its original value while truncating losses at zero would lead to

substantially higher average losses. We therefore chose to reduce the loss parameter M . Since

the resulting distribution had considerably lower risk premia, we adjusted the coefficient of

risk aversion A.

No coverage ≥ 70% coverage CS Profit
Competition 0.0 5.8 5,453 0
Monopoly 78.3 7.9 2,406 1,393
Efficient 0.0 69.4 8,084 -2,133

Table 4: Coverage with Perfect Competition, Monopoly, and Maximum Surplus (Truncated
Normal)
Notes: The table presents the coverage, consumer surplus (CS), and profits in the numerical example with

a truncated normal distribution. The first column corresponds to the percentage of consumers excluded in

each market structure. The second and third columns describe the proportion of consumer who purchase at

least 70% and 80% coverage. The two last columns correspond to consumer surplus and profits.

The results are qualitatively similar to the ones with a normal distribution.

B Competitive Equilibrium in One-Dimensional Model

In this appendix, we characterize the competitive equilibrium under assumptions 4, 5, and 6,

establishing the result stated in Lemma 2. We will first show that all competitive equilibria

have degenerate allocations and pooling can only occur at zero. Then, we show that it

features the least costly separating allocation.

B.1 Degenerate Allocations and No Pooling

We will show that all competitive equilibria have deterministic allocations and pooling can

only occur at zero. Formally:

Proposition 5. Let (p∗, α∗) be a competitive equilibrium. If (θ, x) and (θ, x′) are in the

support of α∗, then x = x′. If (θ, x) and (θ′, x) are in the support of α∗ and x > 0, then

θ = θ′ (there is no pooling at positive contracts).

The proof will follow a series of lemmas. Before presenting them, we note the following

implication of single crossing (Assumption 4), which will be used throughout this appendix:
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Remark 1. Let x1 > x0 and suppose that u
(
θ̃, x0

)
= u

(
θ̃, x1

)
for some θ̃. Then, u (θ, x1) <

u (θ, x0) for all θ < θ̃, and u (θ, x1) > u (θ, x0) for all θ > θ̃.

Note also that in any competitive equilibrium, prices are Lipschitz continuous (see Propo-

sition 1 in Azevedo and Gottlieb, 2017). The first lemma establishes that consumer opti-

mization implies in the monotonicity of the allocations:

Lemma 16. Let (p∗, α∗) be an equilibrium. Suppose (θ, x0) and (θ, x1) are both in the support

of α∗, where x0 < x1. Let θ0 < θ < θ1. Then, (θ0, x1) and (θ1, x0) are not in the support of

α∗.

Proof. Suppose (θ, x0) and (θ, x1) are both in the support of α∗. Then, by consumer opti-

mization, θ must be indifferent between them:

u (θ, x1)− u (θ, x0) = p (x1)− p (x0) .

By single crossing, it follows that for any θ0 and θ1 with θ1 > θ > θ0,

u (θ1, x1)− u (θ1, x0) > p (x1)− p (x0) > u (θ0, x1)− u (θ0, x0) ,

which implies that x0 does not satisfy consumer optimization for θ1 and vice-versa.

The second lemma shows that any pooling allocation is an isolated point in the set of

equilibrium allocations:

Lemma 17. Let (p∗, α∗) be a competitive equilibrium and suppose (θ0, x) and (θ1, x) are in

the support of α∗, where θ0 6= θ1. There exists ε > 0 such that 0 < |x′ − x| < ε implies that

(θ, x′) is not in the support of α∗ for any θ.

Proof. Let

θ∗ ≡ inf {θ : (θ, x) are in the support of α∗} ,

and

θ∗ ≡ sup {θ : (θ, x) are in the support of α∗} .

Since Θ is bounded and the set of types for which (θ, x) are in the support of α∗ is non-empty

(θ0 and θ1 belong to that set), θ∗ and θ∗ exist.

By zero profits and the fact that c is strictly increasing in types,

p∗ (x) ∈ (c (θ∗, x) , c (θ∗, x)) . (37)
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Let x′ > x (the case where x′ < x is analogous, with θ∗ substituted by θ∗) and suppose that

(x′, θ′) is in the support of α∗. Consumer optimization gives

u(θ′, x′)− p∗(x′) ≥ u(x, θ′)− p∗(x),

and

u(θ∗, x)− p∗(x) ≥ u(θ∗, x′)− p∗(x′).

Combining these expressions, we obtain

u(θ′, x′)− u(θ′, x) ≥ p∗(x′)− p∗(x) ≥ u(θ∗, x′)− u(θ∗, x),

which, by single crossing, yields θ′ ≥ θ∗. Since all types choosing x′ are (weakly) greater than

θ∗,

p∗ (x′) ≥ c (θ∗, x′) ≥ c (θ∗, x) ,

where the first inequality follows from zero profits (and c increasing in types), while the

second follows from x′ > x (and c non-decreasing in x).

Suppose that for any n ∈ N, there exists (θ′n, x
′
n) is in the support of α∗ such that

0 < |x′n − x| < 1
n
. Then, we can obtain a sequence {x′n} converging to x for which p∗ (x′n) ≥

c (θ∗, x) for all n. By continuity of p∗, it follows that p∗(x) ≥ c(θ∗, x), which contradicts

p∗(x) < c(θ∗, x) (by 37).

The next lemma establishes that the only contract that may exhibit pooling in equilibrium

is the null contract:

Lemma 18. Let (p∗, a∗) be a competitive equilibrium and suppose (θ0, x) and (θ1, x) are in

the support of α∗, where θ0 6= θ1. Then, x = 0.

Proof. Suppose we have a competitive equilibrium in which multiple types choose the same al-

location x. As in the proof of the previous lemma, let θ ≡ inf {θ : (θ, x) are in the support of α∗}
and recall that, by zero profits, p(x) > c(θ, x). Suppose, in order to obtain a contradiction,

that x > 0. From the previous lemma, there exists ε > 0 such that 0 < |x − x′| < ε implies

that (θ, x′) is not on the support of a∗ for any θ.

By continuity of u and the fact that u(θ, x) > 0 for all x > 0, prices have to be strictly

positive in a small neighborhood of x > 0. Thus, by condition 3 of Definition 1, for each

contract x′ in a neighborhood of x, there must be types who are indifferent between their

equilibrium contracts and x′. By increasing difference, types who are indifferent between

their equilibrium contracts and x′ < x satisfy θ ≤ θ (otherwise, θ would strictly benefit from
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picking x′, thereby violating consumer optimality). Hence, again by condition 3 of Definition

1, we must have

p (x′) ≤ c (θ, x′) .

Taking the limit as x′ ↗ x yields p (x) ≤ c (θ, x) , contradicting p(x) > c(θ, x).

We now show that in any competitive equilibrium, there cannot be randomization involv-

ing two contracts with positive coverage.

Lemma 19. Let (p∗, α∗) be a competitive equilibrium and suppose (θ, x) and (θ, x′) are in the

support of α∗ for some θ, where x < x′ (i.e., the allocation of some type is non-degenerate).

Then, x = 0.

Proof. Let (p∗, α∗) be a competitive equilibrium and suppose (θ, x) and (θ, x′) are in the

support of α∗, for 0 < x < x′. By the Lemma 18, θ is the only type who picks both x and

x′ in this competitive equilibrium (since they are both strictly positive and pooling can only

occur at zero). Type θ has to be indifferent between these two allocations in order to mix:

u(θ, x)− p (x) = u(θ, x′)− p (x′) .

Moreover, fits must make zero profits:

p (x) = c (θ, x) , p (x′) = c (θ, x′) .

Combining both expressions, it follows that both allocations must yield the same surplus for

type θ:

u(θ, x)− c (θ, x) = u(θ, x′)− c (θ, x′) . (38)

Let x̃ ∈ (x, x′). By strictly concavity of the surplus, equation (38) implies that

u (θ, x̃)− c (θ, x̃) > u (θ, x)− c (θ, x) . (39)

By monotonicity (Lemma 16), either θ picks x̃ in this competitive equilibrium or no one

does. In both cases, the equilibrium has to satisfy the following indifference and zero profit

conditions:

u(θ, x)− p (x) = u(θ, x̃)− p (x̃) , and p(x̃) ≤ c(θ, x̃).

To wit, if type θ picks x̃ in equilibrium, then both must hold with equality. Otherwise, by

condition 3 of Definition 1, some other type must be indifferent between x̃ and their equi-

librium contract (otherwise, the price would be zero, which would contradict the optimality

of picking x < x̃ while paying a non-negative price p(x) = c(θ, x) > 0). By monotonicity, it

must be type θ. Then, again by condition 3 of Definition 1, we must have p(x̃) ≤ c(θ, x̃).
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Therefore, the two previous conditions also have to hold when x̃ is not chosen by any type

in equilibrium. Combining them, we obtain:

u(θ, x)− c (θ, x) ≥ u(θ, x̃)− c(θ, x̃),

which contradicts condition (39). Thus, we cannot have the same type picking two non-zero

allocations with strictly positive probabilities.

Suppose two types θ < θ′ obtain non-degenerate allocations in a competitive equilibrium.

Then, type θ must mix in {0, x} and type θ′ must mix in {0, x′}, where x > 0 and x′ > 0.

However, this contradicts Lemma 16, which states that if (θ, 0) and (θ, x) are in the support

of α∗, then (θ′, 0) cannot be in the support of α∗. Hence, there is at most one type that plays

mixed strategies in any competitive equilibrium.

Finally, we now show that the allocation in any competitive equilibrium must be deter-

ministic:

Lemma 20. Let (p∗, α∗) be a competitive equilibrium and suppose (θ, x) and (θ, x′) are in

the support of α∗. Then, x = x′.

Proof. From the previous lemma, the only possible equilibrium with pooling has one single

type randomizing between 0 and some x > 0. This type must be indifferent between these

two allocations:

u (θ, x)− p (x) = u (θ, 0)− p (0) .

By zero profits, we must have:

p(x) = c (θ, x) , p (0) = 0.

Using the fact that u(θ, 0) = 0, we can write these conditions as

u (θ, x)− c (θ, x) = 0.

That is, the indifferent type must have zero surplus in both cases. Since the surplus u(θ, ·)−
c(θ, ·) is a strictly concave function of allocations,

u (θ, x)− c (θ, x) = u (θ, 0)− c (θ, 0) = 0

implies

u (θ, x̃)− c (θ, x̃) > 0 (40)

for all x̃ ∈ (0, x).
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Condition 3 from Definition 1 implies that prices of contracts between 0 and x must be

on type θ’s indifference curve and cannot exceed type θ’s cost. That is, for all x̃ ∈ (0, x), we

must have

u (θ, x̃)− p (x̃) = 0, (Indifference)

and

p (x̃) ≤ c (θ, x̃) . (Zero Profits)

Combining them, gives u (θ, x̃) ≤ c (θ, x̃), which contradicts (40).

B.2 Least Costly Separating Allocation

Since the allocation in any competitive equilibrium is deterministic, we can represent it by a

pair x : Θ→ [0, 1] and p : [0, 1]→ R+.

Lemma 21. Let (p, x) be a competitive equilibrium. The allocation function x(·) is continu-

ous.

Proof. By single crossing and the fact that there is no pooling outside of the null contract,

x(·) is strictly monotone. Suppose there exists θ̃ such that

x+ := lim
θ↘θ̃

x (θ) > lim
θ↗θ̃

x (θ) =: x−

(the argument for other types of discontinuities is analogous). Consumer optimization gives

u (θ, x (θ))− p (x (θ)) ≥ u (θ, x)− p (x) ∀x.

Take x = x− and consider the limit as θ ↘ θ̃. Because both u and p are continuous, we have

u
(
θ̃, x+

)
− p (x+) ≥ u

(
θ̃, x−

)
− p (x−) .

Similarly, setting x = x+ and taking the limit as θ ↗ θ̃, gives

u
(
θ̃, x−

)
− p (x−) ≥ u

(
θ̃, x+

)
− p (x+) .

Combining both conditions, gives

u
(
θ̃, x+

)
− p (x+) = u

(
θ̃, x−

)
− p (x−) .
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Zero profits implies that p (x+) = c
(
θ̃, x+

)
and p (x−) = c

(
θ̃, x−

)
. Thus,

u
(
θ̃, x+

)
− c

(
θ̃, x+

)
= u

(
θ̃, x−

)
− c

(
θ̃, x−

)
.

Since x is monotonic, it follows that x ∈ (x−, x+) is not picked by any type. By single

crossing, condition 3 from Definition 1 implies that they must be priced according to type

θ̃’s indifference curve:

u
(
θ̃, x+

)
− c

(
θ̃, x+

)
= u

(
θ̃, x
)
− p (x) , (Indifference)

p(x) ≤ c
(
θ̃, x
)
. (Zero Profits)

Combining the conditions, we obtain, for all x− < x < x+,

u
(
θ̃, x
)
− c

(
θ̃, x
)
≤ u

(
θ̃, x+

)
− c

(
θ̃, x+

)
= u

(
θ̃, x−

)
− c

(
θ̃, x−

)
,

which violates the strict concavity of the surplus function.

The next lemma shows that almost all types are distorted downwards:

Lemma 22. Let (p, x) be a competitive equilibrium. Then, x(θ) ≤ arg maxx {u (θ, x)− c (θ, x)} ,
with strict inequality almost everywhere.

Proof. Since Θ = [θ, θ̄] is an interval and x is a continuous and increasing function, it follows

that x (Θ) is an interval. Consumer optimization on the equilibrium path can be written as:

x (θ) ∈ arg max
x(θ)≤x≤x(θ̄)

u (θ, x)− p (x) .

Zero profits for allocations x ∈ [x (θ) , x
(
θ̄
)
] gives

p(x(θ)) = c(θ, x(θ)).

Note that x is a monotone function and, therefore, is differentiable almost everywhere. Con-

sumer optimization requires that at all points of differentiability of x, we have

∂u

∂x
(θ, x (θ)) = p′ (x (θ)) (41)

for all x(θ) ∈ (x (θ) , x
(
θ̄
)
). In general, this local first-order condition is only necessary for

consumer optimality. As usual, we ignore the sufficiency condition for now and verify it at

the end.
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From zero profits, at all points of differentiability of x, we have

p′(x(θ))ẋ(θ) =
∂c

∂θ
(θ, x(θ)) +

∂c

∂x
(θ, x(θ))ẋ(θ).

Combining both expressions, gives[
∂u

∂x
(θ, x (θ))− ∂c

∂x
(θ, x(θ))

]
ẋ(θ) =

∂c

∂θ
(θ, x(θ)).

Since ∂c
∂θ

(θ, x(θ)) > 0, it follows that ẋ (θ) 6= 0 and, since x is strictly increasing,

∂u

∂x
(θ, x (θ)) >

∂c

∂x
(θ, x(θ))

at all points of differentiability of x. Since x is strictly increasing and satisfies the first-order

condition (41), and the consumer’s utility satisfies single crossing, it follows from standard

arguments that global incentive compatibility holds.

Let x∗(θ) ≡ arg maxx u (θ, x) − c (θ, x) denote the surplus-maximizing allocation. Since

the surplus is strictly concave, it follows from the Theorem of the Maximum that x∗(θ) is

continuous. Then, the previous inequality implies that x (θ) < x∗ (θ) almost everywhere.

Because x and x∗ are both continuous, it follows that x (θ) ≤ x∗ (θ) at all points.

Lemma 23. Let (p, x) be a competitive equilibrium. Then, x(θ̄) = arg maxx∈X u(θ̄, x) −
c(θ̄, x).

Proof. From the previous lemma, x(θ̄) ≤ arg maxx∈X u(θ̄, x) − c(θ̄, x). Suppose, in order to

obtain a contradiction, that the inequality is strict. By the monotonicity of x(·), it follows

that no type picks x > x(θ̄). Then, because of single crossing, the competitive equilibrium

requires all allocations x > x(θ̄) to be priced according to θ̄’s indifference curve:

p(x) = u(θ̄, x)− u(θ̄, x(θ̄)) + p(x(θ̄)),

and to satisfy the zero-profit condition:

p(x) ≤ c
(
θ̄, x
)
.

Combining both conditions and using the fact that p(x(θ̄)) = c
(
θ̄, x(θ̄)

)
, gives

u(θ̄, x)− c
(
θ̄, x
)
≤ u(θ̄, x(θ̄))− c(θ̄, x(θ̄))

for all x > x̄, contradicting the assumption that x(θ̄) ≤ arg maxx∈X u(θ̄, x)− c(θ̄, x).

These previous lemmas therefore establish that the equilibrium is determined by incentive
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compatibility with the boundary condition specifying that the highest type gets the efficient

allocation (least costly separating allocation).

Next, we show that the slope of the equilibrium allocation becomes infinitely steep close

to the top:

Lemma 24. Let x(θ) be a competitive equilibrium. Then, limθ↗θ ẋ(θ) = +∞.

Proof. As shown in the previous lemma, the competitive equilibrium allocation solves:[
∂u

∂x
(θ, x (θ))− ∂c

∂x
(θ, x(θ))

]
ẋ(θ) =

∂c

∂θ
(θ, x(θ)),

with x(θ) = arg maxx u(θ, x)− c(θ, x). As θ ↗ θ, we have[
∂u

∂x
(θ, x (θ))− ∂c

∂x
(θ, x(θ))

]
︸ ︷︷ ︸

↘0

ẋ(θ) =
∂c

∂θ
(θ, x(θ))︸ ︷︷ ︸

→ ∂c
∂θ

(θ,x(θ))>0

,

so limθ↗θ ẋ(θ) = +∞.

C Monopolist Solution in One-Dimensional Model

In this appendix, we consider the monopolist’s problem in the one-dimensional model. We

first establish the result from Lemma 3, which considers deterministic mechanisms. Then,

we generalize it to allow for stochastic mechanisms.

C.1 Deterministic Mechanisms and Lemma 3

Using standard arguments, we can write the monopolist’s program as

max
x(·)

∫ θ

θ

[
S (θ, x (θ))− 1− F (θ)

f(θ)

∂u

∂θ
(θ, x (θ))

]
f (θ) dθ

subject to x(·) non-decreasing. Let xm(·) denote the solution to this program (i.e., the

allocation that maximizes the monopolist’s profits). It is helpful to separate into two cases:

• If the monotonicity constraint does not bind at the top (i.e., there exists ε > 0 such that

xm(θ) is strictly increasing for θ ∈ (θ− ε, θ)), the solution must satisfy xm(θ) = xFB(θ)

and ẋm(θ) <∞.

• If the monotonicity constraint binds at the top (i.e., there exists ε > 0 such that

xm(θ) = x∗ for all θ ∈ (θ − ε, θ)), then x∗ ≥ xFB(θ).



58

Case 1: Separation

In this case, the solution for types in (θ−ε, θ) must satisfy the pointwise optimality condition:

∂S

∂x
(θ, x (θ)) =

1− F (θ)

f(θ)

∂2u

∂θ∂x
(θ, x (θ)) .

By Assumption 4, all types except for θ̄ get less coverage than the efficient amount. By the

implicit function theorem, we have

ẋ(θ) = −
∂2S
∂θ∂x

(
θ, x(θ)

)
− d

dθ

[
1−F (θ)
f(θ)

∂2u
∂θ∂x

(θ, x)
]∣∣∣
θ=θ,x=x(θ)

∂2u
∂x2

(
θ, x(θ)

)
− ∂2c

∂x2

(
θ, x(θ)

) .

Differentiating and using the fact that f ′(θ) <∞ (Assumption 7), we obtain

d

dθ

[
1− F (θ)

f(θ)

∂2u

∂θ∂x
(θ, x)

]∣∣∣∣
θ=θ

= − ∂2u

∂θ∂x

(
θ, x
)
.

Substituting back, we obtain:

ẋ(θ) = −
∂2S
∂θ∂x

(
θ, x(θ)

)
+ ∂2u

∂θ∂x

(
θ, x(θ)

)
∂2S
∂x2

(
θ, x(θ)

) < +∞,

where the inequality follows from Assumption 6 (∂
2S
∂x2

(
θ, x(θ)

)
< 0) and the fact that S is

twice continuously differentiable (so the numerator is bounded).

Case 2: Pooling

Introducing the auxiliary variable z(θ) = ẋ(θ), we can write the monopolist’s program as:

max
x(·),z(·)

∫ θ

θ

[
S (θ, x (θ))− 1− F (θ)

f(θ)

∂u

∂θ
(θ, x (θ))

]
f (θ) dθ

subject to

ẋ(θ) = z(θ)

z(θ) ≥ 0

This is a standard optimal control problem, which has the following necessary optimality

conditions:

z(θ) ∈ arg max
z≥0

{[
S (θ, x (θ))− 1− F (θ)

f(θ)

∂u

∂θ
(θ, x (θ))

]
f (θ) + λ(θ)z

}
,
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so that λ(θ) ≤ 0 for all θ with z(θ) = 0 if λ(θ) < 0,[
∂S

∂x
(θ, x (θ))− 1− F (θ)

f(θ)

∂2u

∂θ∂x
(θ, x (θ))

]
f (θ) = −λ̇(θ), (42)

and the transversality condition: λ(θ) = 0.

Since λ(θ) = 0 and λ(θ) ≤ 0 for all θ, we must have λ̇(θ) ≥ 0 (otherwise, we would have

λ(θ) > 0 for all θ < θ close enough to θ). Therefore, equation (42) gives:

∂S

∂x

(
θ̄, x

(
θ̄
))
≤ 0,

which by the concavity of S implies x(θ̄) > x̄ (that is, x(θ̄) is weakly above the first best).

C.2 Stochastic Mechanisms

We now generalize the analysis to allow for stochastic mechanisms. In addition to Assump-

tions 1 and 4-7 made in the deterministic case, we also assume that ∂2u
∂θ2

(θ, x) ≥ 0 for all (θ, x)

and ∂3u
∂θ∂x2

(θ, x) ≥ 0 for all x and all θ in a neighborhood of θ̄.

We consider direct mechanisms. Because the utility is quasi-linear, there is no loss of

generality in restricting attention to deterministic prices. Therefore, a mechanism specifies a

price p(θ) and distribution over coverages ξθ(x) for each type θ. Fix a mechanism and let

U(θ) ≡
∫
x

u (θ, x) dξθ(x)− p(θ)

denote the indirect utility of type θ.

Lemma 25. Suppose ∂2u
∂θ2
≥ 0. A mechanism is incentive compatible if and only if U̇(θ) is

non-decreasing and satisfies the envelope condition:

U̇(θ) =

∫
x

∂u

∂θ
(θ, x) dξθ(x). (43)

Proof. If the mechanism is incentive compatible, then

U(θ) = max
θ̂

{∫
x

u(θ, x)dξθ̂(x)− p(θ̂)
}

where, given the assumption, the function θ →
∫
u(θ, x)dξθ̂(x)− p(θ̂) is convex in θ, for each

θ̂. Therefore, U(θ) is the upper envelope of convex functions and, therefore, convex, so that

U̇(θ) is non-decreasing. Moreover, condition (43) follows from the envelope theorem.
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Conversely, suppose these two conditions hold. Then, for each θ > θ̂, we have that

U(θ)− U(θ̂) =

∫ θ

θ̂

∫
x

∂u

∂θ
(θ̃, x)dξθ̃(x)dθ̃ ≥

∫ θ

θ̂

∫
x

∂u

∂θ
(θ̃, x)dξθ̂(x)dθ̃

where the equality follows from the envelope condition (43) and the inequality follows from

the convexity of U(θ). Therefore,

U(θ)− U(θ̂) ≥
∫
x

[
u(θ, x)− u(θ̂, x)

]
dξθ̂(x),

which is equivalent to

U(θ) ≥
∫
x

u(θ, x)dξθ̂(x)− p(θ̂).

We can therefore write the firm’s program as:

max
µ,U

∫ θ̄

θ

{∫
x

S (θ, x) dξθ(x)− U(θ)

}
f (θ) dθ

subject to

U̇(θ) =

∫
x

∂u

∂θ
(θ, x) dξθ(x)

U̇(θ) non-decreasing,

and

U(θ) ≥ 0.

The next lemma provides the key step for our main result. Let x̄θ = arg maxx S(θ, x),

which is unique by the strict concavity of S.

Lemma 26. Let Θ− ≡ {θ : ∂3u
∂θ∂x2

(θ, x) ≥ 0}. Suppose a mechanism has a set of types with

positive measure in Θ− receiving non-degenerate allocations with Eθ[x|ξθ] < x̄θ. Then, the

mechanism is not optimal.

Proof. To build intuition, let x∗θ be the deterministic payment that solves:∫
x

∂u

∂θ
(θ, x) dξθ(x) =

∂u

∂θ
(θ, x∗θ) .

Note that x∗θ has the same informational rents as with the original allocation µθ, that is

U̇(θ) =
∂u

∂θ
(θ, x∗θ) .



61

Therefore, replacing non-degenerate allocations ξθ by x∗θ in any set of types in Θ− leads to

the same indirect utility and therefore preserves IC.

Since ∂u
∂θ

is convex, it follows that x∗θ ≥
∫
xdξθ(x). Therefore, this replacement increases

coverage. If x∗θ ≤ x̄θ, replacing the non-degenerate allocation ξθ by x∗θ strictly increases

surplus (pointwise) since S is strictly concave and strictly increasing in x ≤ x̄θ. If instead

x∗θ > x̄θ, the effect is ambiguous since S is no longer increasing in x.

For x∗θ > x̄θ > Eθ[x|ξθ], we follow the same idea except we do not substitute ξθ by a

deterministic contract x∗θ. Instead, we construct a mean-preserving contraction that ensures

that the effect is positive. First, note that for any mean-preserving contraction ξ̃θ of ξθ, we

have ∫
x

∂u

∂θ
(θ, x) dξθ(x) ≥

∫
x

∂u

∂θ
(θ, x) dξ̃θ(x)

by the weak convexity of ∂u
∂θ

. Since ∂2u
∂θ∂x

> 0 and ∂u
∂θ

is continuous, there exists δ ≥ 0 such

that ∫
x

∂u

∂θ
(θ, x) dξθ(x) =

∫
x

∂u

∂θ
(θ, x+ δ) dξ̃θ(x).

Intuitively, any mean-preserving contraction generates “additional coverage” δ ≥ 0 that can

be used to increase surplus while keeping informational rents unchanged. The highest mean-

preserving contraction replaces ξθ(x) by a degenerate distribution concentrated at its mean.

But as seen above the additional coverage δ that it generates may be too large, leading to

coverage beyond the surplus-maximizing point. However, by picking a small enough mean-

preserving contraction (formally, any mean-preserving contraction with δ ≤ x̄θ − Eθ[x|ξθ],
which is positive by the assumption of the lemma), the previous argument gives a strict gain

for the monopolist since it this keeps informational rents constant and increases surplus. Since

x̄θ > Eθ[x|ξθ] and ξθ is non-degenerate, such a small enough mean-preserving contraction

always exists.

By the previous lemma, non-degenerate contracts must offer expected coverage above the

surplus-maximizing level, Eθ[x|ξθ] ≥ x̄θ, for almost all types in Θ−. Then, by the assumption

that ∂3u
∂θ∂x2

(θ, x) ≤ 0 for all x and all θ in a neighborhood of θ̄, it follows that (almost) any θ in

that neighborhood that is offered a non-degenerate contract must have Eθ[x|ξθ] ≥ x̄θ > x∗(θ),

where x∗(θ) is the competitive equilibrium allocation (least-costly separating allocation). If

types around θ̄ are offered deterministic contracts, it follows from the analysis from the

last subsection (deterministic contracts) that the monopolist offers more coverage than the

competitive equilibrium. The following proposition formalizes this argument:

Proposition 6. Consider an incentive-compatible mechanism such that Eθ[x|ξθ] < x∗(θ) for

almost all types in an interval (θ̄ − ε, θ̄] for some ε > 0. Then, the mechanism does not

maximize the monopolist’s profits.
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Proof. If the mechanism offers a non-degenerate allocation for a positive measure of types

in this interval, the previous lemma implies that this mechanism is not optimal. If the set

of types obtaining non-degenerate allocations has measure zero, there is no loss in replacing

their allocations by their certainty equivalents, which preserves incentive compatibility and

does not affect the firm’s profits (since this set has zero measure). But, from Lemma 3,

the resulting allocation is also sub-optimal (since the optimal deterministic mechanism has

xm(θ) > x∗(θ) for all θ ∈ (θ̄ − δ, θ̄) for some δ > 0).

D Omitted Proof of Proposition 2

The proof incorporates mixed strategies using the same approach as the proof of Theorem 2.

By quasi-linearity, there is no loss of generality in focusing on mechanisms with deterministic

prices.

Let U(θ) ≡ Eθ [u(θ, x))]− p(θ). By the envelope condition, we must have

U̇(θ) ≡ Eθ
[
∂u

∂θ
(θ, x))

]
> 0, (44)

where the Dominated Convergence Theorem justifies differentiating under the expectation.

Since U(·) is increasing, the exclusion region is an interval: [θ, θ∗].

If all types participate (θ∗ = θ ), any allocation that maximizes the firm’s profits must

give zero utility to the lowest type. If there is exclusion (θ∗ > θ), all types who do not

participate get zero utility. In either case we have U(θ∗) = 0.

Integrate equation (44) to obtain:

U(θ)− U(θ∗)︸ ︷︷ ︸
0

=

∫ θ

θ∗
Eθ̃

[
∂u

∂θ
(θ̃, x))

]
dθ̃.

Substitute in the firm’s expected profits and use integration by parts to rewrite the firm’s

profits as ∫ θ

θ∗

{
Eθ [S(θ, x)]− Eθ

[
∂u

∂θ
(θ, x))

]
· 1− F (θ)

f(θ)

}
f(θ)dθ.

For the moment, suppose θ = 0. To show that any optimal allocation excludes some types,

we verify that the integrand of the expression above is negative for θ close enough to zero.

First, note that the integrand evaluated at θ = 0 equals:

Eθ=0

[
S(θ, x)− ∂u

∂θ
(θ, x)) · 1

f(0)

]
.
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If the mechanism assigns positive mass to x > 0 when θ = 0, then this expression is strictly

negative (since S(0, x) ≤ 0 for all x and ∂u
∂θ

(0, x) ≥ 0 with > for x > 0 (Assumption 1). Thus,

setting θ∗ > 0 is optimal.

If the mechanism assigns full mass to x = 0 when θ = 0, the expression above equals zero.

Evaluating the derivative of the term inside expectation with respect to x, we obtain

∂S

∂x
(0, 0)− ∂2u

∂x∂θ
(0, 0) · 1

f(0)
< 0,

where the inequality follows from ∂S
∂x

(0, 0) ≤ 0 and ∂2u
∂x∂θ

(0, 0) > 0 (Assumption 3). Since the

mechanism assigns positive mass to x > 0 for all θ > θ∗ = 0 (types above θ∗ are not excluded),

by the continuity of the expression on the LHS, it follows that the integrand is strictly negative

for all θ in a neighborhood of θ∗ = 0. Since S is continuously differentiable and u is twice

continuously differentiable, and the integrand remains negative if θ is sufficiently small.
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