Failure to Share Natural Disaster Risk

Tuomas Tomunen

Boston College Carroll School of Management

April 2024

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
•0	0000000	000	000000	000

Risk sharing and intermediary asset pricing

- Capital markets enable risk sharing in the society
- Frictions in financial intermediation can disrupt this process (He & Krishnamurthy, 2013; Brunnermeier & Sannikov, 2014)

 \rightarrow Asset prices reflect intermediaries' risk exposures rather than those of end-investors

 Testing this prediction is hard due to omitted risk-factor problem (Santos & Veronesi, 2022)

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
0•	000000	000	000000	000

This paper tests theories of risk sharing in a unique setting

- 1. Studies the pricing of catastrophe bonds
 - Exposed only to natural disaster risk
- 2. Argues that the relevant intermediary is a specialist hedge fund manager
- 3. Finds that 71% of security-level variation in the expected returns can be explained by the marginal utility of these intermediaries
 - Inconsistent with omitted risk factor alternatives if natural disasters are independent of marginal value of aggregate wealth (identifying assumption)

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00	•000000		000000	000
. .				

Cat bond basics

Trigger if qualifying natural disasters occur

Intentionally structured to minimize interest rate and credit risk

 \rightarrow historical returns virtually uncorrelated with other asset classes

- Issued by (re)insurance companies and government agencies
- Account for around 20% of total reinsurance capital

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00	000000		000000	000
Risk mode	eling			

Before issuance, sponsor hires a risk modeling company to assess actuarial risk of bond triggering

AIR, RMS, EQECAT

- Modelled loss summarized by three measures
 - Attachment probability
 - Expected loss (%)
 - Exhaustion probability

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00	000000	000	000000	000

Fact 1: buying cat bonds has been extremely profitable despite low correlations with other asset classes

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00	000000	000	000000	000

Fact 2: historical natural disasters haven't had significant macroeconomic consequences in developed countries

Tuomas Tomunen

Failure to Share Natural Disaster Risk

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00	0000000	000	000000	000

Fact 3: majority of cat bonds are held by specialist funds

Investor by Category (AON 2018)

Introduction Backg	round and 3 facts	Model and implementation	Results	Conclusion
		0000	000000	000

Fact 3: majority of cat bonds are held by specialist funds

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00	000000●		000000	000

Data

Table: Summary Statistics

Panel A: Bond Characteristics (Primary Market)						
Variable	Ν	Mean	St Dev	Min	Max	
Size (\$ Million)	675	130.8	119.6	1.8	1500.0	
Time to Maturity (Months)	675	36.9	13.1	5.0	120.0	
Spread (%)	658	7.3	5.1	0.7	49.2	
Attachment Probability (%)	657	3.2	3.2	0.0	23.2	
Expected Loss (%)	661	2.3	2.3	0.0	15.8	
Exhaustion Probability (%)	656	1.8	1.8	0.0	12.0	
Expected excess return (%)	645	5.2	3.8	0.6	43.0	
Panel B: Secondary Market						
Variable	Ν	Mean	St Dev	Min	Max	
Turnover (%)	5,969	35.8	79.1	0.0	2000.0	
Discount margin _{sheet} (%)	6,538	6.6	4.8	0.0	39.5	
Discount margin _{trace} (%)	3,994	6.7	4.6	-0.3	36.9	

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00		•00	000000	000
Model				

- Simple general equilibrium asset pricing model with financial intermediation similar to Gabaix, Krishnamurthy, and Vigneron (2007)
 - Outside investors can access cat bond markets only through specialized cat funds
 - Intermediation friction: fund manager must have "skin in the game" by having large amount of her own wealth tied to the fund (alternatively, pay is tied to portfolio performance)
 - Key assumption: natural disasters are independent of marginal value of aggregate wealth

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00	000000	000	000000	000

Model Predictions

Cross-section:

$$E_t(R_{i,t+1}^e) = \beta_{i,t} E_t(R_{cat,t+1}^e)$$
(1)

R^e_{cat.t+1} is excess return on "cat bond market portfolio"

Time series:

$$E_t(R_{cat,t+1}^e) = \hat{\rho} \operatorname{Var}_t(R_{cat,t+1}^e) \frac{Size_t}{AUM_t}$$
(2)

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00			000000	000

Empirical approach

Prediction of a simple model with intermediation frictions:

 $E_t(R^e_{i,t+1}) = \beta_{i,t}E_t(R^e_{cat,t+1})$

•
$$E_t(R^e_{i,t+1}) = s_{i,t} - el_i$$

 Key assumption: actuarial cat models' loss estimates are good proxy for investors' loss estimates

• $\beta_{i,t}$ cannot be feasibly estimated from historical data

- Short sample, infrequent trading, highly skewed returns
- Solution: use actuarial models to model bonds' return distributions and estimate β_{i,t}'s from simulated data

Empirically, variation in simulated $\beta_{i,t}$ is mainly driven by:

- Bond's expected loss
- Relative size of bond's peril category

1

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00	000000	000	00000	000

Cross-sectional results

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00	000000	000	00000	000

Cross-sectional results

Table: Pricing of Catastrophe Market Risk

t	$\lambda_{0,t}$	(t-stat)	$\lambda_{cat,t}$	(t-stat)	$\lambda_{\textit{cat},t} - \textit{E}_t \left(\textit{R}^{\textit{e}}_{\textit{cat},t+1} ight)$	(t-stat)	R^2	N	N _{clusters}
2003	1.47	16.98	2.14	17.42	-1.45	-11.78	0.73	30	12
2004	0.09	0.12	1.54	3.11	-0.31	-0.63	0.51	36	18
2005	0.84	6.56	1.09	12.08	-0.88	-9.72	0.42	34	16
2006	-2.51	-2.54	7.62	9.62	2.13	2.69	0.82	33	18
2007	1.49	3.10	3.78	5.01	-0.96	-1.27	0.71	40	28
2008	1.53	4.88	2.86	8.11	-1.18	-3.35	0.72	33	27
2009	3.29	5.10	4.03	5.14	-2.97	-3.79	0.71	22	17
2010	3.10	5.51	1.99	5.50	-2.86	-7.90	0.53	30	21
2011	1.07	1.25	2.62	2.54	-0.77	-0.75	0.42	22	15
2012	1.21	3.23	4.08	11.69	-1.58	-4.54	0.84	31	27
2013	0.79	3.75	2.17	8.52	-1.02	-4.02	0.76	42	35
2014	1.15	6.20	1.39	5.09	-1.22	-4.45	0.54	48	39
2015	1.09	7.04	1.23	6.85	-1.12	-6.22	0.60	50	39
2016	0.90	5.56	1.02	5.28	-0.70	-3.65	0.53	40	29
2017	0.53	2.38	1.21	3.64	-0.08	-0.25	0.31	46	32
2018	0.35	1.21	1.15	2.56	0.08	0.17	0.29	44	31
FM	1.23	9.41	2.06	11.67	-1.10	-9.02	0.49	63	

$$E_t(R^e_{i,t+1}) = \lambda_{0,t} + \lambda_{cat,t}\hat{\beta}_{i,t} + \varepsilon_{i,t+1}$$

Introduction 00	Background and 3 facts	Model and implementation	Results 000000	Conclusion 000

Time series results

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00	000000	000	000000	000

Time series results

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00	0000000		000●00	000

Pooled results

Model predicts:

$$E_t(R_{i,t+1}^e) = \beta_{i,t}\hat{\rho} \operatorname{Var}_t(R_{cat,t+1}^e) \frac{Size_t}{AUM_t}$$

I estimate this with:

$$E_t(R_{i,t+1}^e) = \delta\beta_{i,t}F_t + \varepsilon_{i,t}$$

F_t	$Var_t(R^e_{\mathit{cat},t+1})rac{\mathit{Size}_t}{\mathit{AUM}_t}$	$\frac{Size_t}{AUM_t}$	$E_t(R^e_{cat,t+1})$
	5.35***	0.02***	0.96***
	(0.38)	(0.00)	(0.05)
- 2			
R∠	0.78	0.77	0.87
Ν	581	581	581

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00	0000000	000	000000	000

Alternatives

Froot (2001)

- 1. Liquidity
- 2. Moral hazard & adverse selection
- 3. Inefficient risk transformation
- 4. Market power

Others

- 1. Peso problem
- 2. Probability weighting
- 3. Rare disasters
- 4. Climate change risk

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00	0000000	000	000000	000

Growing climate change concerns unlikely to explain prices

Cross-section

Introduction 00	Background and 3 facts	Model and implementation	Results 000000	Conclusion ●00

What next?

MARKETS

State Farm Halts Home-Insurance Sales in California

State Farm is the nation's biggest car and home insurer by premium volume. It said it "made this decision due to historic increases in construction costs outpacing inflation, rapidly growing catastrophe exposure, and a challenging reinsurance market." It posted the statement on its website and referred questions to trade groups.

Source: WSJ May 26, 2023

Ge and Tomunen (Work-in-progress): to what extent fluctuations in reinsurance premium affect home insurance costs?

Introduction 00	Background and 3 facts	Model and implementation	Results 000000	Conclusion ○●○
Conclusior	ı			

- A model with intermediation frictions can explain premium on natural disaster risk
 - Implies a failure in risk sharing
- Potential policy tools
 - 1. Increase the number of available peril categories
 - 2. Improve access to the market
 - 3. Educate investors

Introduction	Background and 3 facts	Model and implementation	Results	Conclusion
00	0000000	000	000000	000

Thank you for your attention !

Related literature

Intermediary Asset Pricing: Adrian, Etula, Muir (2014), Brunnermeier and Sannikov (2014), Chen, Joslin, Ni (2010), Etula (2013), Gabaix, Krishnamurthy, Vigneron (2007), Gârleanu, Pedersen, Poteshman (2009), Greenwood, Vissing-Jorgensen (2018), Haddad and Sraer (2018), He and Krishnamurthy (2012, 2013), He, Kelly, Manela (2017), Muir (2017), Siriwardane (2019)

Contribution: Provide evidence on intermediary pricing mechanism in a clean laboratory

Related literature (cont'd)

Markets for Catastrophe Risk: Braun (2016), Cummins, Lalonde, Phillips (2004), Froot and O'Connell (1999, 2008), Froot (2001), Garmaise and Moskowitz (2009), Ibragimov, Jaffee, Walden (2008)

Contribution: Rule out alternative frictions proposed by Froot (2001), cross-sectional evidence with explicit pricing model

Related literature (cont'd)

Climate Finance: Bansal et al. (2017), Barnett et al. (2019), Bolton and Kacperczyk (2019), Daniel et al. (2018), Engle et al. (2019), Hong et al. (2019), Ilhan et al. (2019), Krueger et al. (2019),

Contribution: Evidence on intermediation frictions being a major impediment for efficient allocation of natural disaster risk

Froot (2001) assumptions and hypotheses

Assumptions:

- 1. Cat risk is diversifiable
 - No peso problem
- 2. Actuarial risk models are unbiased

Hypotheses (supply side):

- 1. Insufficient reinsurance capital
- 2. Reinsurance companies have market power
- 3. Corporate form for reinsurance is inefficient
- 4. Poor liquidity & High transaction costs
- 5. Moral hazard & Adverse selection

Typical deal structure

Market structure

Source: AON Benfield (2018)

Cat bonds are uncorrelated with major asset classes

Coefficient	(1)	(2)	(3)	(4)	(5)
Intercept	0.272 ^{**} (0.136)	0.258 [*] (0.139)	0.266 [*] (0.158)	0.319 ^{**} (0.131)	0.268^{*} (0.160)
Equities	0.027 (0.021)				0.005 (0.034)
High-yield bonds		0.057^{*} (0.031)			0.038 (0.051)
MBS			0.091 (0.173)		0.139 (0.165)
Carry trade				0.031 (0.040)	0.008 (0.049)
N R ²	156 0.013	156 0.026	156 0.005	154 0.006	154 0.034

$$R_t^{cat} = a + b R_t^{other} + \epsilon_t$$

Risk modeling

 Before issuance, sponsor hires a risk modeling company to assess actuarial risk of bond triggering

AIR, RMS, EQECAT

- Modelled loss summarized by three measures
 - Attachment probability
 - Expected loss (%)
 - Exhaustion probability

Top 10 Peril Categories

Risk Model

Market Share of Risk Modeling Companies

Macro effects of natural disasters

Estimate impulse response to natural disasters with Jordà (2005) local projections:

$$\Delta_h y_{i,t+h} = \gamma_i + \gamma_t + b_1 Small_{i,t} + b_2 Large_{i,t} + \varepsilon_{i,t}$$

- 13 countries (i)
- Annual sample from 1950 to 2016 (t)
- ▶ $Small_{i,t} = 1$ if $dmg/gdp_{i,t-1} \in [0.2\%, 1\%]$ (8% of obs)
- $Large_{i,t} = 1$ if $dmg/gdp_{i,t-1} > 1\%$ (2% of obs)

Impulse responses to small disasters

Model

- Follows Gabaix, Krishnamurthy, Vigneron (2007)
- Two periods
- Large mass of outside investors
 - Marginal rate of substitution M_H is independent of natural disasters
- Specialized cat bond fund managers
 - Choose a portfolio of cat bonds at t = 0
 - Have mean-variance preferences
- Friction: Managers must contribute α% of funds they manage ("skin in the game")

Model: Assets

- At t = 0, N cat bonds are issued at par
- Per-unit coupon of $C_i = r + s_i$ at maturity (t = 1)
- Bond can trigger due to natural disaster. Value of principal at maturity is:

$$P_i(x_i) = \begin{cases} 1 & x_i > \bar{x}_i \\ F_i(x_i) & \underline{x}_i \le x_i \le \bar{x}_i \\ 0 & x_i < \underline{x}_i \end{cases}$$
(3)

Estimating betas

- Assumption: events are uncorrelated across peril categories and perfectly correlated within categories
- Only single-peril bonds are included in the sample

Estimating betas (cont'd)

Table:	Summary	of	Simulation	Results
--------	---------	----	------------	---------

Variable	Ν	Mean	St Dev	Min	25%	50%	75%	Max
$eta_{\textit{sheet}} \ eta_{\textit{trace}}$	2,158 1,267	1.04 0.98	0.71 0.69	0.01 0.01	0.42 0.36	0.92 0.86	1.54 1.53	3.28 2.94
N _{trials} N _{perils}	500,000 9							

Examples of estimated betas

Bond	Sponsor	E×pected Loss	β
Ursa Re Series 2017-1 Class E	California Earthquake Authority	3.33%	2.24
Ursa Re Series 2017-1 Class B	California Earthquake Authority	1.11%	1.28
Bosphorus Ltd. Series 2015-1 Class A	Turkish Catastrophe Insurance Pool	1.47%	0.08

Estimating betas

Let x_{i,t} ~ U(0,1). Given Attachment probability (x̄_i), Expected loss (el_i) and Exhaustion probability (x̄_i), I assume the following payoff function for principal:

$$P_{i}(x_{i}) = \begin{cases} 1, & x_{i} \geq \bar{x}_{i} \\ \left(\frac{x_{i} - \underline{X}_{i}}{\bar{x}_{i} - \underline{X}_{i}}\right)^{\phi_{i}}, & \underline{x}_{i} < x_{i} < \bar{x}_{i} \\ 0, & x_{i} \leq \underline{x}_{i} \end{cases}$$
(4)

• where
$$\phi_i = rac{ar{x}_i - \underline{X}_i}{ar{x}_i - el_i} - 1$$

Excess return in state x then is:

$$R_{i,t+1}^{e}(x) = (1 + r_t + s_{i,t})P_i(x) - r_t$$
(5)

Illustration of payoff function P

Results (TRACE prices)

Table: Pricing of Catastrophe Market Risk

t	$\lambda_{0,t}$	(t-stat)	$\lambda_{\textit{cat},t}$	(t-stat)	$\lambda_{\textit{cat},t} - \textit{E}_t \left(\textit{R}^{\textit{e}}_{\textit{cat},t+1} ight)$	(t-stat)	R^2	Ν	N _{clusters}
2005	0.76	1.75	1.20	3.39	-0.80	-2.26	0.40	16	12
2006	-1.93	-2.56	7.57	11.71	1.99	3.08	0.87	29	15
2007	1.52	5.32	3.59	9.58	-1.32	-3.53	0.87	23	17
2008	1.82	1.94	2.41	3.38	-1.35	-1.89	0.53	18	15
2009	4.36	4.21	3.61	3.26	-3.60	-3.24	0.53	19	15
2010	3.47	7.52	1.40	3.79	-3.23	-8.72	0.38	26	19
2011	1.29	1.48	2.52	3.51	-1.44	-2.00	0.60	18	12
2012	1.97	5.17	4.14	11.72	-2.49	-7.05	0.86	22	20
2013	0.95	4.98	2.14	8.40	-1.26	-4.95	0.76	30	26
2014	1.36	9.88	0.96	5.08	-1.63	-8.64	0.47	34	28
2015	1.37	7.47	0.99	6.37	-1.41	-9.03	0.55	35	27
2016	0.98	6.34	0.91	4.46	-0.83	-4.04	0.55	29	23
2017	0.82	3.27	0.77	2.42	-0.41	-1.29	0.14	35	27
2018	0.72	3.30	0.46	2.44	-0.57	-3.02	0.17	31	22
FM	1.51	9.32	1.95	10.02	-1.40	-9.47	0.46	57	

$$E_t(R^e_{i,t+1}) = \lambda_{0,t} + \lambda_{cat,t}\hat{\beta}_{i,t} + \varepsilon_{i,t+1}$$

Main results

Main results

Main results

Realized losses highly consistent with the predictions of the actuarial models

Loss %

Alternative hypothesis that all premium is due to biased loss estimates inconsistent with the data

Loss %

Modeled vs. actual losses

Modeled vs. actual losses (biased estimates)

Measuring Liquidity

I use all feasible measures from Friewald, Jankowitsch, and Subrahmanyam (2012):

- Trading activity variables
 - Turnover
 - Number of trades
 - Trading interval
- Bond characteristics
 - Amount issued
 - Age
 - Time to maturity

Measuring Liquidity (Cont'd)

Table: Correlation of Beta and Liquidity Measures

	$\hat{\beta}$	Turnover	N trades	Trading interval	Amount issued	Age	Maturity
β	1.00	0.06	0.03	-0.04	-0.01	-0.15	-0.14
Turnover	0.06	1.00	0.65	-0.10	0.04	-0.10	0.13
N trades	0.03	0.65	1.00	-0.25	0.44	-0.11	0.15
Trading interval	-0.04	-0.10	-0.25	1.00	-0.21	0.31	-0.18
Amount issued	-0.01	0.04	0.44	-0.21	1.00	-0.04	0.12
Age	-0.15	-0.10	-0.11	0.31	-0.04	1.00	-0.57
Maturity	-0.14	0.13	0.15	-0.18	0.12	-0.57	1.00

Liquidity: Pricing Results

Table: Pricing of Catastrophe Market Risk (Liquidity)

			Liquidity mea	sure (<i>LIQ</i>)		
	Turnover	N trades	Trading interval	Amount issued	Age	Maturity
λ_0	1.44	1.47	1.45	1.62	1.61	1.32
(t-stat)	(9.45)	(9.41)	(9.12)	(8.70)	(9.67)	(5.88)
λ_{cat}	2.03	2.06	1.81	2.08	1.99	2.00
(t-stat)	(10.07)	(10.51)	(10.35)	(10.49)	(10.07)	(10.26)
λ_{lia}	-0.27	-0.04	-0.00	-0.00	-0.17	0.03
(t-stat)	(-2.30)	(-3.69)	(-0.99)	(-3.98)	(-3.18)	(0.54)
Ν	57	57	57	57	57	57
R ²	0.54	0.54	0.53	0.55	0.54	0.54

 $E_t(R_{i,t+1}^e) = \lambda_{0,t} + \lambda_{cat,t}\hat{\beta}_{i,t} + \lambda_{liq,t}LIQ_{i,t} + \varepsilon_{i,t+1}$

Results (Subsamples)

Table: Pricing of Catastrophe Market Risk (Subsamples)

	Main	Noncallables	Earthquake	Parametric
$ \begin{array}{l} \lambda_{0,t} \\ (t\text{-stat}) \\ \lambda_{cat,t} \\ (t\text{-stat}) \\ \lambda_{cat,t} - E_t \left(R_{cat,t+1}^e \right) \\ (t\text{-stat}) \end{array} $	1.23	1.20	1.50	1.28
	(9.41)	(9.53)	(8.50)	(8.82)
	2.06	2.11	1.98	1.94
	(11.67)	(11.56)	(6.52)	(7.62)
	-1.10	-1.05	-1.18	-1.23
	(-9.02)	(-8.70)	(-3.94)	(-6.51)
N	63	63	63	63
R ²	0.49	0.51	0.43	0.49

$$E_t(R^e_{i,t+1}) = \lambda_{0,t} + \lambda_{cat,t}\hat{\beta}_{i,t} + \varepsilon_{i,t+1}$$

Past returns

Accounting for Peso Problem

- ► SDF: $M(x_{t+1}, z_{t+1})$
- ► Two bonds, A and B:

$$\underline{x}_A \leq \underline{x}_B, el_A < el_B$$

Accounting for Peso Problem (cont'd)

Assumption 1: $M(x_{t+1}, z_{t+1}) = M(z_{t+1}), x_{t+1} \ge x^*$ (Small disasters are not priced)

Assumption 2: $\underline{x}_A \ge x^*$ (Safe bond exhausts before "severe disaster threshold" is hit)

Prediction:

$$\Delta s_t = \Delta e l_t$$

Empirical specification:

$$\Delta s_{i,j} = \lambda \Delta e l_{i,j} + \varepsilon_{i,j}$$

H0: $\lambda = 1$

Results

Results (cont'd)

	(1)	(2)	(3)	(4)	(5)	(6)
λ	1.46 ^{***} (0.09)	1.42 ^{***} (0.09)	1.48 ^{***} (0.12)	1.44 ^{***} (0.13)	1.44 ^{***} (0.15)	1.49 ^{**} (0.19)
N N Clusters Largest Cluster (%) R ²	151 106 2.65 0.82	125 89 3.20 0.84	92 67 4.35 0.85	57 42 7.02 0.86	45 33 8.89 0.86	34 25 11.76 0.87
Min(el _A)	0.00	0.50	1.00	1.50	2.00	2.50

Table: Price of non-extreme cat risk

 $\Delta s_{i,j} = \lambda \Delta e l_{i,j} + \varepsilon_{i,j}$

Illustration of Assumptions

Probability Weighting

- Barberis and Huang (2008) predicts that:
 - Assets with negative skewness (not coskewness) have high excess returns
 - One group of investors buy all all assets, N groups of investors each short one asset
- Explains aggregate premium and market structure
- But: my beta measure is *positively* correlated with skewness (0.4)

Probability Weighting: Pricing Results

Table: Pricing of Catastrophe Market Risk (Skewness)

(1)	(2)	(3)
1.23 (9.41) 2.06 (11.67)	5.33 (12.38) 0.20 (7.76)	1.54 (5.42) 2.03 (10.73) 0.03 (1.80)
63 0.49	63 0.19	63 0.52
	(1) 1.23 (9.41) 2.06 (11.67) 63 0.49	$\begin{array}{ccc} (1) & (2) \\ 1.23 & 5.33 \\ (9.41) & (12.38) \\ 2.06 \\ (11.67) & 0.20 \\ (7.76) \\ \hline \\ 63 & 63 \\ 0.49 & 0.19 \end{array}$

$$E_t(R_{i,t+1}^e) = \lambda_{0,t} + \lambda_{cat,t} \hat{\beta}_{i,t} + \lambda_{skew,t} Skew_{i,t} + \varepsilon_{i,t+1}$$

Tuomas Tomunen

Market Power in Primary Markets

Table: Catastrophe market risk and investor market power

	P	anel A: Sum	mary statist	ics for prima	ary market	investors		
Variable	Ν	Mean	St Dev	Min	25%	50%	75%	Max
Volume/Size	148	1.00	0.01	0.96	1.00	1.00	1.00	1.05
N investors	148	26.48	14.69	1.00	17.75	22.00	30.25	81.00
Ownership HHI	148	0.14	0.10	0.03	0.09	0.12	0.17	1.00
	Pane	el B: Pricing	of catastro	phe market	risk and n	arket powe	r	
	$\hat{\beta}$ $\hat{\beta}_{proj}$							
$\hat{\lambda}_0$		1.23 ^{***} (0.24)	2.17 ^{***} (0.68)	1.18 ^{***} (0.26)		0.90 ^{***} (0.23)	2.56 ^{***} (0.35)	0.87 ^{***} (0.27)
$\hat{\lambda}_{\textit{cat}}$		1.12 ^{***} (0.25)		1.10 ^{***} (0.34)		1.39 ^{***} (0.16)		1.38 ^{***} (0.16)
$\hat{\lambda}_{hhi}$			4.09 (3.42)	0.56 (3.26)			4.62 [*] (2.44)	0.37 (1.60)
R ² N		0.47 45.00	0.06 45.00	0.47 45.00		0.56 136.00	0.06 136.00	0.56 136.00