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1   Introduction 
 
Portfolio optimization involves the systematic allocation of assets to maximize expected portfolio 
returns for a given level of risk or, alternatively, to minimize risk for a given level of expected 
return. The classical formulation of portfolio optimization is the Markowitz model, which utilizes 
a mean-variance optimization framework.  
 
The classical Markowitz model relies on precise estimates of expected returns, variances, and 
covariances of asset returns. However, these parameters are often estimated from historical data 
and are subject to estimation error, which can lead to optimized portfolios that are optimal in-
sample but suboptimal out-of-sample. Robust portfolio optimization seeks to mitigate the risk that 
an asset's true characteristics deviate from their estimates by incorporating uncertainties in asset 
returns, covariances, and other parameters. It considers the worst-case scenario within a specified 
uncertainty set of all possibilities a market can give. Rather than optimizing for a point estimate of 
expected returns and covariances, robust optimization takes into account the entire range of 
possible values that these parameters can take.  
 
Several published work, such as Blanchet et al. and Olivares-Nadal and DeMiguel, have 
introduced distributional robustness into the classical Markowitz model. The robustification of 
Markowitz model intends to address the discrepancies between the empirical distribution 
calculated based on historical data and the real distribution. We transform the robust optimization 
problem to non-robust minimization problem in terms of the empirical probability distribution 
adding regularization term.  
 
Blanchet et al. measures the discrepancy between the empirical and true distribution by 
incorporating the size of ambiguity set 𝛿 into the objective function and leveraging the minimal 
target return threshold 𝛼 to define the feasible set that includes the optimal solution. 
 
Our results for Blanchet et al. approach on daily stock data is as strong as the authors originally 
achieved with monthly stock data. Blanchet et al. outperforms classical Markowitz model. It tends 
to have much higher return and risk than equally weighted portfolio, but similar risk adjusted return. 
 
2   Problem Definition and Algorithm 
 
2.1   Task 
 



Our goal is to find an optimal portfolio weighting vector within a feasible set determined by 𝛿 and 
𝛼 to minimize the risk of the worst possible environment within an uncertainty set of empirical 
distribution. To achieve robust portfolio optimization, we compute 𝛿, the size of the ambiguity set 
measuring the discrepancy between the empirical distribution and true distribution, and 𝛼, the 
minimal target return threshold. We first solve the traditional Markowitz mean-variance problem 
based on empirical data for initial weighting vector 𝜙 Then, we utilize simulated return matrix 𝑅 
generated by bootstrapping techniques and the initial weighting vector 𝜙 to calculate 𝛿 and 𝛼. 
Finally, we solve the robust optimization problem for an optimal portfolio weighting vector. 
 
2.2   Algorithm 
 
1. Choose target return rate 𝜌 = 0.07 for daily horizon, 𝜌 = 0.0005 for hourly horizon, 𝜌 =

0.00001 for minute horizon 
2. Collect return data {𝑅!}!"#$  for 𝑛 periods of time and each 𝑅! ∈ 𝑅% 
3. Calculate sample mean 𝜇$ = 𝐸&!(𝑅) and the second moment matrix ∑ 	$ = 𝐸&!(𝑅𝑅

') to 
approximate 𝜇∗ and  ∑ 	∗ . ∑ 	$ must be positive semidefinite. 

4. Solve traditional Markowitz portfolio optimization model for 𝜙$∗  
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5. Compute 𝛿 
• 𝑔(𝑥) = 𝑥 + 2(𝑥𝑥'𝜙$∗ − (𝜙$∗)'𝑥𝑥'𝜙$∗)/𝜆#  

where 𝜆#is the Lagrange multiplier of the constraint 𝜙'𝐸&!(𝑅) = 𝜌 
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where 𝑅. are bootstrap samples of the return matrix, 𝑛 is sample size, 𝑃∗ is 
empirical distribution 
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where (1 −	𝛿/) is a predefined confidence interval, typically 95% 
 
 
 

6. Compute 𝛼 
• Υ)!∗~𝑉𝑎𝑟&∗(𝑛

+&$ ∑ (𝜙$∗)' 	𝑅./	‖𝜙$∗‖-)$
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where 𝑅. are bootstrap samples of the return matrix, 𝑛 is sample size 
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where Υ)!∗ → Υ)	∗ when 𝑛 → ∞ 
• Find 𝑣/	such that the following inequality holds with confidence level  (1 −	𝛿/) 
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• Compute 𝑣/HH such that (𝜙$∗)'𝔼ℙ!(𝑅) − √𝛿‖𝜙$
∗‖- = 	𝜌 − √𝛿‖𝜙$∗‖-𝑣/HH 

• 𝑣/ = max	(𝑣/H , 𝑣/HH) 



• 𝛼 = 𝜌 − √𝛿‖𝜙$∗‖-𝑣/	  
7. Robust optimization 

min
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3   Experimental Evaluation 
 
3.1   Data 
 
Our experiment takes place in three different time frame settings: one is on a daily basis and the 
other is on an hourly basis. The dataset utilized for daily horizon comprises the daily adjusted close 
price of 100 largest stocks in S&P 500 covering the period from Jan 1st, 2021 to December 31st, 
2023 and was sourced from Yahoo Finance. We calculated daily returns based on adjusted close 
price. We set the training window size to one year with the initial training set extending from Jan 
1st, 2021 to December 31st, 2022. The test data is the subsequent trading day. We then 
incrementally shift the training data by one day at a time until the test data reaches the final day in 
the dataset. 
 
The dataset utilized for hourly horizon is QuantQuote’s minute market data. It contains high-
frequency minute-level data on NASDAQ, NYSE, and AMEX stocks over a three-month period, 
specifically spanning December 2020, January 2021, and February 2021. We have price and 
volume data for each of the 627 stocks included in the dataset. For all trading days, data from 
9:30am to 4pm is available, and before and after hour quotes are also provided. We limit our data 
sample to the hours that the market is open. The dataset includes Date, Time, Open, High, Low, 
Close, Volume, Split Factor, Earnings, and Dividends, although only Date, Time, and Close are 
utilized in the experiment. We sampled only 100 stocks with the highest average return in the first 
50 data samples for our experiment, similar to the portfolio size experimented in Blanchet et al. 
This selection makes it more likely to achieve a positive semidefinite covariance matrix of our 
portfolio returns. We replace NaN values in the stock price with the last non-null value that 
appeared before it and assume that missing values can be reasonably estimated by their immediate 
predecessor. We also dropped the stocks that have equal to or more than 6 concessive NaN values 
of the half-hour return data to filter out the stocks that are no longer publicly traded in the stock 
markets. 
 
The dataset used for minute horizon is QuantQuote’s minute market data of December 2020. We 
limit our data sample to the open market, which is 9:30am to 4pm. We selected the 100 stocks 
with the highest average return on the first trading day of the dataset. We used 20% of the dataset 
as training data and rolled the training data to test the weight vector on the subsequent return data 
point.  
  
3.2   Methodology 
 
Our experiment aims to evaluate how robust portfolio optimization model, such as Blanchet et al., 
performs compared with other non-robust models. We hypothesize that the distributionally robust 
mean variance (DRMV) portfolio optimization model outperforms other non-robust models 



because it handles the optimization over a set of possibilities the market may give rather than just 
handle the optimization under the most possible market condition. Additionally, when we use 
Wasserstein Distance to model the uncertainty in the distribution of stock returns, we naturally 
generate a regularization term, which effectively addresses the issue of overfitting.  
 
The detailed algorithm is specified in Section 2.2. We utilized CVXPY package to solve the robust 
optimization problem with size of the ambiguity set 𝛿 and minimal target return threshold	𝛼.	Then,	
we	calculated	the	portfolio	return	by	weighting	the	individual	stock	return	with	the	optimal	
weighting	vector.	The distributionally robust mean variance (DRMV) model is implemented in a 
rolling time horizon to account for market dynamics. In the first iteration, we train 𝛿 and 𝛼 and 
compute the robust optimal weight with the data in the first training set. Then we apply the optimal 
weighting vector to individual stock’s return on the one data point after the training set, getting the 
portfolio return. In the second iteration, the training set moves one-step ahead to the future and the 
size of the training set does not change. We train 𝛿 and 𝛼 based on this new training set and got 
an optimal weighting vector. We then apply this weighting vector to the next data point subsequent 
to this new training set. We repeated this process until reaching the last data point in the testing 
set.  
 
For evaluation purposes, we also trained classical non-robust Markowitz model and equally 
weighted model on the same dataset with rolling horizon.  
 
3.3 Comparison Model 
 
3.3.1 Classical Markowitz model 
 

Minimize 𝜙'Σ𝜙 − 𝜇$'𝜙 
subject to 1'𝜙 = 1, 𝜙 > 0   

 
3.3.2 Olivares-Nadal–DeMiguel Model 
 

1. Use 10-fold cross validation to divide the empirical returns into 10 intervals. For each of 
the ten intervals, we remove an interval and use the remaining nine intervals to estimate 
parameters and obtain the corresponding portfolio. Then, we evaluate the portfolio on the 
one interval that is not used for training. 

2. Compute 𝜙K: Solve portfolio optimization model for 𝜙K where 𝜏 is the trading volume 
restriction. 

Minimize𝜙'Σ𝜙  
subject to 1'𝜙 = 1, ‖𝜙 − 𝜙/‖ ≤ 𝜏 
𝜏 = {0%, 0.5%, 1%, 2.5%, 5%, 10%}  

 
3. Compute 𝜏: Apply 𝜙K to out-of-sample returns and compute the variance of the out-of-

sample returns for different 𝜏 from the set {0%, 0.5%, 1%, 2.5%, 5%, 10%}. Then choose 
the 𝜏 that corresponds to the portfolio with the smallest variance. 

4. Compute 𝜅: Solve for 𝜅 by plugging in 𝜏 and 𝜙K where 𝜅 is the transaction cost parameter. 

𝜅 = s
‖	𝜙K −	𝜙/‖#

𝜏 t − 1 



5. Compute 𝜙/: Since we do not have initial optimal portfolio in the first iteration, we use 
classical Markowitz method to solve for initial optimal portfolio in the first iteration to 
serve as a starting point. 

6. Compute 𝜙∗: Solve for optimal portfolio 𝜙∗ where 𝜙/ is the initial optimal portfolio.  

𝜙∗ =
1

1 + 𝑘 𝜙K +
𝑘

1 + 𝑘 𝜙/ 

 
4 Result 
 
4.1 Daily Result 
 
Comparing with Markowitz, Equal-weighting, and Olivares-Nadal-DeMiguel portfolio, the daily 
portfolio return of DRMV portfolio tends to have the highest annualized return, highest variance, 
and second highest Sharpe ratio. Below are histograms of averaged daily return rate of 20 
different experiments on the four types of portfolios. 
 

 
 

 



 
Below is a distribution plot of averaged daily return rate of 20 different experiments on the four 
types of portfolios.  

 
Top 10 holdings at the end of the holding period are shown above, corresponding to Verizon, 
Lockheed Martin Corp, Pfizer, Amazon, McDonald's Corp, Procter & Gamble Co, Johnson & 
Johnson, Abbott Laboratories, Merck & Co Inc, Walmart Inc. 
 
We generate the wealth process for the period January 1st, 2022 to December 31st, 2023 under 
each of the four models- DMRV, Markowitz, Olivares, and equal-weighting model. Then we 
repeated the experiments 20 such sets of stocks and obtain the averaged realized wealth process 
for each model. We initialize the initial portfolio wealth to 100. The portfolio wealth evolves 
based on the portfolio returns gained from each model. We can see that DMRV generates the 
lowest portfolio wealth in the first half of the time series and then gradually surpasses the other 
two models, achieving the highest portfolio wealth in the end. It is obvious from the graph that 
DRMV generates a portfolio with the highest volatility. 
 

 



Below is a comparison of annualized return rate and annualized Sharpe ratio for the four 
portfolios based on the averaged results of 20 experiments. Annualized return rate is presented 
below as a decimal rather than percentage. 
 

 
 

 
 

The annualized return is calculated by ( @8L>8M	N@<?=O
P@M>88>8M	N@<?=O

)	
+,-*.!/	01,.2*3	.!	-	41-,

+,-*.!/	01,.2*3	.!	+13+.!/	31+ − 1. We first 
calculated the return rate over the entire testing period and then compounded it based on how 
many such testing period we have in a year. The annualized standard deviation was calculated by 
the daily standard deviation times √252, where 252 represents the number of trading days in a 
year.  
 
DRMV model is designed to perform well across a range of possible future scenarios, not just the 
most likely one. They incorporate uncertainties in asset returns, covariances, and other parameters. 



This leads to a more conservative approach that can account for worst-case scenarios, which results 
in higher variance in the portfolio to hedge against extreme outcomes. Therefore, although it has 
the highest annualized return in the case of daily horizon, the return is partially offset by the highest 
variance, resulting in the second highest Sharpe ratio with equal-weighting portfolio coming with 
the highest Sharpe ratio. 
 
4.2 Hourly Result 
 
4.2.1 Hourly Horizon Base Case 
 
The hourly horizon yields different results from daily horizon. In hourly horizon, DRMV 
portfolio has clear advantage over Markowitz, Equal-weighting, and Olivares-Nadal-DeMiguel 
portfolios. The portfolio return of DRMV model tends to have the highest average return, highest 
variance, and highest Sharpe ratio compared with the other three models. Below are histograms 
of averaged hourly return rate of 20 different experiments on the four types of portfolios. 
 

 

 



 
Below is a distribution plot of averaged hourly return rate of 20 different experiments on the four 
types of portfolios.  

 
Below is a time series plot of averaged simulated wealth process of 20 different experiments on 
the four types of portfolios. 

 

 
Below is a comparison of annualized return rate and annualized Sharpe ratio for the four 
portfolios based on the averaged results of 20 experiments. Annualized return rate is presented 
below as a decimal rather than percentage. 

 



 
 

 
 

The annualized return was calculated by ( @8L>8M	N@<?=O
P@M>88>8M	N@<?=O

)	
+,-*.!/	01,.2*3	.!	-	41-,

+,-*.!/	01,.2*3	.!	+13+.!/	31+ − 1. The 

annualized standard deviation was calculated by the hourly standard deviation times √252 ∗ 14, 
where 252 represents trading days and 14 represents trading periods in a day. Annualized Sharpe 
ratio was calculated by annualized return divided by annualized standard deviation. We can see 
that DRMV outperforms Markowitz, Equal-weighting, and Olivares-Nadal-DeMiguel portfolio 
in terms of annualized Sharpe ratio.  
 
The annualized return is quite high for all four models, much higher than the annualized return 
Blanchet et al. got in their research paper. This is mainly because we use different trading 
frequencies on different time interval. Our high return rate is reasonable for the following two 
reasons. First, since we handle hourly data roughly than monthly data in Blanchet et al.’s  



research, we are able adjust portfolio allocation much more frequently and react to the market 
fluctuation immediately, resulting in more optimal portfolio at a given time and higher 
annualized return. Second, the equal-weighting portfolio return over the three-month period 
spanning from December 1st, 2020 to February 26th, 2021 is 7.3%, which leading to an 
annualized return rate of 55.77%. This indicates that the time period we select inherently comes 
with high return rate. To serve as benchmark, S&P price increased from 3662.45 to 3811.15 over 
this time period, resulting in period return rate of 4.06% and annualized return rate of 32.27%. 
Since we selected the 100 stocks with the highest average return of the first 50 trading periods, 
roughly 4 days, from NASDAQ, NYSE, and AMEX, it is reasonable that our equal weight 
portfolio can outperform S&P 500. Therefore, from the time series plot, we can see that DRMV 
portfolio increases by 21.28% over the three-month period, leading to an annualized return of 
236.49%.  
 
4.2.1 Hourly Horizon with Stock Reselection 
 
Instead of choosing the 100 stocks with the highest average of the first 50 data points and 
sticking with these 100 stocks, we select a new set of 100 stocks from a pool of 626 stocks in 
each iteration.  

 

 



 
 

 
 

 
 
All four models have lower annualized Sharpe ratio than the base case, but the ranking of the 
models does not change. DRMV portfolio still has the highest Sharpe ratio, while equal 
weighting portfolio is the second highest. The lower Sharpe ratio is due to both the lower 
annualized return and higher annualized standard deviation. One possible explanation for the 
lower annualized return is that frequent changes in the portfolio composition might lead to 
missing out on recovery periods or holding stocks during their underperformance phases. 
Another possible reason for lower annualized return is that changing stocks frequently can 
reduce the effectiveness of compounding returns over time. On the other hand, constantly 
changing stocks introduces volatility, increasing the annualized standard deviation. Therefore, 
reselecting stocks every time before the trades may not be a good choice comparing with sticking 
with the initial choice of stock based on our experiments. 
 



Interestingly, in the distribution plot of portfolio return, DRMV is more shifted to the right than 
all the other three models, indicating the former model outperforms the other three.  
 
 
5 Discussion 
 
Our hypothesis that DRMV model outperforms non-robust models on out-of-sample data is 
supported to some extent. In all the scenarios and time horizons, DRMV approach results in 
higher volatility than non-robust Markowitz, equal weighting, and Olivares portfolio. In hourly 
horizon, DRMV portfolio has the highest Sharpe ratio, while in daily horizon, DRMV portfolio 
has the second highest Sharpe ratio, but still outperforming classical non-robust Markowitz 
portfolio. The one possible reason for the different outcomes is that high-frequency trading has 
more random fluctuations and noise. DRMV portfolio does not commit to a single probability 
distribution and are inherently better at handling the uncertainty noise. Furthermore, in high-
frequency trading, the accuracy of a model’s assumptions regarding distribution parameters are 
important due to the short timeframe for decision-making. DRMV portfolio does not depend on 
the exact specification of those parameters can effectively mitigate the risk of misspecification.  
 
Our daily time horizon has overlapping results with Blanchet et al.’s results to some extent. We 
both find that in terms of the final realized wealth, DRMV and equal-weighting portfolio lead by 
a substantial margin. However, different from the finding of Blanchet et al., we find the average 
performances of DRMV and equal weighting are not close. DRMV is much more volatile and 
generates much higher final realized wealth. One possible explanation for the different results is 
that equal-weighting portfolio can be seen as an extreme case of the DRMV model when the 
uncertainty size 𝛿 = ∞. In the monthly horizon tested by Blanchet et al., the uncertainty size 
might be close to infinity because of the long forecasting period. However, in our case, no matter 
it is daily horizon or hourly horizon, the forecasting period is much shorter than one month, so 
the uncertainty size would be smaller and would no longer be infinity. Therefore, in monthly 
horizon, the averaged performance of DRMV and equal weighting are close, but not close in 
daily and hourly horizon.  
 
 
6 Conclusions 
 
In conclusion, the goal of this replication study is to apply the distributionally robust mean 
variance portfolio optimization model to a high-frequency dataset. We find DRMV portfolio has 
higher volatility than non-robust Markowitz, equal weighting, and Olivares portfolio. DRMV 
portfolio outperforms the other three models in hourly horizon but is outperformed by equal 
weighting portfolio in daily horizon. 
 
One area for future work could be comparing this method to additional models, such as Fama-
French modeling and Goldfarb–Iyengar Robust Model. It can also be interesting to explore 
multi-period applications. Another area could be adjusting the constraints of the model to explore 
how the model adapt to investment with leveraging and how transaction fees and trading costs 
impact the optimal portfolio allocation.  
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