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Abstract

A parsimonious autoregressive model that is globally mean-reverting but locally driven by
momentum is proposed. The local-momentum autoregression (LM-AR) model carries one extra
parameter, and depending on the sign of this extra parameter, it can be either local momentum-
preserving or momentum-building. The LM-AR model is motivated by observing US interest
rate movement over many decades, which over a long time span seems to mean revert but over
a period of several months or years can actually exhibit a momentum-like behavior. We use
the LM-AR model with a stochastic central tendency factor as the dominant global risk factor
in interest rates and add a local variation component of the standard mean-reverting type to
create a 3-factor risk environment. We then derive its corresponding term structure model and
empirically implement the model on US interest rates of seven maturities from January 1954 to
December 2013 on a weekly frequency to establish the presence of local momentum building.
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1 Introduction

Treasury debts form a class of financial instruments that are essential to the functioning of financial
markets. On the supply side, governments typically use them to finance fiscal deficits. For the
demand side, foreign central banks may through which hold foreign exchange reserves. Fixed-
income funds and financial institutions alike need them for investment and funding operations.
The yields reflected in treasury debts also play a critical role in the pricing of other financial assets,
because their yields serve as the benchmark for defaultable fixed-income investments and other
assets such as equities. The treasury yield curve reflects the state of economy and is often used as
a policy instrument by government to fine tune a nation’s economy. It is therefore natural to think
that yield curve offers a wealth of information.

Economists have long been studying treasury yields. Numerous theories have been put forward
attempting to explain the formation of yield curve. Econometric analysis of interest rates also
abounds. In the finance literature, the focus has been on the pricing and hedging side, dated back
to Vasicek (1977). Models have been advanced with the aim of pricing the longer-dated notes
and bonds using the short-term interest rates. Models have also been developed to price interest
rate derivatives like bond options, interest caps/floors, interest rate futures, and so on. Statistical
methodologies for estimating term structure models abound. The literature on interest rate term
structure is simply too vast to list and categorize them all. Some examples are Cox, et al (1985),
Chen and Scott (1993), Duffie and Kan (1996), Dai and Singleton (2000), Duffee (2002), Ang and
Piazzesi (2003), Hong and Li (2005), Ait-Shahalia and Kimmel (2010), Joslin, et al (2011), Vasicek
(2013), and Hamilton and Wu (2012&2014).

This paper contributes to the econometric modeling of interest rates and the pricing of debt in-
struments. We propose a new 3-factor interest rate model that comprises two components – a global
risk factor and a local variation factor. Our contribution rests on devising a local-momentum au-
toregression process for the global risk factor that concurrently exhibits stochastic central tendency
and local momentum. This local-momentum autoregressive process comprises two risk factors –
central tendency and stochastic deviation. The model is mean-reverting on a larger timescale and
displays local momentum on a smaller timescale. We also derive the corresponding interest rate
term structure model which can then be implemented on the interest rates of multiple maturities.

This new model is motivated by observing the 3-month US Treasury yields shown in Figure 1,
which plots the rates on a daily basis from January 4, 1954 to December 31, 2013 using the data
from the US Federal Reserve Board’s website. We note that interest rates over a long time span
seem to mean revert albeit very slowly; for example, the US Treasury 3-month yield hit its all-time
high of 17.14% on December 11, 1980 according to the Federal Reserve dataset, and then steadily
declined over a long period of time. Likewise, it will be unreasonable to expect the low interest rate
regime post 2008-09 financial crisis to last forever, and hence the yield will sooner or later move up
to a more sustainable level. This mean-reversion phenomenon over a long time span is considered
to be a global movement in this paper. When one zeros in on a finer timescale, however, quite a
different picture emerges. Interest rates seem to run momentum as opposed to mean-reversion, i.e.,
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steady climb (or decline) for a fairly long period of time such as the post dotcom bubble decline
over 2001-2004.

The co-existence of global mean-reversion and local momentum is intriguing, but quite un-
derstandable because local movements of interest rate tend to be small and directional, but over
a longer time span interest rates show large variations through different phases of business cycle
and/or over various interest rate policy regimes. We contend that the joint behavior can simply be
modeled by a local-momentum autoregression (LM-AR) process proposed in this paper.

The LM-AR process combines a typical mean-reversion term with a new momentum term in
the conditional mean. The local momentum is created by allowing the process to either deflect
away or converge to its moving average computed over a certain fixed window length. In the case
of deflecting, the process is likely to continue its recent upward (or downward) movement, i.e.,
momentum building, whereas the converging case makes the process to stay around its recent level,
i.e., momentum preserving. The LM-AR process is parsimonious because it only adds one extra
parameter to the standard mean-reversion autoregressive process. We show that albeit with the
local momentum property, the LM-AR model can still be stationary and provides simple conditions
for checking stationarity and ergodicity. Moreover, we provide formulas for conditional mean and
variance for an arbitrary number of periods forward that may be needed for various applications.

We implement the new 3-factor interest rate term structure model on seven US Treasury yield
series that are sampled once a week on Wednesday over the period from January 4, 1954 to December
31, 2013, totaling 3130 data points inclusive of missing values. Since the model involves three
latent variables and there are seven observable yield series, we employ a state-space approach to
estimation. Specifically, we devise a Kalman filter suitable for the model and carry out maximum
likelihood estimation and inference. Our empirical findings show highly significant local momentum
in US interest rate data. While the global risk factor with local-momentum largely tracks short-
term interest rates, its central tendency component is clearly stochastic and basically reflective of
the 20-year yield. This is supportive of the interesting finding by Balduzzi, et al (1998) that central
tendency is closely tied to long-term interest rates even if two papers employ different models.

2 Local momentum autoregression

In order to understand the local-momentum autoregression model, we need to begin with the
standard AR(1) model in its mean-reversion form:

∆Xt = κx(µ−Xt−1) + σxεt (1)

εt| Ft−1 ∼ D(0, 1) (2)

where ∆Xt = Xt −Xt−1, σx > 0, and Ft denotes the filtration generated by {Xs; s ≤ t}. D(0, 1)
stands for some distribution with mean 0 and variance 1. It is well known that under 0 < κx < 2, Xt

is a strictly stationary and ergodic process and µ is its stationary mean. When κx = 0, it becomes
a unit-root process. Empirically, many financial time series, such as interest rates, are found to be
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very close to unit-root when applying the AR(1) model, i.e., κx takes on a small positive value.
The AR(1) model possesses an exponential shock decaying property. The long-memory literature
such as Bakus and Zin (1993) and Duan and Jacobs (2008) provides evidence that decaying rate
should be hyperbolic as opposed to exponential. If the shock decaying rate is indeed hyperbolic, it
will force κx to be extremely small so as to prolong the shock’s influence.

It may be desirable to turn the mean-reverting level into a latent stochastic process, µt, which
mean-reverts to some constant. Balduzzi, et al (1998) employed such an idea to model interest
rates, and they referred to this feature as central tendency because empirical evidence suggests
that the short-term interest rate tends to move towards the long term interest rate. We will refer
to a stationary AR(1) model that moves towards another stationary AR(1) process as the central
tendency AR (hereafter, CTAR). For interest rates, CTAR easily dominates the standard AR(1)
model, which we will be shown later in the paper.

A less obvious way is to set this moving level as a function of a fixed-window moving average of
the past values of Xt to create local momentum. Here, we propose such a simple and yet powerful
model whose time-varying level is determined by a combination of two types of stochastic shocks –
a latent central tendency factor and a self-generating component. A rather simple modification to
equation (1) can arrive at a global mean-reverting autoregressive process that moves around a latent
central tendency factor, µt, while exhibiting a local momentum behavior. This local momentum
CTAR (LM-CTAR) model is intuitively appealing, parsimonious, easily implementable and yet
delivers significantly better performance than CTAR. The LM-CTAR process is defined as follows:

∆Xt = κx (µt −Xt−1) + ω
(
X̄(t−1)|n −Xt−1

)
+ σxεt (3)

∆µt = κµ (µ̄− µt−1) + σµεt (4)

X̄(t−1)|n =

t−1∑
i=t−n

bt−iXi (5)

εt| Gt−1 ∼ D(0, 1), εt| Gt−1 ∼ D(0, 1) (6)

where 0 < κµ < 2, σµ > 0, κx ≥ 0, σx > 0, and
∑n

i=1 bi = 1 with bi ≥ 0 for i = 1, 2, · · · , n; Gt
denotes the filtration generated by {(Xs, µs); s ≤ t}; and εt and εt are independent. Note that the
parameter restriction of 0 < κµ < 2 is to ensure stationarity of µt process.

Note that X̄(t−1)|n is meant to be some sort of moving weighted sample mean. If we, for example,
let b1 = b2 = · · · = bn = 1/n, X̄(t−1)|n becomes the simple sample mean at time t−1 for the sample
size of n. Using exponentially or hyperbolically decaying weights is also possible, but one needs to
normalize the weights to reflect the fact that n is finite.

When exponentially decaying weights are used, it would make more sense to let n go to infinity
as well, because the seemingly infinite-dimensional system can actually be reduced to a three-
dimensional Markov process. This result can be obtained by setting bi = (1−α)αi−1 with 0 < α < 1
so that

∑∞
i=1 bi = 1. With this weight choice, ∆X̄t|∞ = (1− α)[Xt − X̄(t−1)|∞], which can be used
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to replace equation (5). As a result, (Xt, X̄t|∞, µt) forms a three-dimensional Markov system with
one extra parameter, α, and one extra latent variable, X̄t|∞. However, one cannot expect a similar
dimension-reduction result with hyperbolically decaying weights, because there exists no common
multiplier enabling the simplification.

When ω = 0, the LM-CTAR process reduces to CTAR. Since µt process in equation (4) can
have an MA(∞) representation, the CTAR model can be interpreted as ARMA(1,∞). If µt is a
constant, i.e., σµ = 0, this restricted version of LM-CTAR will be referred to as local momentum
AR (LM-AR). If ω > 0 and κx > 0, the process will move towards a time-varying target level that is
jointly determined by an external latent central tendency factor and the process’ own past n-period
moving average. In such case, the model exhibits a local momentum-preserving feature. If ω < 0
and κx is large enough to ensure stationarity, then the model exhibits a local momentum-building
characteristic, meaning that the process tends to continue its current local trend (up or down).

Momentum is a much studied issue in finance. In Wu and Zhang (1996) and Balvers and Wu
(2006), for example, momentum is modeled through a linear combination of many past one-period
changes. If all coefficients are identical, this linear combination reduces to the most recent term
minus the earliest term, cancelling out all terms in between. In empirical implementation, the
coefficients in the combination almost necessarily need to differ for different past periods, and thus
their momentum model entails more parameters. Although their specification has an intuitive
merit of its own, our local momentum formulation significantly differs from theirs and is far more
parsimonious.

The idea behind our local momentum formulation is quite intuitive by considering interest rates.
The latent stochastic process, µt, defining the central tendency level, can be interpreted as reflecting
different monetary regimes over time. The local-momentum feature is meant to capture the local
behavior within a monetary regime. When the rate has been high (low) as reflected in the n-period
moving average, the process will revolve around a higher (lower) level vis-a-vis the AR(1,∞) model.
In fact, our later analysis shows that the local behavior is of the local momentum-building type.
In short, the LM-CTAR model is better in preserving (or building) momentum in interest rates
beyond the extent possible under the standard model. The degree of momentum preservation (or
building) is determined by the magnitude and sign of ω. Naturally, the volatility of the LM-CTAR
model is larger vis-a-vis the otherwise identical standard AR(1,∞) model.
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We now characterize stationarity and ergodicity for the LM-CTAR process. Let

Xt =


Xt

Xt−1
...

Xt−n+1

 Zt =


κx(µt − µ̄) + σxεt

0
...
0

 A =


κxµ̄

0
...
0



B =


1− κx − ω(1− b1) ωb2 . . . ωbn−1 ωbn

1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0


where Xt, Zt and A are n-dimensional column vectors, and B is an n × n matrix. Express the
LM-CTAR model in a matrix-vector form:

Xt = A + BXt−1 + Zt. (7)

Again, µt in equation (4) has an MA(∞) representation with exponentially decaying coefficients,
the LM-CTAR model thus looks like a typical ARMA(n,∞) model except with a unique way of
restricting its AR and MA parameters. Since the MA(∞) component is deduced from inverting
a stationary AR(1) process, the spectral radius of B, denoted by ρ(B), alone determines the
stationarity and ergodicity of the LM-CTAR process; that is, ρ(B) < 1 ensures stationarity and
ergodicity. The general condition and its two interesting special cases are given in Proposition 1 in
Appendix A.

The LM-CTAR model can have a unit root in an interesting way. We note that κx = 0 gives
rise to a unit root process regardless of the value of ω which governs the local moment behavior.
We define

F =


ω(b1 − 1) ω(b1 + b2 − 1) . . . ω(

∑n−2
i=1 bi − 1) ω(

∑n−1
i=1 bi − 1)

1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0


When κx = 0, differencing the series once, i.e., ∆Xt, gives rise to a stationary and ergodic series if
ρ(F) < 1 (see Proposition 2 in Appendix A).

When Xt is strictly stationary, we can compute its stationary mean and variance. It is straight-
forward to obtain E(Xt) = µ̄. For the stationary variance, we rely on the conditional mean and
variance formulas given below.
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The k-period (k ≥ 1) ahead forecast and forecasting variance can be computed using the vector
form in equation (7); that is,

E[Xt+k|Gt] = BkXt + (I−B)−1(I−Bk)A

+1{κµ 6=1}κx (1− κu)k (µt − µ̄)

[
I− B

1− κµ

]−1 [
I−

(
B

1− κµ

)k]
e (8)

V ar[Xt+k|Gt] =
k−1∑
i=0

BiE
{

[Zt+k−i − E(Zt+k−i|Gt)] [Zt+k−i − E(Zt+k−i|Gt)]′ |Gt
}

(Bi)′

=

k−1∑
i=0

BiVi(B
i)′ (9)

where

e =


1
0
...
0

 Vi =


σ2x + κ2xσ

2
µ

(
1−(1−κµ)2(i+1)

1−(1−κµ)2

)
0 . . . 0

0 0 . . . 0
...

...
...

...
0 0 . . . 0


When the LM-CTAR model is stationary, all element of E[Xt+k|Gt] converges to µ̄, the sta-

tionary mean, as k goes to infinity, because its limit, (I −B)−1A, is a constant vector of µ̄. The
stationary covariance matrix for Xt can be obtained by sending k to infinity, i.e., V ar(Xt) =∑∞

i=0B
iVi(B

i)′. The term
[
I− B

1−κµ

]−1 [
I−

(
B

1−κµ

)k]
in equation (8) should be understood as

equal to
∑k−1

i=0 Bi when I − B
1−κµ is singular. The forecasting mean and variance formulas can be

used for forecasting, and also become handy for treating missing data in estimation which is in
effect used in our empirical analysis later.

To better understand local-momentum, we consider the LM-AR model, i.e., fixing the central
tendency factor to a constant. We plot in Figure 2a a simulated sample path using a 5-period
moving average and the parameter values: µ̄ = 0, σµ = 0, κx = 0.001, ω = −0.5, and σx = 0.002.
In addition, we use the conditional normality. The constraint, σµ = 0, turns µt into a constant.
The spectral radius corresponding to these parameters is 0.99981248 which implies stationarity
and ergodicity. The stationary mean and standard deviation are 0 and 1.6318207, respectively. It
is evident from the plot that the LM-AR model is capable of generating large and fairly regular
cycles.

In Figure 2b, we construct the LM-AR model using a 10-period moving average and the pa-
rameter values: µ̄ = 0, σµ = 0, κx = 0.001, ω = −0.2, and σx = 0.02. In this case, the spectral
radius becomes 0.98572727. The stationary mean and standard deviation equal 0 and 1.4013125,
respectively. The plot reveals that the LM-AR model in this case takes less frequent variations and
is also not as regular in shape when compared to Figure 2a.
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If a continuous-time model is preferred, the LM-CTAR model can be stated as

dXt =
[
κx (µt −Xt) + ω

(
X̄t(τ)−Xt

)]
dt+ σxdWxt (10)

dµt = κµ (µ̄− µt−1) dt+ σµdWµt (11)

X̄t(τ) =

∫ t

t−τ
b(t− s)Xsds (12)

where κµ > 0, σµ > 0, κx ≥ 0, σx > 0, and
∫ τ
0 b(s)ds = 1 with b(s) ≥ 0 for 0 ≤ s ≤ τ ; and

Wxt and Wµt are two independent Wiener processes. Setting b(s) = 1
τ for all s is, for example, an

equal-weight choice. Note that κµ > 0 is sufficient to ensure stationarity of µt process in continuous
time.

The above system is obviously a non-Markovian stochastic process, and cannot be turned into
a finite-dimensional Markov process due to the integral in defining X̄t(τ). This becomes quite
clear by analyzing the time dynamic of X̄t(τ). Note that X̄t(τ) is of finite variation. If b(s) is
differentiable, one can take its derivative per usual to arrive at

dX̄t(τ)

dt
= b(0)Xt − b(τ)Xt−τ +

∫ t

t−τ
b′(t− s)Xsds. (13)

With the presence of Xt−τ , the relevant information set must be the entire history up to t − τ .
If equal weighting is the choice, i.e., b(s) = 1

τ , the third term in equation (13) vanishes. Even
if we let τ go to infinity with b(∞) = 0, the system in general cannot be reduced to a lower-
dimensional Markov process due to the third term in equation (13). When the weight function is
of an exponentially decaying type, i.e., b(s) = αe−αs with α > 0, the third term can be simplified
back to −αX̄t(∞), which in turn gives rise to dX̄t(∞) = α[Xt − X̄t(∞)]dt. Thus, the continuous-
time LM-CTAR model becomes a three-dimensional Markov system, i.e., (Xt, X̄t(∞), µt), which
not surprisingly agrees with its discrete-time counterpart discussed earlier.

The LM-CTAR model can be used to model endogenous cycles. If further variations around
the endogenous cycles are needed, one can simply add to the LM-CTAR model with an AR(1)
process where the LM-CTAR component is meant to capture global movements and the extra
AR(1) component addresses local variations. In the next section, we will adopt this strategy to
model interest rates. For now, we will just estimate the LM-CTAR model to the observed interest
rate series without an extra AR(1) component. We will compare its performance with that of the
standard mean-reverting model.

The term structure data used in our study are the US treasury constant maturity yields of
seven maturities: 3 months, 6 months, 1 year, 2 years, 5 years, 10 years and 20 years. The data
for the period from January 4, 1954 to December 31, 2013 are taken from the website of the US
Federal Reserve Board. We use weekly data on Wednesday. The 3-month yield has the longest
history which dates back to January 4, 1954, and it is also most complete with only 50 missing
data points over 3130 weeks. There are many missing data for other maturities, particularly in the
earlier time period; for example, the one-year yield becomes available only after January 2, 1962.
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We follow the standard practice of converting interest rates to the continuously compounded form.
The summary statistics for the continuously compounded yields for the seven maturities are given
in Table 1.

The 3-month yield series is for now assumed to follow the LM-CTAR model. In its general
form, the LM-CTAR process is a state-space model because µt is latent. When local momentum is
switched off, CTAR is still a state-space model, again due to latency of µt. Both the LM-CTAR and
CTAR models can be estimated with the help of the Kalman filter by imposing a further assumption
of normality on εt and εt.

1 The measurement equation is (3) whereas the transition equation is (4).
If µt is set to a constant, there is no latency and the model can be straightforwardly estimated.
The results for four versions of the LM-CTAR model are reported in Table 2. The 3-month US
Treasury constant maturity yields from January 4, 1954 to December 31, 2013 (sampled once a
week on Wednesday, totaling 3130 data points including 50 missing values) are used in the analysis.
When a missing value is encountered, the appropriate likelihood will need to reflect the fact that the
missing data point is skipped over. If, say, only one week is skipped over, the conditional expected

value will be the first entry of B2Xt−2 + (I + B)A + 1{κµ 6=1}κx (1− κu)2 (µt−2 − µ̄)
[
I + B

1−κµ

]
e

and the conditional variance will be the first entry of V0 + BV1B
′. When µt is latent, we apply

the Kalman filter that starts with the first filtered value of µ1 equal to X1 and the filtered variance
equal to zero.2 Missing data are handled by applying the Kalman filter in a natural way.

The results reported in Table 2 use seven weeks to compute the moving average if the local
momentum feature is allowed. Our analysis reveals that the LM-AR model with the seven-week
moving average performs better than any other number of weeks. The estimate for ω shows a highly
significant value of -0.071, suggesting that the 3-month interest rate exhibits a local momentum-
building feature. The rate tends to continue its upward (or downward) movement until going too
far away from its long-run mean so that the mean-reversion term associated with parameter κx
effectively kicks in. Along with the results for the LM-AR model, we report the standard mean-
reverting model results in the second column. It is clear by judging from the log-likelihood values
that the standard AR(1) model as compared to the LM-AR model performs rather poorly.

The central tendency feature identified by Balduzzi, et al (1998) and reflected in the CTAR
model is clearly evident in Table 2 either by comparing the log-likelihood of the CTAR and AR(1)
models or examining individual significance of the two parameters (i.e., κµ and σµ) that govern
the central tendency feature. The level that the CTAR process reverts to is clearly stochastic
(significant σµ) and also mean-reverting (significant κµ). Worth noting is the fact that CTAR
has a lower log-likelihood value than LM-AR even though the latter has one less parameter. By
the AIC criterion, LM-AR dominates CTAR. Similarly, central tendency can be incorporated into

1If innovations are not normally distributed, the mixture Kalman filter of Chen and Liu (2000), which approximates
innovations by a Gaussian mixture, can be deployed in estimation. One can also use a particle filter such as localized
particle filter of Duan and Fulop (2009) to conduct estimation.

2Using stationary mean and variance as the starting filtered mean and variance is not a desirable option, because
the observed time series can start far from the stationary mean, and that is the case for the three-month US interest
rate series used in this study.
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the local momentum model. Doing so, the increase in log-likelihood from LM-AR to LM-CTAR
with two degrees of freedom is significant at the 5% level. The local momentum building feature
(i.e., negative ω) is clearly not affected by introducing central tendency, because the estimate of ω
remains hardly changed. In short, local momentum in the 3-month Treasury yield series appears to
be genuine and robust. It is worth noting that the spectral radius of B has dropped substantially
from 0.9957 to 0.8259, i.e., a faster mean reversion, when the central tendency factor is introduced
into the local momentum model. This is understandable because with the central tendency factor
setting the global trend, the local momentum mechanism is free to capture the local behavior
without the burden of matching the global trend.

3 Modeling interest rates

In the section, we use the discrete-time version of the LM-CTAR process to construct the interest
rate term structure model. It will become fairly clear that one can also construct the interest
rate term structure model with the continuous-time equivalent version of the LM-CTAR process in
equations (10)-(11).

3.1 A state-space model for interest rates

We now specify an interest rate process driven by three risk factors. A LM-CTAR process is taken
as the factor to describe for the global movement of the interest rate dynamic, which contains two
risk factors. Adding onto the global movement is a local variation component which comprises one
shock governed by a independent autoregressive process of order 1. This local variation exhibits
the typical transient effect, decaying at the exponential rate determined by the autoregression
coefficient.

Since the interest rate is a function of maturity, we add τ to the notation and use rt(τ) to denote
the risk-free zero-coupon yield (continuously compounded) at time t with maturity τ periods of
length h. To simplify the notation, we will just use rt to denote the interest rate with the one-period
maturity.

Specifically,

rt = Xt + vt (14)

The local-momentum system driving Xt has been described earlier in equations (3)-(6). In addition,
we assume that the innovation terms are governed by normal random variables. The local variation
process is first-order autoregressive so that local shocks can still have lingering effects. Specifically,

∆vt = −κvvt−1 + σvξt (15)

ξt| (Gt ∪ vt−1) ∼ N(0, 1) (16)

where 0 < κv < 2, and (Gt ∪ vt−1) denotes the minimum σ-algebra generated by Gt and vt−1.
Naturally, we make the local variation process to evolve around zero mean.
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It should be noted that under the above formulation, Xt is no longer directly observable. The
state-space interest rate model needs to be recast using the following matrix-vector system:

rt = H′X∗t (17)

SX∗t = C + DX∗t−1 + Wt (18)

where

H =


1

0n−1
0
1

 X∗t =

 Xt

µt − µ̄
vt

 Wt =


σxεt
0n−1
σµεt
σvξt

 C =

 A
0
0



D =

 B 0 0
0 1− κµ 0
0 0 1− κv

 S =


1 0 −κx 0
0 I(n−1)×(n−1) 0 0

0 0 1 0
0 0 0 1



U =


σ2x 0 0 0
0 0(n−1)×(n−1) 0 0

0 0 σ2µ 0

0 0 0 σ2v


and U is the covariance matrix for Wt. Note that Xt, A and B have been previously defined.
Similar to Proposition 1, the interest rate process, i.e., rt, is strictly stationary and ergodic if the
spectral radius of S−1D is less than 1.

Since Xt, µt and vt are latent stochastic processes with some dynamic structure, all of them can
be regarded signals. If rt is directly observable, equation (18) serves as a measurement equation, and
then there are only two latent processes. In general, there are many interest rates with different
maturities concurrently available, one will need a term structure model to define measurement
equations, and there will be three latent processes.

3.2 Term structure of interest rates

For our interest rate model, it is possible to derive an analytical term structure formula much
like the standard exponential affine term structure model pioneered by Vasicek (1977) and further
developed later by others. For this, we need to deal with risk premiums associated with the three
innovation terms in the interest rate model. Let h be the length of one period measured as the
fraction of a year. We assume the following stochastic discount factor from time t+ τ back to time
t is exp[−rt(τ)τh]Mt,t+τ where for s ≥ t,

Mt,s = α(t, s) exp

 s∑
j=t+1

[(λ0 + λ1Xj−1)εj + (ψµ0 + ψµ1µj−1)εj + (ψv0 + ψv1vj−1)ξj ]

 (19)
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Note that α(t, s) is a factor (can be stochastic but must be measurable with respect to time-(s− 1)
information) for making Mt,s a martingale for s ≥ t, and α(t, t) = 1 so that Mt,t = 1. This way of
defining the stochastic discount factor basically uses the default-free zero-coupon bond of a relevant
maturity as the numeraire asset.

Define a martingale measure Qt,T by setting dQt,T /dP = Mt,T . We show in Appendix B
that the distributional characteristics of εs, εs and ξs under measure Qt,T actually remain the
same for different t or T . We will thus drop the subscript and use Q instead. Furthermore,
εQt = εt−λ0−λ1Xt−1, ε

Q
t = εt−ψµ0−ψµ1µt−1 and ξQt = ξt−ψv0−ψv1vt−1 are three independent

standard normal random variables under measure Q. Measure Q is in essence characterized by
the six risk premium parameters – λ0, λ1, ψµ0, ψµ1, ψv0 and ψv1, and is unique once these risk
premium parameters are fixed. Also shown in Appendix B is an equilibrium restriction between rt
and α(t, t + 1). We have adopted rt = Xt + vt in equation (14). Alternatively, one can choose to
set α(t, t) as a function of state variables and deduce rt accordingly.

Let ft(τ) denote the one-period forward rate at time t starting at time t + τ , where each of
the τ periods is of length h. Define Ht as the filtration generated by {(Xs, µs, vs); s ≤ t}. By the
pricing result above, it must be the case that, for τ ≥ 1,

ft(τ) = −
lnEQ

(
e−rt+τh|Ht

)
h

(20)

and for τ = 0, ft(0) = rt. Forward rates for different forward starting times can in turn be used to
compute spot interest rate rates such as, for τ ≥ 1,

rt(τ) =
1

τ

τ−1∑
j=0

ft(j). (21)

In order to compute the forward rate, we need to restate the interest rate model in equations
(17)-(18) in an alternative form:

rt = H′X∗t (22)

SX∗t = C∗ + D∗X∗t−1 + W∗
t (23)
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C∗ =


κxµ̄+ σxλ0

0n−1
σµψµ0
σvψv0

 W∗
t =


σxε

Q
t

0n−1
σµε

Q
t

σvξ
Q
t



D∗ =



d ωb2 . . . ωbn−1 ωbn 0 0
1 0 . . . 0 0 0 0
0 1 . . . 0 0 0 0
...

...
...

...
...

...
...

0 0 . . . 1 0 0 0
0 0 . . . 0 0 1− κµ + σµψµ1 0
0 0 . . . 0 0 0 1− κv + σvψv1


where d = 1− κx − ω(1− b1) + σxλ1.

Thus, the continuously compounded forward rate can be derived using the above system under
measure Q. The future latent state X∗t+τ conditional on Ht is Gaussian, which gives rise to the
following:

ft(τ) = −
lnEQ

(
e−rt+τh|Ht

)
h

= H′EQ(X∗t+τ |Ht)−
h

2
H′V arQ(X∗t+τ |Ht)H (24)

where

EQ(X∗t+τ |Ht) = (S−1D∗)τX∗t + (I− S−1D∗)−1[I− (S−1D∗)τ ]S−1C∗ (25)

V arQ(X∗t+τ |Ht) =
τ−1∑
i=0

(S−1D∗)iS−1U(S−1)′[(S−1D∗)i]′ (26)

Note that the covariance matrix of Wt in equation (23) under measure Q is still U, because it is
per usual unaffected by the measure change..

The above results can be combined to yield the spot rate of any maturity as follows: for τ ≥ 1,

rt(τ) = Φ1(τ) + Φ2(τ)X∗t (27)
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where

Φ1(τ) = H′(I− S−1D∗)−1

I− 1

τ

τ−1∑
j=0

(S−1D∗)j

S−1C∗

−H′
 h

2τ

τ−1∑
j=0

j−1∑
i=0

(S−1D∗)iS−1U(S−1)′[(S−1D∗)i]′

H (28)

Φ2(τ) = H′

1

τ

τ−1∑
j=0

(S−1D∗)j

 (29)

Note that the sum should be understood as 0 when its bottom index is larger than the upper index.

The above term structure model gives rise to a 3-factor Vasicek (1977) model if we turn off
the local momentum feature, i.e., ω = 0. The local-momentum feature fundamentally changes the
nature of term structure; for example, the LM-AR factor alone is able to produce the hump-shaped
term structure. The reason is quite intuitive. When the base rate is at the upward momentum
phase, the interest rate will increase with maturity up to some point, but will eventually decline
with maturity as the global mean-reversion force increases strength due to the fact that the base
rate has deviated too far away from its global mean level. Using the LM-CTAR factor (i.e., adding
central tendency), our 3-factor interest rate term structure is even more flexible as will be seen
later.

With the term structure model in place, we are able to explicitly address the term effect and to
estimate with many rates of different maturities concurrently. When multiple rates are used in esti-
mation, we need to introduce pricing errors. Suppose we have k observed rates {r̃t(τ1), · · · , r̃t(τk)}.
Then, the following measurement equation follows:

r̃t(τ1) = Φ1(τ1) + Φ2(τ1)X
∗
t + ε1t

r̃t(τ2) = Φ1(τ2) + Φ2(τ2)X
∗
t + ε1t

... (30)

r̃t(τk) = Φ1(τk) + Φ2(τk)X
∗
t + εkt

where the measurement errors {ε1t, · · · , εkt} are assumed to be normally distributed with mean
zero so that we can run the Kalman filter.3 In addition to the above measurement equation, we
have the transition equation in (18) to complete the specification of the state-space model. The
specifics of the Kalman filter for this model is given in Appendix C.

We need to deal with pricing errors when different rates from the observed term structure are
used in estimation. If we set rate-specific error magnitudes, there will be seven parameters to

3Again, normality is not a necessity, because one can use the mixture Kalman filter of Chen and Liu (2000) or the
localized particle filter of Duan and Fulop (2009) to estimate a model with non-Gaussian measurement errors.
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correspond to seven rate series. The three latent factor processes are governed by eight parameters
under the physical probability, i.e., {µ̄, κx, ω, σx, κµ, σµ, κv, σv}. In addition, there are six param-
eters specifically arising from risk-neutralization, which are {λ0, λ1, ψµ0, ψµ1, ψv0, ψv1}. However,
there is only one identifiable parameter among λ0, ψµ0 and ψv0, because these three enter into the
same constant in the risk neutral system. Our estimation using seven US Treasury yields reveals
that these risk premium parameters are not significantly different from zero. With interest deriva-
tives such as caplets and bond options added to the data set, one may be in a better position to
estimate the four identifiable risk premium parameters.

Table 3 reports our findings for two versions of our 3-factor term structure model using the
seven weekly US Treasury yield series described in the previous section. The first model, denoted by
CTAR+AR(1), sets ω to zero whereas the second, denoted by LM-CTAT+AR(1), has no restriction.
The results corroborate with our earlier findings by using the 3-month yield series alone, that ω is
highly significantly and negative. Local momentum is clearly present, and it is of local momentum
building type. Adding an extra AR(1) factor to the base rate and estimating with multiple yields
have, however, changed the magnitude of ω substantially from -0.075 to -0.0071. Also different from
the earlier result is the best fixed-window length for computing the moving average equal to 28
periods as opposed to seven. The stochastic and mean-reverting central tendency factor is clearly
present, and the result is not affected by whether local momentum is permitted. Likewise, the
measurement errors of the seven yield series are not affected by the presence of local momentum.
Importantly, the spectral radius of matrix B which is intimately associated with local momentum
behavior reveals a fast mean reversion to the central tendency factor, because 0.8913 is lower than
0.9277 (i.e., 1-κx under CTAR+AR(1)). This happens because the local momentum mechanism no
longer needs to play the role of setting the global trend as in the earlier discussion related to Table
2.

Figures 3a displays the filtered LM-CTAR and central tendency series along with the 3-month
US Treasury yields over the sample period. It is evident that the LM-CTAR process revolves
around the central tendency factor, which in turn tracks the overall interest rate level over a long
time span quite well. Recall that the base rate (one week in our implementation) is a direct sum of
LM-CTAR factor and another AR(1) process. Although the base interest rate is not the same as
the 3-month rate due to the term structure effect, its filtered values (not reported here to conserve
space) are numerically close to their corresponding 3-month rates over the sample period. The
graph shows that the filtered LM-CTAR factor (part of the filtered base rate) can be away from
the 3-month yield, and the gap is filled in by the extra AR(1) factor, i.e., vt.

The difference between the local-momentum and more traditional 3-factor AR term structure
model is evident in the difference between the filtered LM-CTAR factor in the former and the
filtered CTAR in the latter as displayed in Figure 3b. In 1960s, the difference was as high as over
30 basis points. Throughout the sample period, the filtered values of the LM-CTAR factor were
typically lower than those of the CTAR factor, but they were usually within 10 basis points of each
other.
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3.3 Central tendency and local momentum and their impacts on yields

As argued in Balduzzi, et al (1998), the central tendency factor should be more reflective of longer-
term interest rates. Here, we take a closer look by plotting the filtered central tendency factor under
two 3-factor term structure models along with the 20-year constant maturity US Treasury yield
in Figure 4. The 20-year rate was not always available over the sample period. For the available
periods, the three series are fairly close to one another, confirming that the central tendency factor
is indeed reflective of the longest-term interest rate in our dataset. The fact that the two central
tendency estimates are fairly close to each other regardless of having local momentum or not
suggests that central tendency is a long-run phenomenon that differs from the local behavior of
momentum. In short, the momentum captured by our model and contributes the term structure
model’s performance is indeed local in nature.

As Figure 4 suggests, the three factors in our local momentum term structure model should
reflect different segments of term structure of interest rates. We now run the following diagnostic
regression for changes in seven yield series to gain further insights about the roles of these three
factors.

∆rt(τ) = aτ + bτ∆µ̂t|t + cτ∆X̂t|t + dτ∆v̂t|t + εt(τ) (31)

The above regression should be understood as only suggestive, because the explanatory variables
are filtered estimates that are subjected to obvious endogeneity and measurement errors.

Table 4 summarizes the results of the seven regression runs. The one striking feature is the
universally high R2 for all maturities. This is hardly surprising because the explanatory variables
are filtered estimates from these seven yield series. The interesting fact is about the increasing
coefficients of the change in µ̂t|t. In addition to what has been revealed by Figure 4, it suggests
that short-term yields are locally far less responsive to the change in the central tendency factor.

The regression results for the filtered value of the LM-CTAR factor suggest a completely op-
posite relationship relating to maturity. The change in X̂t|t causes short-term rates to react in
a pronounced way, but its impact diminishes quickly when maturity goes up. Locally, the effect
of the LM-CTAR factor is clearly confined to shorter-term yields. As to the extra AR(1) factor,
it acts pretty much like the LM-CTAR factor, but the effect of maturity lingers on more and its
impact on the change in interest rate drops at a much slower pace.

4 Conclusion

We propose a new autoregressive process with a local-momentum feature and establish its basic
statistical properties. Using this local momentum autoregression model, we then construct an
interest rate term structure model, devise a state-space estimation technique, and show that local
momentum is indeed present in US Treasury interest rates. This paper adds to the vast literature
of term structure of interest rates in a unique way. In contrast to the literature that mainly relies
on deploying several first-order Markov processes to model interest rates in different ways, the
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local-momentum autoregression model or its continuous-time counterpart offers an intuitive and
parsimonious non-Markovian formulation that opens up many new possibilities.

Along the line of Hamilton and Wu (2012&2014), for example, one can work out the implications
on identification and testing for a canonical formulation of a general lower-dimensional, say 3-factor,
term structure model with one or two factors being replaced by the local-momentum autoregressive
process where the actual Markovian dimension is actually much higher. One can also introduce
observable macroeconomic factors into the model like in Ang and Piazzesi (2003) along with some
latent factors in an additive fashion. Alternatively and perhaps more interestingly, macro factors
can be incorporated into the local-momentum autoregression process directly such as adding them
to the central tendency factor.

The local-momentum autoregression process exhibits interesting endogenous cycles and opens
up a new way for modeling other economic series. Exogenous variables can also be built into the
central tendency factor to allow for policy analysis of all kinds. Regimes such as in Hamilton
(1988) can also been incorporated into the local-momentum model to give extra flexibility to allow
for changes in volatility and others. All these are naturally subjects for future research.
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Appendices

A. Propositions

Proposition 1 Xt as defined in equations (3)-(6) is strictly stationary and ergodic if and only
if ρ(B) < 1. Furthermore, Xt is strictly stationary and ergodic under either of the two sets of
sufficiency conditions: (1) κx > 0, ω ≥ 0 and κx +ω(1− b1) ≤ 1; (2) κx > −2ω(1− b1), ω < 0 and
κx + ω(1− b1) ≤ 1.

Proof : First note that Xt can be expressed as an ARMA(n,∞) process with its MA component
being deduced from inverting, µt, which is a stationary AR(1) process. The MA coefficients are
thus absolutely summable. The first statement about strict stationarity and ergodicity is a stan-
dard result for the ARMA(n,∞) process, and we will skip the proof. We now derive the two
sufficiency conditions. Spectral radius is the largest absolute value of a matrix’s eigenvalues, and
the eigenvalues of B must satisfy the following equation (Proposition 1.1; Hamilton (1994), page
10):

λn = [1− κx − ω(1− b1)]λn−1 + ωb2λ
n−2 + · · ·+ ωbn−1λ+ ωbn.

Case 1: The first set of sufficiency conditions: κx > 0, ω ≥ 0 and κx + ω(1− b1) ≤ 1.
Under these conditions, we can deduce

|λ|n = |λn| =
∣∣[1− κx − ω(1− b1)]λn−1 + ωb2λ

n−2 + · · ·+ ωbn−1λ+ ωbn
∣∣

≤ [1− κx − ω(1− b1)]
∣∣λn−1∣∣+ ωb2

∣∣λn−2∣∣+ · · ·+ ωbn−1 |λ|+ ωbn

= [1− κx − ω(1− b1)] |λ|n−1 + ωb2 |λ|n−2 + · · ·+ ωbn−1 |λ|+ ωbn

Substitute ρ(B) into the above inequality to obtain

ρ(B)n ≤ [1− κx − ω(1− b1)] ρ(B)n−1 + ωb2ρ(B)n−2 + · · ·+ ωbn−1ρ(B) + ωbn.

Suppose ρ(B) ≥ 1. Divide both sides by ρ(B)n to yield

1 ≤ [1− κx − ω(1− b1)] ρ(B)−1 + ωb2ρ(B)−2 + · · ·+ ωbn−1ρ(B)−n+1 + ωbnρ(B)−n

≤ [1− κx − ω(1− b1)] + ωb2 + · · ·+ ωbn−1 + ωbn

= 1− κx
< 1.

That is obviously a contradiction. Thus, ρ(B) < 1, and the conditions are sufficient to ensure strict
stationarity of Xt.

Case 2: The second set of sufficiency conditions: κx > −2ω(1− b1), ω < 0 and κx + ω(1− b1) ≤ 1.
Under these conditions, we can deduce

|λ|n = |λn| =
∣∣[1− κx − ω(1− b1)]λn−1 + ωb2λ

n−2 + · · ·+ ωbn−1λ+ ωbn
∣∣

≤ [1− κx − ω(1− b1)]
∣∣λn−1∣∣− ωb2 ∣∣λn−2∣∣− · · · − ωbn−1 |λ| − ωbn

= [1− κx − ω(1− b1)] |λ|n−1 − ωb2 |λ|n−2 − · · · − ωbn−1 |λ| − ωbn
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Substitute ρ(B) into the above inequality to obtain

ρ(B)n ≤ [1− κx − ω(1− b1)] ρ(B)n−1 − ωb2ρ(B)n−2 − · · · − ωbn−1ρ(B)− ωbn.

Suppose ρ(B) ≥ 1. Divide both sides by ρ(B)n to yield

1 ≤ [1− κx − ω(1− b1)] ρ(B)−1 − ωb2ρ(B)−2 − · · · − ωbn−1ρ(B)−n+1 − ωbnρ(B)−n

≤ [1− κx − ω(1− b1)]− ωb2 − · · · − ωbn−1 − ωbn
= 1− κx − 2ω(1− b1)
< 1.

It is obviously a contradiction. Thus, ρ(B) < 1, and the conditions are sufficient to ensure strict
stationarity and ergodicity of Xt.

Proposition 2 If κx = 0, then Xt as defined in equations (3)-(6) has a unit root regardless of the
value of ω, and ∆Xt is strictly stationary and ergodic if ρ(F) < 1.

Proof : When κx = 0, equation (3) can be written as

Xt = Xt−1 + ω
(
X̄(t−1)|n −Xt−1

)
+ σxεt

= [1 + ω(b1 − 1)]Xt−1 + ωb2Xt−2 + · · ·+ ωbnXt−n + σxεt

Clearly, the above time series has a unit root because
∑n

i=1 bi = 1.
When κx = 0, we can also express equation (3) as

∆Xt = ω
(
X̄(t−1)|n −Xt−1

)
+ σxεt

= ω(b1 − 1)∆Xt−1 + ω(b1 + b2 − 1)∆Xt−2 + · · ·
+ω(b1 + b2 + · · ·+ bn−1 − 1)∆Xt−n+1 + σxεt

There is no term beyond ∆Xt−n+1 again because
∑n

i=1 bi = 1.
Since the differenced series ∆Xt, stated in a matrix-vector form, is characterized by matrix F.

By the standard result, the differenced series is strictly stationary and ergodic when the spectral
radius of matrix F is strictly less than 1.
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B. Innovation terms under the risk-neutral measure

Consider the following moment generating function: for t ≤ s ≤ T ,

E
Qt,T
s−1 (eaεs)

= EPs−1

(
eaεs

Mt,s

Mt,s−1

)
=

α(t, s)

α(t, s− 1)
×

EPs−1 {exp [(a+ λ0 + λ1Xs−1) εs + (ψµ0 + ψµ1µs−1) εs + (ψv0 + ψv1vs−1) ξs]}

=
α(t, s)

α(t, s− 1)
exp

[
(λ0 + λ1Xs−1)

2

2
+

(ψµ0 + ψµ1µs−1)
2

2
+

(ψv0 + ψv1vs−1)
2

2

]
× exp

[
a(λ0 + λ1Xs−1) +

a2

2

]

Setting a = 0 and note that E
Qt,T
s−1 (1) = 1, we have

E
Qt,T
s−1 (eaεs) = exp

[
a(λ0 + λ1Xs−1) +

a2

2

]
.

This implies that εs is a normal random variable under measure Qt,T with mean λ0 + λ1Xs−1
and variance 1. Notice that the result does not depend on either t or T . Thus, we can drop the
subscript and use Q. Define εQt = εt − λ0 − λ1Xt−1, which is a standard normal random variable
under measure Q. Applying the above relationship to the period of [t, t + 1] and recalling that
α(t, t) = 1, one period interest rate in equilibrium must obey

rt = ln[α(t, t+ 1)] +
(λ0 + λ1Xs−1)

2

2
+

(ψµ0 + ψµ1µs−1)
2

2
+

(ψv0 + ψv1vs−1)
2

2
.

Recall that α(t, t + 1) is measurable with respect to the information set at time t. One is free to
specify either rt or α(t, t+ 1) as a function of state variables at time t, but not both.

The argument also applies to µs and ξs. Define εQt = εt − ψµ0 − ψµ1µt−1 and ξQt = ξt − ψv0 −
ψv1vt−1 which are also standard normal random variables under measure Q. Finally, εQt , εQt and

ξQt are independent under measure Q can be established by showing that E
Qt,T
s−1

(
ea(εs+εs+ξs)

)
=

E
Qt,T
s−1 (eaεs)E

Qt,T
s−1 (eaεs)E

Qt,T
s−1

(
eaξs

)
.

C. The Kalman filter implementation

Denote the covariance matrix of the measurement errors by Ω, the column vector of observed
rates by Rt, and the coefficient vector and matrix by Φ1 and Φ2. We can apply the standard
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Kalman filtering results to equation (18) to obtain the predicted mean and variance of the state
variables:

X̂
∗
t|t−1 = S−1C + S−1DX̂

∗
t−1|t−1 (32)

P̂t|t−1 = S−1DP̂t−1|t−1(S
−1D)′ + S−1U(S−1)′ (33)

Applying the measurement equations in (30), the filtered mean and variance become

X̂
∗
t|t = X̂

∗
t|t−1 + K̂t[Rt − Φ1 − Φ2X̂

∗
t|t−1] (34)

P̂t|t = (I(n+1)×(n+1) − K̂tΦ2)P̂t|t−1 (35)

where K̂t = P̂t|t−1Φ
′
2(Φ2P̂t|t−1Φ

′
2 + Ω)−1.

To set the initial values, we let X̂
∗
0|0 = [x

(s)
0 , x

(s)
0 , · · · , x(s)0 , x

(l)
0 − µ̄, 0]′ where x

(s)
0 is the first

observed interest rate of the shortest maturity and x
(l)
0 is the rate of the longest maturity at the

same time. In our case, both turn out to be the three-month rate. The rationale is that Xt is meant
as the key component of the short-term base rate whereas the central tendency should be more
closely aligned with the longest-term rate. In fact, we have set the initial state of the entire lagged

vector of the LM-CTAR process to x
(s)
0 . The initial value for the second factor, µt − µ̄, follows by

assuming µ0 = x
(l)
0 , and the third factor is initialized at zero. Consistent with this assumption, we

set P̂0|0 = 0.
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Figure 1. The 3-month US Treasury yields (continuously compounded) daily from January 4, 
1954 to December 31, 2013. 
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Figure 2a.  A simulated sample path for the LM-AR with 5 lags. The parameters are: 
�̅ = 0, �� = 0.001, 
 = −0.5, � = 0.002 and � = 0. 
 

 

 
 
Figure 2b.  A simulated sample path for the LM-AR with 10 lags. The parameters are: 
�̅ = 0, �� = 0.001, 
 = −0.2, � = 0.02 and � = 0. 
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Figure 3a. A 3-factor Gaussian term structure model built on the LM-CTAR process is fitted 
to the US treasury constant maturity yields (continuously compounded) of seven maturities (1 
month, 3 months, 6 months, 1 year, 5 years, 10 years and 20 years). The filtered estimate of 
the LM-CTAR and central tendency components are plotted along with the 3-month rate, 
weekly from January 4, 1954 to December 31, 2013. The vertical axis is in percentage points. 
 

 
 
 
Figure 3b. The difference in the filtered LM-CTAR and CTAR factors from two 3-factor 
term structure models over the sample period from January 4, 1954 to December 31, 2013. 
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Figure 4. The filtered central tendency estimates corresponding to two versions of the 3-
factor Gaussian term structure model built on, respectively, the CTAR and LM-CTAR 
processes from January 4, 1954 to December 31, 2013 on a weekly frequency. Also plotted is 
the 20-year US Treasury yields (continuously compounded) when they were available. The 
vertical axis is in percentage points. 
 



27 

 

Table 1. Summary statistics for the US treasury constant-maturity yields (continuously 
compounded) from January 4, 1954 to December 31, 2013, sampled once a week on 
Wednesday.  
 

Maturity # of  
Points 

Mean Median Standard 
Deviation 

1 month 641 0.015144 0.009636 0.016606 
3 months 3080 0.047902 0.047220 0.031239 
6 months 2831 0.052203 0.051244 0.031604 

1 year 2451 0.057484 0.055555 0.031759 
5 years 2674 0.060156 0.058458 0.027835 

10 years 2674 0.063239 0.060107 0.025515 
20 years 2327 0.063808 0.058458 0.024891 

 Skewness Excess 
Kurtosis 

Maximum Minimum 

1 month 0.942746 -0.397540 0.052626 0 
3 months 0.885921 1.416064 0.176280 0 
6 months 0.718757 1.086112 0.167857 0.000304 

1 year 0.484282 0.759180 0.166050 0.000811 
5 years 0.521315 0.396290 0.150745 0.005584 

10 years 0.721610 0.391892 0.147040 0.014199 
20 years 1.016944 0.596012 0.146522 0.020880 
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Table 2. Estimation results using the 3-month US treasury constant-maturity yields 
(continuously compounded) from January 4, 1954 to December 31, 2013, sampled once a 
week on Wednesday. Estimation does not factor in the term structure effect. The values in 
brackets are standard errors. The moving level in the LM-AR and LM-CTAR processes uses 
a 7-week average. 

 
Parameter AR(1) CTAR LM-AR LM-CTAR 

�̅ 
0.046387 

(0.024706) 
0.046832 

(0.019745) 
0.047097 

(0.019325) 
0.045395 

(0.022350) 

�� 
0.002632 

(0.000941) 
0.004181 

(0.001324) 
0.003381 

(0.000977) 
0.105702 

(0.025165) 

ω  
 -0.071005 

(0.004154) 
-0.075354 
(0.007143) 

� 
0.002328 

(0.000008) 
0.002189 

(0.000019) 
0.002314 

(0.000008) 
0.002177 

(0.000041) 

��  0.295870 
(0.039138) 

 0.003284 
(0.001234) 

�  0.134946 
(0.048605) 

 0.002511 
(0.000132) 

Log-likelihood 14231.12 14247.24 14249.08 14253.61 
�(�)   0.995690 0.825882 

Data points 3130 
Missing data 50 
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Table 3. Estimation results for two 3-factor term structure models using the US Treasury 
constant-maturity yields (continuously compounded) of seven maturities. The data are from 
January 4, 1954 to December 31, 2013, sampled once a week on Wednesday. The values in 
brackets are standard errors. The moving level in the LM-CTAR process uses a 28-week 
average. 

 
 CTAR+AR(1) LM-CTAR+AR(1) 

Physical process parameters 
�̅ 0.103950 

(0.002614) 
0.095287 

(0.002504) 
�� 0.072262 

(0.000993) 
0.080571 

(0.001112) 
ω 

 
-0.007134 
(0.000690) 

� 0.002649 
(0.000028) 

0.002591 
(0.000027) 

�� 0.000189 
(0.000011) 

0.000188 
(0.000011) 

� 0.001440 
(0.000017) 

0.001317 
(0.000018) 

�� 0.008227 
(0.000087) 

0.008176 
(0.000086) 

� 0.002058 
(0.000019) 

0.002050 
(0.000019) 

Measurement errors 
1 month 0.000892 

(0.000039) 
0.000886 

(0.000039) 
3 months 0.000576 

(0.000013) 
0.000579 

(0.000013) 
6 months 0.000746 

(0.000009) 
0.000742 

(0.000009) 
1 year 0.000628 

(0.000010) 
0.000636 

(0.000010) 
5 years 0.001767 

(0.000022) 
0.001770 

(0.000022) 
10 years 0.000174 

(0.000032) 
0.000174 

(0.000031) 
20 years 0.002362 

(0.000030) 
0.002365 

(0.000030) 
Log-likelihood 96976.40 97012.06 

�(�)  0.891281 
Data points 3130 

Missing data 50 
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Table 4. Changes in yields (continuously compounded) of seven maturities on changes in the 
three filtered factors of the local momentum term structure model. The data are from January 
4, 1954 to December 31, 2013, sampled once a week on Wednesday. The values in brackets 
are standard errors. 
 

Yield Change Intercept ∆���|� ∆���|� ∆���|� �� 

∆ !(1") 
0.000109 

(0.000083) 
0.220220 

(0.007196) 
0.991148 

(0.003920) 
0.976043 

(0.008784) 
0.9148 

∆ !(3") 
0.000017 

(0.000009) 
0.351476 

(0.000573) 
0.732278 

(0.000194) 
0.952301 

(0.000265) 
0.9850 

∆ !(6") 
0.000067 
0.000017 

0.583060 
0.000982 

0.413108 
0.000325 

0.944362 
0.000449 

0.9511 

∆ !(1%) 
-0.000042 
(0.000018) 

0.768468 
(0.001023) 

0.190847 
(0.000319) 

0.881598 
(0.000424) 

0.9590 

∆ !(5%) 
-0.000352 
(0.000017) 

1.030643 
(0.001013) 

0.039280 
(0.000327) 

0.384023 
(0.000454) 

0.9181 

∆ !(10%) 
-0.000011 
(0.000001) 

1.035115 
(0.000074) 

0.026693 
(0.000024) 

0.227487 
(0.000033) 

0.9995 

∆ !(20%) 
0.000028 

(0.000018) 
0.902467 

(0.001052) 
0.038297 

(0.000317) 
0.191439 

(0.000440) 
0.9004 

 
 


