Using Text Mining and Machine Learning to Predict the Impact
of Quarterly Financial Results on Next Day Stock Performance

Itamar Snir

The Leonard N. Stern School of Business
Glucksman Institute for Research in Securities Markets

Faculty Advisor: Joel Hasbrouck
April 1, 2017

I. INTRODUCTION

In this project I study whether it is possible to automatically classify the impact of
quarterly report on the stock’s next day performance, based purely on the textual content of the
report. The stock’s performance is defined positive in cases where the company’s stock excess
return over the market return (measured by the S&P 500 index) was positive, and negative
otherwise.

I start by creating a massive dataset of over 50 thousand quarterly reports from more than
2000 companies in the NASDAQ index. Then, I explore the best practices known so far to
extract information out of text in general, and specifically from financial textual information. I
then implement both dictionary and machine learning based approaches to test my hypothesis,
using the Python programming language. Finally, I implement a hybrid process in which the
dictionary based approach was used as a preprocess to the machine learning classification. The
best result is achieved using a combination of the dictionary and machine learning approaches,

improving accuracy by about of 5.5% over the random guess baseline of 50%.

1. METHODOLOGY

Behavioral finance researchers have recently intensified their efforts to understand how
sentiment impacts individual decision-makers, institutions and markets. Broadly speaking, two
types of sentiment have been studied: investor sentiment — beliefs about future cash flows and
investment risks that are not justified by the facts at hand, and textual sentiment — the degree of
positivity or negativity in texts (Kearney and Liu, 2013). This paper will only focus on the
second type.

The most popular methods to extract information from financial related documents can be

broadly separated into the dictionary-based approach and machine learning.

1.1 Dictionary Based Approach

In the dictionary based approach a pre-defined word list (dictionary) is used to parse the
text. A word is only used in the document representation if it matches one of the terms in the
dictionary, and otherwise the term is ignored. A representation of a document will therefore be a
vector containing the terms that match the dictionary and their frequency in the document. The
most widely used dictionary in the earlier studies was the General Inquirer (GI) built-in
dictionary, developed and used by Philip Stone, a specialist in social psychology (Stone et al.
(1966)). However, this dictionary was developed based on general English linguistic and was not
tailored to the common financial related documents. For example, terms such as “tax” or “debt”
would most likely be considered negative in general English documents, but are very common in
financial reports and would not necessarily indicate a negative sentiment. Loughran and
McDonald (2011) find that almost three-fourths of the negative word counts in the Harvard list
are not necessarily negative in a financial context. They therefore developed a new financial-
focused dictionary by inflecting each word from the Harvard dictionary to forms that retain the
original meaning of the root word, and added finance-specific word lists developed by
themselves (L&M lists) to assess sentiment in 10-Ks. These L&M lists have become
predominant in more recent studies (Kearney and Liu).

In order to use dictionary based approach to classify sentiment a weighting rule has to be
implemented. Two of the simplest methods are a binary approach - each term is assigned a
weight of 1 if included in the document and 0 otherwise, and the term-frequency approach in
which each term’s weight is equal to its frequency in the document. A more advanced approach
is to normalize the term frequency by the inverse document frequency. This method will be

described in detail in the next section. Finally, another approach is to use the polarity metric:

. n oS — nne
Polarity = 22— _T¢9

Npos+ Nneg
Where N5 Npeg are the number of positive and negative words, respectively (Das, 2014). In this
approach each document is assigned a polarity score, so that the higher the score the more likely
the document signal is positive. It is important to note that unlike the simpler methods, the

polarity metric isn’t sensitive to the document’s length.

11.2 Machine Learning

Machine learning, in the context of text analytics, relies on statistical techniques to infer
the content of documents and to classify them based on statistical inference (Li, 2010). The
process to classify the document begins by splitting the corpus into a training set from which the
machine can learn the ‘hidden patterns’ and a test set which is used to evaluate the quality of the
model. While there are many possible ways to measure model quality, in this paper I use three of
the most common metrics: accuracy, precision and negative predictive value (NPV).

of correctly classified documents

Accuracy =
y Total number of classified documents

TP

P . . —
recision —FP T TP

TN

NPV = ————
V= TNT N

Where TP/TN are the number of correctly classified positive/negative document, and FP/FN are
the incorrectly classified positive/negative document. These metrics are used due to their simple
business interpretation - high accuracy rate would mean an investor can always trust the model,
while excelling in only one of the other metrics - either the precision or the NPV, means that an
investor would trust the model only in instances where it classifies a document as positive (‘buy’

signal) or negative (‘sell’ signal), respectively. While there are myriad of different classification

algorithms in the machine learning literature, for the purpose of this project I limit the analysis to
three of the most well-known models: Naive Bayes, Support Vector Machines (SVM), and
Random Forest. To use them, I import an open-source package already developed in the Python
language (Scikit-learn package).

A corpus of textual documents such as quarterly earnings can only be used for machine
learning after a significant preprocess of the information, yielding a dataset of instances

(documents), features and target variable (the ‘signal’), as described in the next section.

11.3 The “bag of words” approach

In order to extract information from the text I base my analysis on the ‘bag of words’
model in which a document, or in this case a quarterly report, is represented using a bag of its
words, while disregarding grammar and word order, but keeping multiplicity. This approach has
been proven successful for tasks such as document classification and sentiment analysis. This
will be a preprocessing step necessary in order to create a training set for the machine learning
algorithms to work on. Each word or set of words (also known as n-gram, with n being the
number of words) will be a feature helping the predictive model to learn the characteristics of the
text. The bag of words model follows the next stages:

1) Tokenization - in order to separate each word in the text I create a ‘tokenizer’
function. This function essentially tells Python how to split words. I am splitting terms based on
spaces, where terms separated by a dash or dot are counted as one token. After some trial and
error, I decided to ignore numbers. That is a critical decision since financial reports include many
numbers, and it is obvious that the numbers have an important impact. However, my goal is to
understand text patterns. The numbers create noise in the data set, making it very hard to

distinguish that noise from a meaningful signal.

2) Stop Words — It is useful to exclude common English terms from the analysis. Such
terms are broadly referred to as ‘stop words’ in the text analytics lingo and include words such as
‘the’, ‘a’, ‘and’ and many others. This step is very important to reduce the dimensionality of the
dataset and to reduce noise.

3) Punctuation — It is common to ignore punctuation such as quotes, commas, dots etc.

4) Stemming - this is the process of reducing inflected (or sometimes derived) words to
their word stem, base or root form. Examples include removal of ‘ing’ or ‘es’ from the end of
terms. Stemming helps the algorithm understand that terms such as ‘move’ and ‘moving’ are
similar enough to be counted the same and therefore should be viewed as the same token.

5) Term Frequency - After defining the framework to separate text into tokens, a ‘bag’
for each document can be created. This is achieved by executing a word count for each token. At
the end of this step each document is represented as the ‘bag’ of its words, and each set of
documents (commonly referred to as ‘corpus’) is also represented using the vector of each
document.

Example
Consider the following three ‘documents’:
1) The cat is on the tree.
2) The big dog is running to the tree.
3) Trees need water in order to grow.
After executing the five steps as described above, this corpus of three documents will be

represented as follows:

Doc# | Cat tree big dog run need water | order | grow

1 1 1 0 0 0 0 0 0 0
2 0 1 1 1 1 0 0 0 0
3 0 1 0 0 0 1 1 1 1

Note that the terms ‘the’, ‘is’, ‘on’, ’to’ and ‘in’ were all ignored since they are considered ‘stop
words’. Also note that terms such as ‘tree’ and ‘trees’ were united to one feature and the term

‘running’ was captured as ‘run’, both due to the stemming step.

11.4 Inverse Document Frequency

Term frequency is a simple method to obtain a weight or score for each term in each
document. However, it is also important to consider how many documents a term appears in.
One intuitive idea is that reports which contain words that are uncommon across all documents
are more likely to be similar to other reports that contain those words, whereas reports that have
common joint words are less likely to be similar. This introduces the idea of “inverse document

frequency” (IDF) as a weighting coefficient. Hence, the IDF for word j would be:

, N
w;'4 =In (—)
] df}-

where N is the total number of documents, and dfj is the number of documents containing word j.
This scheme was proposed by Manning and Schiitze (1999). Loughran and McDonald (2011) use
this weighting approach to modify the word (term) frequency counts in the documents they
analyze. The weight on word j in document i is specified as:

w;j = max [0, 1 + In(f;;) w;"V/]

where fij is the frequency count of word j in document 1.

11.5 Feature Selection

One key decision in the machine learning process is how to prioritize features, and most
algorithms are differentiated based on the way they assign weights to features. A common theme
in machine learning is the ‘curse of dimensionality’ - the more features a dataset contains the
more complex the learning becomes, and the amount of training data the model requires
increases exponentially. Text classification is considered a high-dimensional problem since
almost each term in the text is considered a feature. It is furthermore assumed that most terms are
not of high importance. The algorithm is therefore looking for those features that are good
discriminants - meaning the combination of those features can distinguish between positive and
negative documents with good accuracy. A common step in the preprocessing stage is therefore
to “assist” the algorithm by implementing a feature selection step resulting in lower dimension
dataset. In this project I try few different feature selection techniques:

e Most common features - only include the few hundred most common terms (After excluding
‘stop words’), but ignore terms that appear in more than 90% of the documents as they are
too common.

e Best TFIDF score - only include those few hundred features with the best term frequency-
inverse document frequency score.

e Dictionary based features - only include terms from the GI/Harvard dictionary and/or the
L&M dictionaries. Generally speaking, this method showed better results than the former two
feature selection methods.

e Fisher Discriminant (1936) - this is the ratio of the variation of a given word across groups to
the variation within group. It should be noted that unlike other methods mentioned, this

method is a ‘supervised” method, meaning it utilizes the target variable to decide which

features are better. More formally, Fisher’s discriminant score for word (w) is defined as

follows:

1 _ —\2
?25{:1(Wj - WO)

1

F(w) =

Where K is the number of categories (two in our case) and w;is the mean occurrence of the word
w in each text in category j, W, is the mean occurrence across all categories, and sz is the
variance of the word occurrence in category j. Using this method, we can rank the features based
on their Fisher score and use only the best ones. This method can also be used as a simple
classifier function where each document is assigned the sum of its Fisher scores, and a cutoff

point is decided to determine the signal of the document.

I1l. Data Gathering

In order to be able to leverage the power of text mining and machine learning, it is vital
to create a dataset that includes many samples of quarterly reports as well as the performance of
the stock before and after the release of the information to the public. For that reason, I gather
dozens of thousands of reports automatically. This is achieved by creating a Python code which
scrapes the EDGAR database of the SEC and downloads the 10-Qs of many companies listed in
the NASDAQ. I was able to obtain 53,157 reports from 2,676 companies. This sample includes
all types of companies:

e Companies that no longer exist as a public company, whether because they went bankrupt or
because they were acquired.
e Mature companies that have been existing for more than 20 years.

e Young companies such as Facebook or Twitter.

After downloading the 10-Qs I use APIs from Google and Yahoo in order to know what
happened to the stock of those companies the next trading day after the release of the 10-Q. This
step reduces the dataset size to about 45,000 reports, since for some of the reports the APIs can’t
find the stock return. In addition, using the same APIs I am able to pull the relevant S&P500
return for each 10-Q, and then create the target variable for the classification - the excess return,
which is equal to the difference between the stock return and the market return.

Looking on the entire corpus, the excess return distribution is symmetric around 0, as one might

expect, with a very minor skew to negative values:

—— excess_return

-0.6 0.4 -0.2 0.0 0.2 04 06

Figure 1 - Excess Return distribution
*Extreme values of more than 50% were excluded

It is interesting to note that the tails of the distribution are different depending on the day

of the week in which the report was released:

06

0.4

02
E
=
2

w00
w
8
]

0.2

0.4

-0.6

Monday Tuesday Wednesday Thursday Friday
day

Figure 2 - Excess Return Distribution by Day
It seems that it is less likely for companies to release negative news on Fridays, as the left tail on
that day is much shorter than the right tail. I next consider an indicator variable set to one (true)
if the excess return was positive and zero (false) otherwise. This results in a somewhat skewed
target variable, as there are more negative returns rather than positive (approximately 52% of the
corpus). That distribution is consistent no matter what day of the week the earnings report is

released:

25000
20000

15000

count

10000

5000

False

label

plot_label

I Negative
B Positive
5000
4000
E
S 3000
8
2000
1000
0
Monday Tuesday Wednesday Thursday Friday
day

Figure 3 - Excess Return Label Distribution
Top - Total Distribution, Bottom - Grouped by Day of the Week

For the purpose of predicting whether the excess return will be positive or negative, it is a
good practice to start the analysis by focusing only on the edges. The cases where the excess
return is significantly positive or negative are more interesting from an investor or trader point of
view. Focusing on the significant excess returns weakens the possibility that they are due to
confounding events. In other words, cases in which the excess return is not significantly positive
or negative are less interesting from a practical standpoint, and we should care less whether our
model can classify them correctly. Those cases in which the excess return is more than 2%-3%
(or less than negative 2%-3%) are more interesting as the possible outcome of buy/sell is more
significant. Therefore, for the vast majority of the research I focus on the top and bottom 10% of
the excess return. These are cases in which the excess return is more than approximately 3.5%, in

absolute value:

1200

plot_label
I Positive
B Negative
1000
800
E
S 600
8
400
200
0

Monday Tuesday Wednesday Thursday Friday
day

Figure 4 - Excess Return Label for Top/Bottom 10 percentile, by Day of Week

In this subset of reports it seems that it is somewhat more likely to announce positive earnings
towards the end of week, while reports announced in the first half of the week are more likely to
follow with negative excess return. This insight is important since the day of the week might be a

good addition to the textual information and can be added as a feature to the machine learning

algorithms.

1V. Results

In order to test the hypothesis, I implement all the techniques described in the previous
section. I start with the simpler methods and then proceed to the more complex, in the hope of
better results.

IV. 1 Dictionary based modeling:

At this stage I try using the L&M and the Harvard/GI dictionaries, separately and in

combination. At first I try to see whether there’s a positive correlation between the number of

negative and positive terms to the class of the document. A scatter plot, where the x-axis
represents the number of negative terms, the y-axis represents the number of positive terms, and

the color visualizes the class of the document is an easy way to visualize and test this approach:

250 T T T T T T T T
eee positive
ee s negative
200+ R
L]
150} .

pos_terms
=
(=]
S
T

-100 0 100 200 300 400 500 600 700 800
neg_terms

Figure 5 - Scatter Plot of the Positive and Negative Terms

Ideally, we would like to see a cluster of negative documents in the lower-right end of the plot
(many negative terms, few positive terms), and a cluster of positive documents in the upper-left
(many positive, few negative). However, that is not the case, there’s no apparent difference
between the negative and positive documents. We can also see that there’s a strong correlation
between the number of positive terms and the number of negative terms. That is not surprising
since documents that are longer simply have higher probability to include more negative and

positive terms. Therefore, my next step is to control for document length. I do that by looking at

the percentage of positive and negative terms out of the document length, which is estimated

based on the number of terms in the document:

Boxplot grouped by label

0.012 n!eg_terms_norm p:c:-s_terms_norrln

0.010

0.008

0.006

0.004

0.002

i | é

I
i 1 !
I !]
i | I
i T !
| T

False True False True
[label] [label]

0.000

Figure 6 - Boxplot of Positive and Negative Terms, Normalized to Document Length

Despite the normalization, we cannot spot any relation between the number of negative and
positive terms to the sentiment of the document. Similar results for both the controlled and non-
controlled analysis are achieved for all types of dictionaries.

As a final step for the dictionary based analysis I try using the polarity metric. Each
document is given a polarity score, as described in the methodology section, and then I look on
the metric versus both the binary class (positive/negative) as well as against the underlying
excess return, which is a continues variable. However, as the two figures below illustrate, the

polarity cannot indicate a clear signal to differentiate between positive and negative reports.

0.8 . polarity

00k]

T
|
|
|
|
; ,
False True
label

-0.4

Figure 7 - Polarity Boxplot
0.8 T T T

0.6 1

ex_return

-0.6 1

-0.8} 1

-1.0 L L L L L L L
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

polarity
Figure 8 - Polarity vs. Excess Return

1V.2 Machine Learning Based Modeling

Since the dictionary based techniques were not useful in differentiating between positive
and negative reports, [proceed to try machine learning models on the 10th percentile dataset. |

implement all the preprocessing stages as discussed in the methodology section, including

removing punctuation, stop words, numbers etc. I then create the term-document matrix which
represents each document as a bag of its words. From this stage I try using both regular term-
frequency counts and TFIDF preprocessing. For each of these two data representation methods I
try three well-known classification models: Naive-Bayes classifier, Random Forest, and Support
Vector Machines. For each of these models I test few different configuration hyper-parameters
which control for overfitting the train data. To evaluate the performance of the models I use a
cross validation approach. Cross validation is a common technique in machine learning to
evaluate results accurately without leaving any part of the available data unused. In this approach
we train a model on most of the train set, but we leave a small portion (fold) to evaluate the
results. We repeat this process several times, and in each iteration we use a different fold to test
the results while the other folds are used to train the model. To consolidate the different results
from all the iterations we average the accuracy. In this study I use a 5-fold cross validation when
evaluating models’ performance. In each iteration I train a model on 80% of the data, and

evaluate the performance on the remaining 20%.

Data Model Train 5-Fold CV | 5-Fold CV | 5-Fold
Representa Accuracy | Accuracy | Precision |[CV
tion NPV
Term Naive Bayes, Alpha=1 53.42% 52.7% 54% 52%
Frequency

Term Naive Bayes, Alpha=0.1 [53.41% 52.16% 51% 55%
Frequency

Term Random Forest, 50 Trees | 51.59% 53.99% 53% 55%
Frequency

Term Random Forest, 500 52.65% 51.88 52% 52%
Frequency | Trees

Term SVM, Gaussian kernel, 99.58% 49.44% 49% 52%
Frequency | C=1

Term SVM, Linear kernel, C=1 | 75.54% 49.49% 48% 51%

Frequency

TFIDF Naive Bayes, Alpha=1 55.73% 51.55% 52% 51%

TFIDF Naive Bayes, Alpha=0.1 [55.17% 51.38% 51% 52%

TFIDF Random Forest, 50 Trees | 50.91% 51.33% 51% 51%

IFIDF Random Forest, 500 52.8% 53.49% 53% 54%
Trees

TFIDF SVM, Gaussian kernel, 50.56% 47.28% 47%* 0%*
C=1

TFIDF SVM, linear kernel, C=1 | 58.6% 53.55% 53% 54%

Table 1 — Results for Various Classification Methods

Based on these results, it seems that using best practice classification algorithms without any
feature selection method cannot identify any patterns that would differentiate between positive
and negative reports in a useful manner. With approximately 50% accuracy as a base rate, all the
methods above reach a disappointing result for each of our metrics. It is also interesting to note
that most algorithms can’t even get good results on the train set. The only two models that show
good results with the training data are the linear SVM and the Gaussian SVM. This is not
surprising since SVM is a much more complex model than Naive Bayes and Random Forest.
Since the train set includes only about 7000 instances, it is safe to assume the SVM models
create a support vector for almost each one of the instances in the train set, leading to a very
good result in the learning phase, but an awful result in the cross validation phase, even worse
than a random guess. This means that those models couldn’t generalize beyond the train set,
which is the famous overfitting problem.

The fact that most of these models weren’t able to get good results with the train set

implies that we incur the problem of high dimensionality - the ratio between the number of

features and number of instances is too high. Therefore, my next step is to try using the L&M

dictionary and the Fisher score as a feature selection process before the classification algorithms.

1V.3 Reducing Dimensionality with Feature Selection

The Fisher score is a supervised way to implement feature selection, since the selection is
dependent on the target variable. I start by implementing the metric for each feature (term), and
then execute the classification models again with few iterations, where in each iteration I
increase the number of features included in the model (500, 2000, 10000). The results prove a

very minor improvement over the 50% baseline.

Number of | Model Train 5-fold CV 5-fold CV 5-fold CV

Features Accuracy Accuracy Precision NPV

500 Naive Bayes, 57.31% 52.35% 54% 52%
Alpha=0.1

2000 Naive Bayes, 62.78% 53.98% 54% 54%
Alpha=0.1

10000 Naive Bayes, 68.91% 53.31% 53% 54%
Alpha=0.1

Table 2 — Results for Classification with Fischer Based Feature Selection

Another way to focus on the most important features is to use the predefined dictionaries
that were discussed in the dictionary based methods section. While using simple linear weights
as a discriminating function didn’t yield good results, it is possible that the machine learning
algorithms will be able to yield more value by using only the terms from the dictionaries.
Therefore, I try using the L&M dictionary terms as a feature selection step, when the machine
learning classifiers would only use them and ignore all other terms. As the table below shows,
this methodology yields the best results for the cross validation accuracy metric — 55.42%, and

57% precision, when using all the terms in the dictionary (about 7200 terms). It is also important

to note that we no longer overfit the training data, as the cross validation results are mostly

consistent with the train results.

Number of | Model Train 5-fold CV | 5-fold CV | 5-fold CV

Features Accuracy | Accuracy | Precision NPV

100 Naive Bayes, 60.63% 53.04% 53% 53%
Alpha=0.1

1000 Naive Bayes, 60.41% 51.65% 50% 53%
Alpha=0.1

Entire Naive Bayes, 60.35% 55.42% 57% 54%

Dictionary | Alpha=0.1

Table 3 — Results for Classification with Dictionary Based Feature Selection

As a next stage, I try to combine the Fisher score with the L&M dictionary, so that the models

will only learn from the terms in the dictionary that have the highest Fischer score. As can be

seen below, this method doesn’t yield better results than using the entire L&M dictionary’s

terms.

Number of | Model Train 5-fold CV 5-fold CV 5-fold CV

Features Accuracy Accuracy Precision NPV

4000 Naive Bayes, 60.61% 53.35% 53% 54%
Alpha=0.75

2000 Naive Bayes, 59.41% 53.61% 54% 53%
Alpha=0.1

1000 Naive Bayes, 58.42% 53.65% 53% 55%
Alpha=0.1

500 Naive Bayes, 57.69% 53.31% 53% 543
Alpha=0.1

Table 4 — Results for Classification with combined Fischer and Dictionary Feature Selection

V. Summary

Out of the methods I tried to model the problem, the best approach is using the entire

L&M dictionary without any additional feature selection. The model’s accuracy with a 5-fold

cross validation is 55.42%, the model’s precision is 57%, and the NPV is 54%. To illustrate what
terms are of highest value we can look on the list of most important 10 terms. These are the

terms that the model found as the best differentiators:

Positive Terms Negative Terms
Attainment Loss
Beautiful/Beautifully Effective
Booming Impairment
Courteous Claims
Creativeness Against
Delightfully Benefit
Distinctively Gain
Enjoyably Adverse
Excelling Litigation
Exclusiveness Capital

Table 5 — List of Most Important Positive and Negative Terms

It is important to remember that using only these 10 terms is not enough, as the models get their
true power by using all the terms in the dictionary, as shown in the comparisons before. While
the result is better than a random guess by about 5.5% percent, it is still not the result I had hoped
for.

From a trading perspective, the model’s accuracy isn’t useful, and it would be more
important to estimate the performance of using our best model as a trading strategy. Based on
our definition and modeling of the problem, this strategy aims for a one-day trade — when the
predictive model predicts ‘buy’ the trader will buy the stock and short the market, and will exit
that position at the end of the next trading day. Similarly, when the model predicts ‘sell’, the
trader will short the stock and buy the market and exit the next day. Therefore, we can estimate

the quality of our model as a trading strategy by looking on the average excess return one would

have made by following the model’s prediction. More formally, our strategy’s quality is

measured as follows:

1, Prediction is correct

N

1

NZIEx. Return;| = P;, Where P; = {—1, Prediction is wrong
i=1

Note that we only care about the absolute value of the excess return. If it is negative and our
model predicted it would be negative, the trader will short the stock and buy the market, thereby
making positive return by following the strategy. When evaluating our model as a trading
strategy it has a very minor positive return of 0.2% over the market return. In other words, if we
were to follow the model’s prediction for our 40,000 quarterly reports dataset, we would have
earned only 0.2% better return than simply buying the market instead. This is a very small excess
return, and isn’t likely statistically significant. This analysis doesn’t take into account those
repots the model has learned from, and only looks on ‘new’ instances which the model has never
seen before.

From a practical standpoint, using an approach that is correct only 55% percent of the
time and can only yields minor return over the market will not necessarily be a good investment
strategy, and therefore my conclusion is to reject the hypothesis that the impact of quarterly

earnings reports on next day stock performance can be automatically mined.

VI. Future Research

As a follow-up research to this project, I suggest few additional or alternative methods to
consider:
e Get more data for the learning phase - with only about 10 thousand instances to learn from

(after filtering the top and bottom 10 percent), it might be useful to obtain more 10-Qs as

VII.

1)

2)

3)

training data. This is considered “expensive” as it might take a lot of time to obtain more
data.

Natural Language Processing (NLP) — Another common practice in text analytics is to use
NLP. These techniques can tag each term in a sentence to a part of speech. For example,
tagging nouns, verbs and adjectives. Since we are looking for a sentiment or signal in the
reports, it’1l be interesting to use only adjectives as a feature selection step, and then continue
to the machine learning step.

Deep Learning - this more computationally complex machine learning approach has shown
impressive results in recent studies for problems such as image recognition, voice
recognition, and sentiment analysis. Therefore, it’ll be interesting to explore whether those
results can be replicated with our dataset. However, deep learning also requires an extremely
big dataset to learn from, and it is not necessarily possible to obtain that many 10-Qs.
Volatility prediction — while I couldn’t predict the impact of reports on stock performance, it
is valuable to research whether text analytics techniques can be used to predict extreme

movement in either direction. This kind of signal is valuable in options trading.

Bibliography

Colm Kearney and Sha Liu, Textual sentiment in finance: A survey of methods and models,
April 2013.

C.D. Manning and H. Schiitze. Foundations of Statistical Natural Language Processing. MIT
Press, 1999.

T. Loughran and W. McDonald. When is a liability not a liability. Journal of Finance, 66:35—

65,2011

4)

5)

6)

7)

Stone, P. J., D. C. Dunphy, M. S. Smith, and D. M. Ogilvie (1966). The General Inquirer: A
Computer Approach to Content Analysis. Cambridge: MIT Press

Sanjiv Ranjan Das, Text and Context: Language Analytics in Finance. Foundations and
Trends ® in Finance, Volume 8, Issue 3, 2014.

Li, F., (2010). The information content of forward-looking statements in corporate filings - A
Naive Bayesian machine learning algorithm approach. Journal of Accounting Research, 48,
1049-1102.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics,

7(2):179-188, 1936.

