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Abstract

Recent studies appear to have found evidence that information not reflected in the yield

curve helps predict interest rates and excess bond returns. These studies reject the

Markov property of the yield curve and conclude that there is unspanned or hidden

information that should be used in forecasting. We revisit the evidence of these pa-

pers using novel econometric techniques that address the difficult problems surrounding

inference about predictability of highly persistent series. We reach the opposite conclu-

sion: only the level and the slope of the yield curve are robust predictors of excess bond

returns, and there is no robust and convincing evidence for unspanned macro risk. In

other words, the Markov property of the yield curve seems alive and well.
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1 Introduction

The nominal yield on a 10-year U.S. Treasury bond has been below 2% much of the time since

2011, a level never seen previously. To what extent does this represent unprecedently low

expected interest rates extending through the next decade, and to what extent does it reflect

an unusually low risk premium resulting from a flight to safety and large-scale asset purchases

by central banks that depressed the long-term yield? Finding the answer is a critical input

for monetary policy, investment strategy, and understanding the lasting consequences of the

financial and economic disruptions of 2008.

In principle one can measure the risk premium by the difference between the current

long rate and the expected value of future short rates. But what information should go into

constructing that expectation of future short rates? A powerful argument can be made that

the current yield curve itself should contain most (if not all) information useful for forecasting

future interest rates and bond returns. Investors use information at time t—which we can

summarize by a state vector zt—to forecast future short-term interest rates and determine

bond risk premia. Hence current yields are necessarily a function of zt, reflecting the general

fact that current asset prices incorporate all current information. This suggests that we may

be able to back out the state vector zt from the observed yield curve.1 The “invertibility” or

“spanning” hypothesis states that the current yield curve contains all the information that

is useful for predicting future interest rates or determining risk premia. Notably, under this

hypothesis, the yield curve is first-order Markov.

It has long been recognized that three factors can provide an excellent summary of the

information in yields (Litterman and Scheinkman, 1991), and that these factors correspond to

the level, slope, and curvature of the yield curve. Hence it would seem that these three factors

should be everything one needs to forecast future yields and to estimate bond risk premia.

This hypothesis—that all the relevant information is spanned by level, slope and curvature

of the yield curve—is an important benchmark case that should be carefully investigated.

Importantly, if it holds then finding answers to questions about short-rate expectations and

bond risk premia does not require any data or models involving macroeconomic series, other

asset prices or quantities, volatilities, measures of monetary policy, or survey expectations.

Instead, the only piece of information needed to answer these questions is the shape of the

current yield curve. The bar for rejecting this hypothesis, which we will refer to as the spanning

hypothesis, certainly should be high.

However, a number of recent studies have produced evidence that variables other than

1Specifically, this invertibility requires that (a) we observe at least as many yields as there are state variables
in zt, and (b) there are no knife-edge cancellations or pronounced nonlinearities; see for example Duffee (2013).
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the first three principal components of current yields seem to be useful for predicting future

interest rates. Joslin et al. (2014) found that measures of economic growth and inflation

contain substantial predictive power for excess bond returns beyond the information in the

yield curve. Ludvigson and Ng (2009, 2010) documented that factors inferred from a large

set of macro variables help predict bond returns. Cooper and Priestley (2008) found that the

output gap helps predict excess bond returns. Cochrane and Piazzesi (2005) reported evidence

that information in the fourth and fifth principal component of yields has predictive power.

Greenwood and Vayanos (2014) found that measures of Treasury bond supply appear to help

forecast yields and returns. Each of these findings suggests that the Markov property of the

yield curve should be rejected and that there is unspanned or hidden information that is not

captured by the current yield curve but that is useful for forecasting.

The key evidence in all these studies comes from regressions of yields or excess returns

on a vector xt of predictive variables that are highly serially correlated and that include

variables that are strongly correlated with lagged values of the dependent variable. Although

these regressions have a fundamentally different structure from that considered by Mankiw

and Shapiro (1986) and Stambaugh (1999), small-sample problems that are related to those

identified by these researchers turn out to be potentially important for investigation of the

spanning hypothesis. We demonstrate in this paper that the procedures researchers have

been using to deal with problems raised by serial correlation of the regressors and regression

residuals are subject to significant small-sample distortions. We show for example that the

tests employed by Ludvigson and Ng (2009), which are intended to have a nominal size of 5%,

can have a true size of up to 56%. We further demonstrate that the predictive relations found

by all of these researchers exhibit much weaker performance over subsequent data than they

had over the samples originally analyzed by the researchers.

We propose two procedures that researchers could use that would give substantially more

robust small-sample inference. The first is a bootstrap procedure that is designed to test the

null hypothesis of interest. We calculate the first three principal components of the observed

set of yields and summarize their dynamics with a VAR fit to the observed principal com-

ponents. We generate a time series for the yield for a bond of maturity n by multiplying

the simulated principal components by the historical weighting vector for that yield on the

principal components and adding a small Gaussian measurement error. Thus by construction

no variables other than the principal components are useful for predicting yields in our gen-

erated data. We then fit a separate VAR to the proposed additional explanatory variables,

and generate a realization of these that is completely independent of the generated yields. We

can then calculate the properties of any statistic under the null hypothesis that the additional
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explanatory variables have no predictive power. We find using this bootstrap procedure that

much of the evidence of predictability reported by earlier researchers in fact fails to pass the

usual standards for statistical significance. Notably, while other studies have employed the

bootstrap to carry out inference, they have almost invariably done so for testing the expecta-

tions hypothesis, which is much stronger and much less plausible than the spanning hypothesis.

In contrast, our study is the first to use a bootstrap design that is tailored to test the relevant

null hypothesis, namely that nothing else but three yield-curve factors contains information

relevant for predicting yields and returns.

A second procedure that we propose for inference in this context is the approach for robust

testing recently suggested by Ibragimov and Müller (2010). We have found this approach

to have excellent size and power properties in settings similar to the ones encountered by

researchers testing for predictive power for interest rates and bond returns. The suggestion

of Ibragimov and Müller (2010) is to split the sample into subsamples, estimate coefficients

separately in each of these, and to perform a simple t-test on the coefficients across subsamples.

Applying this type of test to the predictive regressions for yields and bond returns studied in

the literature, we find that the only robust predictors are the level and the slope of the yield

curve, while the evidence on all other predictors lacks robustness.

We carefully revisit the evidence in five very influential papers cited above, all of which

appear to provide evidence against the null hypothesis of invertibility/spanning. We draw two

conclusions from our investigation. First, the claims going back to Fama and Bliss (1987) and

Campbell and Shiller (1991) that excess returns can be predicted from the level and slope of

the yield curve remain quite robust. We emphasize that this conclusion is fully consistent with

the Markov property of the yield curve. Second, the newer evidence on the predictive power

of macro variables, higher-order principal components of the yield curve, or other variables,

is subject to more serious econometric problems and overall appears weaker and much less

robust. Overall, we do not find convincing evidence to reject the baseline hypothesis that

the current yield curve, and in particular three factors summarizing this yield curve, contains

all the information necessary to infer interest rate forecasts and bond risk premia. In other

words, the Markov property of the yield curve seems alive and well.
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2 Inference about the spanning hypothesis

The evidence against the spanning hypothesis in all of the studies referred to in the introduc-

tion comes from regressions of the form

yt+h = β′1x1t + β′2x2t + ut+h, (1)

where the dependent variable yt+h is a yield, a yield curve factor (such as the level of the yield

curve), or a bond return that we wish to predict, x1t and x2t are vectors containing K1 and K2

predictors, respectively, and ut+h is an orthogonal forecast/projection error. The predictors

x1t contain a constant and the information in the yield curve, typically captured by the first

three principal components (PCs) of observed yields, i.e., level, slope, and curvature. The null

hypothesis of interest is

H0 : β2 = 0,

which says that the relevant predictive information is spanned by the information in the yield

curve and that x2t has no additional predictive power.

The evidence produced in these studies comes in two forms, the first based on simple

descriptive statistics such as how much the R2 of the regression increases when the variables

x2t are added and the second from formal statistical tests of the hypothesis that β2 = 0.

In this section we show how two features of the specification—serial correlation in the error

term ut and the fact that x1t is not strictly exogenous, for example because it includes lagged

dependent variables—can matter significantly for both forms of evidence.

2.1 Consequences of serially correlated errors

Our first observation is that in regressions in which x1t and x2t are strongly serially correlated

and the dependent variable is an excess holding yield for h > 1, we should not be surprised to

see substantial increases in R2 when x2t is added to the regression even if the true coefficient

is zero. It is well known that in small samples serial correlation in the residuals can increase

both the bias as well as the variance of a regression R2 (see for example Koerts and Abrahamse

(1969) and Carrodus and Giles (1992)). To see how much difference this could make in the

current setting, consider the unadjusted R2 defined as

R2 = 1− SSR∑T
t=1(yt+h − ȳh)2

(2)
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where SSR denotes the regression sum of squared residuals. The increase in R2 when x2t is

added to the regression is thus given by

R2
2 −R2

1 =
(SSR1 − SSR2)∑T
t=1(yt+h − ȳh)2

. (3)

We show in Appendix A that when x1t, x2t, and ut+h are stationary and satisfy standard

regularity conditions, if the null hypothesis is true (β2 = 0) and the extraneous regressors are

uncorrelated with the valid predictors (E(x2tx
′
1t) = 0), then

T (R2
2 −R2

1)
d→ r′Q−1r/γ (4)

γ = E[yt − E(yt)]
2

r ∼ N(0, S), (5)

Q = E(x2tx
′
2t) (6)

S =
∑∞

v=−∞E(ut+hut+h−vx2tx
′
2,t−v). (7)

Result (4) implies that the difference R2
2−R2

1 itself converges in probability to zero under the

null hypothesis that x2t does not belong in the regression, meaning that the two regressions

asymptotically should have the same R2.

In a given finite sample, however, R2
2 is larger than R2

1 by construction, and the above

results give us an indication of how much larger it would be in a given finite sample. If

x2tut+h is serially uncorrelated, then (7) simplifies to S0 = E(u2t+hx2tx
′
2t). On the other hand,

if x2tut+h is positively serially correlated, then S exceeds S0 by a positive-definite matrix, and

r exhibits more variability across samples. This means R2
2 − R2

1, being a quadratic form in

a vector with a higher variance, would have both a higher expected value as well as a higher

variance when x2tut+h is serially correlated compared to situations when it is not.

When the dependent variable yt+h is something like a one-year holding return, E(utut−v) 6=
0 for v = 0, . . . , 11, due to the overlapping observations. The explanatory variables x2t often

are highly serially correlated, so E(x2tx
′
2,t−v) 6= 0. Thus even if x2t is completely independent

of ut at all leads and lags, the product will be highly serially correlated,

E(ut+hut+h−vx2tx
′
2,t−v) = E(utut−v)E(x2tx

′
2,t−v) 6= 0.

This serial correlation in x2tut+h would contribute to larger values for R2
2 − R2

1 on average as

well as to increased variability in R2
2−R2

1 across samples. In other words, including x2t could
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substantially increase the R2 even if H0 is true.

These results on the asymptotic distribution of R2
2 − R2

1 could be used to design a test of

H0. However, we show in the next section that in small samples the bias and variability of

R2
2 − R2

1 can be even greater than predicted by (4). For this reason, in this paper we will

rely on the exact small-sample distribution of the statistic R2
2−R2

1, and demonstrate that the

dramatic values sometimes reported in the literature are not implausible under the spanning

hypothesis.2

Serial correlation of the residuals also affects the sampling distribution of the OLS estimate

of β2. In Appendix A we verify using standard algebra that under the null hypothesis β2 = 0

the OLS estimate b2 can be written as

b2 =
(∑T

t=1x̃2tx̃
′
2t

)−1 (∑T
t=1x̃2tut+h

)
(8)

where x̃2t denotes the sample residuals from OLS regressions of x2t on x1t:

x̃2t = x2t − ATx1t (9)

AT =
(∑T

t=1x2tx
′
1t

)(∑T
t=1x1tx

′
1t

)−1
. (10)

If x2t and x1t are stationary and uncorrelated with each other, as the sample size grows,

AT
p→ 0 and b2 has the same asymptotic distribution as

b∗2 =
(∑T

t=1x2tx
′
2t

)−1 (∑T
t=1x2tut+h

)
, (11)

namely √
Tb2

d→ N(0, Q−1SQ−1). (12)

with Q and S the matrices defined in (6) and (7). Again we see that positive serial correlation

causes S to exceed the value S0 that would be appropriate for serially uncorrelated residuals.

2The same conclusions necessarily also hold for the adjusted R̄2 defined as

R̄2
i = 1− T − 1

T − ki
SSRi∑T

t=1(yt+h − ȳh)2

for ki the number of coefficients estimated in model i, from which we see that

T (R̄2
2 − R̄2

1) =
[T/(T − k1)]SSR1 − [T/(T − k2)]SSR2∑T

t=1(yt+h − ȳh)2/(T − 1)

which has the same asymptotic distribution as (4). In our small-sample investigations below, we will analyze
either R2 or R̄2 as was used in the original study that we revisit.
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In other words, serial correlation in the error term increases the sampling variability of the

OLS estimate b2.

The standard approach is to use heteroskedasticity- and autocorrelation-consistent (HAC)

standard errors to try to correct for this, for example, the estimators proposed by Newey and

West (1987) or Andrews (1991). However, even if a consistent estimator of S is available,

it may perform poorly in small samples. In practice, different HAC estimators can lead to

substantially different empirical conclusions (Müller, 2014), and the small-sample variability

can be significantly greater than predicted by (12). We will demonstrate empirically in the

subsequent sections that this is a serious problem when carrying out inference about bond

return predictability.

2.2 Consequences of weak exogeneity

A second feature of the studies examined in this paper is that the valid explanatory variables

x1t are correlated with lagged values of the error term. That is, these regressors are only

weakly exogenous. This turns out to matter a great deal when x1t and x2t are highly serially

correlated. Ours is a different setting from that considered by Mankiw and Shapiro (1986),

Stambaugh (1999) and Campbell and Yogo (2006), who studied tests of the hypothesis β1 = 0

in a setting of the form

yt+1 = β′1x1t + ut+1 (13)

x1,t+1 = ρ1x1t + ε1,t+1

with x1t a scalar and E(utε1t) 6= 0. Because the regressors x1t are not strictly exogenous,

Stambaugh (1999) showed that the OLS estimate of β1 in (13) will be biased in small samples

and this can significantly affect the small-sample inference when x1t is highly serially correlated

(ρ1 large). By contrast, in our study the question is whether the vector β2 = 0 in (1)

is zero. The problem we identify can arise even when x2t is strictly exogenous, that is,

uncorrelated with ut at all leads and lags. However, as in the case of Stambaugh bias, the

small-sample problem in our setting arises from the fact that the other regressors x1t are not

strictly exogenous, and the problem is most dramatic when x1t and x2t are both highly serially

correlated. We now explain why this is the case.

Consider the following simple example. Suppose that x1t and x2t are scalars that follow

independent highly persistent processes,

xit = ρixi,t−1 + σivit (14)
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where ρi is close to one, vit is a martingale difference sequence with unit variance and finite

fourth moments, and v1t is independent of v2t at all leads and lags. We consider the conse-

quences of OLS estimation of (1) in the special case where h = 1, x1t and x2t scalars, and the

first regressor is the lag of the dependent variable: x1t = yt:

yt+1 = β1x1t + β2x2t + ut+1 (15)

Because x1t is a lagged dependent variable, it is correlated with lags of the error term, and

strict exogeneity is violated. This is a simple example to illustrate the problems that can arise

when x1t includes variables that are correlated with lags of the dependent variable. Note

for this example x2tut+1 = σ1x2tv1,t+1 is serially uncorrelated and the standard OLS t-test of

β2 = 0 asymptotically has a N(0, 1) distribution.

One device for seeing how the results in a finite sample of some particular size T might differ

from those predicted by the asymptotic distribution is to use a local-to-unity specification as

in Phillips (1988):

xit = (1 + ci/T )xi,t−1 + σivit i = 1, 2. (16)

For example, if our data come from a sample of size T = 100 when ρi = 0.95, the idea is to

represent this with a value of ci = −5 in (16). The claim is that analyzing the properties as

T → ∞ of a model characterized by (16) with ci = −5 gives a better approximation to the

actual distribution of a regression in a sample of size T = 100 and ρi = 0.95 than is provided

by other methods; see for example Chan (1988) and Nabeya and Sørensen (1994).

The local-to-unity asymptotics turn out to be described by Ornstein-Uhlenbeck processes

Jci(λ) = ci

∫ λ

0

exp[ci(λ− s)Wi(s)ds+Wi(λ) i = 1, 2

where W1(λ) and W2(λ) denote independent standard Brownian motion. When ci = 0, (16)

becomes a random walk and the local-to-unity asymptotics simplify to the standard unit-root

asymptotics involving integrals of Brownian motion as a special case: J0(λ) = W (λ).

When the null hypothesis is true, the t-test of H0 : β2 = 0 can be written as

b2
σ̂b2

=

∑
x̃2tut+1

{s2
∑
x̃22t}

1/2
(17)

for x̃2t given by (9) and s2 = (T − 2)−1
∑

(yt+1− b1x1t− b2x2t)2. We show in Appendix B that

if x1t, x2t, and yt are characterized by (15)-(16) with x1t = yt, as T →∞ the t-statistic has an
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asymptotic distribution given by

b2
σ̂b2

d→
∫
Jc2(λ)dW1(λ)−

[∫
Jc2(λ)Jc1(λ)dλ

] [∫
[Jc1(λ)]2dλ

]−1 [∫
Jc1(λ)dW1(λ)

]{∫
[Jc2(λ)]2dλ−

[∫
Jc2(λ)Jc1(λ)dλ

]2 [∫
[Jc1(λ)]2dλ

]−1}1/2
(18)

where
∫

denotes integration over λ from 0 to 1. This distribution has significantly fatter tails

than a N(0, 1), which explains why in small samples the OLS t-test is more likely to reject a

true null hypothesis than is predicted by the standard asymptotic theory. The feature that

makes this distribution nonstandard is the fact that because of lagged dependent variables, the

processes W1(λ) and Jc1(λ) in the numerator are the same as appearing in the denominator.

One can get further insight into what accounts for these results by considering an alter-

native regression which according to standard asymptotics should have the same asymptotic

distribution as the OLS t test but which under local-to-unity asymptotics is seen to behave

quite differently in small samples. Under the null hypothesis β2 = 0, the estimate b2 from

OLS estimation of (15) could be calculated by regressing the true residual ut+1 on x̃2t where

x̃2t denotes the residual from a regression of x2t on x1t. We noted above that this would be

predicted under the usual asymptotics to have the same asymptotic distribution as b∗2 in equa-

tion (11), which is obtained from regressing ut+1 directly on x2t. It’s interesting to consider

the t-statistic associated with the latter regression,

b∗2
σ̂b∗2

=

∑
x2tut+1

{s∗2
∑
x22t}

1/2

for s∗2 = (T − 1)−1
∑

(ut+1 − b∗2x2t)2. We show in Appendix B that under the local-to-unity

assumptions in (16),

b∗2
σ̂b∗2

d→
∫
Jc2(λ)dW1(λ){∫
[Jc2(λ)]2dλ

}1/2 . (19)

Although expression (19) might appear nonstandard, in fact it turns out simply to be a N(0, 1)

distribution.3 In other words, if we were actually able to perform a regression of ut+1 on x2t,

then even in small samples we would not have any problems. The problem is that, while the

usual asymptotics that were used in Section 2.1 would predict that b∗2 should have the same

distribution as b2, in small samples the distributions can be quite different.4

3One can see this by noting as in Hamilton (1994, pp. 602-607) that conditional on W2(.) the expression
in (19) has N(0, 1) distribution for all realizations of W2(.), and therefore has an unconditional N(0, 1)
distribution when integrated with respect to the distribution of W2(.).

4Yet another calculation that helps shed light is if the regression is run as specified in (15) but the regressors
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We can understand this difference by directly comparing the distributions in (18) and (19).

Note that the denominator of (18) is strictly less than that in (19) for all realizations, a factor

that would tend to make (18) bigger than (19). In other words, treating the t-statistic as

N(0, 1) will result in rejecting a true null hypothesis too often. Based on our simulations,

the difference in the denominators of (18) and (19) appears to be the main source of the

small-sample problem.5

To summarize, the OLS estimate of β2 in (1) can be obtained in three steps: (1) regress

x2t on x1t, (2) regress yt+h on x1t, and (3) regress the residuals from (2) on the residuals of

(1). The small-sample properties of the first regression are very different when x1t and x2t

are highly persistent, and when x1t is correlated with lags of y, this can end up mattering a

great deal for the small-sample distribution of the final result.

We examined these implications in detail by generating values for x1t and x2t from (14)

with v1t and v2t independent standard Normal variables. Under our data-generating process

(DGP), the true values for the magnitudes in (15) are given by β1 = ρ1, β2 = 0, and ut+1 =

x1,t+1 − ρ1x1t = σ1v1t. We generated 5,000 artificial data samples.6 We set σ1 = σ2 = 1, since

all test statistics are invariant to these parameters. We vary ρ1, ρ2, and T , in order to study

the effects of persistence and sample size on inference. In each simulated sample, we run a

regression of yt+1 on x1t and x2t, including an intercept. Our interest is in the inference about

β2, and with this simulation design we can study the small-sample behavior of the relevant

sample statistics.7

Table 1 reports the performance of a standard t-test with a nominal size of 5 percent using

OLS standard errors. It shows the frequency of rejections of the null hypothesis, and numbers

higher than 5 percent indicate a small-sample size distortion. For values of ρ1 and ρ2 at or

x1t and x2t are both strictly exogenous, that is, ut+1 = σ3v3,t+1 with v3t completely independent of v1t and
v2t. In this case (18) would be replaced by∫

Jc2(λ)dW3(λ)−
[∫
Jc2(λ)Jc1(λ)dλ

] [∫
[Jc1(λ)]2dλ

]−1 [∫
Jc1(λ)dW3(λ)

]{∫
[Jc2(λ)]2dλ−

[∫
Jc2(λ)Jc1(λ)dλ

]2 [∫
[Jc1(λ)]2dλ

]−1}1/2

which, conditioning on W1(.) and W2(.) will be recognized as the N(0, 1) distribution (using the same reasoning
as in footnote 3). The small-sample problems thus arise from the interaction between high serial correlation
of x1 and x2 and the fact that x1 includes lagged dependent variables.

5The numerators also differ, but our simulations reveal that the difference in denominators is the most
important factor.

6We start the simulations at x1,0 = x2,0 = 0, following standard practice of making all inference conditional
on date 0 magnitudes.

7Our simulation setup differs from that in Mankiw and Shapiro (1986) in two respects. First, in our case
the innovations to x1t and the error term in the regression ut are perfectly correlated, since they are identical.
Second, we include an additional (spurious) persistent independent variable in our regression.
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above 0.95, the size distortions are substantial, and the t-test rejects the null two or three times

as often as it should. The size distortions are generally smaller for longer samples, except for

values of ρ1 and ρ2 near unity. To see more clearly the dependence of the size distortions on

the sample size, Figure 1 plots the empirical size of the t-test for β2 for different sample sizes

from T = 50 to T = 1000. For the case ρ1 = ρ2 = 0.99 the empirical size declines from about

15 percent to about 9 percent. In contrast, when ρ1 = ρ2 = 1 the size distortions remain

substantial even for larger sample sizes, as indeed in this case the non-Normal distribution

corresponding to (18) with ci = 0 governs the distribution for arbitrarily large T.

Why do conventional t-tests go so wrong in this setting, despite the fact that OLS coefficient

estimates are consistent and the conventional OLS standard errors are asymptotically valid?

To investigate the source of the size distortion we study the coefficient bias and the accuracy

of the OLS standard errors in our simulations. Table 2 shows statistics for four different

simulation settings which reveal the source of the problem. The top rows in each panel show

the mean of the coefficient estimates and the corresponding bias, which indicate that estimates

of β1 are strongly downward biased, due to the lack of strict exogeneity, with the size of the

bias decreasing in the sample size. In contrast, estimates of β2 are unbiased—clearly the

problem with hypothesis tests of β2 = 0 do not arise from Stambaugh bias as traditionally

understood. The reason for the size distortions is not coefficient bias, but the fact that the

standard errors substantially underestimate the sampling variability. This is evident from

comparing the standard deviation of the coefficient estimates across simulations—which is an

estimate of the true small-sample standard error—and the average OLS standard errors. The

difference, which we term “standard error bias,” is substantial: in our simulation study the

standard errors are about 30% too low. The last row shows the size of a test that uses the

“true” standard errors. The fact that this is close to the nominal size of 0.05 demonstrates

that standard error bias accounts for the size distortions of the test for β2. In the case of β1

we illustrate the role of bias by considering t-tests of the hypothesis that β1 is equal to its true

value. Here, using the correct standard error does not eliminate the size distortion, because

it is caused by a combination of coefficient bias and standard error bias.

Our simulations also establish that lack of strict exogeneity aggravates the potential prob-

lems with R2 that Section 2.1 demonstrated could arise from serial correlation alone even if

there were no lagged dependent variables. To investigate this issue, we compare simulation

results for our original DGP to those for a second DGP, in which yt+1 = ρ1x1t + ut+1 and

ut is normally distributed with unit variance and independent of v1t and v2t at all leads and

lags. That is, for this DGP both x1t and x2t are strictly exogenous, so that there is no bias

and t-tests have exactly the correct size in any sample size. Since we want to investigate the
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distribution of R2 we now take yt+1 − x1t to be the dependent variable in the regressions, so

that β1 = ρ1−1 and the population R2 is (1−ρ1)/2—this is akin to predicting yield changes or

bond returns.8 Table 3 shows summary statistics for the distributions of R2
1, R

2
2, and R2

2−R2
1,

for the case with T = 50 and ρ1 = ρ2 = 0.99. Under strict exogeneity, R2
2 − R2

1 is on average

2.1%, with a standard deviation of 2.9%. Lack of strict exogeneity raises both the mean (to

3.7%) and the variability (to 4.4%) of the distribution of R2
2 − R2

1. In Figure 2 we show the

dependence on the sample size by plotting the average R2
1 and R2

2 for both DGPs from T = 50

to T = 1000, as well as the true population R2 (0.5%). The results illustrate that lack of strict

exogeneity raises the R2 as well as R2
2 − R2

1 for all sample sizes, but particularly so for small

samples.

To summarize, the lack of strict exogeneity of a subset of the regressors can have signif-

icant consequences for the small-sample inference, even if interest lies in the predictors that

themselves are strictly exogenous. In all of the empirical studies that we consider below, the

predictors in x1t are correlated with past error terms. The reason is that they correspond to

information in current yields, and the dependent variable is either a future bond return or the

future level of the yield curve. Hence, lack of strict exogeneity is a serious concern in all tests

of the spanning hypothesis. This is a separate issue from serial correlation in the residuals,

and one that to the best of our knowledge has not been recognized in the predictability liter-

ature. Both issues become particularly serious when the predictors are persistent and when

the sample sizes are small. Unfortunately, this is exactly the type of situation that researchers

are faced when carrying out inference about predictability of interest rates, since the relevant

time series are highly persistent and the sample periods typically studied are relatively short.9

In Table 4 we report the estimated autocorrelation coefficients for the predictors used in the

published studies that we investigate in the following sections. Clearly, many of the predictors

considered in the literature are highly persistent, and we need to be particularly concerned

about the aforementioned small-sample issues. Adding extraneous regressors that in reality

contribute nothing to prediction may lead to an artificially large increase in the R2 and inflated

values for t- and F -statistics. In the following sections we quantify just how important this

may be for a number of influential studies.

8In a regression of yt+1 on x1t the population R2 is ρ21 which is too close to one to be useful or interesting.
9Reliable interest rate data is only available since about the 1960s, which leads to situations with about

40-50 years of monthly data. Going to higher frequencies—such as weekly or daily—does not increase the
effective sample sizes, since it typically increases the persistence of the series and at introduces additional
noise.
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2.3 A bootstrap design for investigating the spanning hypothesis

The above analysis suggests that it is of paramount importance to base inference on the correct

small-sample distributions of the relevant test statistics. While some studies use the bootstrap

for this purpose, they typically do so by generating samples under the absence of predictability

(Cochrane and Piazzesi, 2005; Ludvigson and Ng, 2009; Greenwood and Vayanos, 2014). By

contrast, in our paper we propose a bootstrap to specifically test the spanning hypothesis

H0 : β2 = 0.

Our bootstrap design is as follows: First, we calculate the first three principal components

of observed yields which we denote

x1t = (PC1t, PC2t, PC3t)
′,

along with the weighting vector ĥn for bond n:

ynt = ĥ′nx1t + v̂nt.

That is, x1t = Ĥyt, where yt = (yn1t, . . . , ynJ t)
′ is a J-vector with observed yields at t, and

Ĥ = (ĥn1 , . . . , ĥnJ
)′ is the 3× J matrix with rows equal to the first three eigenvectors of the

covariance matrix of xt. We use normalized eigenvectors so that the matrix Ĥ is orthonormal.

Fitted yields can be obtained using ŷt = Ĥ ′x1t. Three factors generally fit the cross section

of yields very well, with fitting errors v̂nt (pooled across maturities) that have a standard

deviation of only a few basis points.10

Then we estimate by OLS a VAR(12) for x1t:

x1t = µ̂+ φ̂1x1,t−1 + φ̂2x1,t−2 + · · ·+ φ̂12x1,t−12 + e1t t = 1, ..., T.

This time-series specification for x1t completes our simple factor model for the yield curve.

Though this model does not impose absence of arbitrage, it captures both the dynamic evo-

lution and the cross-sectional dependence of yields.

Next we generate 1000 artificial yield data samples from this model, each with length T

equal to the original sample length. We first iterate11 on

x∗1τ = µ̂+ φ̂1x
∗
1,τ−1 + φ̂2x

∗
1,τ−2 + · · ·+ φ̂12x

∗
1,τ−12 + ε∗1τ

10For example, in the case study of Joslin et al. (2014) in Section 3, the standard deviation is 6.5 basis
points.

11We start the recursion from x̃1,1 = . . . = x̃1,12 = 0 and drop the first 500 realizations, so that we effectively
start with a draw from the unconditional distribution of x1t.
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with ε∗1τ i.i.d. draws from the empirical distribution of e1t.
12. Then we obtain the artificial

yields using

y∗nτ = ĥ′nx
∗
1τ + v∗nτ

for v∗nτ ∼ N(0, σ2
v). The standard deviation of the measurement errors, σv, is set to the sample

standard deviation of the fitting errors v̂nt. We thus have generated an artificial sample of

yields y∗nτ which by construction only three factors (the elements of x∗1τ ) have any power to

predict, but whose covariance and dynamics are similar to those of the observed data ynt.

We likewise fit a VAR(p) to the observed data13 for the proposed predictors x2t,

x2t = α̂0 + α̂1x2,t−1 + α̂2x2,t−2 + · · ·+ α̂px2,t−p + e2t,

from which we then generated 1000 artificial samples x∗2τ . We can then investigate the proper-

ties of any proposed test statistic involving y∗nτ , x
∗
1τ , and x∗2τ in a sample for which the dynamic

serial correlation of yields and explanatory variables are similar to those in the actual data

but in which x∗2τ is independent by construction at all leads and lags from y∗nτ . In other words,

in our bootstrap samples, the null hypothesis is true that macroeconomic variables have no

predictive power for yields, i.e., there are no unspanned macro risks.

There is one important way in which this bootstrap likely understates the true magnitude

of the problem, because the eigenvalues of the estimated values for
∣∣∣∑12

j=1 φ̂j

∣∣∣ and
∣∣∣∑p

j=1 α̂j

∣∣∣
are likely to be smaller than the corresponding population magnitudes—least squares esti-

mates typically underestimate the autocorrelation of highly persistent processes (Kendall,

1954; Pope, 1990). Therefore, we also consider a variant of the bootstrap design described

above, in which the generated samples use not the OLS estimates φ̂j and α̂j but instead use

bias-corrected VAR estimates, using a simple bootstrap adopted by Kilian (1998).

2.4 An alternative robust test for predictability

There is of course a very large literature addressing the problem of HAC inference. This

literature is concerned with accurately estimating the matrix S in (7) but does not address

what we have identified as the key issue, which is the small-sample difference between the

statistics in (8) and (11). We have looked at a number of alternative approaches in terms of

how well they perform in our bootstrap experiments. We found that the most reliable existing

12We also experimented with a Monte Carlo design in which ε∗1τ was drawn from a Student-t dynamic
conditional correlation GARCH model (Engle, 2002) fit to the residuals e1t with similar results to those
obtained using resampled residuals as described in the text.

13We choose the lag length p according to the Schwarz-Bayes Information Criterion (SBIC). For example,
in the case study on Joslin et al. (2014) in Section 3, the SBIC prescribes four lags.
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test appears to be the one suggested by Ibragimov and Müller (2010), who proposed a novel

method for testing a hypothesis about a scalar coefficient. The original dataset is divided into

q subsamples and the statistic is estimated separately over each subsample. If these estimates

across subsamples are approximately independent and Gaussian, then a standard t-test with

q degrees of freedom can be carried out to test hypotheses about the the parameter. Müller

(2014) provided evidence that this test has excellent size and power properties in regression

settings where standard HAC inference is seriously distorted. Our simulation results (not

reported) show that this test also performs very well in the specific settings that we consider

in this paper, namely inference about predictive power of certain variables for future interest

rates and excess bond returns. Throughout this paper, we report two sets of results for the

Ibragimov-Müller (IM) test, setting the number of subsamples q equal to either 8 and 16 (as

in Müller, 2014). A notable feature of the IM test is that it allows us to carry out inference

that is robust not only against serial correlation in regressors and error terms, but also robust

with respect to parameter instability across subsamples, as we will discuss below.

3 Predicting yields using economic growth and inflation

In this section we examine some of the evidence reported by Joslin et al. (2014) (henceforth

JPS) that macro variables may help predict bond yields.

3.1 Excess bond returns

We begin with some of the most dramatic findings reported by JPS, which come from predictive

regressions as in equation (1) where yt+h is an excess bond return for a one-year holding period,

x1t is a vector consisting of a constant and the first three principal components of yields, and

x2t a vector consisting measures of economic growth and inflation. JPS found that for yt+h the

excess return on a ten-year bond over the risk-free one-year yield, the adjusted R̄2 of regression

(1) when x2t is excluded is only 0.20 when the regression was estimated over the period 1985:1-

2007:12. But when they added x2t, consisting of economic growth measured by a three-month

moving average of the Chicago Fed National Activity Index (GRO) and inflation measured

by one-year CPI inflation expectations from the Blue Chip Financial Forecasts (INF ), the

R̄2 increased to 0.37. For yt+h the excess return on a two-year bond, the change is even

more striking, with R̄2 increasing from 0.14 without the macro variables to 0.48 when they are

included. JPS interpreted these adjusted R̄2 as strong evidence that macroeconomic variables

have predictive power for excess bond returns beyond the information in the yield curve itself,
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and concluded from this evidence that “macroeconomic risks are unspanned by bond yields”

(p. 1203).

However, the predictors in x2t are very persistent. As shown in Table 4, the first-order

sample autocorrelations for GRO and INF are 0.91 and 0.99, respectively. The results in

Sections 2.1 and 2.2 thus suggest the change in R̄2 should be interpreted with some caution.

The first row of Table 5 reports the actual R̄2 for the 2-year and 10-year excess return

regressions as in (1), and essentially replicates the results in JPS.14 The entry R̄2
1 gives the

adjusted R̄2 for the regression with only x1t as predictors, and R̄2
2 corresponds to the case when

x2t is added to the regression. The second row reports the mean R̄2 across 1000 replications

of the bootstrap described in Section 2.3, that is, the average value we would expect to see

for these statistics in a sample of the size used by JPS in which x2t in fact has no true ability

to predict yt but whose serial correlation properties are similar to those of the observed data.

The third row gives 95% confidence intervals for the estimated R̄2, constructed from the

appropriate quantiles of the bootstrap distribution of the test statistics.

For all predictive regressions, the variability of the adjusted R̄2 is very high. Values

for R̄2
2 up to 55% would not be uncommon. Most notably, adding the regressors x2t often

substantially increases the adjusted R2, by up to 25 percentage points or more, although x2t

has no predictive power in population by construction. For the ten-year bond, JPS report an

increase of 17 percentage points when adding macro variables, but our results show that this

increase is in fact not statistically significant at conventional significance levels. Only for the

two-year bond is R̄2
2 − R̄2

1 slightly outside our bootstrap confidence interval.

Since the persistence of x2t is high, it may be important to adjust for small-sample bias

in the VAR estimates. Hence we also carried out the bias-corrected (BC) bootstrap. The

expected values and 95% confidence intervals for R̄2 are reported in rows 4 and 5 of Table 5.

As expected, with more serial correlation in the generated data, the variability of the adjusted

R̄2, as well as their difference, increases. Consequently, the statistical evidence for predictive

power of GRO and INF would be regarded as even weaker.

The theory described in Section 2.1 predicts that this problem should go away as the sample

size grows. The second panel of Table 5 updates the analysis to include an additional 7 years

of data. As expected, the value of R̄2
2 that is observed in the data falls significantly when

new data are added. And although the bootstrap 95% confidence intervals are tighter with

14The yield data set of JPS includes the six-month and the one- through ten-year Treasury yields. After
calculating annual returns for the two- to ten-year bonds, JPS discard the six, eight, and nine-year yields
before fitting PCs and their term structure models. Here, we need the fitted nine-year yield to construct the
return on the ten-year bond, so we keep all 11 yield maturities. While our PCs are therefore slightly different
than those in JPS, the only noticeable difference is that our adjusted R̄2 in the regressions for the two-year
bond with yield PCs and macro variables is 0.49 instead of their 0.48.
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the longer data set, the conclusion that there is no statistically significant evidence of added

predictability provided by x2t is even more compelling. Both for the two-year and ten-year

bond, the increases in adjusted R̄2 from adding macro variables as predictors lie comfortably

inside the bootstrap confidence intervals.

3.2 Predicting the level of the yield curve

JPS went on to estimate yield-curve models in which it is assumed that the macro factors x2t

directly help predict the principal components x1t. The first block of their proposed vector

autoregression takes the form

x1,t+1 = c+ φ1x1t + Γ1x2t + ε1,t+1. (20)

The estimates reported in Table 3 of their paper result from a yield-curve model with overi-

dentifying restrictions that are implied by the no-arbitrage assumption and tight restrictions

on risk pricing. Here we analyze properties of simple direct estimation of (20), whose esti-

mates turn out to be close to the structural estimates reported in JPS. We will focus on the

first row of (20), which is a regression of the first principal component of the yields in period

t+1 (approximately equal to an average of the yields) on the first three principal components,

economic growth and inflation at t.15 This corresponds to regression (1) with x1t and x2t

the same as before, but with h = 1 and yt+1 equal to PC1t+1. This regression is the crucial

forecasting equation, since forecasts of any yield are dominated by the forecast for the level

of the yield curve. The estimated coefficients from this regression are reported in the first row

of Table 6. These are comparable to the estimates reported in the first row of JPS Table 3.

The standard errors in JPS original Table 6 incorporate the restrictions implied by the

structural model but make no allowance for possible serial correlation of the product xtut+1.

One popular approach to guard against this possibility is to use the HAC standard errors

and test statistics proposed by Newey and West (1987). In the second row of our Table we

report the resulting t-statistic for each coefficient (using 18 lags for the Newey-West correction)

along with the Wald test of the hypothesis β2 = 0. The third row reports p-values assuming

that the usual asymptotic interpretations (Normal or χ2
2,respectively) of these HAC-calculated

statistics are accurate.

We then used our bootstrap to calculate the properties of the HAC tests for data with

serial correlation properties similar to those observed in the sample. Surprisingly, we find

15To make our estimates comparable to those of JPS, we rescale our PCs in the same way that they do (see
footnote 19 of JPS).
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that the true size of these tests is 12-22% instead of the presumed 5%. When we take the

added step of bias-correcting the bootstrap, none of the tests is statistically significant at the

5% level, though the Wald test would come very close to rejecting (p = 0.052).

We again find that the statistical evidence of predictability declines significantly when

more data are added to the sample, as seen in the second panel of Table 6. When the data

set is extended through 2013, the HAC t-statistics would no longer be statistically significant

at 5% even if interpreted assuming the usual asymptotics, and are far from significant when

we take into account the serial correlation of the actual data.

The bottom two rows for each panel in Table 6 report the p-values for the IM test of the

individual significance of the coefficients. In both samples, the level of the yield curve (PC1)

is a strongly significant predictor, with p-values below two percent for both IM tests. This

will turn out to be a consistent finding in all the data sets that we will look at– the level or

slope of the yield curve appear to be robust predictors of bond risk premia, consistent with an

old literature going back to Fama and Bliss (1987) and Campbell and Shiller (1991). The low

p-values are also consistent with the conclusion from our unreported Monte Carlo investigation

that IM has good power to reject a false null hypothesis.

By contrast, in both samples the coefficients on GRO and INF are not statistically signif-

icant at conventional significance levels based on the IM test, consistent with the conclusion

drawn from our bootstrap calculations.

We conclude that the evidence in JPS on the predictive power of macro variables for

yields and bond returns is not robust. Notwithstanding, JPS noted that theirs is only one of

several papers claiming to have found such evidence. We turn in the next section to another

influential study.

4 Predicting yields using factors of large macro data

sets

Ludvigson and Ng (2009, 2010) found that factors extracted from a large macroeconomic

data set are helpful in predicting excess bond returns, above and beyond the information

contained in the yield curve, adding further evidence for the claim of unspanned macro risks

and against the hypothesis of invertibility. Here we revisit this evidence, focusing on the

results in Ludvigson and Ng (2010) (henceforth LN).

LN started with a panel data set of 131 macro variables observed over 1964:1-2007:12 and

extracted eight macro factors using the method of principal components. These factors, which

we will denote by F1 through F8, were then related to future one-year excess returns on two-
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through five-year Treasury bonds. The authors carried out an extensive specification search

in which they considered many different combinations of the factors along with squared and

cubic terms. They also included in their specification search the bond-pricing factor proposed

by Cochrane and Piazzesi (2005), which is the linear combination of forward rates that best

predicts the average excess return across maturities, and which we denote here by CP. LN’s

conclusion was that macro factors appear to help predict excess returns, even when controlling

for the CP factor. This conclusion is mostly based on comparisons of adjusted R̄2 in regressions

with and without the macro factors and on HAC inference using Newey-West standard errors.

4.1 Robust inference about coefficients on macro factors

One feature of LN’s design obscures the evidence relevant for the null hypothesis that is

the focus of our paper. Their null hypothesis is that the CP factor alone provides all the

information necessary to predict bond yields, whereas our null hypothesis of interest is that

the 3 variables (PC1, PC2, PC3) contain all the necessary information. Their regressions in

which CP alone is used to summarize the information in the yield curve could not be used as a

basis to reject our null hypothesis. For this reason, we begin by examining similar predictive

regressions to those in LN in which excess bond returns are regressed on three PCs of the

yields and all eight of the LN macro factors. We further leave aside the specification search

of LN in order to focus squarely on hypothesis testing for a given regression specification.16

These regressions take the same form as (1), where now yt+h = rx
(n)
t,t+12 is the one-year return

on an n-year bond in excess of the one-year yield, x1t contains a constant and three yield

PCs, and x2t contains eight macro PCs. As before, our interest is in testing the hypothesis

H0 : β2 = 0.

Table 7 reports regression results for the excess return on the two-year and the five-year

bond. We first focus on the results obtained in LN’s original sample, reported in the top

panel. The first three rows for each set of results show the coefficient estimates, HAC t-

and Wald statistics (using Newey-West with 18 lags as in LN), and p-values based on the

asymptotic distributions of these test statistics. For the two-year bond, there are five macro

factors that appear to be statistically significant at the ten-percent level, among which two

are significant at the one-percent level. The same is true for the five-year bond.17 In both

cases, the Wald statistic for H0 far exceeds the critical values for conventional significant levels

(the 5%-critical value for a χ2
8-distribution is 15.5). Table 8 also reports adjusted R̄2 for the

16We were able to closely replicate the results in LN’s tables 4 through 7, and have also applied our techniques
to those regressions, which led to qualitatively similar results.

17The p-value for F4 is rounded from 0.0997 to 0.100.
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restricted (R̄2
1) and unrestricted (R̄2

2) regressions, and shows that this measure of fit increases

by 14 percentage points for the two-year bond and 10 percentage points for the five-year bond

when the macro factors are included. Taken at face value, this evidence suggests that macro

factors have strong predictive power, above and beyond the information contained in the yield

curve, consistent with the overall conclusions of LN.

How robust are these econometric results? We again use the bootstrap to test H0, as

described in 2.3. The yield factors x1t are again the first three PCs of observed yields, and

in this data, the (pooled) fitting errors have a standard deviation of 4.3 basis points. The

predictor x2t is now an (8× 1) vector of macro factors, for which we estimate a VAR with two

lags.18 As before, we simulate 1000 data sets of artificial yields and macro data, in which H0

is true in population. The samples each contain 516 observations, which corresponds to the

length of the original data sample. We report results only for the simple bootstrap without

bias correction—the bias in the VAR for x2t is estimated to be small.

Before turning to the results, it is worth noting the differences between our bootstrap

exercise and the bootstrap carried out by LN. Their bootstrap is designed to test the null

hypothesis that excess returns are not predictable against the alternative that they are pre-

dictable by macro factors and the CP factor. Using this setting, LN produced convincing

evidence that excess returns are predictable, which is fully consistent with all the results in

our paper as well. Our null hypothesis of interest, however, is that excess returns are pre-

dictable only by current yields. Our bootstrap, in contrast to the bootstrap of LN, is designed

to test this hypothesis.

Our bootstrap reveals that the tests using asymptotic p-values have serious size distortions.

The true size of the t-tests is 8-16 percent, instead of the nominal five percent. For the Wald

test, the size distortion is particularly high, with a true size of about 33 percent. Due to these

size distortions, the bootstrapped p-values are larger than the asymptotic p-values, and several

coefficients are now less significant or not significant at all. The Wald statistics are nevertheless

still significant using bootstrap p-values. However, Table 8 shows that the observed increase

in predictive power from adding macro factors to the regression, measured by the adjusted

R̄2, would not be implausible if the null hypothesis were true. For the two-year bond, this

increase is only barely outside the 95% bootstrap confidence interval, and for the five-year

bond, this increase is within the confidence interval.

Table 7 also reports p-values for the two IM tests, using q = 8 and 16 subsamples. The

interpretation of the results is complicated by the fact that some coefficients are significant

for q = 8 but not for q = 16, or the other way around. The overall picture is, however, quite

18The lag length of two is based on the SBIC.
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clear: The only predictors that are robustly significant for both the two-year and five-year

bond are the level and the slope of the yield curve. There are no macro factors for which the

IM tests show similarly strong evidence of a predictive relation.

These results imply that the evidence that macro factors have predictive power beyond

the information already contained in yields is somewhat weaker than the results in LN would

initially have suggested. For some of the coefficients, some of the tests remain statistically

significant at the 5% level. But many of the tests that initially appeared to be significant fail

to reject the null hypothesis at conventional levels when interpreted correctly. Our overall

conclusion is that once small-sample concerns are taken into account, any evidence against the

null hypothesis of no unspanned factors is much weaker than would have originally appeared

to be the case.

The failure to reject the null based on the IM tests is a reflection of the fact that the

parameter estimates are often unstable across subsamples. Duffee (2013, Section 7) has also

noted problems with the stability of the results in Cochrane and Piazzesi (2005) and Ludvigson

and Ng (2010) across different sample periods. To explore this further we repeated our analysis

using the same 1985-2013 sample period that was used in the second panel of Tables 5 and 6.

Note that whereas in the case of JPS this was a strictly larger sample than the original, in

the case of LN our second sample adds data at the end but leaves some out at the beginning.

Reasons for interest in the this sample period include the significant break in monetary policy

after 1984, the advantages of having a uniform sample period for comparison across all the

different studies considered in our paper, and investigating robustness of the original claims

in describing data since the papers were originally published.19

We used the macro data set of McCracken and Ng (2014), to extract macro factors in the

same way as LN over the more recent data.20 The bottom panels of Tables 7 and 8 display

the results. Over this sample period, the evidence for the predictive power of macro factors

is considerably weaker. Notably, the Wald tests reject H0 for both bond maturities (at the

ten-percent level for the five-year bond) when using asymptotic critical values, but do not

reject when using bootstrap critical values. The increases in adjusted R̄2 in Table 8 are not

statistically significant, and the IM tests find essentially no evidence of predictive power of

the macro factors.

19We also analyzed the full 1964-2013 sample and obtained similar results as over the 1964-2007 sample.
20Using this macro data set and the same sample period as LN we obtained results that were very similar

to those in the original paper, which gives us confidence in the consistency of the macro data set.
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4.2 Robust inference about return-forecasting factors

LN also constructed a single return-forecasting factor using a similar approach as Cochrane and

Piazzesi (2005). They regressed the excess bond returns, averaged across the two- through

five-year maturities, on the macro factors plus a cubed term of F1 which they found to

be important. The fitted values of this regression produced their return-forecasting factor,

denoted by H8. The CP factor of Cochrane and Piazzesi (2005) is similarly constructed using

a regression on five forward rates. Adding H8 to a predictive regression with CP substantially

increases the adjusted R̄2, and leads to a highly significant coefficient on H8. LN emphasized

this result and interpreted it as further evidence that macro variables have predictive power

beyond the information in the yield curve.

Table 9 replicates LN’s results for these regressions for the two- and five-year bond matu-

rity.21 In their data, both CP and H8 are strongly significant with HAC p-values below 0.1%.

Adding H8 to the regression increases the adjusted R̄2 by 11 and 9 percentage points, respec-

tively, for the two-year and five-year bond. How plausible would it have been to obtain these

results if macro factors have in fact no predictive power? In order to answer this question,

we adjust our bootstrap design to handle regressions with return-forecasting factors CP and

H8. To this end, we simply add an additional step in the construction of our artificial data

by calculating CP and H8 in each bootstrap data set as the fitted values from preliminary

regressions in the exact same way that LN did in the actual data. The results in Table 9 show

that the size distortions for tests of the significance of the macro return-forecasting factor are

enormous: a test with nominal size of 5% that uses asymptotic HAC p-values has a true size

of 54-56%. The bootstrap p-values increase substantially, and H8 is no longer significant at

the 1% level (though it would still be significant at the 5% level). The observed increases

in adjusted R̄2 when adding H8 to the regression fall inside the 95% bootstrap confidence

intervals. One reason for the substantially distorted inference using conventional statistics is

the high persistence of the return-forecasting factors. Table 4 shows that both H8 and CP

have autocorrelations that are near 0.8 at first order, and decline only slowly with the lag

length.

We also examined the same regressions over the 1985–2013 sample period with results

shown in the bottom panel of Table 9. In this sample, the return-forecasting factors would

again appear to be highly significant based on HAC p-values, but the coefficients on H8 are

not statistically significant when using the correct bootstrap p-values. The size distortions are

even larger in this sample, up to 63%, due to the smaller sample size. The observed increases

in adjusted R̄2 are near the bootstrap mean of this statistic, i.e., they are squarely in line with

21These results correspond to those in column 9 in tables 4 and 7 in LN.
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what we would expect under the null.

This evidence suggests that conventional HAC inference can be even more problematic if

return-forecasting factors are constructed in a preliminary step, and that other econometric

methods—preferably a bootstrap exercise designed to assess the relevant null hypothesis—

are needed to accurately carry out inference. For the case at hand, we conclude that a

return-forecasting factor based on macro factors does not exhibit nearly as strong and robust

predictive power for excess bond returns as may have appeared to be the case in LN’s original

analysis.

5 Predicting yields using higher-order PCs of yields

In a seminal paper, Cochrane and Piazzesi (2005) (henceforth CP) documented several striking

new facts about excess bond returns. Focusing on returns with a one-year holding period, they

showed that the same linear combination of forward rates predicts excess returns on different

long-term bonds, that the coefficients of this linear combination have a tent shape, and that

the predictive regressions using this one variable delivers R2 of up to 37% (and even up to

44% when lags are included). Importantly for our context, CP found that the first three PCs

of yields—level, slope, and curvature—did not fully capture this predictability, but that the

fourth and fifth PC were significant predictors of future bond returns (see CP’s Table 4 on

p. 147, row 3). In particular, the fourth PC, while explaining only a tiny fraction of the

cross-sectional variation in yields, appeared “very important for explaining expected returns”

(p. 147).

The null hypothesis of interest for us is that only the first three PCs predict yields and

excess returns, and that higher-order PCs do not contain additional predictive power. This

null is more restrictive than the invertibility assumption/Markov property of the yield curve:

under invertibility, it could well be the case that higher-order PCs are informative about the

state variables relevant for predicting yields and returns. Our more restrictive null hypothesis

is motivated by the long-standing evidence that three factors are sufficient to fully capture the

shape and evolution of the yield curve, which goes back at least to Litterman and Scheinkman

(1991). In the CP data, the first three PCs explain 99.97% (!) of the variation in the five

Fama-Bliss yields (see page 147 of CP). It is very surprising, and indeed hard to believe, that

the remaining 0.03% of the variation in yields contain any substantial information relevant for

predicting yields and returns. In other words, information in the yield curve that we cannot

see with our bare eyes is hard to use for forecasting. Hence, invertibility/spanning should also

hold if the information set is restricted to the first three PCs of the yield curve. This is why
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we are interested in the robustness of the finding that these PCs are not sufficient to capture

bond risk premia.

First, we replicate the relevant results of CP using their original data. We estimate the

predictive regression for the average excess bond return using five PCs as predictors, and carry

out HAC inference in this model. The results are in the top panel of Table 10. The Wald

statistic and R2
1 and R2

2 are identical to those reported by CP. The p-values indicate that PC4

is very strongly statistically significant, and that our null hypothesis would be rejected.

In contrast to the results found for JPS in Section 3 and LN in Section 4, our bootstrap

finds that the CP results cannot be accounted for by serial correlation alone. The reason

is that the predictors PC4 and PC5 are less persistent. As shown in Table 4, their first-

order autocorrelation coefficients are only 0.43 and 0.23, respectively. There are some size

distortions for the Newey-West HAC statistics– the true size for the t-tests is 8-10 percent, and

for the Wald test it is 12 percent– but these are not big enough to overturn CP’s conclusion.

Furthermore, the increase in R2 reported by CP would be quite implausible to observe under

the null hypothesis, given that it is far outside the 95% bootstrap interval under the null.

To address the econometric issues of return-forecasting regressions with overlapping re-

turns, CP use three different types of HAC standard errors. Table 10 reported results only for

Newey-West, but we have also investigated the cases with Hansen-Hodrick (HH) and the “Sim-

plified Hansen-Hodrick” (SHH) standard errors used by CP. We found that while HH leads

to similar size distortions as NW, the tests using SHH standard errors are correctly sized in

our simple bootstrap setting, because the assumptions about autocorrelation and conditional

homoskedasticity are correct by construction. However, in an alternative bootstrap setting

where the errors are conditionally heteroskedastic (see footnote 12), this method of inference

suffers from some size distortions as well.22 Overall, we conclude that while results from stan-

dard HAC inference can lead to some overconfidence in the results, the broad conclusions of

CP cannot be attributed to size distortions of these tests.

It is nevertheless of interest that the IM t-tests would fail to reject the null hypothesis

that β2 = 0 even when the inference is based on CP’s original sample. These indicate that

the coefficients on PC4 and PC5 are not statistically significant, and find only the level and

slope to be robust predictors of excess bond returns. Figure 3 provides some intuition about

why the IM tests fail to reject. It shows the coefficients on each predictor across the q = 8

22CP also carry out three different bootstrap exercises, which are in principle well suited to deal with
small-sample issues. However, these are generally designed to test the null hypothesis that excess returns are
unpredictable (the expectations hypothesis). Although their “small T” inference is intended to give the correct
small-sample distribution of the relevant Wald statistic, none of their bootstrap simulations generate artificial
data under the null hypothesis that we are interested in.
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subsamples used in the IM test. The coefficients are standardized by dividing them by the

sample standard deviation across the eight estimated coefficients for each predictor. Thus,

t-statistics, which are also reported in Figure 3, are equal to the means of the standardized

coefficients across subsamples, multiplied by
√

8. The figure shows that PC1 and PC2 had

much more consistent predictive power across subsamples than PC4, whose coefficient switches

signs several times. The strong association between PC4 and excess returns is mostly driven by

the fifth subsample, which starts in September 1983 and ends in July 1988.23 This illustrates

that the IM test, which is designed to produce inference that is robust to serial correlation,

at the same time delivers results that are robust to sub-sample instability. Only the level and

slope have predictive power for excess bond returns in the CP data that is truly robust in

both meanings of the word.

The evidence of CP indeed seems to be quite sensitive to sample choice. Duffee (2013,

Section 7) found that extending CP’s sample period to 1952–2010 alters some of their key

results. Similarly, we have found that using Duffee’s sample period the predictive power of

higher-order PCs disappears. Here we focus on our preferred sample period, from 1985 to

2013, for which we report results in the bottom panel of Table 10. In this case, the coefficients

on PC4 and PC5 are not significant for any method of inference, and the increase in R2 due

to inclusion of higher-order PCs are comfortably in the 95% bootstrap intervals. At the same

time, the predictive power of the level and slope of the yield curve is quite strong also in this

sample. Although the standard HAC t-test fails to reject that the coefficient on the level is

zero, the same test finds the coefficient on the slope to be significant, and the IM tests imply

that both coefficients are significant.

Since CP used a sample period that ended more than ten years prior to the time of this

writing, we can carry out a true out-of-sample test of our hypothesis of interest. We estimate

the same predictive regressions as in CP, for excess returns on two- to five-year bonds as well

as for the average excess return across bond maturities. The first two columns of Table 11

report the in-sample R2 for the restricted models (using only PC1 to PC3) and unrestricted

models (using all PCs). Then we construct expected future excess returns from these models

using yield PCs24 from 2003:1 through 2012:12, and compare these to realized excess returns

for holding periods ending in 2004:1 through 2013:12. Table 11 shows the resulting root-

mean-squared forecast errors (RMSEs). For all bond maturities, the model that leaves out

PC4 and PC5 performs substantially better, with reductions of RMSEs around 20 percent.

23Consistent with this finding, an influential analysis of the predictive power of PC4 indicates that the
observations with the largest leverage and influence are almost all clustered in the early and mid 1980s.

24Principal components are calculated throughout using the loadings estimated over the original CP sample
period.
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The test for equal forecast accuracy of Diebold and Mariano (2002) rejects the null, indicating

that the performance gains of the restricted model are statistically significant. Figure 4 shows

the forecast performance graphically, plotting the realized and predicted excess bond returns.

Clearly, both models did not predict future bond returns very well, expecting mostly negative

excess returns over a period when these turned out to be positive. In fact, the unconditional

mean, estimated over the CP sample period, was a better predictor of future returns. This is

evident both from Figure 4, which shows this mean as a horizontal line, and from the RMSEs

in the last column of Table 11. Nevertheless, the unrestricted model implied expected excess

returns that were more volatile and significantly further off than those of the restricted model

from the future realizations. Restricting the predictive model to use only the level, slope and

curvature leads to more stable and more accurate return predictions.

We conclude from both our in-sample and out-of-sample results that the evidence for

predictive power of higher-order factors is tenuous and sample-dependent. To estimate bond

risk premia in a robust way, we recommend using only those predictors that consistently show

a strong associations with excess bond returns, namely the level and the slope of the yield

curve.

6 Predicting yields using measures of bond supply

In addition to macro-finance linkages, a separate literature studies the effects of the supply

of bonds on prices and yields. The theoretical literature on the so-called portfolio balance

approach to interest rate determination includes classic contributions going back to Tobin

(1969) and Modigliani and Sutch (1966), as well as more recent work by Vayanos and Vila

(2009) and King (2013). A number of empirical studies document the relation between bond

supply and interest rates during both normal times and over the recent period of near-zero

interest and central bank asset purchases, including Hamilton and Wu (2012), D’Amico and

King (2013), and Greenwood and Vayanos (2014). Both theoretical and empirical work has

convincingly demonstrated that bond supply is related to bond yields and returns.

However, our question here is whether measures of Treasury bond supply contain informa-

tion that is not already reflected in the yield curve and that is useful for predicting future bond

yields and returns. Is there evidence against the spanning hypothesis that involves measures

of time variation in bond supply? At first glance, the answer seems to be yes. Greenwood

and Vayanos (2014) (henceforth GV) found that their measure of bond supply, a maturity-

weighted debt-to-GDP ratio, predicts yields and bond returns, and that this holds true even

controlling for yield curve information such as the term spread. Here we investigate whether
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this result holds up to closer scrutiny. The sample period used in Greenwood and Vayanos

(2014) is 1952 to 2008.25

To estimate the effects of bond supply on interest rates, GV estimate a broad variety of

different regression specifications with yields and returns of various maturities as dependent

variables. Here we are most interested in those regressions where they control for the infor-

mation in the yield curve, namely their results for regressions of future bond returns on the

current one-year yield, the term spread, and their preferred measure of bond supply. In the

top panel of Table 12 we reproduce their baseline specification in which the one-year return on

a long-term bond is predicted using the one-year yield and bond supply measure alone. The

second panel includes the spread between the long-term and one-year yield as an additional

explanatory variable.26 Like GV we use Newey-West standard errors with 36 lags.27

If we interpreted the HAC t-test using the conventional asymptotic critical values, the

coefficient on bond supply is significant in the baseline regression in the top panel but is

no longer significant at the conventional significance level of 5% when the yield spread is

included in the regression, as seen in the second panel. But once again the predictors in these

regressions are extremely persistent, leading us to suspect that the true p-value likely exceeds

the purported 0.058 —the first-order autocorrelations of the yield spread and the bond supply

variable are 0.960 and 0.998, respectively, as reported in Table 4.

The bond return that GV used as the dependent variable in these regressions is for a hy-

pothetical long-term bond with a 20-year maturity. We do not apply our bootstrap procedure

here because this bond return is not constructed from the observed yield curve.28 Instead we

rely on IM tests to carry out robust inference. Neither of the IM tests finds the coefficient on

bond supply to be statistically significant. In contrast, the coefficient on the term spread is

strongly significant for the HAC test and both IM tests.

We consider two additional regression specifications that are relevant in this context. The

first controls for information in the yield curve by including, instead of a single term spread,

the first three PCs of observed yields.29 It also subtracts the one-year yield from the bond

return in order to yield an excess return. Both of these changes make this specification more

closely comparable to those in the literature. The results are reported in the third panel of

Table 12. Again, the coefficient on bond supply is only marginally significant for the HAC

25As in JPS, the authors report a sample end date of 2007 but use yields up to 2008 to calculate one-year
bond returns up to the end of 2007.

26These estimates are in GV’s table 5, rows 1 and 6. Their baseline results are also in their table 2.
27There are small differences in our and their t-statistics that we cannot reconcile but which are unimportant

for the results.
28GV obtained this series from Ibbotson Associates.
29These PCs are calculated from the observed Fama-Bliss yields with one- through five-year maturities.
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t-test, and insignificant for the IM tests. In contrast, the coefficients on both PC1 and PC2

are strongly significant for the IM tests.

Finally, we consider a different, more common excess bond return. Instead of the return on

a hypothetical 20-year bond, we report results for one-year excess returns calculated from the

commonly used Fama-Bliss yields. In particular we use, like CP and Section 5, the average

excess return for bonds with two- though five-year maturities. The last panel of Table 12

shows that in this case, the coefficient on bond supply is insignificant. As usual, there is

robust evidence that PC1 and PC2 have predictive power for bond returns. In this case we

can apply our bootstrap procedure, and the bootstrap p-value is even higher, but we omit the

bootstrap results for the sake of brevity. Even without accounting for small-sample problems

there is no evidence against the spanning hypothesis based on GV’s bond supply variable.

Overall, the results in the Greenwood-Vayanos data lead to the conclusions that the level

and slope of the yield curve are strong predictors of excess bond returns, whereas the predictive

power of bond supply measures is very tenuous and not robust.

References

Andrews, Donald W. K. (1991) “Heteroskedasticity and Autocorrelation Consistent Covari-

ance Matrix Estimation,” Econometrica, Vol. 59, pp. 817–858.

Campbell, John Y. and Robert J. Shiller (1991) “Yield Spreads and Interest Rate Movements:

A Bird’s Eye View,” Review of Economic Studies, Vol. 58, pp. 495–514.

Campbell, John Y and Motohiro Yogo (2006) “Efficient tests of stock return predictability,”

Journal of financial economics, Vol. 81, pp. 27–60.

Carrodus, Mark L and David EA Giles (1992) “The exact distribution of R 2 when the

regression disturbances are autocorrelated,” Economics Letters, Vol. 38, pp. 375–380.

Chan, Ngai Hang (1988) “The parameter inference for nearly nonstationary time series,”

Journal of the American Statistical Association, Vol. 83, pp. 857–862.

Cochrane, John H. and Monika Piazzesi (2005) “Bond Risk Premia,” American Economic

Review, Vol. 95, pp. 138–160.

Cooper, Ilan and Richard Priestley (2008) “Time-Varying Risk Premiums and the Output

Gap,” Review of Financial Studies, Vol. 22, pp. 2801–2833.

28



D’Amico, Stefania and Thomas B. King (2013) “Flow and stock effects of large-scale treasury

purchases: Evidence on the importance of local supply,” Journal of Financial Economics,

Vol. 108, pp. 425–448.

Diebold, Francis X and Robert S Mariano (2002) “Comparing predictive accuracy,” Journal

of Business & economic statistics, Vol. 20.

Duffee, Gregory R. (2013) “Forecasting Interest Rates,” in Graham Elliott and Allan Tim-

mermann eds. Handbook of Economic Forecasting, Vol. 2, Part A: Elsevier, pp. 385–426.

Engle, Robert (2002) “Dynamic conditional correlation: A simple class of multivariate general-

ized autoregressive conditional heteroskedasticity models,” Journal of Business & Economic

Statistics, Vol. 20, pp. 339–350.

Fama, Eugene F. and Robert R. Bliss (1987) “The Information in Long-Maturity Forward

Rates,” The American Economic Review, Vol. 77, pp. 680–692.

Greenwood, Robin and Dimitri Vayanos (2014) “Bond Supply and Excess Bond Returns,”

Review of Financial Studies, Vol. 27, pp. 663–713.

Hamilton, James D. (1994) Time Series Analysis: Princeton University Press.

Hamilton, James D. and Jing Cynthia Wu (2012) “Identification and estimation of Gaussian

affine term structure models,” Journal of Econometrics, Vol. 168, pp. 315–331.

Ibragimov, Rustam and Ulrich K. Müller (2010) “t-Statistic Based Correlation and Hetero-

geneity Robust Inference,” Journal of Business and Economic Statistics, Vol. 28, pp. 453–

468.

Joslin, Scott, Marcel Priebsch, and Kenneth J. Singleton (2014) “Risk Premiums in Dynamic

Term Structure Models with Unspanned Macro Risks,” Journal of Finance, Vol. 69, p.

11971233.

Kendall, M. G. (1954) “A note on bias in the estimation of autocorrelation,” Biometrika, Vol.

41, pp. 403–404.

Kilian, Lutz (1998) “Small-sample confidence intervals for impulse response functions,” Review

of Economics and Statistics, Vol. 80, pp. 218–230.

King, Thomas B. (2013) “A Portfolio-Balance Approach to the Nominal Term Structure,”

Working Paper 2013-18, Federal Reserve Bank of Chicago.

29



Koerts, Johannes and Adriaan Pieter Johannes Abrahamse (1969) On the theory and appli-

cation of the general linear model: Rotterdam University Press Rotterdam.

Litterman, Robert and J. Scheinkman (1991) “Common Factors Affecting Bond Returns,”

Journal of Fixed Income, Vol. 1, pp. 54–61.

Ludvigson, Sydney C. and Serena Ng (2009) “Macro Factors in Bond Risk Premia,” Review

of Financial Studies, Vol. 22, pp. 5027–5067.

Ludvigson, Sydney C and Serena Ng (2010) “A Factor Analysis of Bond Risk Premia,” Hand-

book of Empirical Economics and Finance, p. 313.

Mankiw, N. Gregory and Matthew D. Shapiro (1986) “Do we reject too often? Small sample

properties of tests of rational expectations models,” Economics Letters, Vol. 20, pp. 139–145.

McCracken, Michael W. and Serena Ng (2014) “FRED-MD: A Monthly Database for Macroe-

conomic Research,” working paper, Federal Reserve Bank of St. Louis.

Modigliani, Franco and Richard Sutch (1966) “Innovations in interest rate policy,” The Amer-

ican Economic Review, pp. 178–197.

Müller, Ulrich K. (2014) “HAC Corrections for Strongly Autocorrelated Time Series,” Journal

of Business and Economic Statistics, Vol. 32.

Nabeya, Seiji and Bent E Sørensen (1994) “Asymptotic distributions of the least-squares

estimators and test statistics in the near unit root model with non-zero initial value and

local drift and trend,” Econometric Theory, Vol. 10, pp. 937–966.

Newey, Whitney K and Kenneth D West (1987) “A Simple, Positive Semi-definite, Het-

eroskedasticity and Autocorrelation Consistent Covariance Matrix,” Econometrica, Vol. 55,

pp. 703–08.

Phillips, Peter CB (1988) “Regression theory for near-integrated time series,” Econometrica:

Journal of the Econometric Society, pp. 1021–1043.

Pope, Alun L. (1990) “Biases of Estimators in Multivariate Non-Gaussian Autoregressions,”

Journal of Time Series Analysis, Vol. 11, pp. 249–258.

Stambaugh, Robert F. (1999) “Predictive regressions,” Journal of Financial Economics, Vol.

54, pp. 375–421.

30



Tobin, James (1969) “A general equilibrium approach to monetary theory,” Journal of money,

credit and banking, Vol. 1, pp. 15–29.

Vayanos, Dimitri and Jean-Luc Vila (2009) “A Preferred-Habitat Model of the Term Structure

of Interest Rates,” NBER Working Paper 15487, National Bureau of Economic Research.

31



Appendix

A Conventional asymptotic results

Here we provide details of the claims made in Section 2.1. Let b = (b′1, b
′
2)
′ denote the OLS

coefficients when the regression includes both x1t and x2t and b∗1 the coefficients from an OLS
regression that includes only x1t. The SSR from the latter regression can be written

SSR1 =
∑

(yt+h − x′1tb∗1)2

=
∑

(yt+h − x′tb+ x′tb− x′1tb∗1)2

=
∑

(yt+h − x′tb)2 +
∑

(x′tb− x′1tb∗1)2

where all summations are over t = 1, ..., T and the last equality follows from the orthogonality
property of OLS. Thus the difference in SSR between the two regressions is

SSR1 − SSR2 =
∑

(x′tb− x′1tb∗1)2. (21)

It’s also not hard to show that the fitted values for the full regression could be calculated as

x′tb = x′1tb
∗
1 + x̃′2tb2 (22)

where x̃2t denotes the residuals from regressions of the elements of x2t on x1t and b2 can be
obtained from an OLS regression of yt+h − x′1tb∗1 on x̃2t.

30 Thus from (21) and (22),

SSR1 − SSR2 =
∑

(x̃′2tb2)
2.

If the true value of β2 is zero, then by plugging (1) into the definition of b2 and using the
fact that

∑
x̃2tx

′
1tβ1 = 0 (which follows from the orthogonality of x̃2t with x1t) we see that

b2 = (
∑
x̃2tx̃

′
2t)
−1

(
∑
x̃2tut+h) (23)

SSR1 − SSR2 = b′2 (
∑
x̃2tx̃

′
2t) b2

=
(
T−1/2

∑
ut+hx̃

′
2t

) (
T−1

∑
x̃2tx̃

′
2t

)−1 (
T−1/2

∑
x̃2tut+h

)
. (24)

30That is, b2 = (
∑
x̃2tx̃

′
2t)
−1

(
∑
x̃2t(yt+h − x1tb∗1) for x̃2t defined in (9) and (10). The easiest way to confirm

the claim is to show that the residuals implied by (22) satisfy the orthogonality conditions required of the
original full regression, namely, that they are orthogonal to x1t and x2t. That the residual yt+h−x′1tb∗1− x̃′2tb2
is orthogonal to x1t follows from the fact that yt+h−x′1tb∗1 is orthogonal to x1t by the definition of b∗1 while x̃2t
is orthogonal to x1t by the construction of x̃2t. Likewise orthogonality of yt+h − x′1tb∗1 − x̃′2tb2 to x̃2t follows
directly from the definition of b2. Since yt+h − x′1tb∗1 − x̃′2tb2 is orthogonal to both x1t and x̃2t, it is also
orthogonal to x2t = x̃2t +ATx1t.
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If xt is stationary and ergodic, then it follows from the Law of Large Numbers that

T−1
∑
x̃2tx̃

′
2t = T−1

∑
x2tx

′
2t −

(
T−1

∑
x2tx

′
1t

) (
T−1

∑
x1tx

′
1t

)−1 (
T−1

∑
x1tx

′
2t

)
p→ E(x2tx

′
2t)− [E(x2tx

′
1t)] [E(x1tx

′
1t)]
−1

[E(x1tx
′
2t)]

which equals Q in (6) in the special case when E(x2tx
′
1t) = 0. For the last term in (24) we

see from (9) and (10) that

T−1/2
∑
x̃2tut+h = T−1/2

∑
x2tut+h − ATT−1/2 (

∑
x1tut+h) .

But if E(x2tx
′
1t) = 0, then plim(AT ) = 0, meaning

T−1/2
∑
x̃2tut+h

d→ T−1/2
∑
x2tut+h.

This will be recognized as
√
T times the sample mean of a random vector with population

mean zero, so from the Central Limit Theorem

T−1/2
∑
x̃2tut+h

d→ r ∼ N(0, S)

implying from (24) that

SSR1 − SSR2
d→ r′Q−1r.

Thus from (3),

T (R2
2 −R2

1) =
(SSR1 − SSR2)∑

(yt+h − ȳh)2/T
d→ r′Q−1r

γ

as claimed in (4).
Expression (23) also implies that

√
Tb2 =

(
T−1

∑
x̃2tx̃

′
2t

)−1 (
T−1/2

∑
x̃2tut+h

) d→ Q−1r

from which (12) follows immediately.

B Local-to-unity asymptotic results

Here we provide details behind the claims made in Section 2.2. Note that∑
x̃2tx̃

′
2t =

∑
(x2t − ATx1t)(x2t − ATx1t)′

=
∑
x2tx

′
2t − (

∑
x2tx

′
1t) (
∑
x1tx

′
1t)
−1

(
∑
x1tx

′
2t)

and
T−2

∑
x̃2tx̃

′
2t = T−2

∑
x2tx

′
2t −

(
T−2

∑
x2tx

′
1t

) (
T−2

∑
x1tx

′
1t

)−1 (
T−2

∑
x1tx

′
2t

)
.

Taking the scalar case for illustration, we have as in Phillips (1988, p. 1026) that T−2
∑
x22t ⇒

σ2
2

∫
[Jc2(λ)]2dλ, T−2

∑
x2tx1t ⇒ σ2σ1

∫
Jc2(λ)Jc1(λ)dλ, and T−2

∑
x21t ⇒ σ2

1

∫
[Jc1(λ)]2dλ where
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⇒ denotes weak convergence. Under the null hypothesis, the t-test of β2 = 0 can be written∑
x̃2tut+1

{s2
∑
x̃22t}

1/2
=

T−1
∑
x̃2tε1,t+1

s {T−2
∑
x̃22t}

1/2

for s2 = (T − 2)−1
∑

(yt+1 − b1x1t − b2x2t)2. But s2
p→ σ2

1 and

T−1
∑
x̃2tε1,t+1 = T−1

∑
x2tε1,t+1 −

(
T−2

∑
x2tx1t

) (
T−2

∑
x21t
)−1 (

T−1
∑
x1tε1,t+1

)
⇒ σ2σ2

∫
Jc2(λ)dW1(λ)−

[
σ1σ2

∫
Jc2(λ)Jc1(λ)dλ

] [
σ2
1

∫
Jc1(λ)dW1(λ)

][
σ2
1

∫
[Jc1(λ)]2dλ

] .

Combining these results produces (18) as claimed.
Similar analysis identifies (19) as the local-to-unity asymptotic distribution of∑

x2tut+1

{s2
∑
x22t}

1/2
.
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Table 1: Size distortions in simulation study

ρ2
ρ1 1 0.999 0.99 0.95 0.9 0.5 0
T = 50
1 16.0 15.3 14.3 11.7 10.5 6.1 5.1
0.999 15.6 14.8 15.0 12.7 11.0 5.7 4.9
0.99 16.5 15.3 14.3 12.9 11.9 6.3 5.1
0.95 15.1 14.3 14.2 12.2 11.6 6.1 4.9
0.9 13.0 12.5 12.7 11.4 10.8 6.4 5.3
0.5 7.1 6.4 6.8 6.7 6.9 4.9 4.5
0 5.4 5.4 5.4 5.3 5.6 4.8 4.7
T = 200
1 16.3 16.3 13.3 9.9 8.0 5.6 5.2
0.999 16.6 16.9 14.0 10.2 8.3 5.7 5.3
0.99 17.2 16.6 14.1 10.4 8.9 5.0 5.2
0.95 11.0 11.2 10.7 8.5 7.6 5.1 4.9
0.9 8.6 8.8 8.4 8.1 6.8 5.3 5.2
0.5 5.4 5.4 6.0 5.0 5.2 5.8 5.0
0 4.9 5.3 5.1 4.5 4.6 4.8 4.7

Frequency of rejections (in percent) using a standard t-test with 5% nominal size. For details about

the simulation design, please refer to main text.



Table 2: Bias and size distortions in simulation study

ρ1 = ρ2 = 1 ρ1 = ρ2 = 0.99
β1 β2 β1 β2

True coefficient 1.000 0.000 0.990 0.000
T = 50
True coefficient 1.000 0.000 0.990 0.000
Mean coeff. estimate 0.864 0.001 0.853 -0.002
Coefficient bias -0.136 0.001 -0.137 -0.002
Sample SD of coeff. estimates 0.100 0.101 0.103 0.105
Mean standard error 0.070 0.071 0.073 0.073
Standard error bias -0.029 -0.030 -0.030 -0.031
Empirical size 0.403 0.150 0.366 0.150
Empirical size using sample SD 0.220 0.049 0.215 0.049
T = 200
True coefficient 1.000 0.000 0.990 0.000
Mean coeff. estimate 0.964 0.000 0.956 0.000
Coefficient bias -0.036 0.000 -0.034 0.000
Sample SD of coeff. estimates 0.027 0.027 0.028 0.028
Mean standard error 0.018 0.018 0.020 0.020
Standard error bias -0.009 -0.009 -0.008 -0.008
Empirical size 0.432 0.171 0.287 0.132
Empirical size using sample SD 0.215 0.054 0.193 0.051

Analysis of bias in estimated coefficients and standard errors. For details about the simulation

design, please refer to main text.

Table 3: R2 in simulation study

Strict exog. Statistic Mean 95% CI Std. dev.
Yes R2

1 2.2 [0.0, 9.8] 2.9
R2

2 4.4 [0.1, 15.6] 4.1
R2

2 −R2
1 2.1 [0.0, 10.6] 2.9

No R2
1 6.2 [0.0, 17.8] 4.9

R2
2 9.9 [0.9, 23.7] 6.1

R2
2 −R2

1 3.7 [0.0, 15.4] 4.4

Small-sample distributions of R2 (in percent) in simulations with strictly vs. weakly endogenous

regressors x1t. The sample size is T = 50, and the regressors have autocorrelation coefficients of

ρ1 = ρ2 = 0.99. The true R2 is 1−ρ1
2 = 0.5%. For details about the simulation design, please refer to

main text.



Table 4: Persistence of predictors in published studies

Study Predictor Original sample Later sample
1 6 12 1 6 12

JPS PC1 0.974 0.840 0.696 0.983 0.890 0.784
PC2 0.973 0.774 0.467 0.968 0.753 0.444
PC3 0.849 0.380 0.216 0.833 0.395 0.272
GRO 0.910 0.507 0.260 0.947 0.589 0.250
INF 0.986 0.897 0.815 0.985 0.892 0.822

LN PC1 0.984 0.904 0.821 0.984 0.891 0.785
PC2 0.944 0.734 0.537 0.959 0.718 0.422
PC3 0.601 0.254 0.113 0.749 0.339 0.192
F1 0.766 0.381 0.088 0.700 0.463 0.139
F2 0.748 0.454 0.188 0.499 0.386 0.128
F3 -0.233 0.035 -0.085 -0.123 -0.066 -0.151
F4 0.455 0.207 0.151 0.486 0.215 0.031
F5 0.361 0.207 0.171 0.136 0.186 -0.020
F6 0.422 0.476 0.272 0.033 0.031 -0.014
F7 -0.111 0.134 0.054 -0.032 -0.059 -0.072
F8 0.225 0.087 0.093 -0.328 0.099 0.005
H8 0.777 0.627 0.331 0.580 0.463 0.313
CP 0.773 0.531 0.377 0.886 0.615 0.379

CP PC1 0.980 0.880 0.767 0.984 0.891 0.785
PC2 0.940 0.721 0.539 0.959 0.718 0.422
PC3 0.592 0.237 0.110 0.749 0.339 0.192
PC4 0.425 0.137 0.062 0.649 0.232 0.068
PC5 0.227 0.157 -0.135 0.543 0.167 -0.103
CP 0.767 0.522 0.361 0.889 0.634 0.399

GV yield 0.984 0.905 0.827
spread 0.960 0.762 0.580
PC1 0.988 0.925 0.860
PC2 0.942 0.722 0.521
PC3 0.582 0.233 0.094
supply 0.998 0.990 0.974

Persistence, measured by autocorrelations with lags of one, six, and twelve months, of predictors

used in published predictability studies: JPS stands for Joslin et al. (2014), LN stands for

Ludvigson and Ng (2010), CP stands for Cochrane and Piazzesi (2005), and GV stands for

Greenwood and Vayanos (2014). The predictors are described in the corresponding sections in the

main text. The original sample is the one used in the published study, whereas the later sample is

from 1985 to 2013.



Table 5: Joslin-Priebsch-Singleton: predicting excess bond returns

Two-year bond Ten-year bond
R̄2

1 R̄2
2 R̄2

2 − R̄2
1 R̄2

1 R̄2
2 R̄2

2 − R̄2
1

Original sample: 1985–2008
Data 0.14 0.49 0.35 0.20 0.37 0.17
Simple bootstrap 0.18 0.25 0.08 0.26 0.33 0.06

(0.02, 0.42) (0.06, 0.51) (0.00, 0.27) (0.07, 0.48) (0.12, 0.55) (0.00, 0.25)
BC bootstrap 0.18 0.28 0.10 0.24 0.32 0.08

(0.01, 0.45) (0.05, 0.56) (0.00, 0.32) (0.04, 0.50) (0.09, 0.57) (0.00, 0.29)
Later sample 1985–2013
Data 0.12 0.28 0.16 0.20 0.28 0.08
Simple bootstrap 0.16 0.23 0.07 0.22 0.28 0.06

(0.02, 0.37) (0.05, 0.45) (0.00, 0.24) (0.03, 0.46) (0.08, 0.51) (0.00, 0.20)
BC bootstrap 0.15 0.23 0.08 0.24 0.30 0.06

(0.01, 0.40) (0.04, 0.48) (0.00, 0.25) (0.03, 0.50) (0.07, 0.54) (0.00, 0.21)

Adjusted R2 for regressions of annual excess bond returns on three PCs of the yield curve (R̄2
1) and

on three yield PCs together with the macro variables GRO and INF (R̄2
2), as well as the difference

in adjusted R2 (rows may not add up due to rounding). GRO is the three-month moving average of

the Chicago Fed National Activity Index, and INF is one-year expected inflation measured by

Blue Chip inflation forecasts. The first panel shows the results for the original data set used by

Joslin et al. (2014); the second panel uses a data sample that is extended to December 2013. For

each data sample and bond maturity, we report R̄2 for the restricted and unrestricted regressions in

the data, as well as the mean and 95%-confidence intervals (in parentheses) for the bootstrap

distribution of R̄2 for these regressions obtained under the null hypothesis that the macro variables

have no predictive power. See the text for a description of the experimental design for the simple

bootstrap and the bias-corrected (BC) bootstrap.



Table 6: Joslin-Priebsch-Singleton: predicting the level of the yield curve

PC1 PC2 PC3 GRO INF Wald
Original sample: 1985–2008
Coefficient 0.928 -0.013 -0.097 0.092 0.118
HAC statistic 41.205 1.312 0.508 2.214 2.400 17.075
HAC p-value 0.000 0.191 0.612 0.028 0.017 0.000
Simple bootstrap 5% c.v.’s 2.608 2.829 11.821
Simple bootstrap p-values 0.090 0.099 0.021
Simple bootstrap true size 0.120 0.171 0.219
BC bootstrap 5% c.v.’s 2.926 3.337 17.270
BC bootstrap p-values 0.127 0.145 0.052
BC bootstrap true size 0.159 0.224 0.289
IM q = 8 0.000 0.864 0.436 0.339 0.456
IM q = 16 0.000 0.709 0.752 0.153 0.554
Later sample: 1985–2013
Coefficient 0.958 -0.013 -0.209 0.024 0.087
HAC statistic 54.015 1.371 1.326 0.786 1.874 5.999
HAC p-value 0.000 0.171 0.186 0.432 0.062 0.050
Simple bootstrap 5% c.v.’s 2.899 2.913 13.821
Simple bootstrap p-values 0.508 0.195 0.229
Simple bootstrap true size 0.151 0.172 0.229
BC bootstrap 5% c.v.’s 2.631 3.112 15.095
BC bootstrap p-values 0.564 0.240 0.265
BC bootstrap true size 0.140 0.224 0.265
IM q = 8 0.000 0.725 0.815 0.302 0.310
IM q = 16 0.020 0.381 0.805 0.157 0.719

Inference about predictive power of yield PCs and macro variables (described in the notes to Table

5) for one-month-ahead level of the yield curve (the first PC): HAC statistics and p-values are

calculated using Newey-West standard errors with 18 lags. The column “Wald” reports

χ2-statistics for the null hypothesis that GRO and INF have no predictive power; the other

column report results for individual t-tests. We obtain bootstrap distributions of the regression

coefficients under the null hypothesis; critical values (c.v.’s) are the 95th-percentile of the bootstrap

distribution of the test statistics, and p-values are the frequency of bootstrap replications in which

the test statistic is at least as large as in the data. We also report the bootstrap true size of a test

with 5% nominal coverage—values higher than 0.05 indicate the presence of a small-sample size

distortion. See the text for a description of the experimental design for the simple bootstrap and

the bias-corrected (BC) bootstrap. The last two rows in each panel report p-values for t-tests using

the methodology of Ibragimov and Müller (2010), splitting the sample into either 8 or 16 blocks.
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Table 8: Ludvigson-Ng: R̄2 for yield and macro factors

Two-year bond Five-year bond
R̄2

1 R̄2
2 R̄2

2 − R̄2
1 R̄2

1 R̄2
2 R̄2

2 − R̄2
1

Original sample: 1964–2007
Data 0.26 0.38 0.12 0.26 0.34 0.09
Bootstrap 0.27 0.30 0.03 0.27 0.30 0.03

(0.11, 0.45) (0.13, 0.48) (0.00, 0.11) (0.10, 0.46) (0.13, 0.49) (0.00, 0.11)
Later sample: 1985–2013
Data 0.13 0.25 0.12 0.15 0.17 0.02
Bootstrap 0.16 0.20 0.05 0.18 0.22 0.04

(0.02, 0.37) (0.04, 0.43) (-0.01, 0.18) (0.02, 0.42) (0.04, 0.46) (-0.01, 0.15)

Adjusted R̄2 for regressions of annual excess bond returns on three PCs of the yield curve (R̄2
1) and

on three yield PCs together with eight macro factors (R̄2
2), as well as the difference in R̄2 (rows may

not add up due to rounding). The first panel shows the results for the original data set used by

Ludvigson and Ng (2010); the second panel uses a data sample that starts in 1985 and ends in

2013. For each data sample and bond maturity, we report the adjusted R2 for the restricted and

unrestricted regressions in the data, as well as the mean and 95%-confidence intervals (in

parentheses) for the bootstrap distribution of R̄2 for these regressions obtained under the null

hypothesis that the macro factors have no predictive power. See the text for a description of the

experimental design for the bootstrap.



Table 9: Ludvigson-Ng: return-forecasting factors

CP H8 R̄2
1 R̄2

2 R̄2
2 − R̄2

1

A. Original sample: 1964–2007
Two-year bond
Data 0.335 0.331 0.31 0.42 0.11
HAC t-statistic 4.429 4.331
HAC p-value 0.000 0.000
Bootstrap 5% c.v./mean R̄2 4.044 0.27 0.31 0.03
Bootstrap p-value/95% CIs 0.029 (0.11, 0.45) (0.14, 0.48) (0.00, 0.11)
Bootstrap true size 0.542
Five-year bond
Data 1.115 0.937 0.33 0.42 0.09
HAC t-statistic 4.371 4.541
HAC p-value 0.000 0.000
Bootstrap 5% c.v./mean R̄2 4.031 0.27 0.31 0.03
Bootstrap p-value/95% CIs 0.018 (0.11, 0.47) (0.15, 0.49) (0.00, 0.11)
Bootstrap true size 0.564
B. Later sample: 1985–2013
Two-year bond
Data 0.349 0.371 0.15 0.23 0.07
HAC t-statistic 2.644 3.348
HAC p-value 0.009 0.001
Bootstrap 5% c.v./mean R̄2 4.112 0.14 0.20 0.05
Bootstrap p-value/95% CIs 0.146 (0.01, 0.35) (0.05, 0.39) (0.00, 0.17)
Bootstrap true size 0.596
Five-year bond
Data 1.320 1.021 0.17 0.21 0.05
HAC t-statistic 2.946 3.270
HAC p-value 0.003 0.001
Bootstrap 5% c.v./mean R̄2 4.149 0.18 0.23 0.05
Bootstrap p-value/95% CIs 0.171 (0.02, 0.40) (0.07, 0.43) (0.00, 0.15)
Bootstrap true size 0.632

Inference about predictive power of return-forecasting factors CP and H8 used by Ludvigson and

Ng (2010) for annual excess returns. For a description of HAC inference see the notes to Table 6.

For a description of the bootstrap design, see text.



Table 10: Cochrane-Piazzesi: in-sample evidence

PC1 PC2 PC3 PC4 PC5 Wald R2
1 R2

2 R2
2 −R2

1

Original sample: 1964–2003
Data 0.127 -2.740 6.307 16.128 -2.038 0.26 0.35 0.09
HAC statistic 1.724 5.205 2.950 5.626 0.748 31.919
HAC p-value 0.085 0.000 0.003 0.000 0.455 0.000
Bootstrap 5% c.v./mean R̄2 2.441 2.190 8.571 0.30 0.31 0.01
Bootstrap p-value/95% CIs 0.000 0.494 0.000 (0.13, 0.50) (0.13, 0.50) (0.00, 0.03)
Bootstrap true size 0.097 0.078 0.116
IM q = 8 0.002 0.030 0.873 0.237 0.233
IM q = 16 0.000 0.004 0.148 0.953 0.283

Later sample: 1985–2013
Data 0.104 -1.586 -3.962 -9.196 9.983 0.14 0.17 0.03
HAC statistic 1.619 2.215 1.073 1.275 1.351 4.174
HAC p-value 0.106 0.027 0.284 0.203 0.178 0.124
Bootstrap 5% c.v./mean R̄2 2.656 2.367 11.321 0.18 0.21 0.02
Bootstrap p-value/95% CIs 0.317 0.283 0.289 (0.03, 0.41) (0.05, 0.42) (0.00, 0.09)
Bootstrap true size 0.140 0.113 0.175
IM q = 8 0.011 0.079 0.044 0.803 0.435
IM q = 16 0.001 0.031 0.215 0.190 0.949

Inference about predictive power of principal components (PCs) of yields for excess bond returns and the null
hypothesis that the first three PCs contain all the relevant predictive information in the yield curve. The
dependent variable is the average one-year excess return for two- through five-year bonds. The data used in
the top panel is the same as in Cochrane and Piazzesi (2005)—see in particular their table 4. For a description
of HAC inference see the notes to Table 6. For a description of the bootstrap design, see text.



Table 11: Cochrane-Piazzesi: out-of-sample forecast accuracy

n R2
2 R2

1 RMSE2 RMSE1 DM p-value RMSEmean
2 0.321 0.260 2.120 1.769 2.149 0.034 1.067
3 0.341 0.242 4.102 3.232 2.167 0.032 1.946
4 0.371 0.266 5.848 4.684 2.091 0.039 2.989
5 0.346 0.270 7.374 6.075 2.121 0.036 3.987
average 0.351 0.264 4.845 3.917 2.133 0.035 2.385

In-sample vs. out-of-sample predictive power for excess bond returns (averaged across maturities)

of restricted model (1) with three PCs and unrestricted model (2) with five PCs. The in-sample

period is from 1964 to 2002 (the last observation used by Cochrane-Piazzesi), and the out-of-sample

period is from 2003 to 2013. The second and third column show in-sample R2. The fourth and fifth

column show root-mean-squared forecast errors (RMSEs) of the two models. The column labeled

“DM” reports the z-statistic of the Diebold-Mariano test for equal forecast accuracy, and the

following column the corresponding p-value. The last column shows the RMSE when forecasts are

the in-sample mean excess return.



Table 12: Greenwood-Vayanos

One-year Term Bond
yield spread PC1 PC2 PC3 supply

Dependent variable: return on long-term bond
Coefficient 1.212 0.026
HAC t-statistic 2.853 3.104
HAC p-value 0.004 0.002
IM q = 8 0.030 0.795
IM q = 16 0.001 0.925
Dependent variable: return on long-term bond
Coefficient 1.800 2.872 0.014
HAC t-statistic 5.208 4.596 1.898
HAC p-value 0.000 0.000 0.058
IM q = 8 0.006 0.013 0.972
IM q = 16 0.000 0.000 0.557
Dependent variable: excess return on long-term bond
Coefficients -0.168 -5.842 6.089 0.013
HAC t-stat. 1.457 4.853 1.303 1.862
HAC p-value 0.146 0.000 0.193 0.063
IM q = 8 0.000 0.003 0.045 0.968
IM q = 16 0.000 0.000 0.023 0.854
Dependent variable: avg. excess return for 2-5 year bonds
Coefficient -0.085 -1.669 4.632 0.004
HAC t-statistic 1.270 3.156 2.067 1.154
HAC p-value 0.204 0.002 0.039 0.249
IM q = 8 0.005 0.134 0.714 0.494
IM q = 16 0.008 0.011 0.611 0.980

Predictive regressions for one-year bond returns using Treasury bond supply, as in Greenwood and

Vayanos (2014) (GVG). The coefficients on bond supply in the first two panels are identical to

those reported in row (1) and (6) of table 5 in GV. HAC t-statistics and p-values are constructed

using Newey-West standard errors with 36 lags, as in GV. The sample period is 1952 to 2008.



Figure 1: Size distortions in simulation study
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Frequency of rejections using a standard t-test with 5% nominal size, for different sample sizes. For

details about the simulation design, please refer to main text.



Figure 2: Size distortions in simulation study

0 200 400 600 800 1000

0
2

4
6

8
10

Sample size

R
2  in

 p
er

ce
nt

R2
2  (strict exog.)

R1
2  (strict exog.)

R2
2  (weak exog.)

R1
2  (weak exog.)

R2 (in percent) for restricted and unrestricted predictive regressions, for simulations with strictly

vs. weakly endogenous regressors x1t. For details about the simulation design, please refer to main

text.



Figure 3: Cochrane-Piazzesi: predictive power of PCs across subsamples
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Figure 4: Cochrane-Piazzesi: out-of-sample forecasts
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Realizations vs. out-of-sample forecasts of excess bond returns (averaged across maturities) from

restricted model (1) with three PCs and unrestricted model (2) with five PCs. The in-sample

period is from 1964 to 2002 (the last observation used by Cochrane-Piazzesi), and the out-of-sample

period is from 2003 to 2013. The figure also shows the in-sample mean excess return.
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