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Abstract 

How do geography and other barriers to the free flow of information shape the rate 
of knowledge diffusion? To address this question, we develop an empirical model of 
product discrete choice with Bayesian learning on a social network. Estimating this 
model using monthly data on the cholesterol-drug prescription decisions of over 50,000 
U.S. physicians during January 2000 through December 2010, we find that the evo­
lution of product choice efficiency is highly responsive to network structure changes, 
particularly targeted friction reductions that strengthen the strongest bilateral links. 
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1 Introduction 

How do geography and other barriers to the free flow of information shape the rate of knowledge 

diffusion? In a range of relevant contexts, barriers impeding knowledge flows across individuals 

negatively impact aggregate efficiency, motivating policies that  aim to reduce such frictions.1 How­

ever, relatively little is known about how to efficiently implement these policies, particularly when 
 To achieve 

the largest productivity gains, is it more effective to target the distribution of information across 

agents in the network, or the structure of the network itself? In the latter case, is it more efficient 

to target the weakest links, or the strongest? 

the policymaker is not fully-informed about the underlying knowledge that is diffusing.2

To shed light on these questions, we develop an empirical model of product discrete choice 

with learning dynamics on a social network. Under the assumptions of Bayesian learning and 

static multinomial choice, we show that the model parameters may be estimated using a simple 

non-linear estimator. We apply this to quantify the model using monthly data on the cholesterol-

drug prescription decisions of over 50,000 U.S. physicians during January 2000 through December 

2010, a period featuring patent expirations, drug entry, and major aggregate shifts in product 

choice. To understand how barriers to knowledge diffusion and learning impact the evolution of 

choice efficiency, we simulate the quantified model under a series of targeted policy interventions. 

These indicate that the evolution of efficiency is highly responsive to network structure changes, 

particularly friction reductions that target the initially strongest bilateral links. 

The model features a set of risk averse professionals (agents) positioned in social network. In 

every period, multiple clients arrive for each agent, who makes a distinct, discrete product choice 

on behalf of each. Agents do not know the true quality of each available product, but instead 

hold idiosyncratic beliefs about these product qualities that evolve over time. In particular, agents 

update idiosyncratic beliefs as information arrives from two sources: from the observation of their 

own clients’ outcomes, and in addition, from learning through the social network about the outcomes 

of others’ clients. The model specifies that agents receive more signals, and hence learn more from, 

nearby professionals with high decision volumes. Thus, while each agent is connected to every other 

agent in the network, the degree of connectedness differs across links, with strong links implying a 

large flow of signals per period, and with weak links implying the opposite. 

We show that this setup indicates a straightforward link between agents’ unobserved beliefs 

about product qualities and their observable product choice shares. Moreover, when combined 

with our network structure and Bayesian learning assumptions, this further implies a nonlinear 

estimating equation characterizing the change in an agent’s relative prescription choice shares as 

a function of three fundamentals: first, the precision of an agent’s own initial beliefs; second, the 

distribution (mean and variance) of signals traveling over the network; and third, the complete 

set of bilateral network    links connecting each pair of agents. Because separately estimating N2

1For example, knowledge frictions across individual agents have been shown to partially explain the slow diffusion 
of a cost-reducing innovation (Griliches 1957), as well as deviations from the law of one price (Jensen 2007). 

2Banerjee et al (2013, 2014) and Akbarpour, Malladi, and Saberi (2018) both provide important results about 
how to optimally target networked agents with an information seeding policy. These results are particularly relevant 
when the policymaker holds the information about which agents in the social network are learning. 
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unrestricted bilateral proximity parameters is infeasible given the large size of our dataset, we 

parameterize the connections between agents, as well as their initial beliefs precision levels, as 

functions of observable attributes. We show that, under this parameterization, the model can be 

estimated using a simple, restricted nonlinear least-squares estimator. 

This estimator is applied to quantify the model using comprehensive data from IMS Health 

(now IQVIA) on the cholesterol-drug prescription decisions of U.S. physicians over the 11-year 

period spanning January 2000 through December 2010. For each doctor and month, we observe 

the number of prescriptions corresponding to each of the cholesterol therapies available in that 

month, as well as the location (five-digit zipcode) and a decomposition of prescriptions by patient 

insurance type for each doctor. We match these data with information on each doctor’s primary 

medical specialty, medical school attended, medical school graduation year, total and cholesterol-

drug specific advertising exposure, and location-specific household income and population density. 

Consistent with agents learning about unconditional product qualities, the prescription data reveal 

substantial shifts in aggregate choice shares over the sample period (Figure 1) that differ across 

U.S. locations (Figures 2 and 3). 

Our estimates indicate that geographic and cohort proximity as well as shared medical school 

and specialty are all statistically important determinants of network connectedness; moreover, it is 

primarily distance variation that explains the shape of network connectedness across agents. Using 

our product quality estimates, we further demonstrate that—although our estimation procedure 

does not restrict this to be the case—agents’ choice shares are, on average, evolving over time in a 

way that is consistent with agents’ idiosyncratic beliefs converging to the true product qualities, a 

fundamental prediction of the model. We find that individual convergence rates are faster for agents 

that are relatively well-connected to the network and for agents with relatively imprecise initial 

beliefs, also in line with the predictions of the model. On the other hand, our estimates indicate 

convergence rates are not systematically related to doctors’ exposure to direct pharmaceutical 

advertising. 

To understand the implications of the model for how information barriers shape the rate of 

knowledge diffusion, we simulate our quantified model under a series of counterfactual scenarios. 

These suggest that policies impacting the structure of the network itself may be particularly in­

fluential, especially when efforts to strengthen links target the network ties that are already the 

strongest. By contrast, we find a relatively limited role for interventions targeting either weak net­

work links or the initial distribution of information across individual agents. Specifically, providing 

certain individuals with additional signals in the initial period, which increases the precision of 

their prior beliefs, or even providing agents the true product qualities, has only a negligible impact 

on the aggregate rate of convergence. It is also important to note that this latter form of policy 

intervention is unavailable in the context of our model, as the true product qualities are fundamen­

tally unobserved in real time. While one may estimate these ex post given historical data, it would 

actually not be feasible to learn these qualities parameters at the time such knowledge could have 

been valuable for information injection purposes. 

This paper is related to a growing literature on knowledge diffusion. In particular, the theo­

retical framework in our paper resembles Eaton and Kortum (1996) in that we model individual’s 
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knowledge evolution as determined, in part, by ideas arriving from others, with ideas arriving more 

intensely from relatively nearby and informed sources. Our panel data allow us to estimate the 

model using observed dynamics in agents’ product choices rather than cross-section differences in 

productivity. Although we do not observe a direct measure of idea flows between physicians, we are 

nevertheless able to estimate the role of the network in governing knowledge flows by relying on the 

assumptions of Bayesian learning and static multinomial choice. This paper is also conceptually 

related to Buera and Oberfield (2019) in that our model implies reductions in network frictions, 

related to the idea of trade liberalization, increase the rate of knowledge diffusion, thus increasing 

the rate of efficiency gain as agents’ beliefs thereby converge more rapidly to the truth. 

More broadly, recent work considers firm networks as key for explaining trade flows, and in 

particular has emphasized that the structure of network connections is important for both firm-

level and aggregate outcomes that may result from infrastructure improvements or reductions in 

variable trade costs (Chaney 2014, Bernard and Dhingra 2016, Bernard and Moxnes 2018, Bernard, 

Moxnes, and Saito 2019). Our model considers a related question in a distinct context. In particular, 

we consider a parallel set of counterfactuals, but focus on different outcomes: instead of considering 

the efficiency of bilateral, buyer-supplier matches that result after a reduction in bilateral frictions, 

we evaluate the quantitative impact of this reduction in frictions on efficiency gains as agents’ 

rate of knowledge acquisition rises, improving decision quality. We further assess the value of 

targeting reductions in frictions to certain parts of the network, and show that aggregate efficiency 

is especially responsive to friction reductions aimed at the initially strongest network links. 

Our model and results are related to recent work evaluating the dynamics of social learning in 

networks (Banerjee et al 2013, 2014, Akbarpour, Malladi, and Saberi 2018). We emphasize that the 

empirical model we develop may be used to characterize transition dynamics as knowledge diffusion 

through the social network leads to aggregate efficiency gains. For this, our empirical approach 

relies on techniques developed in models of static discrete choice (Train 2009) and of product choice 

under Bayesian learning (Crawford and Shum 2005). 

Because our quantification of the model involves a medical context, our work is also related 

to two literatures in health economics. First, our framework is related to models of learning in 

pharmaceutical markets including Erdem and Keane (1996), Ackerberg (2003), Crawford and Shum 

(2005), and Arrow, Bilir and Sorensen (2018). We build on this work by modeling agents’ learning 

about unobserved drug qualities as determined in part by the social network: in our model, agents 

learn not only by their own experience, but also from the experiences of their social contacts. This, 

combined with the population-level data we analyze, implies our analysis has direct implications 

both for individuals’ learning  and efficiency gains and for aggregate efficiency gains.3

Second, our model and results have implications related to the work documenting variations 

in U.S. medical care (e.g. Wennberg et al 1996, Munson et al 2013, and Cooper et al 2015). We 

contribute to this work by establishing a network-learning mechanism that can rationalize static 

3Our results also add to the literature examining the determinants of new medical technology diffusion including 
Coleman, Katz, and Menzel (1957, 1996), Skinner and Staiger (2007), and Agha and Molitor (2015). Note that, 
because our data do not include individual patient characteristics, we are not able to estimating a model featuring 
learning about match quality within each patient-physician pair, as in Crawford and Shum (2005). 
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productivity disparities, and also explain how these disparities evolve over time. In addition, our 

quantified model can provide guidance for policies aimed at reducing knowledge-based disparities by 

intervening to change the strength of network connections and the distribution of initial information. 

The rest of the paper is organized as follows. Section 2 presents a learning model of product 

choice under uncertainty. Section 3 outlines the baseline estimation strategy. Section 4 describes 

the data and provides descriptive evidence about aggregate evolution of prescription choice shares. 

Section 5 presents our main estimates, section 6 provides estimates for alternative specifications, and 

section 7 discusses quantitative implications of these estimates. Section 8 concludes. Derivations 

and additional results may be found in the Appendix. 

2 Empirical Model 

This section presents an empirical model of learning among individual professionals positioned in 

a social network. The framework is developed in general terms; in sections 3 and 4, we go on to 

provide estimation and data details specific to the medical setting we evaluate as a quantitative 

application of the model. 

2.1 Setup 

Consider a set I of agents (indexed by either i or j) arrayed on a network. Suppose that in each 

period t = 1, 2, ..., T , agent i faces the arrival of a measure Rit of clients νi. For each client νi, i 

chooses a single product (indexed by d) in period t from a set Dt of available products. Suppose 

client νi receives the following reward from product d at t 

udt(εdt(νi)) = βd
T + εdt(νi),

 where βT
d captures the true unconditional quality of product d. These true qualities T {β }d d∈Dt are

not fully known to agent i. In particular, we assume that for each d, i holds beliefs about the value 

of βT
d at t that are summarized by a normal distribution with mean βidt and variance 2 σidt. The 

match values εdt(νi) are, on the other hand, observed perfectly by agent i at t (though not by the 

econometrician); these are assumed to  follow a Gumbel distribution F (ε) with shape parameter θ.4

Letting Uidt(εdt(νi), βd) denote the agent-i utility of choosing product d for client νi at t given 

beliefs  βd ∼ N(βidt, σ
2
idt) about the quality of d, we specify that 

Uidt(εdt(νi), βd) = − exp(−α(βd + εdt(νi))), 

where α > 0 is the coefficient of absolute risk aversion. This implies (see Appendix A.1) that the 

4That is,  
−x/θ

F (x) = P  {εdt(ν −
i) ≤ x} = e e . 
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exp(βidt − ασ2 /2)
πidt(βit, σit) = idt . 

exp(βid t − ασ2 /2)d ∈Dt id t

expected utility for i of choosing product d for client νi at t is, given her current beliefs, 

Uidt(εdt(νi), βidt, σidt) ≡ Eβd [Uidt(εdt(νi), βd)|βidt, σidt]  
α2σ2 

idt = − exp −αβidt + − αεdt(νi) . 
2 

(1)

For each client νi, i thus compares (1) across products d ∈ Dt and chooses that which maximizes 

i’s expected utility from the product choice for νi, 

Uit(εt(νi), βit, σit, Dt) ≡ max{Uidt(εdt(νi), βidt, σidt)}, 
d∈Dt

where βit, σit, and εt(νi) are vectors that contain, respectively, each product-specific value of βidt 
and σidt corresponding to i at t, as well as each product-specific value of εdt(νi) corresponding client 

νi at t. Considering all of the clients served at t, i’s period payoff Wit(βit, σit, Dt) is therefore 

Wit(βit, σit, Dt) = RitEε[Uit(εt(νi), βit, σit, Dt)]. (2) 

2.2 Conditional Product Choice 

We first characterize the decision rule for each agent, and the corresponding choice shares, condi­

tional on a set of current beliefs. We then characterize the expected utility of agents given their 

optimal choice shares and beliefs. Specifically, let 

d ∗ 
it(εt(νi), βit, σit) = argmax {Uidt(εdt(νi), βidt, σidt)}

d∈Dt

be the optimal product chosen for client νi at t by agent i. Letting πidt(βit, σit) denote the share 

of clients for whom i chooses product d during period t, the law of large numbers implies, 

πidt(βit, σit) = Pr{d = d ∗ 
it(εt(νi), βit, σit)}. 

Applying this, along with the distributional assumption for εt(νi), the following result summarizes 

the relationship between agent-i’s conditional choice shares and current beliefs about the quality 

of each product d ∈ Dt. 

Result 1: Given agent i’s current beliefs summarized by (βit, σit) about product qualities 
 {βT }d d∈Dt , the share of product d in agent i’s overall decision outcomes in period t is

(3)

The proof for Result 1 appears in Appendix A.2. This result has straightforward implications for 

the expected period payoff of agent i, which we characterize next. 
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 � −θα  1 ασ2 
idtWit(βit, σit, Dt) = −Rit × Γ(1 + θα) × ⎝ exp βidt − ⎠ . 

θ 2
d∈Dt

⎞

2.3 Expected Utility with Optimal Product Choice
 

Specifically, given that each agent i serves a continuum of clients per period, and in light of Result 

1, it is possible under the assumptions above to characterize the expected payoff of i at t given i’s 

current beliefs. The following result thus characterizes i’s expected period utility conditional on 

her current beliefs. 

Result 2: Given agent i’s current beliefs and the corresponding optimal product choices made 

on behalf of clients in period t, the expected utility (2) of agent i in period t is 

(4)

The proof for Result 2 appears in Appendix A.3. Equation (4) indicates the agent-i period payoff is 

increasing in i’s patient volume Rit, i’s perceived mean quality of each drug βit, and, importantly, 

the precision of i’s beliefs σit about the quality of each drug, with the latter effect amplified by the 

degree of risk aversion α. With this result in hand, we now specify the assumptions that govern the 

determination and evolution of agent-i beliefs. To highlight the network structure of the model, we 

focus on the case in which the evolution of beliefs is exogenously determined. 

2.4 Evolution of Beliefs: Knowledge Diffusion in a Network 

Suppose that in the initial period t = 0, agent i has a set of prior beliefs about the true quality 

βT
d of each product d. In particular, assume that for each d, agent i’s initial beliefs about βT

d 

are summarized by a normal distribution with mean βid0 and variance 2 σid0. Let Si0 denote the 

general precision level of agent i’s prior beliefs, and assume it is common across products so that 
 σ2 = σ2

id0 d/Si0, where  σ2
d is the fundamental variance associated with d. Agents with relatively high 

levels   of precision thus also have beliefs with relatively low levels of initial variance.5

In each period t, suppose agent i receives fijt product quality signals from every other agent 

j ∈ I in the network (including j = i). Assume further that each signal reflects new information 

realized at t as the outcome of agent j’s own period-t client outcomes, and is a vector with one 

element per product d ∈ Dt. While we assume new signals contribute to the precision of posterior 

beliefs, this contribution is subject to decay over time. Specifically, we assume that in period t, the 

precision of agent i’s beliefs is determined by  
Sit+1 = δSit + fijt, 

j∈I 

5Assuming differences across agents i in the precision Si0 of initial beliefs captures that, in many empirical settings, 
including the one we consider below as a quantitative application, the initial observation in the data includes agents 
that are heterogenous in both professional tenure (age) and decision volume (Rit). Along with other characteristics, 
these may contribute to empirically relevant differences in the precision of initial beliefs by the first observation date. 
Additional data details appear in section 4. 
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(βTβidtδSit + j∈I d + eijdt)fijt 
βidt+1 = , 

Sit+1 

where δ ∈ [0, 1] governs the rate of signal decay. Similar to Crawford and Shum (2005), we assume 

that the value xijdnt of each signal n = 1, ..., fijt received by i from j about product d at t is an 

independent draw from an unbiased normal distribution with mean βT
d

 
 and variance σ2

d. Notice

that we may therefore express the mean value of signals received by i from j about d at t as follows, 

 
f

x ijt T 
ijdt = n=1xijdnt/fijt = βd + eijdt, where e 2

ijdt ∼ N(0, σd/fijt). We specify that the volume of 

signals fijt received by i from j at t is exogenous and proportional to both the network proximity 

τij between i and j, and the measure Rjt of clients served by j in period t 

fijt = τij Rjt. 

Thus, i receives more signals from agents j that are relatively nearby in the network and that 

generate relatively more information through client decision outcomes of the current period. 

Agent i updates her beliefs in each period on the basis of this information. Importantly, this 

setup implies agent i’s posterior beliefs in period t + 1 may be expressed recursively as a sequence 

of normal distributions (e.g. DeGroot 1970) with mean 

(5)

where the discount factor δ, precision Sit, flow of new signals fijt, true product-d quality T βd , and 

noise eijdt are defined above. The variance of i’s posterior beliefs is similarly updated as follows 

σ2 = σ2 
idt+1 d/Sit+1. (6)

3 Estimation 

In this section, we derive estimating equations using the model described in section 2. We show 

that these equations may be combined with available data to recover the parameters governing the 

extent of knowledge diffusion across individual agents in the network and the corresponding rate 

of change in agents’ product choices. 

3.1 Estimation approach 

To estimate the model, consider a spell during which the set of products remains unchanged. 

Rearranging terms in the choice share equation (3) implies the following relationship between 

choice shares πidt and unobserved mean beliefs   (βidt, σ
2
idt) about the quality of product d,

ασ2 

βidt = ln πidt + idt + ηit, 
2 

(7)

  
where   ηit ≡ ln exp(β 2

d ∈Dt id t − ασidt/2) is an individual-month specific unobserved term. The 

evolution of mean beliefs βidt is captured by the Bayesian updating rule (5), which combined with 
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ασ2 ασ2 
idt+1 δSit  τij Rjt

ln πidt+1 + + ηit+1 = ln πidt + ηit + (βd
T + eijdt)

2 Sit+1 2 Sit+1
j∈I 

. idt + 

α(1 − δ)(σ2 − σ2 ) τ (bτ , Y ij )Rjt
 d d− + βd
T − βd

T − [ln πidt − ln πid t]) + uidt
2Sit+1(bτ , bS , δ) Sit+1(bτ , bS , δ)

j∈I 

( , 

the static discrete choice equation (7) above implies
 

Differencing with respect to a reference good d', and using the variance updating rule  σ2
idt+1 = 

σ2
d/Sit+1 in (6), we thus arrive at the following equation 

[ln πidt+1 − ln πid t+1] − [ln πidt − ln πid t] =
 

α(1 − δ)(σd 
2 − σ2 ) τij Rjt
 d− + βT − βT − [ln πidt − ln πid t]) + uidt

2Sit+1 
j∈I 

Sit+1 
d d , ( (8)

where the precision of agent-i beliefs at t follows Sit+1 = δSit + j∈I τij Rjt, and the error term is 

uidt ≡ −j∈I τij Rjt(eijdt  eijdt )/Sit+1. 

Notice that while (8) summarizes the restrictions implied by the model for the prescription 

shares of agent i, product d, and month t given all underlying parameters, the set of parameters 

in (8) includes N2 proximity terms τij , N initial precision levels Si0, and 2(|Dt| − 1) relative drug 

quality and variance terms. Even with a relatively small population of N = 5, 000 individual 

agents, and even with a sufficiently large set of product-time observations per agent, this would 

amount to over 25 million parameters, the estimation of which, given the nonlinearities in (8), is 

infeasible. We therefore redefine both the proximity τij and precision Si0 terms as functions of 

observable variables. In particular, we propose that the proximity between agents i and j may be 

summarized by a linear function of observable bilateral proximity variables including geographic 

proximity, the extent of professional experience, professionals school attended, and so on. We 

specify that τij = τ (bτ , Y ij ), where bτ is the vector of coefficients governing the contribution of 

bilateral proximity variables Y ij to the strength of the social network connection between agents 

i and j. Similarly, we specify that the initial precision of agent-i beliefs may be summarized by 

a linear function of observable agent-i characteristics, including local demographics, professional 

specialty, experience, and per-period choice volume among others. Thus, Si0 = S(bS , Xi0), where 

bS is the vector of coefficients governing the initial precision of agent-i beliefs as a function of 

observed period-0 characteristics Xi0. Using these two parameterizations, we modify (8) above to 

arrive at 

[ln πidt+1 − ln πid t+1] − [ln πidt − ln πid t] =
 

(9)

where the following restriction on the precision of beliefs is satisfied in every period 

t 

δt−uSit+1(bτ , bS , δ) = δt+1S(bS , Xi0) + τ (bτ , Y ij )Rju

u=0 j∈I 

. (10) 
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To estimate (9), we set the quarterly discount factor to δ = 0.9873, implying an annual discount 

factor of 0.95 and assume a value for the coefficient of absolute risk aversion α using an estimate 

from the recent literature.6 In addition, to establish the scale of the estimation, we set one of the 

parameters of the function τij = τ (bτ , Y ij ) to take a value of 1; notice that without fixing the scale, 

there are multiple sets of parameters that solve (9). With these restrictions, the set of unknown 

parameters to estimate in this single-spell baseline model is thus  Θ = {{βT , σ2}d∈Dt\d , bτ , bS }. 
Estimates of Θ may be recovered by evaluating (9) above using nonlinear least squares, restricting 

the beliefs precision levels according to (10). 

To capture a time horizon featuring changes in the set of available products Dt, we generalize 

the specification above. In particular, we divide the sample period into distinct spells k = 1, 2, .., K 

demarcated by product entry events, and allow the βT
d to differ across spells. We thus estimate a 

modified version of (9), 

[ln πidt+1 − ln πid t+1] − [ln πidt − ln πid t] =
 
 α(1 − δ)(σ2 −d  σ2 

d ) τ(bτ , Y ij )Rjt
   − T
dk − βT

 −dk  [ln πidt − ln πid t]) + uidt
2Sit+1(bτ , bS , δ) Sit+1(bτ , bS , δ)

j∈I 

, + (β (11)

and the set of parameters is   Θ = {{βT }dk d∈Dt\d ,k∈1,..,K , {σ2}d∈Dt\d , bτ , bS }.
With an estimate Θ̂ in hand, it is straightforward to estimate the standard error for each of its 

elements. In particular, the standard  error for the kth parameter of Θ is the square root of the kth

diagonal element of the estimated variance-covariance matrix 

' Ĵ)−1 '̂ Ω̂ ˆ ' Ĵ)−1V = ( Ĵ J J(Ĵ , 

Ĵwhere is the Jacobian matrix evaluated at Θ̂ ˆ  Ω = diag(û2idt), and  for residuals uidt defined by 

either (9) or Θ̂(11) above when evaluated at . 

4 Data and Measurement 

In this section, we describe the context and dataset we use for our quantitative application of 

the model, and present descriptive statistics on the population of agents, product choice set, and 

product choice dynamics at both aggregate and individual levels. 

4.1 Prescriptions by U.S. Physicians 

Estimating the model described in section 2 above requires data on all product choice decisions 

for agents positioned in the social network. Decisions by each agent must be observed for the full 

product choice set Dt, and on a repeated basis over a period of time. Finally, it is necessary to 

observe the location and other characteristics of each individual agent that may be relevant for 

determining the network structure. 

6The value α = 0.99 is from Crawford and Shum (2005); see section 5. 
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Our quantitative application relies on a dataset from IMS Health (IQVIA) that satisfies each 

of these requirements. In particular, our analysis uses physician-level prescription choice data from 

the IMS Health Xponent database  for the complete class of drugs targeting cholesterol control.7

These data provide a quarterly prescription count during January 2000 through December 2010 

for each U.S. prescriber associated with a minimum of ten cholesterol-drug prescriptions in 2010. 

Given the low level of this threshold, our dataset includes the full decision history for nearly all 

U.S. cholesterol drug prescribers during this period. Importantly, the comprehensive coverage of 

our data imply that our estimation procedure is able to avoid sampling bias that may arise in 

network settings with partial data (e.g. Chandrasekhar and Lewis 2016). 

Each prescriber in the Xponent dataset is identified not only by a unique medical education 

number, but also by name (first name, last name, middle name), and location (a five-digit U.S. 

zipcode). Using these latter identifiers, we match each prescriber in our Xponent database with 

a) attributes data contained in the CMS Physician Compare database, and b) drug marketing and

advertising data disclosed under the Physician Payments Sunshine Act, part of the 2010 Affordable 

Care Act, which were obtained from ProPublica. Observable attributes in a) include the medical 
 school attended, medical school graduation year, primary medical specialty, and gender.8 In addi­

tion, beginning in 2006, our Xponent prescription data are reported separately according to four 

patient insurance-coverage categories: Medicare, Medicaid, privately-insured, and cash payer. We 
 use these insurance data to construct a time-invariant public insurance share for each doctor i.9

Finally, we include location-specific demographic data (county-level household income and popula­

tion density) from the U.S. Census 2000, matched to physicians based on a link between five-digit 

zipcodes and U.S. counties. Using the advertising data for pharmaceutical products b), we simi­

larly construct time-invariant, doctor-specific measures of drug marketing exposure at two levels: 

including all drugs, and restricting attention to the class of cholesterol drugs as in our quantification 

of the model. This measurement approach is motivated by the delayed coverage of the advertising 

data, which span the dates August 2013 through December 2015.10

Importantly, because the attributes data described above help to ensure that our character­

ization of physicians, including the physician social network, is sufficiently rich, our quantitative 

analysis restricts attention to prescribers appearing in the Xponent data, the Physician Compare 

dataset, and the Propublica advertising dataset. Note that the CMS Physician Compare database 

includes essentially the full population of physicians; prescribers excluded from our analysis are 

primarily nurse practitioners, registered nurses, clinical pharmacists, and physician assistants who 

7IQVIA, formerly IMS Health, also maintains data on additional drug classes. These additional data are not 
available for this study, however, as the customized data extracts involved are unusually large. 

8The data also include a group practice identifier and an identifier for the hospital at which the doctor has 
admitting privileges, but in practice these attributes overlap substantially with the five-digit zipcode and thus are 
currently not included in our analysis. 

9While it would have been ideal to consider the full detail of the patient insurance data, we take the approach of 
building a fixed coverage index as these data are available only during the final five years of the sample period. 

10Information relevant to measuring dynamics in the physician network are also observed, including a) changes in 
an individual doctor’s location (zipcode), and b) entry of new doctors. The latter is likely to be a relevant source of 
network variation, as approximately 40 percent of matched physicians enter the dataset after the completion of the 
first quarter observed. 
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may be viewed as inherently less likely to interact as agents within the physician social network.11

Because it is unlikely that different formulations of the same molecule have relevant differences 

in perceived quality, we aggregate drugs to the molecule level; for example, Mevacor and its generic 

equivalent, lovastatin, are treated as the same product in our empirical analysis. To account for 

(unobserved) differences in pricing that may coincide with the introduction of a new or generic 

version of a  drug, however, we allow true molecule qualities (the common patient payoff βT
d ) to 

differ in our estimation across spells, demarcated respectively by the successive introduction dates 

of three generic versions and three new drugs containing novel molecules. In summary, for our 

application, an agent is thus a doctor, a client is a patient, a period is a quarter, and a product is 

a molecule, the chemical compound that defines an associated prescription drug. 

As an important goal in our analysis is to determine the aggregate implications of our individual-

level learning model (e.g. the evolution of aggregate choice shares), we restrict attention to a) 

physicians with total prescription volumes at the 25th percentile or above, and b) molecules with 

at least three percent of the total prescription volume over the sample period. With these two 

restrictions in place, we retain over 90 percent of the prescriptions, while reducing the presence 
 Our final estimation 

sample has 53,040 doctors, 44 quarters, and up to 7 molecules. 

of zeros in the prescription share data by a factor of approximately three.12

4.2 The Choice Set and Drug Entry 

While the U.S. market for cholesterol drugs is already of immediate interest given its size, an im­

portant feature of this drug class for our analysis is the number of significant events over the sample 

period affecting this class of drugs.13 Specifically, in the initial quarter in the data, four relevant 

products were available: Lipitor, Mevacor,  PatentsPravachol, and Zocor.14  expired for three of 

these products during the sample period, resulting in the entry of generic lovastatin (December 

2001), pravastatin (April 2006), and simvastatin (June 2006). In addition, three drugs based on 

new molecules were approved for sale in the United States during the sample period: Crestor (Au­

gust 2003), Vytorin (July 2004), and Zetia (November 2004). The complete list of molecules and 

respective introduction dates appears in Table 1. 

These six entry events are important for our analysis because they are consistent with the idea 

that physicians’ effective knowledge depreciates over time (captured by δ in our model). This, in 

turn, provides a motive for doctors’ ongoing acquisition of knowledge. For example, suppose that 

some or even all physicians begin their medical career fully informed regarding the relative patient 

11Specifically, the Physician Compare database includes data for each physician treating patients that participate 
in Medicare or Medicaid. Recent work shows that between 92 and 96 percent of U.S. physicians accept Medicare 
patients during the sample period (Bishop, Federman, and Kayhani 2011). 

12Gandhi, Lu, and Shi (2017) describes the bias that may arise in the presence of zeros in choice-share data. 
13Chronic hypercholesterolemia and dyslipidemia, conditions in which abnormal levels of cholesterol or lipids are 

present in the bloodstream, are common in the United States: according to the Centers for Disease Control and 
Prevention, approximately 71 million U.S. adults suffer these chronic conditions. As a result, cholesterol drug sales 
amounted to over $18 billion U.S. dollars in 2011 (Ledford 2013). In addition, two of the drugs considered in our 
estimation, Lipitor and Crestor, are among the top ten pharmaceutical drugs according to 2010 U.S. sales. For further 
discussion of this drug class, see Arrow, Bilir, and Sorensen (2019). 

14Lescol was also available during this time, but due to its negligible share in total prescriptions and dispropor­
tionately high share of zero-shares in the data, it is omitted from our analysis as noted above. 
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payoffs of the different currently-available cholesterol drugs; if the product space is static, it is 

unclear why such doctors rationally pay attention to signals about drug quality that other doctors 

may send. Conversely, if knowledge depreciates due to changes in the set of available products and 

their pricing, agents will rationally pay attention to signals about product quality. This feature of 

our empirical setting is thus important for the assumptions of our model to be satisfied. 

The seven molecules considered in our analysis are therapeutic substitutes: each aims at the 

clinical endpoint of cholesterol or trigliceride reduction, and patients are typically prescribed only 

one molecule rather than  Importantlymultiple products.15 , however, these molecules are only im­

perfect substitutes. First, while most of the cholesterol therapies we study are pure statins, which 

act to reduce cholesterol synthesis in the liver by inhibiting a specific coenzyme [these include Lipi­

tor (atorvastatin), Mevacor (lovastatin), Pravachol (pravastatin), Zocor (simvastatin), and Crestor 

(rosuvastatin)], other products rely on different mechanisms of action. In particular, Zetia (ezetim­

ibe), and thus also Vytorin (ezetimibe and simvastatin), are distinct in that cholesterol reduction 

is achieved by reducing intestinal absorption of cholesterol. Beyond mechanisms, the molecules 

we consider differ in therapeutic intensity. High doses of Lipitor and Crestor are typically more 

effective at lowering low-density lipoprotein (LDL) cholesterol than alternatives (Law et al 2003), 

for example. Therapeutic intensity is relevant not only because it may imply different molecules are 

appropriate for different patients depending on disease severity, but also because evidence suggests 

it is correlated with the intensity of adverse side effects. For example, evidence suggests high doses 

of intense therapies such as Lipitor and Crestor may raise the incidence of adverse reactions, while 

also indicating that therapies such as Vytorin may for certain patients be more appropriate care 

for cases of severe cholesterol abnormality (Kastelein et al 2008). 

As the above discussion suggests, abundant clinical evidence suggests that the benefits and risks 

associated with statins are heterogeneous across patients.16 Our model captures this through the 

match quality terms εdt(νi) in the patient-level physician payoff function. Because our data do not 

include patient-level information, we abstract from the possibility that physicians learn about the 

value of  εdt(νi)
17. The evidence presented below nevertheless indicates learning about molecules’ 

average qualities is likely to be highly relevant given the substantial changes in aggregate market 

shares observed during the sample period. 

4.3 Descriptive Statistics 

Evolution in Aggregate Choice Shares 

Figure 1 plots the evolution in aggregate product choice volumes during the sample period. 
 Consistent with learning about βT

d , substantial shifts in aggregate choice shares are evident. For 

example, the aggregate choice share of Lipitor is initially above 50 percent, but falls to approxi­

mately 20 percent by the end of the sample period. This opposite occurs for simvastatin which 

accounts for approximately 20 percent of the market initially, ultimately rising to around 45 per­

15See Arrow, Bilir, and Sorensen (2019) for a related discussion. 
16See, for example, Brooks et al (2014). 
17Crawford and Shum (2005) estimate a model of learning specifically about the patient-drug match for a distinct 

drug class. 
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cent. Figure 1 also reveals that the pattern of change in aggregate choice shares is gradual, in line 

with the learning mechanism of the model outlined in section 2. 

Across U.S. locations, the evolution of choice shares follows distinct patterns relative to the 

aggregate shifts in Figure 1. For example, Figure 2 indicates New York, NY (three-digit zipcode 

100), despite having similar initial choice shares, ultimately has larger shares for both Lipitor and 

Crestor, and smaller shares for each of the three generics. Figure 3 considers instead the relatively 

remote Hemet, CA (three-digit zipcode 925). Expansion in Hemet’s generic choice share is large 

relative to Figures 1 and 2, while the Crestor share expands relatively less. These local differences 

in choice share evolution are consistent with persistent information differences across U.S. locations, 

but importantly,  could also be explained by heterogeneity in patient payoffs βT
d across locations.18 

Table 2 thus considers the decision over whether to prescribe the branded versus generic version 

of a particular molecule. Specifically, for each of the three molecules that experienced generic entry 

during the sample period, Table 2 summarizes the distribution of generic prescription shares for that 

molecule at different time horizons. The advantage of focusing on these shares is that it is possible to 

compare prescribing of a branded product with its molecularly-equivalent generic, two distinct drugs 

that have no relevant clinical differences. And, by examining these shares at different time horizons, 

it is possible to determine whether stable heterogeneity  in βT
d across locations is likely to be the 

only explanation for differences in choice shares across locations. Consider lovastatin, for example, 

in column 1: after six months, the average generic prescription share for lovastatin—that is, the 

share of lovastatin plus Mevacor prescriptions that are accounted for by generic lovastatin—across 

sample physicians was 83.2 percent, with a doctor at the fifth percentile prescribing only Mevacor, 

the relatively expensive branded version. After 12 months, the average rises to 90 percent, but the 

fifth percentile physician still prescribes only Mevacor. By contrast, at the end of the sample period 

in December 2010, the average generic share is essentially 100 percent, and even the fifth percentile 

doctor prescribes exclusively generic lovastatin. This pattern of delayed substitution between two 

molecularly equivalent products is evident for each of the three generics in our dataset, and strongly 

suggests factors other than time-invariant patient heterogeneity contribute to prescribing differences 

across locations, and also indivdual physicians. Importantly, this pattern of delayed substitution 

is consistent with the influence of information frictions.19

5 Main Results 

We estimate the model described in (10) and (11), specifying bilateral network proximity τij as a 

function of individual characteristics observed in the data described above (section 4). In particular, 

the network proximity function is parameterized as 

τij = τ (bτ , Y ij ) = bτ,g Geographic Proximityij + bτ,s Same Medical Schoolij 

+ bτ,c Cohort Proximityij + bτ,sp Same Medical Specialtyij , 

18In section 6 below, we extend our estimation  heterogeneity across locations.
 approach to account for βT
d

19See also Arrow, Bilir, and Sorensen (2019).
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 is the inverse of one plus the geographic distance 

separating doctors i and j. 

where Geographic Proximityij ≡ (1+distanceij )
−1

Cohort Proximityij is the analogous measure replacing distanceij with 

the absolute difference between the respective medical school graduation years of doctors i and j. 

Same Medical Schoolij and Same Medical Specialtyij are dummies indicating whether doctors i and 

j either attended the same medical school, or practice within the same primary medical specialty. 

Similarly, the initial precision of doctor-i beliefs Si0 is parameterized as 

Si0 = S(bS , Xi0) = bS,0 + bS,income Mean Household Incomei0 + bS,density Population Densityi0

+ bS,rDecision Volumei0 + bS,e Experiencei0 + bS,f Femalei

+ bS,c Cardiologyi + bS,im InternalMedicinei + bS,fp FamilyPracticei. 

The first two variables, Mean Household Incomei0 and Population Densityi0, are demographic data 

from the U.S. Census 2000, and correspond to the county in which doctor i is located. Decision 

Volumei0 (Ri0) is the number of doctor-i prescriptions for the period t = 0, Experiencei0 is the 

difference in years between t = 0 and the medical school graduation date of doctor i. Femalei

indicates whether doctor i is female, and Cardiologyi, InternalMedicinei, and FamilyPracticei are 

primary medical specialty dummies indicating, respectively, whether i is a cardiologist, an internist, 

or in family practice. The latter three specialties account for approximately 90 percent of physicians 

in the data. As noted above, we set the annual discount factor to 0.95, implying a quarterly discount 

factor δ = 0.9873. In addition, we use a value for the risk aversion parameter from the literature. 

Specifically, Crawford and Shum (2005) estimates that α = 0.990 for a related empirical setting, 

and we use this value  for our estimation.20

5.1 Baseline Estimates by Professional Specialty 

We begin by considering separately each of the three major medical specialties in the data: car­

diology, internal medicine, and family practice. In particular, we consider doctors i within each 

specialty to be positioned in a closed network consisting exclusively of other doctors within the 

same medical specialty as i. Corresponding estimates of (11) appear in Tables 3 through 5. 

Estimates for cardiologists appear in Table 3, columns 1 and 3, with standard errors in columns 2 

and 4 the right of each respective point estimate. Consider the estimates for bilateral proximity τij = 

τ(bτ , Y ij ) in column 1, which evaluates the complete network specification. These indicate that 

both a shared medical school and proximity in graduation dates are highly significant determinants 

of network connectedness, relative to geography. In particular, the coefficient on the indicator for 

shared medical school implies that, for geography to have the same contribution to τij as a common 

medical school, cardiologists i and j would need to be located just four miles apart. The coefficient 

on graduation year proximity implies that if doctors i and j graduate from medical school within 

three years of each other, the contribution to τij would be equivalent to the impact of the two 

doctors being separated by a distance of 61 miles. Nevertheless, variation in the underlying data 

20Notice that α and δ are not separately identified from the  signal variance terms σ2
d in (10). Thus, to the extent 

that setting α = 0.990 or δ = 0.9873 is incorrect, it would affect the magnitude of these variance estimates. 
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also determines the contribution of each component of bilateral connectedness to overall network 

proximity τij . Interestingly, the data reveal that the relative importance of components is not 

uniform across the distribution of connectedness across doctors i. To understand the respective 

contributions of location, school, and graduation cohort to network proximity, Figure 4 plots the 

distribution of τ 1
i ≡ j τij N across cardiologists i (solid line), which can also be interpreted 

as an index of network centrality, as well as the mean value of each subcomponent. It is clear 

that although the shape of the curve is determined by variation in graduation cohort among less-

connected doctors, this is not true among relatively connected doctors, for whom variation in 

location is a more important determinant of the τ i distribution. 

The estimates of doctors’ initial beliefs precision, Si0 = S(bS , Xi0) indicate that household 

income, population density, decision volume, and years of experience are all statistically important 

determinants of an agent’s beliefs precision, where recall that in the model, higher values of Si0

imply a slower rate of beliefs updating, all else equal. Of these four components, only experience 

enters negatively, suggesting those with more recent medical degrees have the most precise initial 

beliefs, and in turn, the slowest rates of beliefs updating conditional on network position. This result 

is consistent with the idea that knowledge depreciates over time, so that agents with less recent 

medical training—which is relevant because both the set of drugs and available clinical evidence 

about relative qualities change over time—have a relatively small effective stock of accumulated 

signals, all else equal, when compared with recent graduates. Figure 5 shows the distribution of 

implied Si0 values across cardiologists i (solid line) as well as each of its separate components. 

Similar to the case of network connectedness τ i, the figure suggests the factors determining the 

shape of the Si0 differ across the distribution; in particular, Si0 is strongly correlated with experience 

among doctors with low Si0 values, but depends primarily on variation population density and 

decision volume for those with relatively high Si0 values. Table 3 also shows estimates of the true, 

unconditional drug qualities relative to the reference drug Lipitor, T  β − βT
dk d;k, for the first and last 

spells. These estimates indicate not only a clear ranking of products based on quality, but also 

relevant changes in this ranking between the spells. In particular, the estimated relative quality of 

simvastatin is higher than that of pravastatin in the first spell, which is, in turn, higher than that of 

lovastatin. While this relative ranking is maintained in spell 6, each of the relative quality estimates 

increases to a highly significant extent, in part reflecting the price changes that occurred as patents 

for each of these three molecules expired. Indeed, by the final spell, the positive estimate for 

simvastatin indicates its unconditional quality surpasses that of Lipitor. The final-spell estimates 

for new drugs indicate that the qualities of Zetia and Vytorin are both low relative to Lipitor, 

while the quality of Crestor is significantly higher than Lipitor. Estimated relative variance terms 

appear just below the quality parameters and indicate, unsurprisingly, that the signal distribution 

is relatively imprecise (high variance) for newer varieties, with the exception of Crestor which is in 

this respect indistinguishable from Lipitor. 

Estimates for physicians specialized in internal medicine appear in Table 4, and estimates 

for family practice doctors are in Table 5. While proximity in graduation dates and a shared 

medical school are statistically important determinants of τij in all three professional specialties, it 

is clear that the relative importance of a shared school is highest among cardiologists. Conversely, 
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the relative importance of distance is substantially higher for family practice physicians than for 

those in either of the other two specialties. These differences are also evident when comparing 

the components of network connectedness τ i among doctors in internal medicine (Figure 6) and 

family practice (Figure 8) with the analogous figure for cardiologists (Figure 4) discussed above. 

Specifically, Figure 8 indicates that distance variation determines the shape of τ i across essentially 

the complete population of family practice physicians, while internists resemble cardiologists in that 

variation in cohort proximity is predominant in the lower range of the distribution. Regarding the 

determinants of initial beliefs precision, comparing Figures 5, 7, and 9 reveal that the shapes of the 

respective Si0 curves are similarly determined by underlying components across medical specialties. 

The estimates of unconditional drug qualities reveal an important distinction between cardiol­

ogists and physicians specialized in family practice. In particular, relative to Lipitor, cardiologists 

view Crestor favorably while other doctors do not; at the same time, family practice physicians are 

substantially more favorable about all generic molecules (lovastatin, pravastatin, and simvastatin) 

when compared with doctors in other specialties. Intuitively, this likely reflects sorting across spe­

cialties based on patients’ disease severity. As noted above, Lipitor and Crestor are high-intensity 

products that are, accordingly, more appropriate care for those with severe cholesterol abnormal­

ities. If patients with such conditions are disproportionately served by cardiologists, it is to be 

expected that cardiologists will choose Crestor and Lipitor high a higher propensity than the more 

general physicians specialized in internal medicine and family practice. Alternatively, another pos­

sibility is that patients seeing the latter physician types are more price-sensitive than those seeing 

cardiologists, and hence prefer to avoid relatively high-cost options like Crestor and Lipitor. This 

result is initially harder to support, as Zetia and Vytorin are also relatively expensive, active-patent 

molecules, yet both are viewed (relative to Lipitor) more favorably by family practice doctors than 

by cardiologists. To better distinguish between these mechanisms, we extend the model in section 

6 below to include a time-varying measure of drug prices. 

5.2 Network Specification with All Specialties 

Table 6 provides estimates of the model using a sample of all doctor specialties and locations. In 

particular, given the size of the complete  bilateral network (53, 0402 = 2.8 billion), we estimate 

this comprehensive model with a ten percent random sample of the 21 53,040 physicians. Column 

1 presents estimates of (11), while for comparison, column 3 imposes no time discounting, δ = 1. 

This latter parameter restriction implies that the first term in (11) is equal to zero. Consider 

first the estimates in column 1. These indicate that each network proximity covariate—proximity 

in graduation dates, an indicator for shared medical school, and an indicator for common medical 

specialty—has a positive and highly significant contribution to the network connectedness of doctors 

in the data. Among these, a shared medical school is a particularly strong force for network 

connectedness. For two doctors i and j, attending the same medical school is associated with an 

increase in τij that is, on average, equivalent to the contribution of geographic proximity if i and 

j were located only 9 miles apart. The distance equivalent for sharing a medical specialty is an 

21Note that the region- and specialty-specific estimates are based on complete populations rather than samples. 
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order of magnitude larger (92 miles), while that for sharing the same medical school graduation 

year is four times larger (40 miles). The latter effect declines rapidly, moreover, and by ten years of 

separation in graduation years, the impact of proximity falls to a distance equivalent of 409 miles. 

To understand the full contribution of each determinant of network connectedness, we combine 

the estimates with the data to compute each element of the implied τij matrix. Taking the mean 

value for each doctor i, across all other doctors j, we build an index of mean network connectedness 

for each doctor that appears as the solid line in Figure 4. This line reveals a distribution centered 

around a median value of 0.0116, with a standard deviation of 0.004 and a skewness of 2.81 resulting 

from a long upper tail of highly connected physicians. Figure 5 decomposes this line into its four 

subcomponents, which indicate that, given the patterns in the data, geography is highly influential 

in determining the shape of the distribution. Highly connected doctors in the upper tail have 

unusually high geographic proximity to other doctors, but a similar range to doctors around the 

median for school, cohort, and specialty. On the other hand, the very least-connected physicians 

at the low end of the distribution have unusually low values among all four components of the 

τij function. That variation in geography is a particularly important determinant of network 

connectedness is reinforced by the distance-only model considered in Table 22 3. The distribution 

of the mean network connectedness index for this simpler model also appears in Figure 4 (dotted 

line) and follows almost exactly the shape of the distribution for the full network specification. 

The estimates of the initial beliefs precision function Si0 in column 1 further indicate doctors 

in locations with high levels of household income and population density have significantly more 

precise prior beliefs about product quality. Doctors with high quarterly decision volumes also have 

significantly more precise initial beliefs. While experience and gender are not important determi­

nants of initial beliefs’ precision in the overall physician sample, medical specialty does impact Si0. 

In particular, internists have the most precise initial beliefs, followed by family practitioners, and 

then by cardiologists, who have less-precise initial beliefs. These impacts of medical specialty are 

relatively large compared with the median implied value of Si0, ranging from 15 to 25 percent of the 

median, and also raise the possibility that other relevant differences exist across medical specialties. 

Below, we thus estimate specialty-specific models that allow all parameters to differ depending on 

whether a physician is a cardiologist, internist, or family practitioner. 

The specification further provides estimates for the parameters (mean and variance) of the 

signal distribution for each pr        oduct. Considering first the true drug-d quality values βT
d1 for the 

initial spell, the estimates indicate that the signal distributions for Lovastatin, Pravastatin, and 

Simvastatin all have lower mean values than the distribution for Lipitor, in line with the initial 

dominance of Lipitor in the aggregate choice shares plotted in Figure 1. Also consistent with 

the market shares in Figure 1, the signal distribution for Simvastatin is higher in the first spell 

than that for Pravastatin, which is, in turn, higher than that for Lovastatin. Considering now 

the final spell, the signal distribution for Simvastatin rises to a level a significantly higher mean 

than that for Lipitor, and values for both Lovastatin and Pravastatin, while still negative, are also 

significantly higher than in the first spell.  The substantial increases in βT
dk for these three products 

22The specifications in Table 3 consider network proximity τij simply as a function of distance, restricting bτ,s, bτ,c, 
and bτ,sp to take values of zero. 
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likely reflects the patent expiration and resulting price declines experienced by each molecule over 

the sample period, and moreover indicate the importance of allowing time variation in the signal 

distribution. Interestingly, Zetia and Vytorin  have the lowest βT
dk values in spell 6 and also the 

highest relative variance estimates, suggesting the signal distribution for these newer products is 

highly dispersed around a relatively low mean. On the other hand, the mean and variance values 

for Crestor are not significant, suggesting that the signal distribution parameters for Crestor are 

statistically indistinguishable from those of Lipitor. 

Comparing the estimates with time discounting δ < 1 in column 1 with those that restrict 

δ = 1  in column 3 reveals that this restriction is primarily reflected by the βT
dk estimates. The

spell-1 signal value is higher for Lovastatin, and lower for both Pravastatin and Simvastatin. Inter­

estingly, the estimated variance in the unrestricted model is positive for Lovastatin and negative 

for Pravastatin and Simvastatin, suggesting the restricted model inability to control for differences 

in signal dispersion may translate into biased quality estimates. Spell-6 mean signal values are 

higher for all drugs in the restricted model. These qualitative differences are also evident in Table 

7, which replicates Table 6 with the added restriction that the network specification depends only 

on geographic proximity. 

6 Robustness and Alternative Specifications 

6.1 Advertising and Price Effects 

 The baseline specification estimated in section 5 above considers the product qualities βT
dk about 

which agents learn as capturing not only the true, unconditional efficacy of product d, but also any 

other common determinants of product choice including product prices. While existing evidence 

supports the idea that physicians learn and are thus uncertain about drug prices, the model above 

considers quality as fixed within each spell k and is thus unable to address the possibility of within-

spell price changes.23 Indeed, if agents are sensitive to product price changes within a spell, some 

of the variation in relative choice shares may be explained by prices rather than by learning about 

βT
dk

 . This may be relevant in the case of patent expirations, where initial generic entry is restricted, 

implying a larger long-run than short-run price impact for affected molecules. 

Relatedly, the decision by physician i to choose drug d rather than an alternative for a given 

patient may depend not only on the unconditional quality of d, but also on i’s incentives to choose 

d, including targeted advertising efforts by the firm promoting product d. This consideration is 

particularly important if drug advertising targets doctors differentially depending on the charac­

teristics that determine learning rates in the model, including network connectedness τij and initial 

beliefs precision Si0. If this were to be the case, this underlying correlation could impact the 

interpretation of our estimates in a specification that omits advertising. 

To address this concern, as well as the potential for within-spell price variation, we generalize 

the static choice equation to include two additional covariates, a) total drug advertising spending 

received by doctor i, and b) average U.S. pharmacy prices by molecule and date. Because our 

23See, for example, Arrow, Bilir, and Sorensen (2019). 
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α2σ2
 
idt= − exp −αβidt + − αξPdt − αγAdsi × Ddt − αεdt(νi) . 

2 

measure of advertising is time-invariant, and thus already incorporated in the static choice equation 

through ηit, we allow advertising exposure to differentially impact molecules that are still protected 

by active patents by interacting this measure with Ddt, which indicates the patent status of d at t 

and takes a value of 1 if the patent has expired and generic competition exists for d at t.24 ,25

With these changes, the static choice equation for agent i reflects price and advertising effects 

as follows 

Uidt(εdt(νi), βd) = − exp(−α(βd + εdt(νi) + ξPdt + γAdsi × Ddt)) 

where Pdt is the product-d price at t, Adsi is pharmaceutical advertising spending received by agent 

i, and Ddt indicates generic competition for molecule d at t. Notice that normal price sensitivity 

would suggest ξ < 0, while the differential influence of marketing on choice for on-patent molecules 

suggests γ < 0. 

With the preferences above, the expected, agent-i utility for choosing product d for client νi at 

t is, given her current beliefs, 

Uidt(εdt(νi),βidt, σidt) ≡ Eβd [Uidt(εdt(νi), βd)|βidt, σidt]
 

(12)

Agent i thus selects the product d ∈ Dt that maximizes i’s expected utility from the product choice 

for νi. As before, defining this optimized expected utility, 

Uit(εt(νi), βit, σit, Dt) ≡ max{Uidt(εdt(νi), βidt, σidt)}
d∈Dt

agent i’s period payoff Wit(βit, σit, Dt) is 

Wit(βit, σit, Dt) = RitEε[Uit(εt(νi), βit, σit, Dt)]. (13) 

By the law of large numbers, it remains true that 

πidt(βit, σit) = Pr{d = d ∗ 
it(εt(νi), βit, σit)}. 

Applying this, along with the distributional assumption for εt(νi), physician i’s conditional choice 

shares and current beliefs about the quality of each product d ∈ Dt are related according to the 

24The advertising data are from ProPublica (see section 4 for details) and the price information is from the Mar­
ketscan Redbook database. The time coverage of the advertising data (2013-2015) unfortunately rule out including 
a more detailed marketing measure varying by doctor, drug, and quarter. 

25Beyond both considerations, a doctor may take patient-level pricing into account when selecting a product. 
Although we do not have direct data on patient-specific pricing, beginning in 2006 our data indicate whether the 
purchasing patient paid for the product using a private insurance plan, Medicaid, Medicare, or cash. Using this 
information, we have constructed a time-invariant measure of public and private insurance shares that we interact 
with product prices as an additional covariate in the physician choice specification, but our estimates indicate that 
this is not a statistically important determinant of product choice. 
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expression 

exp(βidt − ασ2 /2 + ξPdt + γAdsi × Ddt)
πidt(βit, σit) = idt	 . 

exp(βid t − ασ2 /2 + ξPdt + γAdsi × Ddt)d ∈Dt id t

(14)

To estimate the model with advertising and price effects, we note that (3) implies 

ασ2 
idtβidt = ln πidt + − ξPdt − γAdsi × Ddt + ηit,	 
2 

(15)

where   ηit ≡ ln exp(βid t −d ∈D  ασ2 ×
t idt/2 + ξPdt + γAdsi  Ddt) is an individual-month specific 

unobserved term. The evolution of mean beliefs βidt is captured by the Bayesian updating rule (5), 

which combined with the static discrete choice equation (15) above implies 

ασ2 
idt+1ln πidt+1 + − ξPdt+t − γAdsi × Ddt+1 + ηit+1 = 
2 

δSit ασ2	 τij Rjtidtln πidt + − ξPdt − γAdsi × Ddt + ηit + (βd
T + eijdt).

Sit+1 2 Sit+1
j∈I 

Differencing with respect to a reference good d'  , for which Dd t = 0 holds for all t, and using the 

variance updating rule 2 σ = σ2
idt+1 d/Sit+1 in (6), we thus arrive at the revised equation 

δSit
[ln πidt+1 − ln πid t+1] − [ln πidt − ln πid t] = γAdsi Ddt+1 − Ddt

Sit+1 
 

α(1 − δ)(σ2 − σ2 )δSit	 d d+ ξ Pdt+1 − Pd t+1 − [Pdt − Pd t] − 
Sit+1 2Sit+1 

τij Rjt
+	 (βT − βT − [ln πidt − ln πid t]) + uidt, 

j∈I 
Sit+1 

d d (16) 

where the precision of agent-i beliefs at t follows Sit+1 = δSit + j∈I τij Rjt, and the error term is 

uidt ≡ j∈I τij Rjt(eijdt − eijdt )/Sit+1. As in (11), specification (16) above can also be extended 

to allow for differences in  product qualities βT
d across spells k.

Estimates of (16) appear in Tables 8 through 11. Tables 8 and 9, which allow spell-specific 

βT
d terms as in the baseline model, indicate that for each medical specialty (cardiology, internal 

medicine, and family practice) as well as for the sample that includes all doctor specialties, agents 

are highly responsive to advertising exposure. As expected, doctors with higher levels of direct 

pharmaceutical marketing payments prescribe significantly lower shares of off-patent molecules 

facing generic competition; these doctors thus prescribe significantly higher shares of relatively 

expensive therapies protected by active patents. Interestingly, however, price sensitivity differs 

across doctor groups: the estimates indicate statistically significant price sensitivity only among 

family practice physicians. 

On the other hand, estimated price sensitivity in a specification that allows spell variation in 

product qualities may be low precisely because these quality terms already capture most of the 
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relevant price variation in the data. A key motivation for allowing quality variation across spells 

was precisely to capture the possibility of unobserved price changes resulting from product entry 

and patent expiration events. Allowing for these changes, the price parameter ξ in Tables 8 and 9 

is identified using only within-spell variation in prices, which is evidently relatively limited. On the 

other hand, (16) may be estimated directly, without allowing spell variation in product qualities. 

Accordingly, Tables 10 and 11 provide estimates that hold fixed  βT
d across the sample period. These 

estimates indicate a highly significant degree of price sensitivity across all three specialties. 

Importantly, across Tables 8 through 11, the estimates governing network proximity τij and 
 initial beliefs precision Si0 are essentially unchanged. Differences in estimated βT

d and βT 
dk parame­

ters may impact the implications, however, and these alternative models are thus considered when 

investigating the quantitative implications of the model in section 7 below. 

6.2 Estimates by U.S. Region 

An alternative assumption to the one implicit in our baseline estimation, in which physicians 

participate in a nationwide social network, is that interactions are substantially more local, with 

only negligible interactions occurring between agents on opposite coasts, for example. Given the 

available data, we could estimate the model with nearly any geographic restriction (e.g. by U.S. 

state, county, or MSA). In this section, we consider a broad division of the United States into four 

distinct geographic regions and provide separate estimates for each region. These are defined by 

one-digit zipcodes: New England (0 and 1), the East (2, 3, and 4), Central States (5, 6, and 7), 

and the West (8 and 9). While the resulting estimates assume no social interactions across these 

regions, they are otherwise more general as all parameters may differ across regions, including those 

governing the strength of network connections, the initial precision of beliefs, and product qualities. 

Region-specific estimates appear in Table 12 (New England, East) and Table 13 (Central, West). 

Broadly, the estimates are similar to the baseline results in that they revealing the statistical im­

portance of each network covariate relative to geography (shared medical school, shared specialty, 

and cohort proximity). It is notable that in the West, the estimated network coefficients are all 

highest, consistent with a higher relative importance of proximity in school and specialty, compared 

with geographic proximity. Indeed, the coefficient on graduation year proximity is statistically in­

distinguishable from that on geographic proximity. The rank-ordering of the network determinants 

is nevertheless similar across regions: the coefficient on graduation year proximity exceeds the co­

efficient on shared medical school school, which in turn exceeds that on shared medical specialty. 

In contrast to the baseline estimates, it is also notable that the initial precision of doctors’ initial 

beliefs Si0 is only responsive to local incomes in New England. 

Estimated product qualities also differ substantially across the four regions. In New England 

and the Eastern states, the relative quality estimates for Crestor are high and for Zetia and Vy­

torin are low, when compared with Central and Western states. Thus, conditional on prescribing 

an expensive, active-patent drug, high intensity products Lipitor and Crestor are systematically 

preferred in the East and Northeast. As described in the paragraph above, these effects seem more 

likely to be explained by differences in disease severity across regions than purely by price; this is 
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 _ __ _   ln πT = βT 
d k − α(σd 

2 − σd 
2 )/(2Sit).idtk − ln πid tk 

T 
dk − βT 

Convergence Target 

because the same regions that place a high preference on Lipitor and Crestor view Vytorin and 

Zetia as relatively lower-quality options. Conversely, there is broad agreement regarding the rela­

tive quality of simvastatin, which in all regions has the highest estimated quality parameter. By 

contrast, the quality of generic molecules pravastatin and simvastatin are highest in Eastern states, 

and both exceed that of Lipitor, consistent with the idea that patients may have higher levels of 

price sensitivity in these states. 

7 Quantitative Implications 

In this section, we investigate the quantitative implications of the model in section 2 and corre­

sponding estimates described in section 5. First, we evaluate the extent to which the data are 

consistent with two main predictions of the model regarding the convergence of agents’ beliefs over 

time. We then simulate the parameterized model and consider the quantitative implications of pol­

icy interventions that impact either the network structure or the initial distribution of information 

across agents. Throughout the section, we focus on the estimates in Table 6, column 1 that include 

physicians in all specialties and regions. 

7.1 Convergence in Agents’ Idiosyncratic Beliefs 

A straightforward implication of the model is that agents’ beliefs regarding the true, unconditional 

product qualities converge over time to their true values. That is, within each spell k, the mean 
 βidt of individual i’s idiosyncratic beliefs about the true, unconditional quality of product d, βT

dk, 

converges over time to this true value, βT
dk

 . This occurs in the model because agents are Bayesian 

and the distribution of signals is unbiased. Thus, as time progresses, agents’ beliefs increasingly 

reflect the mean value of signals received, which itself converges to the true value, and to a decreasing 

extent reflect prior beliefs about product quality. 

To assess whether the data are consistent with this prediction of the model, we proceed in three 

steps. First, we map the estimated βT
dk

 
 values to the prescription shares that they would imply for 

an agent holding such beliefs. For this, we apply the static choice equation (7) as follows 

(17)

Notice that the expression (17) above implies that two agents with identical (and correct) beliefs 

about product qualities would nevertheless make different prescription choices in period t due to 

differences in the precision of their beliefs, Sit, in period t. Second, we calculate the Euclidean 

distance between a) the prescription share vector for a agent i that would be implied by ‘correct’ 

 beliefs, with elements    lnπT −idtk  ln πT
 id  tk from (17), and b) agent i’s actual prescription vector 

ln πidt − ln πid  t which is observed in the data. Third, we examine the evolution of this Euclidean 

‘distance to the truth’ measure over time by considering how its mean value across agents changes 

within a spell. An important feature of this setup is that the estimation procedure itself does not 

place restrictions on the true, relative drug qualities T β − βT
dk d k that would imply convergence; these 
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quality parameters serve a role similar to that of simple product fixed effects reflecting average, 

relative prescription shares during an entire spell. 

Figure 12 plots the mean value of this Euclidean distance to the truth, for the final spell 

considered in our analysis. This is a useful starting point because for 18 consecutive quarters, there 

are no changes in the set of products available, nor their patent status. Consistent with the within-

spell convergence prediction of the model, the line in Figure 12 is monotonically decreasing, with a 

highly significant downward slope of −0.291 (std. error 0.012). Because the prediction should hold 

in all spells, not only the final spell, Figure 13 replicates the graph for the complete time horizon 

of our analysis. This latter figure reveals convergence within each spell, with an average estimated 

slope controlling for spell fixed effects of −0.331 (std. error 0.024). 

Notice that Figure 13 also shows large increases in the Euclidean distance measure between 

the first period of spells three and five relative to the final period of the preceding spells (spells 

two and four). This likely reflects, in part, an mechanical increase in the distance measure, which 

itself increases in the length of the vector considered: for example, as a new product is introduced 

and the set of choices increases from three to four, the Euclidean distance measure increases even 

if the mean prescription distance for each vector were held constant. To adjust for this, Figures 

14 and 15 replicate Figures 12 and 13 but restrict attention to the set of four initially-available 

products, Lovastatin, Simvastatin, Pravastatin, and the reference drug Lipitor. These restricted 

figures confirm the pattern of within-spell convergence, with respective downward, within-spell 

slopes of −0.0601 (std. error 0.0042) and −0.0851 (std. error 0.016), both highly significant. 

Importantly, Figure 15 is further consistent with the idea that there is aggregate convergence in 

agents’ beliefs not only within but also across spells. 

7.2 Agents’ Convergence Rates, Network Position, and Initial Beliefs Precision 

Beyond aggregate convergence, the model predicts heterogeneity in agents’ respective rates of con­

vergence to the truth in beliefs about product qualities. Specifically, the Bayesian updating expres­

sion (5) implies that when agent i forms posterior beliefs at t, the weight placed on new signals 

received is strictly increasing in the ratio j τij Rjt/Sit+1. It is thus simple to observe that, all 

else equal, agents with higher degrees of network connectedness, as well as agents with less-precise 

initial beliefs, converge to the truth at a greater rate. To evaluate whether the data are consistent 

with this prediction regarding heterogeneous rates of convergence, we again consider the measure 

of agent i’s Euclidean ‘distance to the truth’ in period t. Using this distance measure, as a first 

step we obtain agent-specific estimates of the average linear rate of convergence as follows, 

Euclidean Distance to Truthit = λi × t + ηi + ηt + µit. (18) 

Second, we project the estimated rates of convergence λi on the two agent-i characteristics that 

determine convergence rates in the model: network connectedness τ 1
i ≡ j τij N , and the precision 

of initial beliefs Si0. The estimates appear in Table 14. Consistent with the model, the estimates 

reveal a negative and highly significant correlation between the average linear decline in the Eu­

clidean distance to the truth across agents i and their index of network connectedness τ i which is 
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2 − σd 

2 )/(2Si0) .

data estimates and data 

constructed using the data and estimates in Table 6. Moreover, the correlation remains significant 

when including zipcode fixed effects in the regression. This implies that, for two agents located 

in the same five-digit zipcode, for whom the only variation in network connectedness is due to 

differences in specialty, school, or cohort, it remains true that relatively well-connected physicians 

converge to the truth at correspondingly faster rates on average. Column 3 adds the initial beliefs 

precision, again constructed using the data and estimates in Table 6; the positive and highly signif­

icant coefficient is again consistent with the model, suggesting that the beliefs of agents with high 

levels of initial beliefs precision are also slower to converge to the truth. 

Taken together, the results in Figures 12 through 15 and Table 14 are consistent with the 

model predictions regarding aggregate beliefs convergence to the truth and also the heterogeneity 

across agents in idiosyncratic convergence rates given variation in agents’ network position and the 

precision of initial beliefs. These support the validity of the model and its assumptions for the data 

setting we consider. 

7.3 Simulating the Model 

To further understand the model and its quantitative implications given the estimates described 

in section 5, we simulate the full model and consider two sets of policy interventions that impact 

individual and thus also aggregate rates of convergence. The first set of interventions we evaluate 

are targeted changes to the network structure that change the τij values. Such interventions are 

conceptually related to trade policy (e.g. Eaton Kortum 2002, Donaldson 2018). The second set 

of interventions changes the distribution of initial beliefs’ precision Si0 across agents i and is thus 

loosely related to the notion of information injection (e.g. Banerjee et al 2013, Akbarpour, Malladi, 

and Saberi 2018). A key question in this literature that our analysis will consider is whether it is 

more efficient to target well-connected versus peripheral agents and links. 

To simulate the model, we begin by specifying agents’ prior beliefs βid0 to be consistent with 

their own observed product choice shares in the initial period of the data, given their estimated 

initial stock of signals Si0. That is, we define 

Using the values of {τij } and {Si0} implied by our data and the parameter estimates of the 

model, we calculate the complete (deterministic) path of signal stocks Sit for each agent i and period 

t > 0. Then, using the Bayesian updating rule and the estimated signal distribution parameters 
T {β }d  and {σ2}d , we simulate mean beliefs βidt for all agents i, products d, and time periods t > 1.

Importantly, although the signal distribution is  centered around βT
d , the fact that agents draw 

only a finite number of signals per period implies beliefs evolve only gradually over time. Using the 

simulated data, we recompute the measure of agents’ Euclidean distance to the truth in prescription 

shares that is implied by their beliefs in each period, and replicate the aggregate convergence graph, 

Figure 12, described above. As in Figure 12, this simulation considers the final spell only, in which 

the set of available products is fixed. 
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The simulated version of Figure 12 appears in Figure 16, and shows a similarly decreasing 

curve with a negative and highly significant slope of −0.502 (std. error 0.030). This matches the 

aggregate figure qualitatively, and as a moment that is not targeted in our estimation, is reasonably 

close in magnitude as well. That said, it is worth noting that the model predicts somewhat faster 

convergence than exists in the data. 

7.4 The Influence of Network Structure on Convergence 

Having established that the simulated model features aggregate convergence to the truth with a 

magnitude similar to that in the data, we now proceed to evaluate the quantitative implications 

of policy interventions. We begin by considering two symmetric adjustments to the structure 

of the network. The first intervention is to strengthen the weakest network links, and the second 

intervention is its opposite, to weaken then strongest network links. To implement this, we simulate 

the model after replacing all first-quartile τij values with the 25th-percentile τij value, thereby 

flattening the bottom quartile of the τij distribution. Then, we resimulate the model after replacing 

all fourth-quartile τij values with the 75th-percentile τij value, flattening the top quartile of the τij 
distribution. Intuitively, the first intervention should speed aggregate convergence by increasing 

the flow of signals spread over the network in each period, and for the same reason, the second 

should slow aggregate convergence. To understand the quantitative impact of each intervention, 

we replicate the aggregate convergence graph for the simulated baseline model in Figure 12 using 

both counterfactual networks. 

The resulting graphs appear in Figures 17 and 18, which show the aggregate convergence curve 

for the simulation under the counterfactual network (green line) and for comparison, under the 

true network (black line). It is evident that, despite the qualitative symmetry in the two network 

adjustments, the latter intervention targeting the strongest links with the highest τij values has 

a substantially larger impact on convergence. Quantitatively, this intervention implies a slope of 

-0.446 (std. error 0.021), which is statistically different from that of the simulated baseline model 

−0.502 (std. error 0.030). On the other hand, the intervention targeting the weakest network links 

has a negligible impact on convergence, as the resulting slope −0.507 (std. error 0.031) is not 

statistically different from the baseline model. Thus, this simple policy intervention reveals that 

adjusting the network structure can significantly impact the aggregate rate of beliefs convergence, 

and that the largest impacts are achieved by targeting the strongest network links. 

7.5 Initial Beliefs and the Rate of Convergence 

A substantial literature has considered the importance of social networks for channeling knowledge 

flows across individuals, and thereby determining aggregate rates of information ‘infection.’ In our 

model, because agents always share unbiased signals about the true, unconditional drug qualities 

about which they are learning, interventions that ‘seed’ the network with information by giving 

certain agents the true drug qualities would not have a meaningful impact on the spread of knowl­

edge or convergence outcomes. Moreover, such policies would not be feasible as true drug qualities 

are fundamentally unknown, including to policymakers. Nevertheless, it is possible to intervene in 
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8 Conclusion 

a way that relates to agents’ information by making changes to the distribution of initial signals 

stocks, Si0. Again, the question we are interested in answering is whether targeting those with high 

versus low values is more efficient in achieving faster convergence to the truth. 

Similar to the network interventions described above, we proceed by considering two symmetric 

adjustments. The first increases the initial beliefs precision Si0 for those with the lowest estimated 

values, by replacing the first-quarter values with the 25th-percentile Si0 value. The second decreases 

Si0 for agents with the highest values, replacing top-quartile values with the 75th-percentile Si0 

value. We resimulate the model under both changes, where intuitively, the first intervention should 

slow convergence and the second should increase its pace. To understand the quantitative impact 

of each intervention, we again replicate the aggregate convergence graph for the simulated baseline 

model in Figure 12 using both counterfactual distributions of Si0. 

Aggregate convergence graphs for each of the two simulations appear in Figures 19 and 20. As 

described above, the green line is the simulated convergence curve under the counterfactual model, 

and the black line shows the baseline simulated model, for comparison. While the interventions have 

the predicted effects on aggregate convergence, it is striking to observe that neither intervention has 

a quantitatively important impact on convergence. Increasing precision for low-Si0 agents decreases 

the convergence-curve slope from −0.502 (std. error 0.030) to −0.491 (std. error 0.028), a difference 

that is not statistically different from zero. Similarly, decreasing Si0 for agents with the highest 

values speeds convergence, but the resulting slope is only −0.504 (std. error 0.031), which is again 

statistically identical to the baseline model. 

Without knowing the relative costs of intervening to change Si0 or τij values, it is of course 

not possible to undertake a full welfare analysis of which type of intervention is more efficient 

for stimulating aggregate convergence. Moreover, the analysis above is best viewed as capturing 

short-run implications; this is because our partial-equilibrium model does not permit agents to 

determine their network position nor the intensity of their exposure to new signals through active 

search. Despite these caveats, the simulation results strongly suggest that targeted interventions 

impacting the structure of the network are substantially more potent than interventions affecting 

the distribution of information (initial signal stocks) across agents. 

This paper examines the diffusion of knowledge within a social network. We develop an empirical 

model capturing general features of learning among professionals that make repeated decisions on 

behalf of clients. Importantly, these professionals face uncertainty regarding the true, unconditional 

qualities of the available choices, and it is about these unobserved qualities that agents in our model 

learn. We show that under the dual assumptions that agents a) make static multinomial choices 

in each period, and b) update idiosyncratic prior beliefs regarding product qualities in a Bayesian 

fashion, we obtain a framework that offers a full characterization of not only the evolution of choice 

efficiency at the agent level, but also at the aggregate level. This latter fact allows us to use the 

model to consider the implications of micro-level policy interventions for aggregate ‘productivity 

gains’ in the form of increased average efficiency of individuals’ decisions. Moreover, we show that 
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estimating the parameters of the model along with standard errors is feasible using a restricted 

nonlinear least-squares estimator. 

To understand the qualitative and quantitative implications of the model, including possible 

policy interventions that affect the fundamental distribution of knowledge or the network structure 

itself, we use estimate the model for a context in which we are able to observe the choices of a 

complete professional network over an 11-year period. In particular, we observe the cholesterol-drug 

prescription decisions of over 50,000 U.S. physicians at a quarterly frequency during January 2000 

through December 2010, a period during which the set of available products and their perceived 

relative qualities experienced substantial change. 

Among the parameters that we estimate are the true, unconditional product qualities that 

agents learn about in the model. We use these estimates and the individual-level choice share data 

to assess two of the model’s predictions regarding the convergence of agents’ beliefs over time to 

their true values. In addition to predicting that agents’ beliefs about product qualities converge to 

the truth, the model reveals two fundamental determinants of heterogeneity in agents’ idiosyncratic 

rates of convergence: the beliefs of agents with relatively high levels of network connectedness and 

relatively less-precise initial beliefs should converge to the truth at systematically higher rates. In 

validation of our model and its assumptions, we find that the data are strongly consistent with 

aggregate convergence to the truth, and also indicate the statistical importance of both sources of 

heterogeneity in individual agents’ convergence rates. 

Finally, our simulation of the model and policy interventions reveal novel insights relevant for 

policies that aim to facilitate increases in the ‘productivity’ of agents decisions. These simulations 

suggest that policies affecting the network structure may be particularly influential, especially when 

targeting those network links that are already the strongest. By contrast, we find a relatively limited 

role for interventions targeting weak links or the distribution of information across individual agents. 
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Figure 1: Aggregate Evolution in Product Choices, January 2000 to December 2010 

0
5

10
15

20
25

30
35

To
ta

l p
re

sc
rip

tio
n 

vo
lu

m
e,

 m
illi

on
s

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Quarters since January 2000

Lipitor

Simvastatin

Pravastatin

Lovastatin

Vytorin Crestor

Zetia

Notes: For each date indicated on the horizontal axis, the height of each shaded region indicates 
the aggregate prescription volume (number of prescriptions) filled during that period. Labels for 
specific drugs appear on the region corresponding to that drug. 
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Figure 2: Evolution in Product Choices in New York, NY, January 2000 to December 2010 
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Notes: For each date indicated on the horizontal axis, the height of each shaded region indicates 
the total prescription volume (number of prescriptions) filled in New York, NY (three digit zipcode 
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Figure 3: Aggregate Evolution in Product Choices in Hemet, CA, January 2000 to December 2010 
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Table 1: Major U.S. Cholesterol Drug Approvals,
 
January 2000–December 2008
 

Drug Name Release Date FDA Category 

Lovastatin December 2001 Generic version 
Zetia October 2002 Molecular entity 
Crestor August 2003 Molecular entity 
Vytorin July 2004 Combination 
Lovaza November 2004 Molecular entity 
Pravastatin April 2006 Generic version 
Simvastatin June 2006 Generic version 

Notes: This table lists all major U.S. Cholesterol Drug Introductions 
during the period January 2000–December 2008. Each product was 
approved for sale in the United States on the date indicated. As 
indicated, new drug approvals are categorized by the FDA based on 
whether the product is a new molecular entity, a new drug combina­
tion, a new dosage form, or a new generic equivalent. 

Table 2: Evolution in the Within-Molecule Substitution to Generic 

Generic Share in Prescriptions 

Lovastatin Pravastatin Simvastatin 
After six months 

Mean 0.8320 0.8240 0.8642 
St Dev 0.3364 0.2808 0.2129 
5th Percentile 0 0 0.4286 
95th Percentile 1 1 1 

After 12 months 
Mean 0.9057 0.8482 0.9779 
St Dev 0.2606 0.2837 0.0866 
5th Percentile 0 0 0.8750 
95th Percentile 1 1 1 

December 2010 
Mean 0.9996 0.9942 0.9974 
St Dev 0.0170 0.0534 0.0271 
5th Percentile 1 1 1 
95th Percentile 1 1 1 
Notes: This table describes within-molecule, generic prescription 
shares for lovastatin, pravastatin, and simvastatin across U.S. physi­
cians. The top panel describes the distribution of doctor-specific 
prescription shares for each molecule six months after its patent ex­
piration. The center panel provides the analogous statistics for 12 
months after patent expiration, and the bottom panel does the same 
for the final month observed in our dataset, December 2010. The 
upper-left number in Panel A (mean, Lovastatin, 0.8320) is the mean, 
across physicians, fraction of cholesterol drug prescriptions for Lovas­
tatin in May 2002 that are accounted for by generic lovastatin. Below 
the mean is the standard deviation of this fraction across physicians, 

  followed by 5th and 95th percentile values. Generic approval dates 
are from the U.S. Food and Drug Administration; prescription data 
are from IMS Health. 
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Table 3: Baseline Estimates by Specialty – Cardiology
 

Complete Network Geography Only 
Estimate 

(1) 
Standard Error 

(2) 
Estimate 

(3) 
Standard Error 

(4) 

Bilateral Proximity, τij = τ (bτ , Y ij ) 
Geographic Proximity 1 Fixed 1 Fixed 
Same Medical School Indicator  0.2083a 0.0432 
Graduation Year Proximity  0.0644a 0.0060 

Initial Precision, Si0 = S(bS , Xi0) 
County Mean Household Income  0.2192a 0.0510  0.0832a 0.0116 
County Population Density  0.7089a 0.1414  0.9705a 0.0849 
Initial Prescription Volume  49.560a  6.6972a 10.763 1.1623 
Experience  -879.75a 104.86  -152.67a 17.777 
Female -34.032 24.867  -10.348b 4.7554 
Constant  42.6329a 5.5213  4.6549a 0.9094 

Distribution of Signal Values 
Relative Mean by Drug, First Spell, βT −d1  βT 

d11 
Lovastatin  -3.7981a 0.0821  -3.4937a 0.0430 
Pravastatin  -1.4330a 0.0515  -1.3798a 0.0274 
Simvastatin  -0.6553a 0.0436  -0.5992a 0.0234 

Relative Mean by Drug, Final Spell, βT −d6  βT 
d16 

Lovastatin  -1.9895a 0.0490  -1.8914a 0.0388 
Pravastatin  -0.7660a 0.0366  -0.7456a 0.0314 
Simvastatin  1.4576a 0.0260  1.4793a 0.0204 
Zetia  -1.9566a 0.0576  -1.7430a 0.0380 
Crestor  0.4068a 0.0792  0.3286a 0.0484 
Vytorin  -3.1202a 0.0819  -2.3009a 0.0507 

Relative Variance by Drug, σ2 −d  σ2 
d1 

Lovastatin  57.870a 15.4559  3.8734a 1.4292 
Pravastatin -12.220 9.1205  -2.9075a 0.8995 
Simvastatin -7.0912 7.8192  -2.0648a 0.7724 
Zetia  210.89a 26.240  23.720a 2.3047 
Crestor 47.454 31.5914  16.063a 3.2950 
Vytorin  598.15a 52.853  51.074a 3.4685 

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed 

       

Number of Doctors 7,069 
Number of Observations 1,519,835 

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (11) under the restriction (10) for all cardiologists in the data. Estimates of this baseline model 
appear in column 1. Column 3 provides estimates of a related model that further restricts the network proximity terms τij to 
depend only on geography. Standard errors are shown to the right of each point estimate. The reference drug is Lipitor and 
the risk aversion parameter α is from Crawford and Shum (2005). 
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Table 4: Baseline Estimates by Specialty – Internal Medicine
 

Complete Network Geography Only 
Estimate 

(1) 
Standard Error 

(2) 
Estimate 

(3) 
Standard Error 

(4) 

Bilateral Proximity, τij = τ (bτ , Y ij ) 
Geographic Proximity 1 Fixed 1 Fixed 
Same Medical School Indicator  0.1407a 0.0187 
Graduation Year Proximity  0.0607a 0.0030 

Initial Precision, Si0 = S(bS , Xi0) 
County Mean Household Income  0.4754a 0.0666  0.2362a 0.0151 
County Population Density  0.9073a 0.1412  2.1766a 0.1062 
Initial Prescription Volume  237.26a 14.065  44.258a 2.0618 
Experience  -1729.8a 129.37  -315.66a 23.710 
Female  -36.741c 20.660  -10.033b 4.1700 
Constant  90.8077a 7.0067  7.8094a 1.2672 

Distribution of Signal Values 
Relative Mean by Drug, First Spell, βT −d1  βT 

d11 
Lovastatin  -3.4379a 0.0465  -3.3739a 0.0262 
Pravastatin  -1.3600a 0.0311  -1.4139a 0.0176 
Simvastatin  -0.8653a 0.0279  -0.8883a 0.0159 

Relative Mean by Drug, Final Spell, βT −d6  βT 
d16 

Lovastatin  -1.2068a 0.0204  -1.2046a 0.0162 
Pravastatin  -0.4695a 0.0172  -0.4844a 0.0152 
Simvastatin  1.7248a 0.0125  1.7281a 0.0101 
Zetia  -2.2788a 0.0312  -1.9769a 0.0206 
Crestor  -0.0601a 0.0397  -0.1174a 0.0244 
Vytorin  -3.3133a 0.0430  -2.3094a 0.0269 

Relative Variance by Drug, σ2 −d  σ2 
d1 

Lovastatin  43.060a 17.735  8.8551a 1.7601 
Pravastatin  -86.869a 12.286  -10.246a 1.2281 
Simvastatin  -58.332a 10.941  -6.3407a 1.1036 
Zetia  683.28a 41.797  61.738a 3.3594 
Crestor 24.473 45.371  20.508a 4.5619 
Vytorin  1963.7a 87.216  145.37a 5.0373 

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed 
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed 

Number of Doctors 21,653 
Number of Observations 4,655,395 

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (11) under the restriction (10) for all internists in the data. Estimates of this baseline model 
appear in column 1. Column 3 provides estimates of a related model that further restricts the network proximity terms τij to 
depend only on geography. Standard errors are shown to the right of each point estimate. The reference drug is Lipitor and 
the risk aversion parameter α is from Crawford and Shum (2005). 
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Table 5: Baseline Estimates by Specialty – Family Practice
 

Complete Network Geography Only 
Estimate 

(1) 
Standard Error 

(2) 
Estimate 

(3) 
Standard Error 

(4) 

Bilateral Proximity, τij = τ (bτ , Y ij ) 
Geographic Proximity 1 Fixed 1 Fixed 
Same Medical School Indicator  0.0474a 0.0049 
Graduation Year Proximity  0.0184a 0.0008 

Initial Precision, Si0 = S(bS , Xi0) 
County Mean Household Income  0.0854a 0.0202  0.0243a 0.0082 
County Population Density  0.7110a 0.1615  1.5493a 0.1297 
Initial Prescription Volume  83.761a 4.2689  36.408a 1.4121 
Experience  -395.12a 34.686  -103.02a 12.0102 
Female -0.7985 5.4909  1.6414a 2.1411 
Constant  21.8084a 1.8313  5.9075a 0.6250 

Distribution of Signal Values 
Relative Mean by Drug, First Spell, βT −d1  βT 

d11 
Lovastatin  -3.5033a 0.0595  -3.3663a 0.0364 
Pravastatin  -1.0522a 0.0376  -1.1997a 0.0232 
Simvastatin  -0.3812a 0.0334  -0.5239a 0.0205 

Relative Mean by Drug, Final Spell, βT −d6  βT 
d16 

Lovastatin  -0.9009a 0.0214  -0.9009a 0.0174 
Pravastatin  -0.0876b 0.0186  -0.0876a 0.0169 
Simvastatin  1.9999a 0.0131  1.9999a 0.0111 
Zetia  -1.6286a 0.0356  -1.6286a 0.0244 
Crestor -0.0509 0.0430  -0.0509c 0.0278 
Vytorin  -1.9824a 0.0471  -1.9824a 0.0318 

Relative Variance by Drug, σ2 −d  σ2 
d1 

Lovastatin  25.685a 6.1975  5.8098a 1.3277 
Pravastatin  -59.1872a 4.3634  -15.9954a 0.8898 
Simvastatin  -69.5182a 4.1762  -19.8590a 0.8040 
Zetia  155.2922a 13.3383  21.5680a 2.7473 
Crestor -19.5912 16.2344 -5.0965 3.5122 
Vytorin  720.4631a 26.4837  92.8266a 4.1204 

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed 
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed 

Number of Doctors 18,302 
Number of Observations 3,934,930 

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (11) under the restriction (10) for all family practice physicians in the data. Estimates of this 
baseline model appear in column 1. Column 3 provides estimates of a related model that further restricts the network proximity 
terms τij to depend only on geography. Standard errors are shown to the right of each point estimate. The reference drug is 
Lipitor and the risk aversion parameter α is from Crawford and Shum (2005). 
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Table 6: Baseline Estimates, All Specialties
 

δ < 1 δ = 1 
Estimate 

(1) 
Standard Error 

(2) 
Estimate 

(3) 
Standard Error 

(4) 

Bilateral Proximity, τij = τ (bτ , Y ij ) 
Geographic Proximity 1 Fixed 1 Fixed 
Same Medical School Indicator  0.0978a 0.0426  0.1835a 0.2899 
Same Medical Specialty Indicator  0.0107a 0.0021  0.0273a 0.1054 
Graduation Year Proximity  0.0244a 0.0072  0.0171a 0.0521 

Initial Precision, Si0 = S(bS , Xi0) 
County Mean Household Income  0.3559a 0.0360  0.3788a 0.0543 
County Population Density  0.2654a 0.0740  0.2903a 0.0871 
Initial Prescription Volume  50.547a 5.7961  51.887a 9.4723 
Experience 28.166 45.005 20.709 51.943 
Female -2.4207 7.3330 -2.1054 8.8955 
Internal Medicine Indicator  38.047a 10.810  112.28a 32.999 
Cardiology Indicator  -41.457a 9.1189  -36.435a 11.152 
Family Practice Indicator  24.012b 9.7928  65.638a 22.090 
Constant  -12.486a 2.0309  -13.9828a 2.3325 

Distribution of Signal Values 
Relative Mean by Drug, First Spell, βT −d1  βT 

d11 
Lovastatin  -3.4459a 0.0962  -3.2655a -3.2655 
Pravastatin  -1.3426a 0.0621  -1.5550a -1.5550 
Simvastatin  -0.7239a 0.0576  -0.9762a -0.9762 

Relative Mean by Drug, Final Spell, βT −d6  βT 
d16 

Lovastatin  -1.1530a 0.0416  -0.9963a 0.0354 
Pravastatin  -0.3226a 0.0355  -0.1812a 0.0355 
Simvastatin  1.7918a 0.0258  2.0130a 0.0228 
Zetia  -2.0715a 0.0644  -1.5405a 0.0338 
Crestor -0.0458 0.0801  0.2968a 0.0343 
Vytorin  -3.0325a 0.0927  -1.4831a 0.0339 

Relative Variance by Drug, σ2 −d  σ2 
d1 

Lovastatin  13.193a 6.3092 
Pravastatin  -13.701a 4.2851 
Simvastatin  -16.567a 4.1220 
Zetia  107.60a 15.593 
Crestor 23.619 16.336 
Vytorin  321.19a 34.886 

Discount Factor, δ 0.9873 Fixed 1 Fixed 
Risk Aversion Parameter, α 0.9900 Fixed 

Number of Doctors 
Number of Observations 

5,304 
1,140,360 

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (11) under the restriction (10) for a ten percent random sample of all physicians in the data. 
Estimates of this baseline model appear in column 1. Column 3 provides estimates of a related model that further restricts 
the discount factor δ = 1 implying no time discounting. Standard errors are shown to the right of each point estimate. The 
reference drug is Lipitor and the risk aversion parameter α is from Crawford and Shum (2005). 

36
 



Table 7: Model Estimates with Restricted Network Specification – Distance Only
 

δ < 1 δ = 1 
Estimate 

(1) 
Standard Error 

(2) 
Estimate 

(3) 
Standard Error 

(4) 

Bilateral Proximity, τij = τ (bτ , Y ij ) 
Geographic Proximity 1 Fixed 1 Fixed 

Initial Precision, Si0 = S(bS , Xi0) 
County Mean Household Income  0.0759a 0.0062  0.0699a 0.0055 
County Population Density  0.4035a 0.0481  0.4128a 0.0469 
Initial Prescription Volume  13.281a 0.9393  12.139a 0.8552 
Experience -12.483 10.289 -11.212 9.5379 
Female 0.1436 1.8131 0.3724 1.6792 
Internal Medicine Indicator 2.8213 2.4431 2.5150 2.2538 
Cardiology Indicator  -9.3386a 2.4251  -9.1982a 2.1704 
Family Practice Indicator -0.1344 2.3825 -0.0643 2.2138 
Constant  -1.8305a 0.4721  -1.6941a 0.4212 

Distribution of Signal Values 
Relative Mean by Drug, First Spell, βT −d1  βT 

d11 
Lovastatin  -3.4235a 0.0558  -3.2017a 0.0323 
Pravastatin  -1.3458a 0.0357  -1.4920a 0.0207 
Simvastatin  -0.7122a 0.0338  -0.9136a 0.0193 

Relative Mean by Drug, Final Spell, βT −d6  βT 
d16 

Lovastatin  -1.1688a 0.0348  -0.9936a 0.0357 
Pravastatin  -0.3233a 0.0323  -0.1686a 0.0358 
Simvastatin  1.8026a 0.0219  2.0369a 0.0228 
Zetia  -1.7899a 0.0439  -1.5334a 0.0341 
Crestor 0.0055 0.0514  0.3194a 0.0345 
Vytorin  -2.1117a 0.0575  -1.4847a 0.0342 

Relative Variance by Drug, σ2 −d  σ2 
d1 

Lovastatin  3.9703a 0.8279 
Pravastatin  -2.8304a 0.5595 
Simvastatin  -3.6635a 0.5284 
Zetia  11.610a 1.6477 
Crestor 3.4806 2.1602 
Vytorin  30.340a 2.4694 

Discount Factor, δ 0.9873 Fixed 1 Fixed 
Risk Aversion Parameter, α 0.9900 Fixed 

Number of Doctors 5,304 
Number of Observations 1,140,360 

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (11) under the restriction (10) for a ten percent random sample of all physicians in the data. 
Estimates of this baseline model, under the additional restriction that network proximity τij depends only on geography, appear 
in column 1. Column 3 provides estimates of a related model that further restricts the discount factor δ = 1 implying no time 
discounting. Standard errors are shown to the right of each point estimate. The reference drug is Lipitor and the risk aversion 
parameter α is from Crawford and Shum (2005). 
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Figure 4: Decomposition of Network Connectedness by Component, Cardiology 

Notes: This figure provides the predicted value of mean network connected­
ness τ ij for each cardiologist i given the estimates in Table 3 and the data 
(solid black line), as well as a decomposition of this curve into its three under­
lying components: geographic proximity (red solid circles), shared medical 
school (blue outlined squares), and cohort proximity (green outlined circles). 

Figure 5: Decomposition of Initial Beliefs Precision, Cardiology 

Notes: This figure provides the predicted value of initial beliefs precision 
Si0 for each cardiologist i given the estimates in Table 3 and the data (solid 
black line), as well as a decomposition of this curve into its four continuous 
components: decision volume (red solid circles), years of experience (green 
outlined circles), local household income (blue outlined squares), and local 
population density (dotted magenta line). 
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Figure 6: Decomposition of Network Connectedness by Component, Internal Medicine 

Notes: This figure provides the predicted value of mean network connected­
ness τ ij for each internist i given the estimates in Table 4 and the data (solid 
black line), as well as a decomposition of this curve into its three underlying 
components: geographic proximity (red solid circles), shared medical school 
(blue outlined squares), and cohort proximity (green outlined circles). 

Figure 7: Decomposition of Initial Beliefs Precision, Internal Medicine 

Notes: This figure provides the predicted value of initial beliefs precision 
Si0 for each internist i given the estimates in Table 4 and the data (solid 
black line), as well as a decomposition of this curve into its four continuous 
components: decision volume (red solid circles), years of experience (green 
outlined circles), local household income (blue outlined squares), and local 
population density (dotted magenta line). 
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Figure 8: Decomposition of Network Connectedness by Component, Family Practice 

Notes: This figure provides the predicted value of mean network connected­
ness τ ij for each family practice physician i given the estimates in Table 5 
and the data (solid black line), as well as a decomposition of this curve into 
its three underlying components: geographic proximity (red solid circles), 
shared medical school (blue outlined squares), and cohort proximity (green 
outlined circles). 

Figure 9: Decomposition of Initial Beliefs Precision, Family Practice 

Notes: This figure provides the predicted value of initial beliefs precision 
Si0 for each family practice physician i given the estimates in Table 5 and 
the data (solid black line), as well as a decomposition of this curve into 
its four continuous components: decision volume (red solid circles), years 
of experience (green outlined circles), local household income (blue outlined 
squares), and local population density (dotted magenta line). 
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Figure 10: Decomposition of Network Connectedness by Component, All Specialties 

Notes: This figure provides the predicted value of mean network connected­
ness τ ij for each physician i in a ten percent random sample of all physicians, 
based on the estimates in Table 6 and the data (solid black line). The four 
separate components of this curve are also shown, including geographic prox­
imity (red solid circles), shared medical school (blue outlined squares), cohort 
proximity (green outlined circles), and shared specialty (dotted black line). 

Figure 11: Decomposition of Initial Beliefs Precision 

Notes: This figure provides the predicted value of initial beliefs precision Si0

for each physician i in a ten percent random sample of all physicians, based 
on the estimates in Table 6 and the data (solid black line). The four separate 
components of this curve are also shown, including geographic proximity (red 
solid circles), shared medical school (blue outlined squares), cohort proximity 
(green outlined circles), and shared specialty (dotted black line). 
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Figure 12: Mean Euclidean Distance to the Truth, Final Spell 
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Notes: This figure plots the average (across doctors i) Euclidean distance between a) the vector 
of relative prescription shares   lnπT − ln πT 

idtk id1tk for doctor i that, as defined in (12), would be  
implied by doctor i choosing products d according to the true, unconditional product qualities 
βT
dk

 , and b) the actual relative prescription shares ln πidt − ln πid1t of doctor i for each quarter  
t in the final spell. 
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Figure 13: Mean Euclidean Distance to the Truth, All Spells 
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Notes: This figure plots the average (across doctors i) Euclidean distance between 
a) the vector of relative prescription shares   lnπT − ln πT 

idtk id1tk for doctor i that, as  
defined in (12), would be implied by doctor i choosing products d according to the 
true, unconditional product qualities βT

dk
 ,
 and b) the actual relative prescription

shares ln πidt − ln πid1t of doctor i for each quarter t during the sample period (all
 
spells). Vertical lines demarcate the six spells. 

Figure 14: Mean Euclidean Distance to the Truth, Initially-Available Products Only, Final Spell 
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Notes: This figure plots the average (across doctors i) Euclidean distance between a) the vector 
of relative prescription shares  ln πT − ln πT 

idtk id1tk for doctor i that, as defined in (12), would be  
implied by doctor i choosing products d according to the true, unconditional product qualities βT

dk
 , 

and b) the actual relative prescription shares ln πidt − ln πid1t of doctor i for each quarter t in the 
final spell. To distinguish the convergence mechanism from mechanical changes in the scale of the 
Euclidean distance measure resulting from product entry, only the four initially-available products 
are included. 
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Table 8: Advertising and Price Effects
 

Cardiology 
Estimate 

(1) 
Standard Error 

(2) 

Internal Medicine 
Estimate 

(3) 
Standard Error 

(4) 

Bilateral Proximity, τij = τ (bτ , Y ij ) 
Geographic Proximity 1 Fixed 1 Fixed 
Same Medical School Indicator  0.1929a 0.0417  0.1520a 0.0205 
Graduation Year Proximity  0.0625a 0.0059  0.0636a 0.0033 

Initial Precision, Si0 = S(bS , Xi0) 
County Mean Household Income  0.2065a 0.0492  0.4252a 0.0651 
County Population Density  0.7178a 0.1436  0.9205a 0.1445 
Initial Prescription Volume  46.241a 6.3777  223.97a 14.032 
Experience  -820.08a 101.66  -1651.1a 129.63 
Female -33.279 24.567  -49.008b 20.503 
Constant  40.414a 5.3486  87.184a 7.0150 

Product Choice Equation 
Advertising, γ  -0.0001b 0.0001  -0.0002a 0.0001 
Drug Price, ξ -0.0119 0.0168 0.0002 0.0098 

Distribution of Signal Values 
Relative Mean by Drug, First Spell, βT  −d1  βT

d11 
Lovastatin  -3.7880a 0.0835  -3.4649a 0.0485 
Pravastatin  -1.4140a 0.0523  -1.3133a 0.0321 
Simvastatin  -0.6364a 0.0443  -0.8448a 0.0289 

Relative Mean by Drug, Final Spell, βT −d6  βT 
d16 

Lovastatin  -1.9703a 0.0498  -1.2262a 0.0213 
Pravastatin  -0.7639a 0.0373  -0.4735a 0.0180 
Simvastatin  1.4579a 0.0266  1.7018a 0.0132 
Zetia  -1.9744a 0.0584  -2.2696a 0.0326 
Crestor  0.4114a 0.0801 -0.0340 0.0412 
Vytorin  -3.1198a 0.0832  -3.2648a 0.0445 

Relative Variance by Drug, σ2 −d  σ2 
d1 

Lovastatin  -50.604a 14.774  -48.748a 17.697 
Pravastatin  13.323a 8.8403  87.578a 12.241 
Simvastatin 8.2084 7.5706  55.853a 10.853 
Zetia  -209.96a 25.675  -646.85a 42.083 
Crestor -43.669 30.444 -12.177 45.030 
Vytorin  -573.26a 51.121  -1851.2a 88.036 

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed 
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed 

Number of Doctors 7,069 21,653 
Number of Observations 1,519,835 4,655,395 

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (16) under the restriction (10) for all cardiologists (column 1) and internists (column 3). Standard 
errors are shown to the right of each point estimate. The reference drug is Lipitor and the risk aversion parameter α is from 
Crawford and Shum (2005). 
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Table 9: Advertising and Price Effects
 

Family Practice 
Estimate 

(1) 
Standard Error 

(2) 

All Specialties 
Estimate 

(3) 
Standard Error 

(4) 

Bilateral Proximity, τij = τ (bτ , Y ij ) 
Geographic Proximity 1 Fixed 1 Fixed 
Same Medical School Indicator  0.0519a 0.0056  0.1305a 0.0306 
Graduation Year Proximity  0.0195a 0.0009  0.0310a 0.0036 
Same Medical Specialty Indicator  0.0088a 0.0011 

Initial Precision, Si0 = S(bS , Xi0) 
County Mean Household Income  0.0764a 0.0202  0.0816a 0.0234 
County Population Density  0.6002a 0.1536  0.0969c 0.0516 
Initial Prescription Volume  80.662a 4.3291  38.100a 4.5493 
Experience  -382.37a 35.485  -187.01a 38.418 
Female -0.4409 5.6620 -4.2342 7.3666 
Constant  21.381a 1.8725  8.9733a 2.0912 

Product Choice Equation 
Advertising, γ  -0.0002b 0.0001  -0.0002a 0.0001 
Drug Price, ξ -0.0377 0.0116  0.0005a 0.0208 

Distribution of Signal Values 
Relative Mean by Drug, First Spell, βT −d1  βT 

d11 
Lovastatin  -3.4996a 0.0623  -3.7049a 0.1114 
Pravastatin  -1.0091a 0.0392  -1.2908a 0.0725 
Simvastatin  -0.3666a 0.0347  -0.7011a 0.0666 

Relative Mean by Drug, Final Spell, βT −d6  βT 
d16 

Lovastatin  -0.9439a 0.0225  -1.2932a 0.0465 
Pravastatin  -0.0554a 0.0195  -0.3616a 0.0386 
Simvastatin  1.9943a 0.0139  1.7541a 0.0288 
Zetia  -1.8776a 0.0369  -2.1133a 0.0695 
Crestor 0.0065 0.0445 -0.0550 0.0895 
Vytorin  -3.1359a 0.0484  -3.2065a 0.0972 

Relative Variance by Drug, σ2 −d  σ2 
d1 

Lovastatin  -22.044a 6.2660  -24.635a 7.4587 
Pravastatin  58.936a 4.4545  18.294a 4.8564 
Simvastatin  66.377a 4.2185  15.971a 4.5281 
Zetia  -149.83a 13.381  -107.62a 15.189 
Crestor 25.269 16.271 -13.823 17.851 
Vytorin  -682.81a 26.631  -347.92a 32.226 

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed 
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed 

Number of Doctors 18,302 5,304 
Number of Observations 3,934,930 1,140,360 

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (16) under the restriction (10) for all family practice physicians (column 1) and a ten percent 
random sample of all physicians (column 3). Standard errors are shown to the right of each point estimate. The reference drug 
is Lipitor and the risk aversion parameter α is from Crawford and Shum (2005). 
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Table 10: Advertising and Price Effects with Fixed Product Qualities
 

Cardiology 
Estimate 

(1) 
Standard Error 

(2) 

Internal Medicine 
Estimate 

(3) 
Standard Error 

(4) 

Bilateral Proximity, τij = τ (bτ , Y ij ) 
Geographic Proximity 1 Fixed 1 Fixed 
Same Medical School Indicator  0.2109a 0.0144  0.2983a 0.0112 
Graduation Year Proximity  0.0614a 0.0020  0.0876a 0.0019 

Initial Precision, Si0 = S(bS , Xi0) 
County Mean Household Income  0.1504a 0.0495  0.4196a 0.0949 
County Population Density  0.4894a 0.1305  0.3465b 0.1667 
Initial Prescription Volume  53.367a 5.9840  340.12a 16.778 
Experience  -650.64a 81.109  -2592.7a 157.10 
Female  -50.878b 24.442  -61.782b 29.676 
Constant  37.633a 4.3477  148.74a 8.8604 

Product Choice Equation 
Advertising, γ  0.0002a 0.0001  0.0001a 0.0000 
Drug Price, ξ  -0.1596a 0.0165  -0.1690a 0.0097 

Relative Mean by Drug, βT −d  βT 
d1 

Lovastatin  -1.5501a 0.0478  -0.4948a 0.0207 
Pravastatin  -1.4244a 0.0342  -1.1252a 0.0174 
Simvastatin  0.4932a 0.0274  1.0213a 0.0141 
Zetia  -3.2765a 0.0584  -3.3073a 0.0310 
Crestor  -0.1601b 0.0760  -0.6983a 0.0379 
Vytorin  -5.0508a 0.0841  -4.9381a 0.0435 

Relative Variance by Drug, σ2 −d  σ2 
d1 

Lovastatin  232.73a 11.8830  1083.4a 24.361 
Pravastatin  26.745a 6.7570  287.19a 12.326 
Simvastatin  184.54a 7.6471  963.53a 19.766 
Zetia  -866.32a 28.4163  -2575.0a 55.887 
Crestor  -259.56a 26.8515  -1024.2a 51.585 
Vytorin  -1776.3a 53.8500  -6031.4a 118.602 

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed 
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed 

Number of Doctors 7,069 21,653 
Number of Observations 1,519,835 4,655,395 

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (16) under the restriction (10) for all cardiologists (column 1) and internists (column 3). Standard 
errors are shown to the right of each point estimate. The reference drug is Lipitor and the risk aversion parameter α is from 
Crawford and Shum (2005). 
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Table 11: Advertising and Price Effects with Fixed Product Qualities
 

Family Practice 
Estimate 

(1) 
Standard Error 

(2) 

All Specialties 
Estimate 

(3) 
Standard Error 

(4) 

Bilateral Proximity, τij = τ (bτ , Y ij ) 
Geographic Proximity 1 Fixed 1 Fixed 
Same Medical School Indicator  0.0588a 0.0026  0.1916a 0.0156 
Graduation Year Proximity  0.0247a 0.0005  0.0503a 0.0023 
Same Medical Specialty Indicator  0.0116a 0.0006 

Initial Precision, Si0 = S(bS , Xi0) 
County Mean Household Income 0.1788a 0.0284 0.1460a 0.0369 
County Population Density  0.4480b 0.1726 0.0328 0.0647 
Initial Prescription Volume 89.126 4.8958 55.315 5.8358 
Experience  -420.96a 40.587  -264.98a 54.090 
Female -2.7455 7.7817 -8.1169 11.367 

  

Constant  24.646a 2.2725  29.042a 3.7456 

Product Choice Equation 
Advertising, γ  0.0002b 0.0001 0.0000 0.0001 
Drug Price, ξ  -0.2416a 0.0115  -0.1670a 0.0206 

Relative Mean by Drug, βT −d  βT 
d1 

Lovastatin  -0.0646a 0.0206  -0.3441a 0.0438 
Pravastatin  -0.7493a 0.0185  -0.9883a 0.0374 
Simvastatin  1.3596a 0.0145  1.2217a 0.0297 
Zetia  -2.7842a 0.0318  -3.3442a 0.0647 
Crestor  -0.9123a 0.0376  -0.9130a 0.0798 
Vytorin  -4.9029a 0.0440  -5.2804a 0.0924 

Relative Variance by Drug, σ2 −d  σ2 
d1 

Lovastatin  312.19a 5.8829  222.14a 9.7413 
Pravastatin  124.71a 3.5107  68.684a 5.0493 
Simvastatin  289.16a 4.7651  199.03a 8.0205 
Zetia  -549.16a 12.067  -503.96a 21.8208 
Crestor  -371.79a 14.377  -256.66a 21.1777 
Vytorin  -1766.1a 28.474  -1250.6a 48.2705 

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed 
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed 

Number of Doctors 18,302 5,304 
Number of Observations 3,934,930 1,140,360 

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (16) under the restriction (10) for all family practice physicians (column 1) and a ten percent 
random sample of all physicians (column 3). Standard errors are shown to the right of each point estimate. The reference drug 
is Lipitor and the risk aversion parameter α is from Crawford and Shum (2005). 
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Table 12: Baseline Estimates by U.S. Region
 

Region 1 - New England Region 2 - East 
Estimate 

(1) 
Standard Error 

(2) 
Estimate 

(3) 
Standard Error 

(4) 

Bilateral Proximity, τij = τ (bτ , Y ij ) 
Geographic Proximity 1 Fixed 1 Fixed 
Same Medical School Indicator  0.0670a 0.0237  0.0136a 0.0028 
Same Medical Specialty Indicator  0.0215a 0.0019  0.0054a 0.0002 
Graduation Year Proximity  0.0803a 0.0065  0.0179a 0.0008 

Initial Precision, Si0 = S(bS , Xi0) 
County Mean Household Income  0.3792a 0.0802 0.0000 0.0438 
County Population Density  0.8071a 0.1170  4.6238a 0.5135 
Initial Prescription Volume  259.36a 20.572  114.22a 6.2029 
Experience  -1422.8a 188.39  -788.47a 67.498 
Female  -69.370b 32.987  -23.628c 12.507 
Internal Medicine Indicator  290.69a  45.769a 97.299 17.281 
Cardiology Indicator 57.083 48.760 -0.0596 20.1431 
Family Practice Indicator  157.80a 43.148  32.435b 16.3352 
Constant  70.064a 9.7256  52.135a 3.6631 

Distribution of Signal Values 
Relative Mean by Drug, First Spell, βT −d1  βT 

d11 
Lovastatin  -3.4932a 0.0667  -3.6234a 0.0708 
Pravastatin  -1.5828a 0.0447  -1.2632a 0.0458 
Simvastatin  -0.7060a 0.0386  -0.1296a 0.0382 

Relative Mean by Drug, Final Spell, βT −d6  βT 
d16 

Lovastatin  -1.7735a 0.0331  -1.1697a 0.0274 
Pravastatin  -0.8954a 0.0263  0.0386a 0.0212 
Simvastatin  1.7515a 0.0185  1.9473a 0.0156 
Zetia  -2.4872a 0.0453  -2.4907a 0.0450 
Crestor  0.1936a 0.0595  0.2850a 0.0555 
Vytorin  -3.3799a 0.0688  -4.4467a 0.0611 

Relative Variance by Drug, σ2 −d  σ2 
d1 

Lovastatin  39.642a 26.431  83.740a 16.8502 
Pravastatin  -60.388a 17.717  -70.588c 11.0803 
Simvastatin  -157.50a 17.672  -151.74a 9.7644 
Zetia  785.90a 61.5746  771.23a 34.6409 
Crestor  -132.93a 65.673  -89.390a 41.0030 
Vytorin  1662.7a 113.74  2205.3a 59.528 

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed 
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed 

Number of Doctors 10,595 19,615 
Number of Observations 2,277,925 4,217,225 

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (11) under the restriction (10) for all physicians located in the U.S. Northeast (columns 1 and 
2, zipcodes begin with 0 or 1) or the U.S. East (columns 3 and 4, zipcodes begin with 3 or 4). Standard errors are shown to 
the right of each point estimate. The reference drug is Lipitor and the risk aversion parameter α is from Crawford and Shum 
(2005). 
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Table 13: Baseline Estimates by U.S. Region
 

Region 3 - Central Region 4 - West 
Estimate 

(1) 
Standard Error 

(2) 
Estimate 

(3) 
Standard Error 

(4) 

Bilateral Proximity, τij = τ (bτ , Y ij ) 
Geographic Proximity 1 Fixed 1 Fixed 
Same Medical School Indicator  0.2806a 0.0484  0.8460a 0.2660 
Same Medical Specialty Indicator  0.0791a 0.0079  0.2822a 0.0321 
Graduation Year Proximity  0.3041a 0.0289  0.9734a 0.1060 

Initial Precision, Si0 = S(bS , Xi0) 
County Mean Household Income 0.0406 0.3249 -0.3211 0.6149 
County Population Density  22.558a 2.8202  16.903a 4.7964 
Initial Prescription Volume  689.35a 71.837  1899.6a 216.96 
Experience  -4076.8a 529.11  -6000.4a 1002.9 
Female -96.447 89.162 -286.20 178.79 
Internal Medicine Indicator  777.14a 132.24  1759.2a 290.10 
Cardiology Indicator -80.964 122.70 210.56 257.07 
Family Practice Indicator  586.44a 115.22  1047.3a 239.48 
Constant  244.51a 31.0297  433.68a 65.4862 

Distribution of Signal Values 
Relative Mean by Drug, First Spell, βT −d1  βT 

d11 
Lovastatin  -3.3633a 0.0667  -3.2939a 0.0670 
Pravastatin  -1.5124a 0.0454  -1.0155a 0.0443 
Simvastatin  -0.7300a 0.0372  -1.1991a 0.0428 

Relative Mean by Drug, Final Spell, βT −d6  βT 
d16 

Lovastatin  -1.2066a 0.0278  -0.6905a 0.0244 
Pravastatin  -0.3028a 0.0244  -0.7918a 0.0238 
Simvastatin  1.7172a 0.0167  1.7903a 0.0179 
Zetia  -1.8615a 0.0396  -2.0765a 0.0410 
Crestor -0.0058 0.0471  -0.4066a 0.0521 
Vytorin  -2.7809a 0.0552  -2.6047a 0.0574 

Relative Variance by Drug, σ2 −d  σ2 
d1 

Lovastatin  142.29c 83.721 -218.97 154.08 
Pravastatin  -196.49a 58.485  -857.68a 134.26 
Simvastatin  -340.11a 54.268  -356.23a 105.25 
Zetia  1769.0a 202.40  2903.4a 419.30 
Crestor 142.09 183.90 620.50 425.20 
Vytorin  5833.5a 512.50  10332a 1127.5 

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed 
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed 

Number of Doctors 12,815 10,015 
Number of Observations 2,755,225 2,153,225 

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (11) under the restriction (10) for all physicians located in the U.S. Central States (columns 1 
and 2, zipcodes begin with 5, 6, or 7) or the U.S. West (columns 3 and 4, zipcodes begin with 8 or 9). Standard errors are 
shown to the right of each point estimate. The reference drug is Lipitor and the risk aversion parameter α is from Crawford 
and Shum (2005). 
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Figure 15: Mean Euclidean Distance to the Truth, Initially-Available Products Only, All Spells 
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Notes: This figure plots the average (across doctors i) Euclidean distance between a) the vector 
of relative prescription shares  ln πT − ln πT 

idtk id1tk for doctor i that, as defined in (12), would be  
implied by doctor i choosing products d according to the true, unconditional product qualities T βdk, 
and b) the actual relative prescription shares ln πidt − ln πid1t of doctor i for each quarter t in the 
final spell. To distinguish the convergence mechanism from mechanical changes in the scale of the 
Euclidean distance measure resulting from product entry, only the four initially-available products 
are included. Vertical lines demarcate the six spells. 
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Figure 16: Simulated Mean Euclidean Distance to the Truth, Final Spell 

Notes: This figure plots the average (across doctors i) Euclidean distance between 
a) the vector of relative prescription shares    lnπT − ln πT

idtk id1tk for doctor i that, as  
defined in (12), would be implied by doctor i choosing products d according to the 
true,  unconditional product qualities βT

dk, and b) the simulated relative prescription 
shares ln πidt − ln πid1 t of doctor i for each quarter t in the final spell. 
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Figure 17: Simulated Mean Euclidean Distance to the Truth, Strengthen Weak Ties 

Notes: This figure plots the convergence path in Figure 16 along with the analogous 
curve (in green) that would result under a counterfactual network in which all first-
quartile τij values are replaced with the 25th-percentile value. 
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Figure 18: Simulated Mean Euclidean Distance to the Truth, Weaken Strong Ties 

Notes: This figure plots the convergence path in Figure 16 along with the analogous 
curve (in green) that would result under a counterfactual network in which all top-
quartile τij values are replaced with the 75th-percentile value. 
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Figure 19: Simulated Mean Euclidean Distance to the Truth, Increase Precision for Low-Si0

Notes: This figure plots the convergence path in Figure 16 along with the analogous 
curve (in green) that would result under a counterfactual distribution of initial preci­
sion levels in which all first-quartile Si0 values are replaced with the 25th-percentile 
value. 
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Counterfactual Decrease in Initial Precision for Highest Values
Baseline Model

Notes: This figure plots the convergence path in Figure 16 along with the analogous 
curve (in green) that would result under a counterfactual distribution of initial pre­
cision levels in which all top-quartile Si0 values are replaced with the 75th-percentile 
value. 

Figure 20: Simulated Mean Euclidean Distance to the Truth, Decrease Precision for High-Si0
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Table 14: Convergence, Network Position, and Initial Beliefs Precision 

Dependent Variable: λi (1) (2) (3) 

Network Connectedness τ i -7.95∗∗∗ 

(0.75) 
-13.0∗∗∗ 

(4.3) 
-18.1∗∗∗ 

(4.6) 
Beliefs’ Precision Si0 0.041∗∗∗ 

(.013) 

Zipcode FE N Y Y 

R2 0.0435 0.6872 0.6923 
Number of Observations 2,477 2,477 2,477 

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. 
This table provides least-squares estimates of (18). Standard errors are shown below 
each point estimate. 
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1 
= − exp(−αεdt(νi)) exp(−αβidt + α2σ2 

idt)2
α2σ2 

idt = − exp −αβidt + − αεdt(νi) ,
2 

  
α2σ2 

idth(Uidt(εdt(νi), βidt, σidt)) = h − exp −αβidt + − αεdt(νi)
2 �  �−1 

α2σ2 
idt = α−1 log exp(−αεdt(νi)) exp −αβidt + 

2

α2σ2 
idt = α−1 log exp(αεdt(νi)) exp αβidt − 

2

  

ασ2 
idt = βidt − + εdt(νi). 
2 

ασ2 
idtd�∗ (βit, σit) = argmax βidt − + εdt(νi) 

d∈D 2 

  � �

Appendix (For Online Publication) 

A.1 Expected Utility 

This section includes a detailed derivation of (1). In particular, plugging in the definition of 
Uidt(εdt(νi), β) and rearranging terms, we can show the result as follows, 

Uidt(εdt(νi), βidt, σidt) ≡ Eβ [Uidt(εdt(νi), β)|βidt, σidt] 
= Uidt(εdt(νi), β)dGidt  
= − exp(−α(β + εdt(νi)))dGidt  
= − exp(−αεdt(νi)) exp(−αβ)dGidt 

  
where the last step uses the fact that for Y ∼ N(µ, σ2), E[exp(aY )] = exp(aµ + 1a2σ2)2 .

A.2 Choice Probabilities 

This section provides a detailed proof for Result 1. First, apply the following monotone transfor­
mation h(·) of Uidt(εdt(νi), βidt, σidt) to the last line above, where 

h(z) = − log(−z)/α. 

Notice that,   
�  � 

  
  

α2σ2 

= α−1 idtαεdt(νi) + αβidt − 
2

Given the assumption above that εdt(νi) follows a Gumbel distribution, the decision rule 
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�
ασ2 ασ2 

idt id�tπidt(βit, σit) ≡ Pr βidt − + �dt(νi) > βid�t − + �d�t(νi), ∀d� = d 
2 2 

�
exp(βidt − ασ2 /2)idt= ,

exp(βid�t − ασ2 /2)d�∈D id�t

� �   ��
�  �  � �

� �

� � � �
  
� �

ασ2

− x t 
α + βidt − 2 = exp − exp 

θ 
d∈D

��
�     �
    

corresponds to the standard multinomial choice problem, for which is it well known (e.g. Train 
2009, chapter 3) that agent i chooses product d for client νi with probability 

�

where the last line is (3). 

A.3 Expected Period Payoff 

This section provides a detailed proof for Result 1. For simplicity, consider first the case in which 
i serves a unit-measure continuum of clients Rit = 1 at t. Then, 

Wit(βit, σit) = Eε[Uit(εt(νi), βit, σit)]
 

= Eε[max{Uidt(εdt(νi), βidt, σidt)}]
 
d∈D 

α2 2 
idt = Eε max − exp −αβidt + − αεdt(νi) 

d∈D 2 
σ

α2σ2 
idt= Eε − exp − max αβidt − + αεdt(νi) ,

d∈D 2 
 

where the last line relies on the strict monotonicity of the function h(x) = − exp(−x). Defining 
the following random variable, 

α2σ2 
idtgit = max αβidt − + αεdt(νi) 

d∈D 2 

notice that the distribution of git may be characterized as follows, 

Git(x) ≡ Pr[git ≤ x]
 

α2σ2
 
idt= Pr max αβidt − + αεdt(νi) ≤ x 

d∈D 2  x ασ2 

= F − βidt + idt 

α 2 
d∈D 

  id

    x 1 ασ2 
idt = exp − exp − × exp βidt − 

αθ θ 2 
d∈D 

−x + Hit 
= exp − exp ,

αθ   
where   

2   
1 ασ

H idt
it ≡ θα ln −d∈D exp βidt  θ 2 . Thus, Git is a Gumbel distribution with shape 

parameter θα and location parameter Hit, implying 

Wit(βit, σit) = Eε[− exp(−git)] 

= −E[exp(−git)] 

= −E[exp(zgit)|z=−1] 

= −Γ(1 + θα) × exp(−Hit), 
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�   
Wit(βit, σit) = −Γ(1 + θα) × exp 

1 
θ 

βidt − 
ασ2 

idt 

2 

−θα 

. 
d∈D 

  �

�     −θα 
1 ασ2 

idtWit(βit, σit) = −Rit × Γ(1 + θα) × exp βidt − ,
θ 2 

d∈D 

�

where the last line uses the moment generating function of the Gumbel distribution. Adding the 
definition of Hit, we thus arrive at 

Noting that the above expected period payoff result relies on the assumption that i serves a contin­
uum of clients, rather than the actual volume of clients served, a doctor serving a measure Rit > 1 
of clients obtains a level of expected utility proportional to that above, 

which follows due to the ex ante homogeneity of clients in the model. 
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x ασ2 

= F − βidt + idt 

α 2 
d∈D 

 
ασ2  − x idt 

α + βidt − 2= exp − exp
θ

d∈D        x 1 ασ2 
idt = exp − exp − × exp βidt − 

αθ θ 2
d∈D   

−x + Hit 
= exp − exp ,

αθ 

  
 

 −θα
1 ασ2 

idtWit(βit, σit) = −Γ(1 + θα) × exp βidt − . 
θ 2

d∈D 

    

     −θα 
1 ασ2 

idtWit(βit, σit) = −Rit × Γ(1 + θα) × exp βidt − ,
θ 2

d∈D 

notice that the distribution of git may be characterized as follows, 

Git(x) ≡ Pr[git ≤ x]   
 

  
 

  
 

2   
   1  

ασ
H idt

it ≡ θα ln d∈D exp βidt −θ 2where . Thus, Git is a Gumbel distribution with shape 

parameter θα and location parameter Hit, implying 

Wit(βit, σit) = Eε[− exp(−git)] 

= −E[exp(−git)] 

= −E[exp(zgit)|z=−1] 

= −Γ(1 + θα) × exp(−Hit), 

where the last line uses the moment generating function of the Gumbel distribution. Adding the 

definition of Hit, we thus arrive at   

Noting that the above expected period payoff result relies on the assumption that i serves a contin­

uum of clients, rather than the actual volume of clients served, a doctor serving a measure Rit > 1 

of clients obtains a level of expected utility proportional to that above,  

which follows due to the ex ante homogeneity of clients in the model. 
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