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Abstract 

Identification problems arise in New Keynesian and macro-finance models when the Taylor 

rule includes both responses to observable variables like inflation and output, and a shock 

unseen by economists. Identification of the rule’s parameters requires additional restrictions 

on this unobserved shock. We demonstrate how this can be accomplished in a macro term 

structure model using only long-run neutrality restrictions consistent with a wide variety of 

theories. The resulting Taylor rule is comparable to those commonly found in the literature. 

The unobserved shock is closely related to the slope factor of empirical term structure 

models. 
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1 Introduction 

The field of macro-finance has the potential to give us deeper insights into macroeconomics 

and macroeconomic policy by combining information about aggregate quantities with asset 

prices. The link between bond-pricing and monetary policy seems particularly promising 

if central banks implement monetary policy through short-term interest rates as in the 

so-called “Taylor rule” of Taylor (1993). And when policy involves temporary departures 

from simple rules, such as recent unconventional monetary policy, it may even introduce an 

important source of financial-market risk. 

If the combination of macroeconomics and finance holds promise, it also raises challenges. 

We address one of them here: the challenge of identifying monetary policy parameters and 

monetary policy shocks. If we see that the short-term interest rate rises with inflation, does 

that reflect the policy of the central bank, a temporary departure from that policy, the 

valuations of private agents, or something else? Can we tell the difference? 

Some prominent scholars argue that the answer is no. Cochrane (2011, page 606) puts 

it this way: “The crucial Taylor rule parameter is not identified in the new-Keynesian 

model.” He devotes most of his paper to making the case. Joslin, Le, and Singleton (2013, 

page 597) make a related point about interpretations of estimated bond pricing models. In 

their words: “Several recent studies interpret the short-rate equation as a Taylor-style rule. 

... However, without imposing additional economic structure, ... the parameters are not 

meaningfully interpretable as the reaction coefficients of a central bank.” Canova and Sala 

(2009), Carrillo, Feve, and Matheron (2007), and Iskrev (2010) also question aspects of the 

identification of New Keynesian models. 

The contribution of this paper is twofold. First, we revisit this conclusion and propose 

an approach to monetary policy identification. Using a state-space model as a unifying 

framework, we find that what matters for identification of the parameters of the Taylor rule 



is our knowledge of the structure of the shock to that one equation alone, specifically how it
 

responds to changes in the current state. In equilibrium, all endogenous variables including 

the interest rate, the inflation rate, and real output growth, depend on the state. But the 

unobservable Taylor rule shock also depends on the state. Without more structure on that 

shock we have no way of decomposing an observed interest rate changes into the various 

components of the Taylor rule, such as changes in inflation, output growth, and the policy 

shock. 

Second, we develop a specific set of identifying restrictions in the context of what Joslin, 

Priebsch, and Singleton (2014) call a “macro-finance affine term structure model” – an 

arbitrage-free term structure model that includes as factors, macroeconomic variables such 

as GDP growth and inflation. The restrictions are based on long-run neutrality of the mon­

etary policy shock. Since short-run responses to policy are unconstrained, these identifying 

assumptions are consistent with a broad class of structural macroeconomic models. Esti­

mation of the model results in estimates of the parameters of the systematic response of 

the Taylor rule to inflation and output growth, and estimates of the unobservable shock to 

the Taylor rule. We explore the dynamic correlations of both macro and financial variables 

to these policy shocks. 

We find that the shock to the Taylor rule has relatively small and short-lived correlations 

with real GDP growth and inflation. On the other hand, it has a more substantial positive 

effect on the short rate and a negative effect on risk premiums embedded in long bond 

yields. In other words, it is closely related to the traditional “slope factor” of reduced-form 

term structure models, and the “conundrum” often expressed by monetary policy makers. 
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2 The identification problem 

We use two examples to illustrate the nature of identification problems in macro-finance 

models with Taylor rules. The first comes from Cochrane (2011). The second is an affine 

bond-pricing model. The critical ingredient in each is what we observe. As the New 

Keynesian literature, we assume that economic agents observe everything but we economists 

do not. In particular, we do not observe the shock to the Taylor rule. The question is how 

this affects our ability to infer the Taylor rule’s parameters. We provide answers for these 

two examples and discuss some of the questions they raise. 

2.1 Cochrane’s example 

Cochrane’s example consists of two equations, an asset pricing relation (the Fisher equation) 

and a Taylor rule (which depends here only on inflation): 

(1) it = r + Etπt+1 

(2) it = τ0 + τπt + s2t. 

Here it is the (one-period) nominal interest rate, r is the real interest rate (assumed constant 

in this example), πt is the inflation rate, and s2t is a monetary policy shock (the need for 

subscript 2 will be apparent shortly). The Taylor rule parameter τ > 1 describes how 

aggressively the central bank responds to inflation. 

The state of the economy is an n-dimensional vector xt and the Taylor rule shock is a linear 

function of it: s2t = dJ2 xt. The state follows the autoregressive process 

(3) xt+1 = Axt + Bwt+1, 

with A stable, B lower triangular with positive diagonal elements, and disturbances {wt} ∼ 
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NID(0, I). (All vectors and matrices conform in size to the dimension of xt.) The uncondi­

tional covariance matrix of xt,  Vx, is the solution to   Vx = AVxA
J + BBJ. To maintain a 

clear distinction between theory and empirical applications, we assume that xt is exogenous, 

and the parameters A and B are part of the structure of the economy. Since xt and wt have 

the same dimension, assuming that B is lower triangular is without loss of generality. 

For simplicity we will assume that xt is observable in our examples, hence, it can be used 

for estimation. Appendix A demonstrates that this has no bearing on the identification 

problem of interest. Replacing xt with an estimate x̂t obtained through Kalman filtering 

using strictly observable variables, adds noise but does not change the fundamental structure 

of the identification problem. 

We solve the model by standard methods; see Appendix B. Equations (1) and (2) imply 

the forward-looking difference equation or rational expectations model 

Etπt+1 = τ0 − r + τπt + s2t. 

The solution for inflation has the form πt = b0 + bJxt for some coefficient vector b and 

intercept b0 to be determined. Then Etπt+1 = b0 + bJEtxt+1 = b0 + bJAxt. Lining up 

terms, we see that b satisfies J   b A = τbJ + dJ2 which we can solve for b,

bJ = −dJ 
2 (τI − A)−1 . (4) 

Likewise, b0 satisfies b0 = τ0 − r + τb0, which implies b0 = (τ0 − r)/(1 − τ ). This is the 

unique stationary solution if A is stable (eigenvalues less than one in absolute value) and 

τ > 1 (the so-called Taylor principle). Equation (1) then gives us it = a0 + aJxt where a 

satisfies aJ = bJA, which implies 

J = −dJ a 2 (τI − A)−1A. (5) 
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Likewise, we can solve for the intercept, a0 = (τ0 − τr)/(1 − τ). 

Now consider estimation. Do we have enough information to estimate the Taylor rule 

parameter τ ? We might try to estimate equation (2) by running a regression of it on πt, 

with the shock s2t as the residual. The problem is evident in equation (4). There is no 

sense in which we can condition on πt while allowing s2t to vary, since they both depend 

on xt. We need to distinguish the effect of the state on the interest rate (represented by 

τbJ) from the effect of the shock (represented  by dJ2 ). Least squares delivers a coefficient 

of Var(πt)−1Cov(πt, it) = (bJVxb)
−1bJV J −1 J

xa = τ + (b Vxb) b Vxd2, which is not in general 

equal to τ . Note that since the bias is not the result of the endogeneity of πt, but rather 

the endogeneity of the omitted variable, s2t, other regression methods like two-stage least 

squares will suffer the same fate. Instrumental variables estimation would require a valid 

instrument for s2t, which we discuss below. 

What about the intercept b0? We can estimate b0 with the mean of πt, but since it depends 

on three unknown parameters, τ0, r, and τ , it neither separately identifies τ0 and r, nor 

does it help in identifying τ . (Throughout the paper we use identified to mean that we 

can distinguish a unique value of a parameter from local alternatives, i.e., the parameter is 

locally point identified .) 

How then can we estimate τ? The critical issue is whether we observe the shock s2t. If we 

observe xt, we can estimate A and Vx. We can also estimate the parameter vectors a and b 

connecting the interest rate and inflation to the state. If we observe the shock s2t, then we 

can estimate the parameter vector d2. We now have all the components of b in (4) but τ , 

which we can infer. The Taylor rule parameter τ is not only identified, it is over-identified. 

If xt has dimension n, we have n equations that each determine τ . In addition, we could 

identify r with the mean of it − πt, then given τ and r, infer the value of τ0 from either the 

mean of it or πt. Note, however, that identifying τ0 is always predicated on first identifying 

τ . 
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Suppose, however, that we do not observe s2t. This is precisely the situation considered 

throughout the New Keynesian literature. If we do not observe s2t, then we cannot estimate 

the coefficient vector d2. Equation (4) then has n equations in n + 1 unknowns, the n shock 

coefficients d2 and the Taylor rule parameter τ , hence it cannot be solved for a unique 

values of these parameters. This is a concrete example of the identification issue faced by 

all empirical work based on forward-looking models with unobserved shocks. 

Cochrane’s example illustrates the challenges we might face in identifying the parameters 

of the Taylor rule, but given its stylized nature – most theoretical and empirical research 

uses more complicated models – one might question its generality. In particular, the shock 

to the Taylor rule in Cochrane’s example is the only shock in the model, which is not a 

common assumption. We know that simple models in which both supply and demand are 

driven by a single shock suffer identification issues, so could the introduction of more shocks 

in other equations help with identification in this case too? For example, a model with a 

state-dependent real interest rate would introduce a shock in Cochrane’s first equation, so 

that the example becomes 

it = r + Etπt+1 + s1t 

it = τ0 + τπt + s2t, 

where r is now the mean of the real interest rate. Can the presence of this additional shock 

identify the Taylor rule? 

Suppose that s1t and s2t are independent – a common assumption in New Keynesian models. 

If s1t is observed, we can use it as an instrument for πt to estimate the Taylor rule equation, 

which gives us an estimate of τ . Given τ , we can then estimate r and τ0 as before, and 

back out the shock s2t. It would seem, therefore, that the introduction of a shock to the 

first equation solved the identification problem. 
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This example, though perfectly logical, is misleading in one respect. Identification of τ is not
 

a consequence of the presence of a shock in the first equation, but rather identification follows 

from the restriction we placed on the Taylor rule shock, s2t, by assuming its independence 

with s1t. Independence is just one example of a restriction on s2t that can identify τ . Later 

examples will show how other restrictions can serve the same purpose. 

Another general feature that this example demonstrates is that identifying τ and backing 

out the unobserved shock s2t are complementary activities: if we can do one, we can do the 

other. We will return to this feature in the empirical application of Section 4. 

2.2 An affine extension 

The identification problem arises because we cannot distinguish the pricing relation for the 

nominal interest rate (1) from the Taylor rule (2). But what about long-term interest rates? 

Unlike the short rate, they are not the direct focus of monetary policy, yet they will respond 

to expected inflation. Can they help identify the Taylor rule? 

We explore this possibility in an affine model, which has become the standard framework 

for empirical term-structure research. In the macro-finance branch of this literature, the 

state includes macroeconomic variables like inflation and output growth. Examples include 

Ang and Piazzesi (2003), Moench (2008), Rudebusch and Wu (2008), Smith and Taylor 

(2009), Chernov and Mueller (2012), Jardet, Monfort, and Pegoraro (2013), Hamilton and 

Wu (2012), Joslin, Le, and Singleton (2013), and Joslin, Priebsch, and Singleton (2014). 

The model starts with the specification of the log pricing kernel, 

$ J− log m = a0 + a xt + λJλt/2 + λJ wt+1, t+1 t t (6)

 is connected to the real (log) 

pricing kernel 

where λt = λ0 + λxt. The nominal (log) pricing kernel m$
t 

mt and inflation by m$
t = mt − πt. The one-period nominal interest rate is 
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then
 

it	 = − log Et exp(mt+1 − πt+1) (7) 

= − log Et exp(m $ 
t+1) = a0 + a J xt. (8) 

Equations (7) and (8) are a more complex version of the Fisher equation – equation (1) – 

popular in the empirical finance literature because of its ability to capture dynamic risks. 

We can think of Cochrane’s example as a linear approximation of (7) with Etmt+1 equal to 

a constant r, which suppresses the impact of both real and nominal risk. Note that we can 

still estimate a0 with the mean of it, and a by projecting it onto the state xt. 

Does the more general model in (8) help to identify parameters of a Taylor rule? Using 

observations on inflation πt and the state xt, we can estimate the intercept b0 and coefficient 

vector b connecting the two: πt = b0 + bJxt. Then the Taylor rule implies 

xt + dJit = τ0 + τπt + s2t = τ0 + τb0 + τbJ 
2 xt. 

Equating our two interest rate relations then gives us J   and a = τbJ + dJ2 a0 = τ0 + τb0.

It is clear, now, that we have the same difficulty we had in the previous example: if we do 

not know the shock parameter d2, we cannot infer τ from estimates of a and b. If xt has 

dimension n, we have n equations to solve for n + 1 unknowns (d2 and τ ). 

The situation is no different if we rotate the state vector so that its first element is the 

inflation rate, zt = Txt = [π J
t x2t . . . xnt]

 . In that case, it would be tempting to 

interpret an equation like (8) linking it to zt, i.e. it = ãJzt as a Taylor rule, with the 

first element of ã  as the shock 

coefficients 

equal to the inflation coefficient τ , and [0 ã2 . . . ãn]
J

d2. However, the first element of ã is actually τ + d21, and the vector we would 

like to interpret as d2 is actually [0 d22 d23 . . . d2n]. In other words, τ and d2 are still 

not identified. 
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Sims and Zha (2006, page 57) anticipated this issue: “The Fisher relation is always lurking
 

in the background ... one might easily find an equation that had the form of the ... Taylor 

rule ... but was something other than a policy reaction function.” Cochrane (2011, page 

598) echoes the point: “If we regress interest rates on output and inflation, how do we know 

that we are recovering the Fed’s policy response, and not the parameters of the consumer’s 

first-order condition?” And finally, Joslin, Le, and Singleton (2013, page 583) draw a very 

clear conclusion about affine macro-finance models: “the parameters of a Taylor rule are 

not econometrically identified.” 

We find it more natural to interpret (8) as an asset pricing relation, analogous to (1), and 

complete the model by adding the Taylor rule (2). Here, too, it is evident that we cannot 

distinguish the systematic component of monetary policy (represented by τb) from shocks 

to policy (represented by d2) without more information. Generalizing the asset pricing 

relation from (1) to (8) has no effect on this conclusion. 

Now we add long-term interest rates to the model. Given the pricing kernel and the linear 

(h)
qt transition equation (3), the absence of arbitrage implies that the date-t price, , of an 

h-period default-free pure-discount bond with a face value of 1, is log-linear in the state: 

(h) (h) 
+ B(h)− log qt = B xt, 0 (9)

where 

B(h) J(I − A ∗ )−1(I − A ∗h)= a 

(h) (h−1) 
+ B(h−1)A ∗ B = a0 + B 0 − B(h−1)BBJB(h−1)J/20 0 

A ∗ = A − Bλ
 

A ∗ 
0 = −Bλ0,
 

 where A∗
0 and A∗ are, respectively, the risk-neutral mean and persistence of xt associated 
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� � 1(h) (h) (h) 
+ B(h)y = − log qt /h = B . t 0 xt

h 

with the pricing kernel   m$
t+1. 

 (1) B0 = a0Since  (1) 
it = yt , we have initial conditions  and B(1) = aJ. Continuously com-

pounded yields for h > 1 are also linear in the state: 

(10)

We saw that even though we can estimate a = B(1) by projecting it onto xt, that is not 

sufficient to identify the Taylor rule parameters on which a is based. We can also estimate 

 (h)
hyt 

 
onto B(h) by projecting xt. But since  B(h) = aJ(I − A∗)−1(I − A∗h) this adds nothing 

to the identification problem: given an estimate for b, any configuration of the parameters 

τ and d2 that leaves a unchanged, will also leave   unchanged. (Note that A∗ can 

be identified without reference to the  Taylor rule, since A∗ = A − Bλ and values for A 

and B can be identified from the the dynamics of the state and λ from the cross-section of 

yields.) Information in longer-term yields may be important for efficient estimation of other 

parameters of the model or the state vector when it is unobserved, but the term structure 

of interest rates does not provide a solution to the problem of identifying the Taylor rule. 

B(h)

This is a more general property shared by the mathematical structure of forecasts. Denote 

(h)
ft = Etzt+ha forecast of variable zt at a horizon of h by , where zt = a0 + aJxt, for some 

(h) 
ft = a0 + aJAhxtarbitrary coefficients (a0, a). The transition equation then implies .

(Recall that yields are just averages of forward rates, which are forecasts of future short-

term interest rates using the risk-neutral dynamics of xt.) A collection of forecasts can be 

used the same way we used yields. Or we could add forecasts to our collection of observables. 

Chernov and Mueller (2012), Chun (2011), and Kim and Orphanides (2012) are examples 

that use survey forecasts in state-space frameworks. The forecasts add useful information 

in all of these applications, but they do not resolve the identification problem. 
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3 Macro-finance models with Taylor rules 

Both Cochrane’s original example and the affine term-structure extension of that model 

have a reduced-form quality. That is, given an abstract specification of the pricing kernel, 

equilibrium will impose restrictions on observables. But the dependence of the pricing 

kernel on deeper parameters of preferences and technologies is left unspecified. Macro-

finance models often include this additional structure. Could that added structure provide 

the basis for identifying the Taylor rule? 

We use two representative-agent examples, one without any monetary non-neutralities and 

one with a Phillips curve, and a so-called structural VAR – a time-series model with pa­

rameters identified by imposing specific economic structure – to explore this question. We 

find that just like the more reduced-form examples above, deeper structural models alone 

will not restrict the Taylor rule shock, hence will not provide the identifying information 

we seek. 

3.1 A representative-agent model without frictions 

A growing body of macro-finance research combines representative-agent asset pricing with 

a rule governing monetary policy. Gallmeyer, Hollifield, Palomino, and Zin (2007) is a good 

example. We simplify their model, using power utility instead of Epstein-Zin recursive 

preferences, and a constant-volatility transition equation for the state. 

The model consists of the previous bond-pricing relation, equation (7), plus 

mt = −ρ − αgt (11) 

gt = g + s1t (12) 

it = τ0 + τπt + s2t. (13) 
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Again, equations (7) and (13) mirror the two equations of Cochrane’s example. Equations
 

(11) and (12) characterize the real pricing kernel based on a representative-agent’s opti­

mization problem and the equilibrium condition in a frictionless endowment economy. The 

first is the logarithm of the marginal rate of substitution of a power utility agent with time 

preference parameter ρ, relative risk aversion parameter α, and log consumption growth gt. 

The second connects fluctuations in the agent’s log consumption growth to the growth of a 

random endowment g + s1t with mean growth of g. As in Section 2, the state x obeys the 

transition equation (3) and shocks are linear functions of it:   sj = dJj x for j = 1, 2. 

Once again, the solution combines equilibrium asset pricing with a forward-looking differ­

ence equation. We posit a solution of the form πt = b0 + bJxt, then solve (7) to get 

it = a0 + a J xt, (14) 

with 

a0 = ρ + αg + b0 − Vm/2 

J a = (αdJ + bJ)A1 

Vm = 1(αdJ + bJ)BBJ(αd1 + b). 

Note the obvious similarity of the short rate equation (14) and the example of Section 2.2. 

Equating (13) and (14) gives us 

(ρ + αg + b0 − Vm/2) + (αdJ + bJ)Axt = (τ0 + τb0) + (τbJ + dJ 
2 )xt.1 

Lining up similar terms, we have b0 = (τ0 − ρ − αg + Vm/2)/(1 − τ) and 

+ dJ bJ 
1 A − dJ(αdJ 

1 + bJ)A = τbJ 
2 ⇒ = (αdJ 

2 )(τI − A)−1 . 
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As before, this gives us a unique stationary solution when A is stable and τ > 1.
 

Now consider identification. Suppose that along with the state xt, we also observe the 

interest rate it, the inflation rate πt, and log consumption growth gt, but not the shock 

s2t to the Taylor rule. From observations of the state, we can estimate the autoregressive 

matrix A, and from observations of consumption growth we can estimate its mean g and 

the shock coefficients d1. We can also estimate a and b by projecting it and πt onto the 

state. With a and b known, that leaves us to solve 

J a = τbJ + dJ 
2 (15)

for the Taylor rule’s inflation parameter τ and shock coefficients d2: n equations in the n+1 

unknowns (τ, d2). The identification problem is the same as in Cochrane’s original example; 

without further restrictions, the Taylor rule coefficient τ is not identified. Similarly, the 

mean of it − πt will identify ρ + αg − Vm/2, but the value of τ0 cannot be identified from b0 

without first identifying τ . 

We can, however, identify the monetary policy rule if we place one or more restrictions on 

its shock coefficients d2. One such case was mentioned earlier: choose d1 and d2 so that the 

shocks s1t and s2t are independent. We will return to this shortly. Another example is a 

zero in the vector d2 – what is traditionally termed an exclusion restriction. Suppose the 

jth element of d2 is zero. Then the jth element of (15) is 

aj = τbj . 

As long as bj = 0, this determines τ . Given τ , and our estimates of a and b, we can now 

solve (15) for the remaining components of d2. 

 

We can do the same thing with any restriction on d2. Suppose dJ2 e = 0 for some known 

vector e. Then we find τ from aJe = τbJe. Any such restriction on the shock coefficient 

13
 



d2 allows us to identify the Taylor rule. An exclusion restriction sets the jth element of e 

equal to 1 and the others equal to 0. Independence of s1t and s2t is also a special case with 

e = Vxd1. Likewise, independence of the innovations to these shocks is a linear restriction 

on d2 with e = BBJd1. These restrictions have no particular economic rationale at this 

point, but they illustrate how independence works as an identifying assumption. Similar 

“orthogonality conditions” for unobserved shocks appear throughout applied econometrics. 

In the New Keynesian literature (discussed below), the shocks are typically low-order ARMA 

models, assumed to be independent of the rest of the model. Independence serves as a set 

of restrictions on the shocks that identify the model parameters, including the parameters 

of the monetary policy rule. 

Cochrane’s example has the shocks to consumption growth turned off: d1 = 0. But as we 

now know, since this has nothing to do with s2t, the identification conclusion is the same. 

We need one restriction on d2 to identify the Taylor rule parameter τ . The general lesson is 

clear: Taylor rule identification requires a restriction that applies to the Taylor rule shock. 

Adding more structure to the other equations is irrelevant unless that structure implies such 

a restriction. 

3.2 A model with a Phillips curve 

Monetary policy could affect real variables such as consumption or output growth, as well 

as nominal variables such as the interest rate and inflation. To explore whether such non-

neutralities impact the Taylor rule identification problem, we add a Phillips curve to the 

representative agent model of Section 3.1 and an output gap to the Taylor rule. As a result, 

output growth gt becomes endogenous. New Keynesian models with similar features are 

described by Carrillo, Feve, and Matheron (2007), Canova and Sala (2009), Christiano, 

Eichenbaum, and Evans (2005), Clarida, Gali, and Gertler (1999), Cochrane (2011), Gali 
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(2008), Iskrev (2010), King (2000), Shapiro (2008), Smets and Wouters (2007), Woodford
 

(2003), and many others. 

As in Gallmeyer, Hollifield, and Zin (2005), our model consists of the pricing relation in 

equation (7), the real pricing kernel in equation (11), and 

πt = βEtπt+1 + κgt + s1t (16) 

it = τ0 + τ1πt + τ2gt + s2t. (17) 

The first equation is a Phillips curve. The second is a Taylor rule, which now includes an 

output growth term. In addition, we have the transition equation (3) for the state and the 

shocks   sjt = dJj xt for j = 1, 2. 

We now have a two-dimensional rational expectations model in the forward-looking variables 

πt and gt. The solution of such models is described in Appendix B. As others have noted, 

the conditions for a unique stationary solution are more stringent than before. We will 

assume that they are satisfied. 

To solve the model we guess a solution for the two endogenous variables πt = b0 + bJxt and 

gt = c0 + cJxt (see Appendix B). Then the pricing relation gives us 

 it = ρ + αc0 + b J
0 − Vm/2 + a xt 

 with J a = (αcJ + bJ)A and  Vm = (αcJ + bJ)BBJ(αc + b). If we equate this to the Taylor 

rule and collect terms, we have b0 = (τ0 − ρ − αc0 + Vm/2 + τ2c0)/(1 − τ1) and 

J J + dJ a = τ1b
J + τ2c 2 . (18) 
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Similarly, the Phillips curve implies
 

bJ = βbJA + κcJ + dJ 
1 . (19) 

The intercept terms are b0 = [τ0 − ρ + Vm/2]/[1 − τ1 + α(1 − β)/κ − τ2(1 − β)/κ], and 

c0 = [τ0 − ρ + Vm/2]/[(1 − τ1)κ/(1 − β) + α − τ2]. Our goal is to solve these equations for 

the Taylor rule parameters (τ0, τ1, τ2). 

Along with the state xt, assume we observe the interest rate it, the inflation rate πt, and 

log consumption growth gt, but not the shocks (s1t, s2t) to the Phillips curve and Taylor 

rule, respectively. From the observables, we can estimate the autoregressive matrix A, the 

coefficient vectors (a, b, c), and intercepts (a0, b0, c0). In equation (18), representing the 

Taylor rule, the unknowns are the policy parameters (τ1, τ2) and the coefficient vector d2 

for the shock. If we do not observe the shock, we need two restrictions on its coefficient 

vector d2 to identify (τ1, τ2). 

Despite the additional economic structure, the logic for identification is the same: we need 

restrictions on the shock coefficients d2 to identify the Taylor rule. All that changes is the 

number of restrictions we need. Since the Taylor rule has two parameters, we now need two 

restrictions. 

The same logic applies to identifying the parameters of the Phillips curve. If we do not 

observe the shock s1t, then two restrictions are needed to identify the parameters β and κ. 

The identification problem for the Phillips curve has the same structure as the Taylor rule, 

although in practice they have been treated separately. See the extensive discussions in 

Canova and Sala (2009), Gali and Gertler (1999), Iskrev (2010), Nason and Smith (2008), 

and Shapiro (2008). 

Standard implementations of New Keynesian models typically use independent AR(1) or 

ARMA(1,1) shocks. See, for example, Gali (2008, ch 3) and Smets and Wouters (2007). In 
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our framework, an independent AR(1) amounts to n − 1 zero restrictions on the coefficient
 

vectors dj : none of the other state variables affect the shock. That is generally sufficient to 

identify the structural parameters of the model, including those of the Taylor rule. With 

respect to the Taylor rule, each element j for which d2j = 0 leads, via equation (18), to an 

equation of the form aj = τ1bj + τ2cj . As long as (bj , cj ) = (0, 0), any two such equations 

will identify the Taylor rule parameters (τ1, τ2). Similar logic applies to the Phillips curve. 

3.3 Vector autoregressions 

There is an influential body of research that uses vector autoregressions (VARs) to charac­

terize the dynamic effects of exogenous shocks to the economy, often interpreted as shocks 

to monetary policy. See, for example, the many studies cited by Christiano, Eichenbaum, 

and Evans (1999, Sections 3 and 4) and Watson (1994, Section 4). As Watson (1994, page 

2898) puts it: “[VARs] provide answers to the ‘impulse’ and ‘propagation’ questions often 

asked by macroeconomists.” 

This approach to identification of shocks is different than what we have discussed so far. 

But since VAR models fit nicely into a state-space framework, we can compare the two 

approaches directly, and ask whether VAR identification can also be interpreted as Taylor 

rule identification. That is, will the identification of a so-called policy shock in the context 

of a VAR correspond to the identification of the Taylor rule shock s2t, and hence solve the 

problem posed by Cochrane? 

A dynamic model in applied monetary economics might be expressed as a system of equa­

tions of the form 

Dyt = C1yt−1 + wt, (20) 

where yt is a vector of observable macroeconomic variables that includes the object of 
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policy (such as the short-rate in the Taylor rule example), wt is a vector of fundamental 

economic shocks of the same dimension, {wt} ∼ NID(0, I), and D is nonsingular. (Note 

that for simplicity, we arbitrarily truncate the number of the lags in (20) after the first and 

we suppress intercept terms, but the extension to any finite-order of lags with intercepts 

is straightforward.) By multiplying (20) by D−1, this model can be written as a vector 

autoregression (VAR), 

yt = A1yt−1 + ut, (21) 

where A −
1 = D 1C1, {ut} ∼ NID(0, Σ), and Σ = D−1(D−1)J . Standard regression methods 

provide estimates of A1 and Σ. Note, however, that each element of ut is now a linear 

combination of all the fundamental shocks, wt. The dynamic response of yt+j , j ≥ 0, to a 

j A D−1
1unit change in the exogenous shock wt, other things equal, is given by . But since 

D is not separately identified from A1 and Σ, these fundamental impulse responses also 

remain unidentified unless we impose more structure on D. 

Identifying restrictions imposed on D can take a variety of forms. A popular choice is a 

recursive identification scheme that assumes D is lower triangular. But one might also 

consider other restrictions on D such as the long-run restrictions of Blanchard and Quah 

(1989), or the sign restrictions of Uhlig (2005). And for some questions it is sufficient to 

restrict just certain blocks of D, rather than the entire matrix. For our purposes, these 

will all work in much the same way: they result in a VAR that identifies the endogenous 

impulse response to a fundamental exogenous shock. 

To see the relationship to Taylor rule identification, consider Cochrane’s example of Section 

2.1. Define  the vector of endogenous variables yt = [π J
t it] . The equilibrium restrictions in 
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(4) and (5) imply that yt is linear in xt, ⎤⎡⎤⎡ ⎢⎣
 
bJ ⎥⎦
=
 ⎢⎣
 

−dJ 
2 (τI − A)−1 ⎥⎦
yt = Rxt, R = .
 

J −dJa 2 (τI − A)−1A 
(22)
 

For simplicity, assume that the dimension of xt, is the same as yt. The dynamics of xt in 

equation (3) imply an equation for yt of same form as (21), 

yt = (RAR−1)yt−1 + RBwt. 

Note that without further restrictions on the model, changes to either shock, w1t or w2t, 

affect both πt and it directly, and the impulse responses of πt+j and it+j , j ≥ 0, through 

 (RAR−1)jRB. In other words, there is nothing in the model that implies that RB has the 

lower-triangular structure commonly used in VAR shock identification. 

Christiano, Eichenbaum, and Evans (1999, Section 6) make a similar point: “Why did we 

not display or interpret the [relevant equation of a VAR as a monetary policy rule]? The 

answer is that these parameters are not easily interpretable.” Why, you might ask? They 

continue: “In [two of our] examples the decision maker reacts to a variable that is not in the 

econometrician’s data set. The policy parameters are a convolution of the parameters of the 

rule ... and the projection of the missing data onto the econometrician’s data set.” That’s 

the essence of our problem: “the missing data” (the shock s2t) is not in “the econometrician’s 

data set.” As a consequence, the “convolutions” we see in a VAR will be the regression 

matrix A1 = RAR−1 and  the covariance matrix Σ = RBBJRJ. 

The structure of the Taylor rule in (2), leads Christiano, Eichenbaum, and Evans (1999, 

Section 4) to consider what seems like a natural definition of a “policy shock” in a VAR 

model: the change in the policy variable that is unrelated to changes in other endogenous 

variables. In the context of Cochrane’s example, the policy variable is it and the other 
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endogenous variable is πt, so that the policy shock is defined such that the upper-right 

element of RB is zero. This associates the policy shock with the structural shock w2t, which 

will now have a direct effect only on the policy variable it, and not the other endogenous 

variable πt. The other structural shock, w1t, can have a direct effect on both variables. Note 

that the policy shock will still have an effect on the dynamics of πt+j , j > 0, through the 

upper-right element of the  matrix (RAR−1)j , since assuming that RB is lower triangular 

does not imply  is also lower triangular. that RAR−1

It is important to note that this definition of a policy shock is not an implication of the 

Taylor rule in (2), which places no restrictions on the correlation structure between the 

Taylor rule shock, s2t, and inflation, πt. The VAR definition of a policy shock, therefore, is 

an additional assumption. 

Does this additional assumption identify τ and d2? The answer is no, at least not without 

more information. None of the VAR parameters correspond directly to the Taylor rule 

parameters. The VAR will result in estimates of the matrices A1 and Σ, which in theory 

are both functions of the deeper structural parameters, τ , d2, A, and B: A1 is equal to 

RAR−1, the lower-triangular Choleski decomposition of Σ is now equal RB, and R depends 

on τ , d2, and A through (22). But we cannot recover these structural parameters from VAR 

estimates alone, hence we cannot identify τ and d2 without more information. 

4 Empirical application 

The analysis thus far gives us a deeper understanding of how models can fail to meet 

the requirements for Taylor rule identification. Although it does not lead directly to some 

optimal solution to this fundamental problem, it does give us a framework for understanding 

and evaluating the content of any particular identification scheme. We need to restrict the 

factor loadings on the Taylor rule shock, d2, without much theoretical guidance. It would 
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seem sensible, therefore, to find restrictions that are consistent with as broad a class of 

theoretical models as possible. In this section we detail how this can be done in the context 

of a macro term structure model and demonstrate how long-run neutrality of the policy 

shock for both real quantities and real asset prices provide exactly the type of robust 

identification we seek. We begin by estimating an affine macro term structure model, then 

we show how long-run neutrality restrictions lead to identification. Finally, we explore the 

empirical properties of our identified Taylor rule and the unobservable policy shock. 

4.1 Affine term structure estimation 

We estimate an affine term structure model as outlined in Section 2.2 using quarterly US 

data from 1982Q3 to 2017Q2. Along with discount bond yields of various maturities, the 

system of equations is expanded to include two key macroeconomic variables, real GDP 

growth and inflation, as in a wide variety of macro term-structure models. The sample 

period is chosen to be sufficiently far from Volcker’s regime shift to allow for short-term 

adjustments and to establish credibility for Taylor-rule-based monetary policy. We use con­

tinuously compounded default-free pure-discount bond yields as measured by Gurk¨ aynak, 

Sack, and Wright (2007), along with real GDP growth rates from the National Income and 

Product Accounts, and core CPI inflation from the Bureau of Labor Statistics. Figures 1 

displays these standard data for our sample period. 

GMM estimation of the parameters of this model is detailed in Appendix C. The results are 

summarized in Table 1. Our system of equations has seven variables: the nominal interest 

rate, 4 longer nominal yields corresponding to maturities of 8, 20, 28, and 40 quarters, 

real GDP growth, and inflation. We assume that these seven variables are driven by four 

common factors, i.e., n = 4. The linear relationships between yields and the state variable 

is given in Section 2.2. In addition, we assume that the macro factors are also linear 

functions of the state variable: inflation is given by πt = b0 + bJxt and GDP growth is 
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given by gt = c0 + cJxt. Since these are unrestricted relationships, our reduced-form model 

is consistent with a wide variety of both New Keynesian and neoclassical structural macro 

models. 

The affine term structure model has 45 parameters: 26 parameters governing the dynamics 

 of the state space (A and B), 9 more parameters governing the nominal pricing kernel (A∗, 

a0 and λ0), and 10 more parameters governing the macro variables (b0, c0, b, and c). These 

parameters are just-identified using 45 first- and second-moment restrictions implied by the 

theory. Since the goal in this empirical exercise is Taylor rule identification rather than 

an exhaustive analysis of the term structure, we do not impose additional over-identifying 

restrictions on our estimation. 

The estimated parameter values have a number of noteworthy features. The risk-neutral 

dynamics encoded in the non-zero elements of A∗ , are more persistent than the actual 

dynamics of the statespace in A. The absolute values of the 4 eigenvalues of A, which 

govern the persistence in the process for xt, are 0.9761, 0.8648, 0.6329, and 0.6329 (the 

last pair corresponds to complex conjugates).  The diagonals of A∗ are 0.9862, 0.9250, 

0.8609, and 0.6775, and they are very precisely estimated – a consequence of the additional 

information in the cross-equation restrictions implied by the absence of arbitrage – and all 

significantly different than zero. 

Many of the off-diagonal elements of the matrix B are significantly different from zero, 

suggesting that our vector of state variables does not have orthogonal innovations. This 

will play an important role when we explore dynamic correlations below. 

The inflation rate has significant and positive loadings (the values of b) for all 4 factors. 

On the other hand, real GDP growth has significant and positive loadings (the values of c) 

for only the first three factors. This suggests that the model is capturing a purely nominal 

feature in the data. 
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The average price of risk, λ0, appears to be different from zero for three of the four factors: 

the second factor (the second most persistent under the risk-neutral distribution), is both 

small and statistically insignificant. The average price of risk for the first factor (the most 

persistent factor) is negative and close to zero, but it is statistically significant, whereas two 

less persistent factors have average prices of risk that are larger and with opposite signs. 

4.2 Identification through long-run neutrality restrictions 

As we have seen, when we add a Taylor rule to the model, our just-identified system becomes 

under-identified, and we need to add identifying restrictions. We use the version of the rule 

that depends on both inflation and real GDP growth given in equation (17). We need to 

impose at least two more restrictions on the parameters of our empirical model to identify 

the two key parameters, τ1 and τ2. 

Macro models that include a shock to the Taylor rule do not attach any deep structural 

interpretation to that shock. Conceptually, there are many possibilities that seem reason­

able. For example, real-time measurement error in inflation and output, a high-frequency 

risk premium (the policy rate is typically an overnight federal funds rate whereas macro 

models work at a quarterly frequency), changes in the preferences of the median voter on 

policy-setting committees like the FOMC, or the market microstructure of interactions be­

tween the central bank and its network of private brokers, all sound like plausible models 

of a policy shock. However, each of these structural models is likely to result in a shock 

that has a different relationship with the state variable, and hence, a different impact on 

both macro variable and asset prices. Since we are not imposing much economic structure 

beyond the absence of arbitrage on our model, we would like the identification restrictions 

we introduce to be equally robust. We would ideally like our reduced-form model to be 

consistent with as large a set of structural models as possible. 
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The first restriction we impose is a standard assumption in both New Keynesian and neo­

classical models: shocks to monetary policy may have short-run real consequences but they 

do not have a permanent impact on the level of real output. This is analogous to the long-

run restriction used in structural VAR models popularized by Blanchard and Quah (1989). 

Denote the log of the level of real GDP as yt and note that in our specification, yt is a 

unit-root process, yt = yt−1 + gt  , which implies 

yt+n = yt−1 + gt + gt+1 + · · · + gt+n 

= yt−1 + nc0 + c J[xt + xt+1 + · · · + xt+n]. 

The conditional covariance of gt+j and s2t for j ≥ 0 is 

J JCovt−1(gt+j , s2t) = Et−1[c xt+j xt d2] 

= c JAj BBJd2, (23) 

which implies 

�∞lim Covt−1(yt+n, s2t) = JAj BBJd2j=0 cn→∞ 

= cJ(I − A)−1BBJd2. 

The assumption that this long-run covariance is zero implies a linear restriction on d2, 

c J(I − A)−1BBJd2 = 0, (24) 

that we can use to help identify the parameters of the Taylor rule. In principal, it would 

seem reasonable to add other real quantities to the model, e.g., consumption and invest­

ment, and impose similar restrictions on their long-run response to s2t. But given the high 

correlation of other real variables with real output, such restrictions would not add much 
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new information beyond (24). Instead, we make use of our pricing-kernel model and explore
 

asset prices as the source for additional identifying restrictions. 

The second restriction we impose is the natural analog to (24) applied to real asset prices: 

shocks to monetary policy may have short-run real consequences for asset markets, but they 

do not have a permanent impact on the level of real asset prices. Since we have already 

assumed that long-run real quantities are unaffected by the policy shock s2t, what this 

assumption adds is a restriction on the real marginal utility of wealth. Following Alvarez 

and Jermann (2005), Hansen and Scheinkman (2009), and Hansen (2012), we decompose 

shocks to the real marginal utility of wealth, i.e., the real pricing kernel, into permanent 

and transitory components. In Appendix D we detail this decomposition for our affine 

model. We show that the permanent component of the real pricing kernel is also a linear 

function of the state, xt. The assumption that the current policy shock is uncorrelated 

with the permanent component of the real marginal utility of wealth implies another linear 

restriction d2 that takes the form 

[(bJ − a J)(I − A ∗ )−1 − λJ 
0 B

−1]BBJd2 = 0. (25) 

 and Note that given the dependence on A∗ λ0, a well-specified pricing-kernel model is 

essential to the construction of this second restriction. 

4.3 Empirical properties of the Taylor rule 

Given these two additional restrictions, we can identify the Taylor rule parameters, τ0, 

τ1, and τ2, as well as the factor loadings for the shock to the Taylor rule, d2. Note that 

once we have identified τ1 and τ2, identification of τ0 and d2 follows from equation (17): 

τ0 = a0 − τ1b0 − τ2c0 and d2 = a − τ1b − τ2c. Estimates of these parameters are presented 

in Table 1. 

25
 



It is both reassuring and surprising that although we have adopted a novel approach for
 

identification, the estimates for the Taylor rule parameters are quite conventional. The 

coefficient on πt is 2.5771, which safely satisfies the Taylor-principal stability condition, 

τ1 > 1. It is larger than Taylor’s original specification of τ1 = 1.5, suggesting a somewhat 

more aggressive policy. Our estimate of τ2 is 0.3972, which is quite close to Taylor’s value 

of τ2 = 0.5, however, the units are difficult to compare directly as we use output growth 

rather than deviations from a potential-output trend. 

The estimates for the factor loadings for the policy shock, d2, are significant for only three 

of the four factors. The loading on the first (the most persistent) factor is small and 

insignificant, which stands in contrast to real GDP growth which had a significant loading 

on that factor, but not the fourth. Again, this reinforces the interpretation that one of the 

dimensions of the model is purely nominal. 

To get a sense of the sign and the magnitude of these policy shocks, the upper panel of 

Figure 2 plots the Taylor rule with and without the shock s2t. We see large and persistent 

negative shocks in the early 1990s followed by large and persistent positive shocks in the 

late 1990s. The zero lower bound shows up as large positive shocks in 2009-2010, followed 

by persistent negative values for the shock over the last five years of our sample. 

Since we have identified the Taylor rule shock as part of our dynamic macro-term structure 

model, we can use that model to get better understanding of how policy shocks affect the 

economy. The Taylor rule shock is affected by the entire vector of innovations, wt. To 

measure the average dynamic response of an endogenous variable, say πt = b J
0 + b xt, to a 

Taylor rule shock,   s J
2t = d2 xt, we calculate a dynamic covariance 

Covt−1(πt+j , s2t) = Covt−1(b
J xt+j , d

J 
2 xt) 

= bJAj BB'd2, 
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for j ≥ 0. In Table 3 we graph this covariance – in the form of a correlation coefficient –
 

for GDP growth, inflation, the short rate, the two-year and ten-year discount bond yields, 

and the ten-year forward premium, i.e., the difference between the ten-year forward rate 

and the short rate. (The factor loadings for the ten-year forward rate are (40) B − B(39).) 

GDP growth has a small positive correlation with the policy shock, but it is neither signif­

icant nor persistent. Similarly, inflation has a small negative correlation that is marginally 

significant at short horizons, but which also dies out quickly. Medium-term bond yields – in 

this case the two-year yield – has virtually no correlation with the policy shock. However, at 

both the short and the long ends of the maturity structure, the response is quite different. 

The short rate has a significant positive correlation and the long yield – in this case the 

10-year yield has a significant negative correlation with the shock to the Taylor rule, that 

is still significant at a one-year horizon. The combined effect is a near perfect negative 

correlation between the slope of the yield curve – measure here by the 10-year forward 

premium – and the monetary policy shock, and this correlation dies out even more slowly, 

as depicted in the lower right panel of Figure 3. In other words, the policy shock exhibits a 

strong negative correlation with the risk premium on long bonds. A positive shock to the 

Taylor rule results in a higher short-rate and a lower forward rate on long bonds. 

Without a structural model linking risk premiums to Taylor rule shocks we can only specu­

late on the source of these strong correlations. However, these results do cast some light on 

the so-called conundrum that has puzzled policy makers in the past: long rates often move 

in ways that appear disconnected from the policy rate. Alan Greenspan (1994) attributed 

the increase in long yields in early 1994 to expectations of increases in future values of gt 

and πt: “In early February, we thought long-term rates would move a little higher as we 

tightened. The sharp jump in [long] rates that occurred appeared to reflect the dramatic 

rise in market expectations of economic growth and associated concerns about possible in­

flation pressures.” What Figure 2 suggests is that since the tightening in late 1993 and 
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early 1994 was warranted by values of GDP growth and inflation alone, i.e., small values of 

s2t, monetary policy was not a big contributor to the risk premiums that were driving the 

long-end of the yield curve. 

A decade later Greenspan (2005) once again voiced puzzlement regarding the behavior of 

long yields: “Long-term interest rates have trended lower in recent months even as the 

Federal Reserve has raised the level of the target federal funds rate by 150 basis points. 

Historically, even distant forward rates have tended to rise in association with monetary 

policy tightening... For the moment, the broadly unanticipated behavior of world bond 

markets remains a conundrum.” What Figure 2 suggests once again is that the monetary 

policy tightening of 2004-05 was warranted by values of GDP growth and inflation alone. 

The implied small values of s2t suggests that whatever was driving risk premiums at the 

long-end of the yield curve, it had little to do with policy shocks. 

In contrast, Bernanke (2013) expresses a greater appreciation for the relationship between 

risk premiums and the large positive Taylor rule shocks implied by the zero lower bound 

in 2009-10: “Two changes in the nature of this interest rate risk have probably contributed 

to a general downward movement of the term premium in recent years. First, the volatility 

of Treasury yields has declined, in part because short-term rates are pressed up against 

the zero lower bound and are expected to remain there for some time to come. Second, 

the correlation of bond prices and stock prices has become increasingly negative over time, 

implying that bonds have become more valuable as a hedge against risks from holding other 

assets.” Although it is not obvious from just looking at the lower panel of Figure 1 that risk 

premiums on long bonds were small around this period, it is true that on average, positive 

values of s2t are coincident with small values of risk premiums. 

Backus and Wright (2007) summarize the situation: “We think the evidence points to a 

declining term premium as the primary source of the recent fall in long forward rates.... In 

this sense, we follow a long line of work in suggesting that expectations-hypothesis intuition, 
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5 Conclusion 

based on constant term premiums, is likely to be misleading not only in this case but more
 

generally.” And they call for a research program to fill this gap in our knowledge: “The next 

step, in our view, should be to develop models in which macroeconomic policy and behavior 

can be tied more directly to the properties of interest rates. We might want to know, for 

example, whether changes in the volatility of output or in the nature or communication of 

monetary policy had an impact on the behavior of long rates in the recent past. Neither of 

this is possible with existing models.” The work summarized in this section is a small step 

in this direction. 

Identification is always an issue in applied economic work, perhaps nowhere more so than 

in the study of monetary policy. That is still true. We have shown, however, that (i) the 

problem of identifying the systematic component of monetary policy (the Taylor rule pa­

rameters) in New Keynesian and macro-finance models stems from our inability to observe 

the nonsystematic component (the shock to the rule) and (ii) the solution is to impose 

restrictions on the shock. 

We estimate a macro-finance term structure model and use it, along with long-run restric­

tions that are consistent with a wide-variety of both New Keynesian and Classical monetary 

models, to identify the parameters of the Taylor rule and the process for the shocks to this 

policy rule. We find that the shock has little or no effect on real GDP growth, and only a 

small effect on inflation. However, it has a more substantial effect on the short interest rate 

and a persistent negative correlation with risk premiums at the long end of the maturity 

structure. To arrive at a deeper understanding of the causes and consequences of these 

empirical facts, the challenge we now face is to develop plausible structural models of the 

sources of both policy shocks and risk premiums that are capable of accounting for the 
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strong connection we see in the data between the Taylor rule shock and the slope of the 

yield curve. 
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A State-space models and Kalman filtering 

Our examples assume that the state is observable and can form the basis for econometric 

estimation. But what happens if we observe the state indirectly? Or observe only a noisy 

signal of the state? These questions lead us to state-space models, in which we add to the 

transition equation for the state a so-called measurement or observation equation connecting 

an unseen state to a collection of observable variables. 

State-space models provide a method for estimating the unobserved state through Kalman 

filtering. Does this affect any of our conclusions about identification? The answer is no. The 

Kalman filter is a recursive algorithm for computing the distribution of x from observations 

of y, and through x the distribution of y; see, among many others, Anderson and Moore 

(1979, Chapters 3-4), Boyd (2009, Lecture 8), and Hansen and Sargent (2013, Chapter 8). 

The classic state-space framework consists of the transition equation (3) and a related 

measurement equation for observables, 

vt = C0 + Cxt + Dut. (26) 

The measurement errors ut ∼ NID(0, I) are independent of the w’s. 

A state-space model is a description of the distribution of observables v, but this distribution 

is invariant to linear transformations of the state x. Consider a model with state x̃ = Tx, 

where T is an arbitrary square matrix of full rank. The transformed model is 

xt + Ax̃t+1 = T AT −1 x̃t + T Bwt+1 = AA˜ Bwt+1 

vt = C0 + CT −1 x̃t + Dut = C0 + CAx̃t + Dut, 

where  , AA = T AT −1 BA = TB, and A  C = CT −1. The observational equivalence of models 

based on x and x̃ raises new identification issues that are not related to those we discussed 
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earlier. These issues are generally managed by choosing a canonical form. See, for example,
 

the extensive discussions in De Schutter (2000), Gevers and Wertz (1984), and Hinrichsen 

and Pratzel-Wolters (1989). Variants of this approach are used in dynamic factor models 

(Bai and Wang, 2015; Bernanke, Boivin, and Eliasz, 2005; Boivin and Giannoni, 2006; 

Stock and Watson, 2012) and affine term structure models (Joslin, Singleton, and Zhu, 

2011). Given a canonical form we can generally estimate the matrices (A, B, C0, C, D). 

One of the intermediate outputs of the estimation process described below is a series of 

estimates (conditional means) of the state: 

x̂t|s = E(xt|v s), 

where s v = (vs, vs−1, ...) is a history of measurements. The Kalman filter produces, among 

other things, x̂t|t and x̂t|t−1. Given such estimates of the state, we can identify the param­

eters of a forward-looking model just as in the case of observable xt. The errors in these 

estimates are orthogonal to observed variables by construction, so projections of observables 

on estimates of the state produce the same parameter values in population. 

Note that our theoretical models will restrict C0 and C to be functions of deeper param­

eters. Standard Kalman filtering arguments lead to a multivariate normal one-step-ahead 

conditional distribution, p(v t
t+1|v ; A, B, C0, C, D), for the observable vector 

vt+1|v t ∼ N (C0 + Cx̂t+1|t , CΣtC
J + D), 
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where
 

x̂t|s = E(xt|v s) 

= (A − KtC)x̂t|t−1 + Ktvt 

Kt = AΣtC
J(CΣtC

J + D)−1 

Σt+1 = AΣtA
J + BBJ − AΣtC

J(CΣtC
J + D)−1CΣtA, 

and x̂1|0 is set equal to 0, the mean of the ergodic distribution of xt, and Σ0 = Var(x) 

its variance,    Var(x) = AVar(x)AJ + BBJ. From these conditional distributions, we can 

construct the likelihood function for a sample of size T : 

tp(v T |A, B, C0, C, D) = Πt
T 
=1p(vt+1|v ; A, B, C0, C, D). 

In term-structure applications, vt is partitioned into a vector of macroeconomic variables, 

zt, whose relationship to xt is unconstrained, and a vector of multi-period bond yields, yt, 

whose relationship to xt is constrained by the absence of arbitrage across bonds of different 

maturity. We partition the parameters of the observation equation, C0, C, and D, into C0z, 

Cz, Dz, C0y, Cy, and Dy, corresponding to the partition of vt. Since the parameters in C0z, 

Cz, and Dz are unconstrained by the term-structure model, they could be estimated by MLE 

without further complication. When xt is unobservable, the information provided by bond 

yields, yt, will be helpful nonetheless. However, the elements of C0y and Cy, are nonlinear 

functions of A, B, and the parameters of the pricing kernel in equation (6). Estimation of 

the full system, therefore, requires imposing no-arbitrage restrictions on C0y and Cy. 

The free parameters of the model are then a0, C0z, Cz, A, and the non-zero elements of B, 

A∗ and D, which implies a likelihood function 

tp(v T |a0, C0z, Cz, A, B, A ∗ , D) = ΠT
t=1p(vt+1|v ; a0, C0z, Cz, A, B, A ∗ , D), 
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that can form the basis for method of moments and maximum likelihood estimation or a
 

Bayesian posterior distribution. 

B Solutions of forward-looking models 

Consider the class of forward-looking linear rational expectations models, 

zt = ΛEtzt+1 + Dxt 

xt+1 = Axt + Bwt+1. 

Here xt is the state, Λ is stable (eigenvalues less than one in absolute value), A is also 

stable, and wt ∼ NID(0, I). The goal is to solve the model and link zt to the state xt. 

(For simplicity, we have suppressed intercept terms so zt and xt should be interpreted as 

deviations from long-run means.) 

One-dimensional case. If zt is a scalar we have 

zt = λEtzt+1 + dJ xt, (27) 

for a some vector d. Repeated substitution gives us 

∞ ∞0 0 
zt = λj dJEtxt+j = dJ λj Aj xt = dJ(I − λA)−1 xt. 

j=0 j=0 

The last step follows from the matrix geometric series if A is stable and |λ| < 1. Under 

these conditions, this is the unique stationary solution. 

The same solution follows from the method of undetermined coefficients, but the rationale 

for stability is less obvious. We guess zt = hJxt for some vector h. The difference equation 
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tells us
 

hJ xt = hJλAxt + dJ xt. 

Collecting coefficients of xt gives us  hJ = dJ(I − λA)−1 . 

This model is close enough to the examples of Sections 2 and 3 that we can illustrate their 

identification issues in a more abstract setting. Suppose we observe the state xt and the 

endogenous variable zt, but not the shock dJxt. Then we can estimate A and h. Equation 

(27) then gives us 

hJ = λhJA + dJ . 

If x has dimension n, we have n equations in the n + 1 unknowns (λ, d); we need one 

restriction on d to identify the parameter λ. 

Multi-dimensional case. If zt is a vector, as in Section 3.2, repeated substitution gives us 

∞0 
zt = Λj DAj xt. 

j=0 

That gives us the solution zt = Hxt where 

∞0 
H = Λj DAj = D + ΛHA 

j=0 

or 

vec(H) = (I − AJ ⊗ Λ)−1vec(D). 

See, for example, Anderson, McGrattan, Hansen, and Sargent (1996, Section 6) or Klein 

(2000, Appendix B). The same sources also explain how to solve rational expectations 
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models with endogenous state variables.
 

C Macro Term Structure Model Estimation 

We adopt a canonical form of a state space model in which an unobserved state, xt, follows 

the process 

xt = Axt−1 + Bwt, 

where wt ∼ iid N (0, I), and B is a lower triangular matrix with positive elements on its 

diagonal. Calendar time from t to t + 1 is a quarter of a year (3 months). The observed 

macro variables are inflation, πt, and GDP growth, gt, which are linear functions of the 

unobserved state: 

πt = b0 + bJ xt 

gt = c0 + c J xt. 

Bond yields also depend linearly on xt, and their loadings satisfy the arbitrage-free restric­

tions given in equation (10). 

Following Hamilton and Wu (2012), we assume that bond yields for n = 1, i.e., the short 

rate, and n = 8, 20, 28, where maturity is also measured in quarters, can be used to identify 

  
the state. Stack these 4 variables into the vector (8) (20) (28)

zt = [it y y y ]Jt t t 
 . Rewrite the 

dynamics for the state as 

zt = R0 + Rxt = R0 + R(Axt−1 + Bwt) 
(28) 

= R̃0 + ˜ Bwt,Azt−1 + ˜

 (8) (20) (28) 
R0 = [a0 B /8 B /20 B0  0 0 /28], R = [a B(8)/8 B(20)/20 B(28)/28]Jwhere ,
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Ã = RAR−1 , ˜ ˜ ˜R0 = (I − A)R0, B = RB, and we adopt the normalization aJ = [1 1 1 1]. 

This rotation of the state space eliminates the need for Kalman filtering the unobserved 

state. 

A 3×1 vector of the two macro variables along with the long bond yield, (40)
yt = [πt gt y

J
t ]  ,

is also linear in the state variable: 

yt = G0 + Gxt + ut 
(29) 

= G̃0 + G̃zt + ut, 

where ut ∼ iidN (0, σ2
uI). The parameters before the rotation of the state space are G0 = 

(40) J J J [b c B B(40)J J
0 0 0 /40] , G = [b c /40] . The parameter  σ2

u is the measurement 

 
and (n)B0

  error variance, and the parameters B(n) are functions of n, A∗, A∗
0

 
 and B. The

parameters after the rotation are G̃ = GR−1 ˜ ˜G0 = G0 − GR0, and .

We can now write the one-step-ahead conditional distribution for the full system: 

vt+1|v t ∼ N (C0 + Cvt, ΩΩ
J), 

where J v = [z y ] , C = [R ˜J ˜ ˜ ˜ J
t t t 0 0 G0 + GR0] , and 

⎤⎡⎤⎡ 

Ã 0
 B̃ 0
 
C
 =
 ⎢⎣
 

⎥⎦
,
 Ω =
 ⎢⎣
 
⎥⎦
,
 

G̃Ã 0 G̃B̃ σuI 

which we use to calculate the likelihood function for our sample. 

The structural parameters of our model are just-identified from the reduced-form parameters 

C0, C, and Ω. Specifically, this 7-variable system has 46 parameters that are functions of the 

46 parameters of our structural model. We apply natural conjugate priors to this Gaussian 

likelihood function to get a  joint posterior for C0, C, and ΩΩJ. We repeatedly sample 

parameter values from this posterior distribution using MCMC methods. For draw, we solve 
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the 46-equations-in-46-unknowns nonlinear system to obtain the structural parameters. We 

use the median values of the empirical distributions from this sampling exercise as starting 

values for just-identified GMM estimation. 

 We estimate 45 parameters – all but σ2
u – to exactly match 45 moment restrictions implied 

by equations (28) and (29): 

E(zt − R̃0 − ˜ =Azt−1) 0 

E(zt − R̃0 − ˜ =Azt−1)z J 0t−1 

E(yt − G̃0 − ˜ =Gzt) 0 

E(yt − G̃0 − ˜ =Gzt)z J 0t 

E(zt − R̃0 − ˜ R0 − ˜ = B̃B̃JAzt−1)(zt − ˜ Azt−1)
J 

Since the variance of the sample analogues of these moment restrictions depends only on 

parameters of the model that we have already estimated, asymptotic standard errors require 

no further estimation. Derivatives of the moment restrictions are also evaluated at our 

estimated parameter values. The measurement error variance, σ2
u, is estimated using the 

estimated residuals from the ut equations. 

Average dynamic response. The Taylor rule shock is affected by the entire vector of inno­

vations, wt. To measure the average dynamic response of observable variables to a Taylor 

rule shock that is the result of simultaneous innovations in all values of wt, we calculate a 

dynamic covariance 

Covt−1(ylt+j , s2t) = RlA
j BB ' d2, j ≥ 0, 

where Rl is the l-th row of R. To calculate a dynamic correlation we scale this conditional 

covariance with the product of the conditional standard deviations of each variable. 
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MP MTMt+1 t+1 t+1 P T mt+1 = = 
MP MT = mt+1mt+1. Mt t t 

D Long-run real asset prices 

Following Alvarez and Jermann (2005), Hansen and Scheinkman (2009), and Hansen (2012), 

we decompose shocks to the real marginal utility of wealth, i.e. the real pricing kernel, 

into permanent and transitory components. Denote as Mt+1 the real marginal utility of 

wealth, and a multiplicative decomposition into permanent and transitory components as 

 M = MP MT 
t+1 t+1 t+1. In growth rates, this implies a comparable decomposition for the real 

pricing kernel 

The positive eigenfunction, vt+1, of the real pricing kernel satisfies the equation 

Etmt+1vt+1 = e ρ vt, (30) 

where ρ is a positive eigenvalue. P Mt+1 will be a martingale when mP −ρ
t+1 = e mt+1vt+1/vt,

since by construction,  Etm
P
t+1 = 1. In other words,  log mP

t+1 is the additive shock to the 

unit root process for log P Mt+1. Any change in log mP
t+1 creates a permanent change in the 

real marginal utility of wealth. 

To derive log mP
t+1, we start with the log of the real pricing kernel, log mt+1, given by the 

log of the nominal kernel, log m$
t+1, plus the rate of inflation, πt+1: 

log mt+1 = log mt
$
+1 + πt+1 

J xt − λJλt/2 − λJ = −a0 − a t t wt+1 + b0 + bJ xt+1 

= (b0 − a0) − λJλt/2 + (bJA − a J)xt + (bJB − λJ)wt+1. t t (31)

Given the affine structure of the pricing kernel, we guess a log-linear solution for the eigen­
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function, log vt = kJxt, and solve for k using (30) and (31): 

ρ + kJ xt = log Et exp[log mt+1 + kJ xt+1], 

which implies 

kJ xt = [(bJ + kJ)A − a J − (bJ + kJ)Bλ]xt. 

 is Using risk-neutral dynamics, Bλ = A − A∗, the solution for kJ

kJ = (bJA ∗ − a J)(I − A ∗ )−1 . 

The innovation to log mP
t+1, therefore, is given by 

ηt+1 = [bJ − λJB−1 + (bJA ∗ − a J)(I − A ∗ )−1]Bwt+1t 

= [(bJ − a J)(I − A ∗ )−1 − λJB−1]Bwt+1.t 

The conditional covariance of the innovation to log mP
t+1 with the innovation to the Taylor 

rule shock,  dJ2 Bwt+1 is 

J = [(bJ − a J)(I − A ∗ )−1 − λJB−1]BBJd2.Et(ηt+1wt+1B
Jd2) t 

When the shock to the Taylor rule has no permanent impact on the real marginal utility of 

wealth, this correlation must be equal to 0, which implies a set of linear restrictions on d2 

– one for each value of λt. Since we need only one of these for our Taylor rule identification 

exercise, we use the restriction for the average price of risk, λt = Eλt = λ0. 
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Table 1. GMM Estimation
 

A B 
1.0354 

(0.0256 ) 
0.1261 
(0.0428) 

0.0896 
(0.0480) 

0.1897 
(0.0397) 

0.0026 
(0.0003) 

0 0 0 

-0.0701 
(0.0035) 

0.8205 
0.0613) 

0.1993 
(0.0229) 

0.0974 
(0.0234) 

-0.0050 
(0.0026) 

0.0057 
(0.0014) 

0 0 

0.0376 
(0.0512) 

0.0201 
(0.0750) 

0.5889 
(0.0344) 

-0.2472 
(0.0168) 

0.0038 
(0.0041) 

-0.0063 
(0.0022) 

0.0030 
(0.0007) 

0 

-0.0819 
(0.0504) 

-0.0563 
(0.0434) 

-0.0147 
(0.0210) 

0.6542 
(0.0289) 

-0.0012 
(0.0012) 

0.0010 
(0.0006) 

-0.0023 
(0.0012) 

0.0009 
(0.0002) 

 A∗ λ0 b c d2 

0.9862 
(0.0011) 

0 0 0 -0.0442 
(0.0097) 

0.3238 
(0.0896) 

0.2933 
(0.0081) 

0.0490 
(0.0692) 

0 0.9250 
(0.0026) 

0 0 -0.0188 
(0.0219) 

0.2187 
(0.0950) 

0.2757 
(0.0099) 

0.3268 
(0.0405) 

0 0 0.8609 
(0.0037) 

0 -0.4221 
(0.0297) 

0.2126 
(0.0058) 

0.1736 
(0.0484) 

0.3832 
(0.0469) 

0 0 0 0.6775 
(0.0010) 

0.4805 
(0.0109) 

0.2446 
(0.0132) 

-0.0030 
(0.0916) 

0.3709 
(0.0703) 

τ0 τ1 τ2 

-0.0106 
(0.0014) 

2.5771 
(0.2867) 

0.3972 
(0.0807) 

a0 b0 c0 

0.0099 
(0.0041) 

0.0068 
(0.0020) 

0.0070 
(0.0006) 

Note: Just-identified GMM estimation of the model: xt+1 = Axt + Bwt+1, it = a0 + aJxt, 
(h) (h)

hyt = B +B(h)
 0 xtπ J

t = b0+b xt
(h)B0
 = , g J

t = c0+c xt, , and (  B h) = aJ(I−A∗)−1(I−A∗h), 
(h−1)


a0+B −B(h−1)
0 Bλ0+B(h−1)BBJB(h−1)J/2. The Taylor rule is  J it = τ0+τ1πt+τ2gt+d2 xt.

(h)
yt The state variable xt is 4-dimensional, it is the short interest rate (1 quarter), is the 

yield on a discount bond of maturity h = 8, 20, 28, 40 (quarters), πt is the inflation rate, 
gt is the growth rate of  real GDP, and J a = [1 1 1 1]. The sample period is 1982Q3 to 
2017Q2. Asymptotic standard errors are in parentheses. 
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Figure 1
 

US GDP growth, CPI inflation, and select yields 

Note: The time period is 1982Q3 to 2017Q2. Real GDP growth is from the NIPA and CPI 

inflation is from the BLS, both downloaded from FRED. Yields are from Gurk¨ aynak, Sack, 

and Wright (2007). 
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Figure 2
 

Taylor rule shock 

Note: The top panel plots the Taylor rule including the shock, i.e., the short rate, and the 

Taylor rule excluding the shock, τ0 + τ1πt + τ2gt. The difference is the value of the shock, 

s2t, plotted in the lower panel along with the difference between the ten-year forward rate 

(40)
f  −t  itminus the current interest rate, , i.e., the forward premium. 
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Figure 3 

Dynamic correlations with Taylor rule shock 
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Note: Each panel plots the conditional correlation of a variable at horizons t + j for 

j = 0, 1 . . . 40 (quarters), with the Taylor rule shock, s2t. The variables are real GDP 

growth, gt, inflation, πt, the short interest (8)
yt rate, it, the two-year discount bond yield, ,

(40)
yt the ten-year discount bond yield, , and the different between the ten-year forward rate 

and the short rate, (40)
f  −t  it. The shaded area represent a 95% confidence interval. 

50
 


	Identifying monetary policy in macro-ﬁnance models
	Abstract 
	1 Introduction 
	2 The identiﬁcation problem 
	2.1 Cochrane’s example 
	2.2 An aﬃne extension 

	3 Macro-ﬁnance models with Taylor rules 
	3.1 A representative-agent model without frictions 
	3.2 A model with a Phillips curve 
	3.3 Vector autoregressions 

	4 Empirical application 
	4.1 Aﬃne term structure estimation 
	4.2 Identiﬁcation through long-run neutrality restrictions 
	4.3 Empirical properties of the Taylor rule 

	5 Conclusion 
	A State-space models and Kalman ﬁltering 
	B Solutions of forward-looking models 
	C Macro Term Structure Model Estimation 
	D Long-run real asset prices 
	References 
	Table 1. GMM Estimation. 
	Figure 1. US GDP growth, CPI inﬂation, and select yields 
	Figure 2. Taylor rule shock 
	Figure 3 Dynamic correlations with Taylor rule shock 





