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Abstract

Key to deriving the lower bound to the expected excess return of the market in Martin (2017)
is the assumption of the negative correlation condition (NCC). We improve on the lower bound
characterization by proposing an exact formula for the conditional expected excess return of the
market. In our formula, each risk-neutral return central moment contributes to the expected
excess return and is representable in terms of known option prices. To interpret theoretical
and empirical distinctions between our formula and the lower bound, we develop and study the
asset-pricing restrictions of the NCC.
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I still remember the teasing we financial economists, Harry Markowitz, William Sharpe,

and I, had to put up with from the physicists and chemists in Stockholm when we con-

ceded that the basic unit of our research, the expected rate of return, was not actually

observable. — Merton Miller. The History of Finance, Journal of Portfolio Manage-

ment 1999 (Summer), 95–101.

1 The negative correlation condition in Martin (2017)

We employ the following notation:

St+T = price of the equity market index at some future date t+ T ;

RT ≡
St+T

St
= gross return of the equity market index over t to t+ T . Assume RT > 0;

EP
t (.) = expectation under the real-world probability measure, P;

E
Q
t (.) = expectation under the risk-neutral probability measure, Q;

MT = stochastic discount factor, with EP
t (MT RT ) = 1 holding;

Rf,t =
1

EP
t (MT )

= E
Q
t (RT ) = T -period gross risk-free return;

1 = conformable vector of ones;

ZT [RT ] = gross return vector contingent on RT and satisfies EP
t (MT ZT [RT ]) = 1;

MT [RT ] = projected stochastic discount factor, with EP
t (MT [RT ]ZT [RT ]) = 1 holding;

callt,T [K] = time t price of the call option on the market, with strike K, expiring in T -periods;

putt,T [K] = time t price of the put option on the market, with strike K, expiring in T -periods;

covPt (x̃, ỹ) = conditional covariance between two random variables x̃ and ỹ under P;

varQt (RT ) = conditional variance of RT under the risk-neutral measure Q.

Definition 1 (Negative correlation condition, NCC): The NCC is the assumption that

covPt (MT RT , RT ) ≤ 0, for all MT satisfying EP
t (MT RT ) = 1. �
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Martin (2017) introduces the relation in equation (1) and derives the conditional lower bound,

R−1
f,t var

Q
t (RT ), of the expected excess return of the market, as follows:

EP
t (RT )−Rf,t = EP

t (MT )E
P
t

(
MT

EP
t (MT )

R2
T −

1

{EP
t (MT )}2

)

︸ ︷︷ ︸
= R

−1

f,t
varQt (RT )

− covPt (MT RT , RT ) (1)

≥ R−1
f,t var

Q
t (RT )︸ ︷︷ ︸

Lower bound

. (provided the NCC holds) (2)

The lower bound of the expected excess return of the market can be inferred from option prices

as 2
S2
t

∫
K<Rf,tSt

putt,T [K] dK + 2
S2
t

∫
K>Rf,tSt

callt,T [K] dK.

The following remarks are central to the framework in Martin (2017) and guide our theoretical

and empirical investigation. First, the inequality in equation (2) holds under all change-of-measure

densities (i.e., for every MT ) such that −covPt (MT RT , RT ) is nonnegative for each t. Second, the

derived lower bound is theoretically unsupportable if one could find an economically plausible MT

for which covPt (MT RT , RT ) is positive.

The lower bound in equation (2) touches a theme dating back to Merton (1980), Black (1993),

and Elton (1999) on how elusive it is to estimate the expected return of the market. The topic

is cutting-edge, and peer-reviewed academic evidence on the lower bound of the expected excess

return remains relevant and influential, and is invigorating research complementarities in theory

and practice (see, e.g., Chabi-Yo and Loudis (2019), Kadan and Tang (2019), Martin and Wagner

(2019), and Schneider and Trojani (2019), among others).

Improving on the lower bound characterization in Martin (2017), our innovation is an exact

theoretical representation for EP
t (RT ) − Rf,t, which can be synthesized from quantities inferred

from option prices, specifically, the risk-neutral return central moments of order higher than one.

The big picture question is: How should one view our expression for EP
t (RT )−Rf,t in light of

the lower bound formula? First, we show empirically that there are sizable differences between our

estimates of EP
t (RT )−Rf,t versus those fromMartin (2017). Our steps to synthesizing EP

t (RT )−Rf,t

from option prices do not utilize the formalism of the NCC (i.e., whether covPt (MT RT , RT ) ≤ 0).

Second, if the NCC is not a generic property at each date t, then having analytical formulations are

of value. Addressing this issue, we identify the theoretical asset-pricing restrictions that underlie
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the NCC, and then propose empirical tests. Pivotal to our analysis, if covPt (MT RT , RT ) > 0, then

R−1
f,t var

Q
t (RT ) is an upper bound and not a lower bound.

2 Decomposing the expected excess return of the market

We assume that there exists a projected SDF, MT [RT ], in the sense of Rosenberg and Engle

(2002, Section 2.2), satisfying MT [RT ] > 0, EP
t (MT [RT ]) = 1

Rf,t
< ∞, EP

t (MT [RT ]RT ) = 1,

and EP
t ({MT [RT ]}

2) <∞.

Why focus on SDFs that are a function of RT ? For one, Martin (2017) posits that if MT = 1
RT

,

then covPt
(
MT RT , RT

)
= 0, and R−1

f,t var
Q
t (RT ) is the tightest lower bound for EP

t (RT )−Rf,t and

can be extracted from option prices on the market index. For another, as shown in Rosenberg and

Engle (2002), when it comes to considering claims written on the market return for which data can

be exploited, it suffices to work with the projection of the SDF (even though the SDF itself may

admit additional state dependencies) onto the space generated by the market return. Thus, we

need only model EP (M | RT ), for any M that represents the change of probability with the bond

price as numeraire, without the necessity of exploring state-dependent specifications of the SDF

(e.g., Campbell and Cochrane (1999), Epstein and Zin (1991), and Hansen and Renault (2009)).

Informed by theory and data from options markets, our novelty is to develop a theoretical

representation for EP
t (RT )−Rf,t, which can be compared with Martin (2017). Our characterization

of EP
t (RT ) − Rf,t is consistent with asset-pricing theory, does not require exploiting the workings

of the NCC (i.e., covPt (MT RT , RT ) ≤ 0), and can be employed in empirical applications.

Result 1 (Expected excess return of the market) Suppose MT is of the following form:

MT [RT ] = exp (m0 − 1− φ (RT −Rf,t)) , for some constants m0 and φ > 0. (3)

Then, the conditional expected excess return of the market can be decomposed, as follows:

EP
t (RT ) − Rf,t =

1

φ

(
{φSDQ

t (RT )}
2 +

1

2
{φSDQ

t (RT )}
3 × SkewnessQt (RT )

+
1

6
{φSDQ

t (RT )}
4 × {KurtosisQt (RT ) − 3}

+
1

24
{φSDQ

t (RT )}
5 {HskewnessQt (RT )− 10 SkewnessQt (RT )} + . . .

)
,

(4)
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where SDQ
t (RT ) ≡

√
varQt (RT ), Skewness

Q
t (RT ), KurtosisQt (RT ), Hskewness

Q
t (RT ) ≡

E
Q
t ({RT−Rf,t}

5)

{SDQ
t (RT )}5

are, respectively, the conditional risk-neutral return volatility, skewness, kurtosis, and hyperskew-

ness. Each required risk-neutral return central moment is algebraic in option prices (as displayed

in equations (A36)–(A39) of Appendix A).

Proof: See Appendix A. �

The formula in equation (4) deduces a value for EP
t (RT ) − Rf,t and not just a lower bound.

This new estimate of EP
t (RT ) − Rf,t, at each date t, is expressed as an infinite series, with each

term related to risk-neutral return central moments of order higher than one. However, successively

smaller weights are assigned to SkewnessQt (RT ), to {KurtosisQt (RT )−3}, and to {HskewnessQt (RT )−

10 SkewnessQt (RT )}, provided that {φSDQ
t (RT )} < 1.

Our approach is to consider the P-measure return density as a weighted Q-measure return

density, as warranted by the form of MT in equation (3). Then, we exploit the properties of the

cumulant generating functions under P and Q (as detailed in Appendix A). Crucially, no parametric

assumptions are made about the risk-neutral density of market returns.

Furthermore, equation (4) does not specialize to the tightest lower bound in Martin (2017) (i.e.,

R−1
f,t {SD

Q
t (RT )}

2), as the specification MT = 1/RT is not subsumed within equation (3).

The form ofMT in equation (3) is an assumption about the projected SDF and is complementary

to Schneider and Trojani (2019). In particular, Schneider and Trojani (2019), in essence, project

the SDF onto (RT , R
2
T , R

3
T , . . .). Taking a Taylor series of MT [RT ] in equation (3), one obtains

MT [RT ] = em0−1
(
1+{−φ(RT −Rf,t)}+

1
2{−φ(RT −Rf,t)}

2+ 1
6{−φ(RT −Rf,t)}

3)+ 1
24{−φ(RT −

Rf,t)}
4 + . . .

)
, and, so, intuitively speaking, our equation (3) involves an infinite series of higher-

order polynomials and is akin to Rosenberg and Engle (2002, equation (12)).

Our analytical representation of EP
t (RT ) − Rf,t is a step forward, as Schneider and Trojani

(2019) use assumptions about the sign of the covariance, under P, between the SDF and various

moments of the market return to obtain bounds on the P moments of the market return.

OurMT in equation (3) is economically motivated, is informed by the data, and can arise in the

context of minimum discrepancy problems considered in Borovička, Hansen, and Scheinkman (2016,

Section VIII.B), Almeida and Garcia (2017), and Ghosh, Julliard, and Taylor (2017). Specifically,
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one solves infM∈M EP(M logM) with M ≡ {M > 0 such that EP(M(R − Rf )) = 0, EP(M) =

EP(R−1
f,t ) ≡ µM , and EP(M logM) < ∞}, where EP(.) is unconditional expectation. The optimal

solution isM∗ = exp(m∗
0−1−φ∗(R−Rf )), where (φ

∗,m∗
0) solve arg inf(φ,m0){−m0 µM+EP(exp(m0−

1−φ(R−Rf )))}. The essence of the estimation procedure is thatMT , parameterized by φ, enforces

the correct unconditional pricing of the excess return of the market.

Our implementation indicates that the estimate of φ is 2.274, with a 90% bootstrap confidence

interval of (1.30 3.29). See the note to Table 1. In our setup, φ reflects the sensitivity d logMT [RT ]
dRT

,

and EP
t (RT )−Rf,t is unaffected by m0.

What is the value-added of our formula? It mitigates theoretical and empirical reliance on the

NCC and on the conditional lower bound on the expected excess return of the market.

Consider Table 1, which presents features of our estimates of EP
t (RT )−Rf,t. The first question

we ask is the following: How reasonable are our estimates of the conditional expected excess return?

To answer this, we use monthly return data covering 348 nonoverlapping option expiration cycles

(T=28 days) on the S&P 500 equity index, from January 1990 to December 2018 (29 years). The

data on S&P 500 index options, used to construct each required risk-neutral return central moment,

is described in the Internet Appendix (Section A).

The annualized average expected excess return is 8.97% (median is 5.8%) over the 29-year

sample. There is considerable time variation, as depicted in Figure 1, with a 5th (95th) percentile

value of 1.8% (26.2%). Our average EP
t (RT ) − Rf,t of 8.97% can be compared to the very long-

run average market excess return of 7.81% over 1926:07–2018:12 (source: data library of Kenneth

French). Furthermore, it is comparable to the estimate of 7.43% reported in Fama and French

(2002) over 1951–2000. Fundamental to our methodology is the development of a portfolio of

risk-neutral return central moments that synthesizes the conditional expected excess return of the

market.

The next pertinent question is the following: How aligned is the lower bound, R−1
f,t var

Q
t (RT ),

with our estimates of EP
t (RT )−Rf,t? We perform the following regression:

EP
t (RT ) − Rf,t︸ ︷︷ ︸

estimated from equation (4)

= Ψ0 + Ψ1 {R−1
f,t var

Q
t (RT )}︸ ︷︷ ︸

lower bound

+ ǫ̃t, (5)

with null hypothesis of Ψ0 = 0 and Ψ1 = 1. (6)
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To compute p-values, we rely on the HAC estimator of Newey and West (1987), with automatically

selected lags. The Wald test of Ψ0 = 0 and Ψ1 = 1, which reflects covPt (MT RT , RT ) = 0, is rejected

with a p-value of 0.00. We obtain Ψ0 = 0.35 (p-value of 0.00) and Ψ1 = 1.99 (p-value of 0.00).

In Martin (2017, Table 1), the average lower bound, R−1
f,t var

Q
t (RT ), is 5% over the sample of

1/1996 to 1/2012. Our Table 1 (row (vi)) shows that the average R−1
f,t var

Q
t (RT ) is 4.32%, and

is half the size of the average EP
t (RT ) − Rf,t. The difference {EP

t (RT ) − Rf,t} − R−1
f,t var

Q
t (RT ) =

−covPt (MT RT , RT ), as plotted in Figure 2, manifests substantial dispersion through time.

Prompted by Barro (2006) and Wachter (2013), we investigate two additional questions using

our method to estimate EP
t (RT )−Rf,t.

How important is the perception of return extremes for EP
t (RT )−Rf,t? This entails quantifying

the role of the risk-neutral fourth cumulant in determining EP
t (RT )−Rf,t. We find empirically that

the contribution of 1
24 φ{φSD

Q
t (RT )}

5 {HskewnessQt (RT ) − 10 SkewnessQt (RT )} to EP
t (RT ) − Rf,t is

0.006% annualized (on average; see row (v) of Table 1). Additionally, Table 1 (row (ii)) reveals that

the average 1
φ({φSD

Q
t (RT )}

2 + 1
2{φSD

Q
t (RT )}

3 × SkewnessQt (RT )) is 8.91%, implying an average

contribution of 1
6φ{φSD

Q
t (RT )}

4 × {KurtosisQt (RT ) − 3} of 0.049% (see row (iv)). Our estimates

indicate that tail effects matter little quantitatively, on average.

How important is the perception of disasters, as reflected in the relative pricing of OTM puts

versus OTM calls, for EP
t (RT )−Rf,t? To answer this, we compute the average of 1

φ{φSD
Q
t (RT )}

2

and obtain a value of 9.84%. See Table 1 (row (iii)). Thus, the presence of 1
2 {φSD

Q
t (RT )}

3 ×

SkewnessQt (RT ) reduces the conditional expected excess return of the market, on average, by−0.93%

(the estimate of risk-neutral skewness is never positive). There is information for expected excess

returns in the risk-neutral third central moment of market returns.

What are the other implications of formula (4) and Table 1? The cornerstone of Martin

and Wagner (2019) is the expression for EP
t (R

j
T ) − EP

t (RT ) (their equation (14)), for individual

stocks j = 1, . . . , J , and for the expected excess return of an individual stock EP
t (R

j
T ) − Rf,t

(their equation (15)). The former expression does not depend upon the validity of the NCC,

but the latter requires an estimate (and not only a lower bound) of the expected return of the

market. To obtain this estimate, an assumption is made that covPt (MT RT , RT ) is identically

zero. Thus, given the documented disparities between {EP
t (RT ) − Rf,t} − R−1

f,t var
Q
t (RT ), a cen-
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tral input to EP
t (R

j
T ) − Rf,t is susceptible to misspecification. Our estimates of EP

t (RT ) and

−covPt (MTRT , RT )) = {EP
t (RT ) − Rf,t} − R−1

f,t var
Q
t (RT ), using formula (4), can improve imple-

mentation aspects in Martin and Wagner (2019).

Chabi-Yo and Loudis (2019, equations (27) and (31)) present a lower bound on EP
t (RT )−Rf,t,

derived from risk-neutral return variance, skewness, and kurtosis. Our departure in equation (4) is

that it offers an explicit expression for the conditional expected excess return of the market.

Finally, what could be the reasons that the lower bound (i.e., R−1
f,t var

Q
t (RT )) is not adequately

aligned with our estimates of EP
t (RT ) − Rf,t? First, informed by theory, our formula unpacks the

contribution of other risk-neutral return central moments. Second, if the NCC were not to be a

generic property, what, at first sight, appears to be the lower bound, could, in fact, be an upper

bound. We develop this formally in Result 3. Hence, knowledge of the lower bound on the expected

excess return of the market is of limited value if the NCC were to be violated.

3 A general formula for the expected excess return of the market

The specification ofMT in equation (3), which is an exponential function ofRT , balances tractability

and generality. The projected SDF is analytic (i.e., MT ∈ Cω) and can be viewed as a polynomial

in RT through its Taylor expansion.

One may inquire: Can one generalize the functional form for MT for which one could obtain

analytical expressions for EP
t (RT ) − Rf,t, and still use input variables constructed from option

prices?

To explore this possibility, we maintain that MT [RT ] > 0 almost surely, and MT [RT ], or equiv-

alently, MT [1 + rT ] (recalling rT ≡ RT − 1 and rf,t ≡ Rf,t − 1), is continuous and infinitely

differentiable in rT , that is, MT [1 + rT ] ∈ C∞. We define

H[rT ] =
1

MT [RT ]
=

1

MT [1 + rT ]
∈ C∞. (7)

This class may encompass theoretically plausible and empirically interesting specifications of pro-

jected SDFs, allowing us to comment on the robustness of our estimates of EP
t (RT )−Rf,t in Table 1.

Additionally, no assumptions are made about whether the NCC holds.
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Denoting H ′[rT ] ≡
dH[rT ]
drT

, H ′′[rT ] ≡
d2H[rT ]

dr2
T

, H ′′′[rT ] ≡
d3H[rT ]

dr3
T

, and H ′′′′[rT ] ≡
d4H[rT ]

dr4
T

, and

H[rf,t] = H[rT ]
∣∣∣
rT=rf,t

, H ′[rf,t] = H ′[rT ]
∣∣∣
rT=rf,t

and so on, we consider the Taylor expansion

H[rT ] = H[rf,t] +H ′[rf,t](rT − rf,t) +
H ′′[rf,t]

2
(rT − rf,t)

2

+
H ′′′[rf,t]

3!
(rT − rf,t)

3 +
H ′′′′[rf,t]

4!
(rT − rf,t)

4 + · · · . (8)

We assume that
H′[rf,t]
H[rf,t]

,
H′′[rf,t]
H[rf,t]

,
H′′′[rf,t]
H[rf,t]

, and
H′′′′[rf,t]
H[rf,t]

exist and are well-defined.

Result 2 (Expected excess return of the market when H[rT ] ∈ C∞) With the function H[rT ] ∈

C∞ defined in equation (7), the conditional expected excess return of the market is

EP
t (RT ) − Rf,t =

H ′[rf,t]

H[rf,t]
{SDQ

t (RT )}
2 +

1

2

H ′′[rf,t]

H[rf,t]
{SDQ

t (RT )}
3 × SkewnessQt (RT )

+
1

6

H ′′′[rf,t]

H[rf,t]
{SDQ

t (RT )}
4 × {KurtosisQt (RT ) − 3}+ · · · .

(9)

Proof: See Appendix B. �

One may ask if Result 2 specializes to Result 1? When MT = exp (m0 − 1− φ(RT −Rf,t)) (as

in equation (3)), then H[rT ] = exp (−m0 + 1 + φ(rT − rf,t)). Hence,
H′[rf,t]
H[rf,t]

= φ,
H′′[rf,t]
H[rf,t]

= φ2, and

H′′′[rf,t]
H[rf,t]

= φ3. In this case, equation (9) coincides with the exact expression for EP
t (RT ) − Rf,t in

equation (4). Our motivation for featuring MT in equation (3) was twofold. First, to show that

risk-neutral return central moments higher than two may be important for EP
t (RT ) − Rf,t. This

effort was guided by the bounds formula of Martin (2017), whose sole driver is the risk-neutral

return variance. Second, to offer a parsimonious, easy to implement formula in which the unknown

parameter could be estimated using established methods.

Result 2 inherits the convenience and generality of Result 1, but enhances flexibility. For one, it

can allow for state-dependent sensitivity ofMT to RT . For another, it can accommodate alternative

forms of dependencies of MT on RT . The following parameterizations illustrate our point and may

offer potential avenues for improvement.

Case 1 (State-dependent sensitivity) Suppose MT is of the following form:

MT [RT ] = exp (m0 − 1− {φ+ φz zt}(RT −Rf,t)) , for constants m0, φ > 0, and φz, (10)

8



where zt is some economically relevant variable known at time t (e.g., changes in variance uncer-

tainty). We deduce that EP
t (RT )−Rf,t satisfies equation (9), with

H ′[rf,t]

H[rf,t]
= φ+ φz zt,

H ′′[rf,t]

H[rf,t]
= (φ+ φz zt)

2, and
H ′′′[rf,t]

H[rf,t]
= (φ+ φz zt)

3. (11)

Case 2 (Alternative form of dependencies) Suppose

MT [RT ] = exp

(
m0 − 1− φ (RT −Rf,t) + ψ{

log(RT )

℘t
−Rf,t}

)
. (12)

where ℘t ≡ 1
Rf,t

E
Q
t (log(RT )) = 1 − 1

Rf,t
+

∫
K<St

1
K2putt,T [K] dK +

∫
K>St

1
K2 callt,T [K] dK is the

price of the log(RT ) payoff. We deduce that EP
t (RT )−Rf,t satisfies equation (9), with

H ′[rf,t]

H[rf,t]
= φ−

ψ

℘tRf,t
, (13)

H ′′[rf,t]

H[rf,t]
=

℘2
t (Rf,t)

2 φ2 + ℘t {ψ − 2Rf,t ψ φ}+ ψ2

℘2
t (Rf,t)2

, and (14)

H ′′′[rf,t]

H[rf,t]
=

℘3
t (Rf,t)

3φ3 − ℘2
tψ

(
3(Rf,t)

2φ2 − 3Rf,tφ+ 2
)
+ 3℘tψ

2(Rf,tφ− 1)− ψ3

℘3
t (Rf,t)3

. (15)

What are the defining features of these formulae? In each case, EP
t (RT ) − Rf,t depends on

all risk-neutral return central moments, and not just on the risk-neutral variance. Second, the

sensitivity of EP
t (RT )−Rf,t to each risk-neutral central moment is time-varying.

Case 2 admits a general form of dependencies since log(1+rT ) = rT −
r2T
2 +

r3T
3 −

r4T
4 +

r5T
5 . . . , and

hence logMT is a polynomial in the net market return rT , with state-dependent (via ℘t) parame-

terized sensitivities. While such generalizations are implementable, they appear more cumbersome.

Framing our issues in the context of Case 1 and equation (10), Table 2 reports the results when

we take a stand on the choice of zt . The question is whether data supports time-varying sensitivity,

φ+φz zt, of MT to RT , which is equivalent to testing whether φz = 0. Our estimation procedure is

analogous to that used for equation (3), except that MT is parameterized by φ and φz (for a choice

of zt). See the note to Table 2.

Guided by empirical and theoretical considerations (e.g., see, among others, Cochrane (1996)

and Menzly, Santos, and Veronesi (2004)), we consider zt to be the change in prior month realized

9



market variance or the prior one month return on the HML factor. The HML factor is often

associated with variation in business conditions (e.g., Fama and French (1993)). The theoretical

framework of Case 1 accommodates the use of economically relevant zt variables amenable to

construction over option expiration cycles.

There are two takeaways from Table 2. First, the 90% confidence intervals of both φz estimates

bracket zero, implying that the data does not support a time-varying effect of RT onMT beyond that

reflected in φ (as ascertained in the context of Case 1 and for our choices of zt). Second, the estimates

of EP
t (RT )−Rf,t, using equation (10), align with those in Table 1. Thus, the parsimoniously specified

MT in equation (3) may be preferred over the more complicated counterparts.

4 Developing and testing the asset-pricing restrictions of the NCC

The theoretical lower bound (i.e., R−1
f,t var

Q
t (RT )) — which is a consequence of the NCC — is

the estimate of the conditional expected excess return of the market. This section develops and

identifies theoretical restrictions on MT to ascertain the generality of the NCC. Additionally, we

construct theoretical (but empirically plausible) economies in which the NCC fails to hold. The

empirical evidence on testing the NCC helps to reconcile our perspective on considering exact

theoretical representations of EP
t (RT )−Rf,t.

4.1 Theoretical restrictions of the NCC

We first present a theoretical result that gives a sufficient condition on the sign of the conditional

covariance between a random variable X and a function g[X] (suppressing subscript T on XT ).

Lemma 1 (Sign of conditional covariance) Let X be a random variable with a finite second

moment, D be a subset of the real line R with EP
t (X) ∈ D, and g : D → R be a function for which

g[X] has a finite second moment. The following statements are true:

If g[X] is a decreasing function on D, then covPt (g[X],X) ≤ 0. (16)

If g[X] is an increasing function on D, then covPt (g[X],X) ≥ 0. (17)

Proof: See Appendix C. �
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The essence of Lemma 1 is that if dg[X]
dX ≡ g′[X] ≤ (≥) 0, then g[X] is decreasing (increasing),

so Lemma 1 tells us that the conditional covariance covPt (g[X],X) is nonpositive (nonnegative).

In view of Lemma 1, what are the theoretical restrictions on plausibleMT under which the NCC

does not hold? We answer this question by developing a result on the sign of covPt
(
MT [RT ]R

n
T , R

n
T

)

for any positive integer n and then specializing the result to n = 1. Let M ′
T [RT ] ≡

dMT [RT ]
dRT

.

Result 3 (Restrictions of the NCC) The following hold for any positive integer n:

If
M ′

T [RT ]

MT [RT ]
+

n

RT
≤ 0 almost surely, then covPt

(
MT [RT ]R

n
T , R

n
T

)
≤ 0. (18)

If
M ′

T [RT ]

MT [RT ]
+

n

RT
≥ 0 almost surely, then covPt

(
MT [RT ]R

n
T , R

n
T

)
≥ 0. (19)

Furthermore,

If
M ′

T [RT ]

MT [RT ]
+

n

RT
≤ 0, then EP

t (R
n
T ) ≥

lower bound︷ ︸︸ ︷
E
Q
t (R

2n
T )

E
Q
t (R

n
T )

and (20)

If
M ′

T [RT ]

MT [RT ]
+

n

RT
≥ 0, then EP

t (R
n
T ) ≤

E
Q
t (R

2n
T )

E
Q
t (R

n
T )︸ ︷︷ ︸

upper bound

. (21)

Proof: The result follows from Lemma 1 and the steps in Appendix D. �

Consider equation (20) of Result 3 corresponding to n = 1:

If
M ′

T [RT ]

MT [RT ]
+

1

RT
≤ 0, then EP

t (RT ) ≥
E
Q
t (R

2
T )

E
Q
t (RT )

. (22)

This restriction implies a conditional lower bound EP
t (RT ) ≥

E
Q
t (R

2
T
)−{EQ

t (RT )}2+{EQ
t (RT )}2

E
Q
t (RT )

(observed

at time t), and, hence, EP
t (RT )−Rf,t ≥ R−1

f,t var
Q
t (RT ), in view of EQ

t (RT ) = Rf,t.

What do we do here that is different from Martin (2017)? Specifically, equation (21) is a new

observation and shows that EP
t (RT )− Rf,t ≤ R−1

f,t var
Q
t (RT ), so R

−1
f,t var

Q
t (RT ) represents an upper

bound, when
M ′

T [RT ]
MT [RT ] +

1
RT

≥ 0 for some theoretically and empirically supportable MT [RT ]. Since

the sign of
M ′

T [RT ]
MT [RT ] +

1
RT

could potentially alternate through (calendar) time, our characterizations

do not preclude the possibility that R−1
f,t var

Q
t (RT ) represents an upper bound on the expected

11



excess return at some time t, while it could represent a lower bound at some other time t•. Such

a possibility is at the crux of our theoretical treatment and empirical approach.

The conditions in Result 3 are sufficient, but not necessary. This is because derivatives are local

properties. Result 3 is free of distributional assumptions.

4.2 Economic rationale for the counterexamples where the NCC fails

In light of equations (20)–(21) evaluated at n = 1, we consider
M ′

T [RT ]
MT [RT ] +

1
RT

and develop example

economies in which 1
RT

is sufficiently positive to counteract the possible negative value of
M ′

T [RT ]
MT [RT ] .

We will argue that the class of SDFs violating the NCC are theoretically and empirically tenable.

Counterexample 1 Suppose the gross return vector, ZT [RT ], is given by

ZT [RT ]︸ ︷︷ ︸
2×1

= [RT Rstraddle
T ]⊤, where Rstraddle

T ≡
Stmax(RT − 1, 0) + Stmax(1−RT , 0)

callt,T [St] + putt,T [St]
. (23)

Consider the following candidate for the projected SDF that enforces the correct pricing of ZT [RT ]:

MT [RT ] = Z⊤
T [RT ]α with α = {EP(Z⊤

T [RT ]ZT [RT ])}
−1 1. (since EP(MT [RT ]ZT [RT ]) = 1) (24)

Here MT [RT ] depends on the gross return of (i) the market and (ii) at-the-money straddle. ♣

The model of MT in equation (24) is market volatility sensitive. Employing data from the S&P

500 index options market and computing the matrix of unconditional second-moments EP(Z⊤
T [RT ]ZT [RT ]),

as in Cochrane (2005, pages 65–66), we determine α = [0.73 0.30]⊤, with 90% bootstrap confidence

intervals of (0.61 0.83) and (0.17 0.48), respectively. For this model,

M ′
T [RT ]

MT [RT ]
+

1

RT
=

1

MT [RT ]





αmarket +
αstraddle St

callt,T [St]+putt,T [St]
+ MT [RT ]

RT
> 0 if RT > 1,

αmarket −
αstraddle St

callt,T [St]+putt,T [St]
+ MT [RT ]

RT
if RT < 1.

The NCC fails to hold when RT > 1.

Addressing plausibility, this MT [RT ] has a decreasing region and an increasing region, and

is convex (i.e., M ′′
T [RT ] ≡

d2MT [RT ]
dR2

T

> 0) in RT . MT [RT ] with the said properties has empirical

12



support,1 and is consistent with the empirical observation of negative average returns of call options

on the market index (e.g., Bakshi, Madan, and Panayotov (2010)).

Next, as an illustration, suppose returns can take values along a grid (confining to a 7% down

or up move over the option expiration cycle) with equal probabilities. Then

RT [ω] =
St+T [ω]

St
= [e−0.07 · · · , e−0.050, . . . , e−0.01, e−0.005, 1, e0.005, e0.01 . . . , e0.05, . . . , e0.07]⊤,

MT [ω] = Z⊤
T [ω]α and Rstraddle

T [ω] ≡
Stmax(RT [ω]− 1, 0) + Stmax(1−RT [ω], 0)

callt,T [St] + putt,T [St]
. (25)

On 11/23/2015, St = $2086.59, Rf,t = 1, and interpolated callt,T [St] = putt,T [St] = $29.07.

The key point is that the correlation between MT RT and RT is computable and equal to 0.35

(i.e., positive). Thus, under our assumption about MT [RT ], the validity of the NCC is questioned

for data from 11/23/2015.

We test the model in equation (24) in an another way in Section 4.3.

Counterexample 2 Suppose

MT [RT ] = exp(m0 − 1 + Λstraddle (R
straddle
T −Rf,t)︸ ︷︷ ︸
excess return

), with Λstraddle > 0. (26)

This (projected) SDF depends on the excess return of a variable that is sensitive to volatility, has

a decreasing region, has an increasing region, and is convex in RT . Then

M ′
T [RT ]

MT [RT ]
+

1

RT
=





Λstraddle St

callt,T [St]+putt,T [St]
+ 1

RT
> 0 if RT > 1,

− Λstraddle St

callt,T [St]+putt,T [St]
+ 1

RT
if RT < 1.

(27)

Additionally,
M ′

T [RT ]
MT [RT ] +

1
RT

is positive in the region RT < 1, when Λstraddle <
callt,T [St]+putt,T [St]

St
. ♣

1We refer the reader to the theoretical characterizations and empirical defence in, e.g., Aı̈t-Sahalia and Lo (2000),
Jackwerth (2000), Rosenberg and Engle (2002), Beare (2011), Christoffersen, Jacobs, and Heston (2013), Hens and
Reichlin (2013), Chaudhuri and Schroder (2015), Wolfgang, Hardle, and Kratschmer (2017), and Schneider and
Trojani (2019). The study of Linn, Shive, and Shumway (2018) offers a counterpoint.
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Counterexample 3 Suppose, for constants m0, υ > 0, and δ > 0,

MT [RT ] = exp


m0 − 1 +

υ

2
(

R2
T

qt,{R2
T
}

−Rf,t) + δ(
1
RT

qt,{ 1

RT
}

−Rf,t)


 , for RT ∈ [R,R], (28)

where R > 0 and R < ∞. Here (
R2

T

q
t,{R2

T
}
− Rf,t) and (

1

RT

q
t,{ 1

RT
}
− Rf,t) are excess returns, where

qt,{R2
T
} = R−1

f,t E
Q
t (R

2
T ) (respectively, qt,{ 1

RT
} = R−1

f,t E
Q
t (R

−1
T )) is the price of the payoff R2

T (respec-

tively, 1
RT

) and can be synthesized via a static positioning in options. Then

M ′
T [RT ]

MT [RT ]
+

1

RT
=

υ
q
t,{R2

T
}
R3

T + RT − δ
q
t,{ 1

RT
}

R2
T

. (29)

With υ > 0, υR3
T +RT is strictly increasing in RT , which implies that the equation υR3

T +RT −

δ
q
t,{ 1

RT
}
= 0 has a unique real solution given by (see Weisstein (2010, equation (80)))

Rcritical
T = −2

√
qt,{R2

T
}

3υ
sinh


1

3
arcsinh


−

3δ

2qt,{ 1

RT
}

√
3υ

qt,{R2
T
}




 . (30)

Rcritical
T is crucial for determining the sign of

M ′
T
[RT ]

MT [RT ] +
1
RT

and, thus, of covPt
(
MT [RT ]RT , RT

)
.

Suppose Rcritical
T < R. Then, since RT ∈ [R,R], we have RT > Rcritical

T , and the numerator of

equation (29) is positive. Therefore, covPt (MT [RT ]RT , RT ) > 0 and the NCC is violated. ♣

Counterexample 4 SupposeMT [RT ] is the weighted sum of a completely monotone function and

an absolutely monotone function (motivated by Bakshi, Madan, and Panayotov (2010)) of the type

MT [RT ] = wR−θ
T + (1− w) (

1

RT
)−θ, for some constants θ > 1 and 0 < w < 1. (31)

This MT [RT ] is convex in RT , and is negatively (positively) sloped at low (large) RT , with ( 1
RT

)−θ

reflecting the marginal utility of agents long the inverse of market (their wealth declines in the

region RT > 1). Also,

M ′
T [RT ]

MT [RT ]
+

1

RT
=

θ
R{−wR

−θ
T + (1−w)Rθ

T }

wR−θ
T + (1− w)Rθ

T

+
1

R
> 0, when RT >

(
w (θ − 1)

(1− w)(θ + 1)

) 1

2 θ

. (32)
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Thus, covPt (MT [RT ]RT , RT ) can be positive, which poses a challenge to the notion of the NCC. ♣

We next build on specifications of MT that are insightful in an empirical context.

4.3 Empirical evidence on the NCC

The hypothesis of the NCC is that the conditional covariance covPt (MT RT , RT ) ≤ 0 for all MT .

Therefore,

we can reject the hypothesis of the NCC if covPt (MT [RT ]RT , RT ) > 0, for some MT [RT ]. (33)

Denoting the conditional covariance by EP
t (c̃T ), where the demeaned cross-product c̃T is given

by c̃T ≡ {MT [RT ]RT −EP
t (MT [RT ]RT )}{RT −Et(RT )}, the following two comments are in order:

• First, suppose we wish to assess the hypothesis H: EP
t (c̃T ) > 0. Having infinitely many, but

countable, observations of positive c̃T does not violate the possibility that EP
t (c̃T ) ≤ 0.

• Second, suppose we wish to assess the same hypothesis H: EP
t (c̃T ) > 0 by utilizing the

sufficient condition in Result 3; then it seems that we need to test H• :
M ′

T
[RT ]

MT [RT ] +
1

RT
> 0

almost surely. While straightforward, this condition is not easily testable because, even if we

have infinitely many, but countable, observations of positive
M ′

T
[RT ]

MT [RT ] +
1
RT

, it does not exclude

the possibility that
M ′

T
[RT ]

MT [RT ] +
1
RT

< 0 almost surely.

Motivated by the discussions above, the next result is at the center of our empirical exercises.

Result 4 Let EP(.) and covP(., .) denote the unconditional expectation and unconditional covari-

ance, respectively. The following statement is true:

covP(MT [RT ]RT , RT )︸ ︷︷ ︸
unconditional covariance

= EP(covPt (MT [RT ]RT , RT )).︸ ︷︷ ︸
unconditional expectation of conditional covariance

(34)

Proof : By the law of total covariance formula, covP(MT [RT ]RT , RT ) = EP(covPt (MT [RT ]RT , RT ))+

covP(EP
t (MT [RT ]RT ),E

P
t (RT )). Since EP

t (MT [RT ]RT ) = 1, the result in equation (34) follows. �
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If the NCC holds almost surely, that is, if, covPt (MT [RT ]RT , RT ) ≤ 0 almost surely, then the

unconditional covariance covP(MT [RT ]RT , RT ) ≤ 0. For ease of comparability of magnitudes across

models of MT [RT ], we test the hypothesis that

H0 : NCCT ≤ 0, where NCCT is the unconditional correlation betweenMT [RT ]RT and RT . (35)

Specifically, if we reject H0, then we reject the NCC, meaning that covPt (MT [RT ]RT , RT ) > 0 holds

with a strictly positive probability.

We next present empirical evidence (using data from options on the market index) from three

models. While one could feature more models of MT , we highlight settings that are theoretically

and empirically revealing and amenable to implementation and validation.

Model A: The projected SDF, MT [RT ], depends on the gross return of the market (RT ) and the

gross return of an at-the-money straddle (Rstraddle
T , as defined in equation (23)) as follows:

MT [RT ] = αmarketRT + αstraddle{
Stmax(RT − 1, 0) + Stmax(1−RT , 0)

callt,T [St] + putt,T [St]
}. (36)

Model B: The projected SDF, MT [RT ], depends on the gross return of the market and the gross

return of a 2% out-of-the-money strangle, defined as Rstrangle
T ≡ St max(RT−e0.02,0)+St max(e−0.02−RT ,0)

callt,T [Ste0.02]+putt,T [Ste−0.02] )

as follows:

MT [RT ] = αmarketRT + αstrangleR
strangle
T . (37)

Models A and B are distinct since Rstraddle
T and Rstrangle

T are imperfectly correlated.

Model C: The projected SDF, MT [RT ], is exponential in the excess returns of the squared log

contract, allowing for asymmetric effect of variance in down and up equity markets:

MT [RT ] = exp
(
m0 − 1 + {η−variance1{RT<1} + η+variance1{RT>1}}(R

variance
T −Rf,t)

)
. (38)

The gross return, Rvariance
T , is based on the payoff of the following squared log contract:

Rvariance
T =

{logRT }
2

qt,{logRT }2
, (39)
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where the price of the squared log contract, qt,{logRT }2 = R−1
f,tE

Q
t ({logRT }

2), is synthesized as

qt,{logRT }2 =

∫

K<St

2(1 − log K
St
)

K2
putt,T [K] dK +

∫

K>St

2(1− log K
St
)

K2
callt,T [K] dK. (40)

It suffices, from Result 4, to compute the unconditional covariance covP(MT [RT ]RT , RT ).

In our exercises, we compute the parameters affecting MT [RT ] and covP(MT [RT ]RT , RT ). Ta-

bles 3 and 4 present our findings from implementing Models A, B, and C, respectively. The

takeaway is that the correlation between MT [RT ]RT and RT ; that is, NCCT is positive. In each

model, MT [RT ] does not attain negative values (i.e., the minimum MT [RT ] is positive).

The methodological appeal of Result 4 is that the sign of the expected conditional covariance

betweenMT [RT ]RT and RT can be ascertained by the sign of the unconditional covariance between

MT [RT ]RT and RT . The conclusion to draw is that the NCC fails to hold even on average.

Elaborating on these findings, we pose covP(MT [RT ]RT , RT ) being negative as an explicit

hypothesis and consider a bootstrap procedure. We bootstrap (with replacement) the gross returns

in ZT [RT ] and reestimate α in the context, for example, of Model A and Table 3. Then we

reconstruct MT [RT ] = Z⊤
T [RT ]α and RT . The 5th and 95th bootstrap values for NCCT are

positive, and we can reject the hypothesis of the NCC.

Our evidence, thus, refutes the notion that the NCC holds point by point and that R−1
f,t var

Q
t (RT )

is a universal lower bound across all plausibleMT . In essence, there is evidence, from Tables 3 and 4,

that the NCC is not a generic property, and, consequently, R−1
f,t var

Q
t (RT ) may sometimes be an

upper bound and not a lower bound.

What is special about featured Models A, B, and C? The distinguishing attribute is the de-

pendence of MT [RT ] on a specific convex function of RT that manifests decreasing and increasing

regions. For example, MT [RT ] tends to be high when Rstraddle
T or Rstrangle

T are high, which, intu-

itively, reflects sensitivity to market volatility. The considered model classes can be differentiated

from the ones in Martin (2017) that he employs to convey the empirical relevance of the NCC.
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5 Conclusions

What is the compensation that agents require for investing in the equity market? Martin (2017)

shows that a lower bound to the expected excess return of the market (and, thus, the minimum

compensation) is equal to the discounted risk-neutral variance of the market return. The critical

assumption that delivers this lower bound formula is the negative correlation condition (NCC);

that is, covPt (MT RT , RT ) ≤ 0 for all SDFs MT .

What are the differentiating elements of our paper? Most crucially, we go beyond a lower bound

characterization and propose an analytical expression for the conditional expected excess return of

the market. Our theoretical formula distills the manner in which each risk-neutral return central

moment contributes to the expected excess return of the market. Each source of the conditional

expected excess return can be tractably extracted from known option prices.

Using data on S&P 500 index options from January 1990 to December 2018 (29 years, 348

option expiration cycles), our empirical exercises emphasize two insights. First, the components

related to risk-neutral return variance and risk-neutral return skewness are the essential drivers of

the expected excess return of the market. Second, our estimates of the conditional expected excess

return materially differ from Martin (2017), and, on average, are twice the size of the lower bound

(i.e., the discounted risk-neutral variance).

We take two perspectives to reconcile our findings. First, addressing theoretical distinctions, our

formula assigns a weight to each risk-neutral return central moment. Our methodology is new and

we do not rely on the assumption that covPt (MT RT , RT ) ≤ 0 (i.e., that the NCC holds) to derive

our formula. Second, we develop the asset-pricing restrictions of the NCC and provide evidence

that the NCC is neither a generic property of the models nor does it necessarily hold in the data.

Our theoretical and empirical treatment implies that discounted risk-neutral variance, identified as

the lower bound in Martin (2017), could be an upper bound when the NCC fails.

The central problem of determining the expected excess return of the market — as rooted in the

tradition of Merton (1980) and Black (1993) — is still hungry for consensus and resolution. Our

explicit expression, analytical in quantities inferred from option prices, is a step in that direction.
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Appendix: Proof of Results

A Appendix A: Proof of the expected excess return formula (4) in Result 1

For ease of reference, we collect the following notations to keep the steps of our proof self-contained:

rT ≡ RT − 1 = net return of the equity market index;

rf,t ≡ Rf,t − 1 = net risk-free return;

Ω ≡ {rT > −1} = set of return possibilities;

p[rT ] = density of rT under the real-world probability measure, P;

q[rT ] = density of rT under the risk-neutral probability measure, Q;

mgfPt [λ] =
∫
Ω e

λrT p[rT ] drT = moment-generating function of the real-world distribution;

mgfQt [λ] =
∫
Ω e

λrT q[rT ] drT = moment-generating function of the risk-neutral distribution;

cmomentQn,t(rT ) = conditional n-th return central moment under the risk-neutral measure Q.

In light of equation (3), we represent MT [RT ] =MT [1 + rT ] = NT [rT ], that is,

NT [rT ] = exp (m0 − 1− φ(rT − rf,t)) ≡ a0 e
−φ rT , where a0 ≡ exp(m0 − 1 + φ rf,t). (A1)

The constant a0 will turn out to be irrelevant in our calculations.

Next, to derive analytical results in the context of a projected MT [RT ], or NT [rT ], observe from

Harrison and Kreps (1979), that one can hypothesize that

q[rT ]

p[rT ]
= NT [rT ], for some positive function. (A2)

We make the normalization such that p[rT ] integrates to unity, that is,

p[rT ] =

1
NT [rT ]q[rT ]∫

Ω
1

NT [rT ] q[rT ] drT
, (A3)

which implies that
∫
Ω p[rT ] drT = 1.
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The n-th order raw conditional return moments of the distribution, under P and Q, are

µPn ≡

∫

Ω
{rT }

n p[rT ] drT and µQn ≡

∫

Ω
{rT }

n q[rT ] drT . (A4)

We denote the moment-generating functions under P and Q, as mgfPt [λ] and mgfQt [λ], respectively.

Assume mgfPt [λ] <∞ and mgfQt [λ] <∞. Then,

mgfPt [λ] ≡

∫

Ω
eλrT p[rT ] drT = 1 +

λ

1!
µP1 +

λ2

2!
µP2 +

λ3

3!
µP3 +

λ4

4!
µP4 + . . . , for λ ∈ ℜ, (A5)

mgfQt [λ] ≡

∫

Ω
eλrT q[rT ] drT = 1 +

λ

1!
µQ1 +

λ2

2!
µQ2 +

λ3

3!
µQ3 +

λ4

4!
µQ4 + . . . , for λ ∈ ℜ. (A6)

Now consider

mgfPt [λ] =

∫

Ω
eλrT p[rT ] drT (A7)

=

∫

Ω
eλrT

1
NT [rT ]∫

Ω
1

NT [rT ] q[rT ] drT
q[rT ] drT (using equation (A3)) (A8)

=

∫
Ω e

λrT eφrT q[rT ] drT∫
Ω e

φrT q[rT ] drT
(using equation (A1)) (A9)

=
mgfQt [λ+ φ]

mgfQt [φ]
. (A10)

Taking logs on both sides of equation (A10), we arrive at

logmgfPt [λ] = logmgfQt [λ+ φ] − log mgfQt [φ]. (A11)

Equation (A11) implies that the cumulant-generating functions are related by the following identity:

CP
t [λ]︸ ︷︷ ︸

= logmgfP[λ]

= C
Q
t [λ+ φ] − C

Q
t [φ], where from Kendall and Stuart (1963), (A12)

logmgfPt [λ] ≡ CP
t [λ] = κP1

λ

1!
+ κP2

λ2

2!
+ κP3

λ3

3!
+ κP4

λ4

4!
+ . . . =

∞∑

n=1

κPn
λn

n!
and (A13)

logmgfQt [λ] ≡ C
Q
t [λ] = κQ1

λ

1!
+ κQ2

λ2

2!
+ κQ3

λ3

3!
+ κQ4

λ4

4!
+ . . . =

∞∑

n=1

κQn
λn

n!
. (A14)
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Following Kendall and Stuart (1963, page 73, eq. (3.43)), κPn are cumulants under P, defined, in

relation to the raw moments, as

κP1 ≡ µP1 = EP
t (rT ), (A15)

κP2 ≡ µP2 − (µP1)
2, (A16)

κP3 ≡ EP
t ({rT − µP1}

3), (A17)

κP4 ≡ EP
t ({rT − µP1}

4)− 3(κP2 )
2, and (A18)

κP5 ≡ EP
t ({rT − µP1}

5)− 10κP3 κ
P
2 . (A19)

Under the risk-neutral probability measure Q, the corresponding cumulants are

κQ1 ≡ µQ1 = E
Q
t (rT ) = rf,t, (A20)

κQ2 ≡ µQ2 − (µQ1 )
2 = E

Q
t ({rT − µQ1 }

2) = varQt (rT ), (A21)

κQ3 ≡ E
Q
t ({rT − µQ1 }

3) = (varQt (rT ))
3/2SkewnessQt (rT ), (A22)

κQ4 ≡ E
Q
t ({rT − µQ1 }

4)− 3(κQ2 )
2 = (varQt (rT ))

2(KurtosisQt (rT ) − 3), and (A23)

κQ5 ≡ E
Q
t ({rT − µQ1 }

5)− 10κQ3 κ
Q
2 = (varQt (rT ))

5/2(HskewnessQt (rT )− 10 SkewnessQt (rT )). (A24)

HskewnessQt (rT ) is the risk-neutral hyperskewness, defined in equation (A39). Our analysis does

not require a parametric assumption about the risk-neutral distribution.

We are ready to verify Result 1. The conditional expected return under the P measure is

EP
t (rT ) =

dCP
t [λ]

dλ

∣∣∣
λ=0

(now use equation (A12)) (A25)

=
dCQ

t [λ+ φ]

dλ

∣∣∣
λ=0

−
dCQ

t [φ]

dλ︸ ︷︷ ︸
=0

∣∣∣
λ=0

(A26)

=
1

1!
κQ1 + 2

φ

2!
κQ2 + 3

φ2

3!
κQ3 + 4

φ3

4!
κQ4 + 5

φ4

5!
κQ5 +

∞∑

n=6

φn−1

(n− 1)!
κQn , (A27)

where we have exploited the derivative
dCQ

t [λ+φ]
dλ = κQ1

1
1! +2κQ2

(λ+φ)
2! +3κQ3

(λ+φ)2

3! +4κQ4
(λ+φ)3

4! + . . ..
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Noting that κQ1 = E
Q
t (rT ) = E

Q
t (RT − 1) = Rf,t − 1 = rf,t, the net risk-free return, it follows

from equation (A27) that

EP
t (RT )−Rf,t︸ ︷︷ ︸

expected excess return

= φκQ2 +
φ2

2
κQ3 +

φ3

6
κQ4 +

φ4

24
κQ5 +

∞∑

n=6

φn−1

(n− 1)!
κQn . (A28)

The conditional expected excess return in equation (A28) can be equivalently written as

EP
t (RT )−Rf,t =

1

φ
({φSDQ

t (rT )}
2 +

1

2
{φSDQ(rT )}

3 SkewnessQt (rT )

+
1

6
{φSDQ

t (rT )}
4 (KurtosisQt (rT ) − 3)

+
1

24
{φSDQ

t (rT )}
5 (HskewnessQt (rT )− 10 SkewnessQt (rT )) + . . .), (A29)

where SDQ
t (rT ) =

√
varQt (rT ), Skewness

Q
t (rT ), KurtosisQt (rT ), and HskewnessQt (rT ) are the condi-

tional risk-neutral volatility, skewness, kurtosis, and hyperskewness, respectively.

The final step is to infer the risk-neutral return central moments from option prices, known at

time t. Specifically, let

cmomentQn,t ≡ E
Q
t ({rT − rf,t}

n) = E
Q
t ({(RT − 1)− (Rf,t − 1)}n) (A30)

= E
Q
t ({

St+T

St
−Rf,t}

n) (A31)

=
n(n− 1)Rf,t

S2
t

∫

K<Rf,tSt

(
K

St
−Rf,t)

n−2putt,T [K] dK

+
n(n− 1)Rf,t

S2
t

∫

K>Rf,tSt

(
K

St
−Rf,t)

n−2callt,T [K] dK. (A32)

We can move from equation (A31) to equation (A32) since, from Bakshi and Madan (2000, Ap-

pendix A.3) and Carr and Madan (2001, equation (2)), we have, for n ≥ 2,

A[St+T ] ≡ {
St+T

St
−Rf,t}

n (A33)

= A[St+T ]
∣∣
St+T=Rf,tSt︸ ︷︷ ︸
=0

+ A′[St+T ]
∣∣
St+T=Rf,tSt︸ ︷︷ ︸
=0

(St+T − St)

+

∫

K<Rf,tSt

A′′[K](K − St+T )
+ dK +

∫

K>Rf,tSt

A′′[K](St+T −K)+ dK, (A34)

25



where

A′′[K] =
d2A[St+T ]

dS2
t+T

∣∣
St+T=K

=
n(n− 1)

S2
t

(
St+T

St
−Rf,t)

n−2
∣∣
St+T=K

=
n(n− 1)

S2
t

(
K

St
−Rf,t)

n−2. (A35)

We obtain

SDQ
t (rT ) =

√
cmomentQn,t

∣∣
n=2

, (A36)

SkewnessQt (rT ) =
cmomentQn,t

∣∣
n=3

{SDQ
t (rT )}

3
, (A37)

KurtosisQt (rT ) =
cmomentQn,t

∣∣
n=4

{SDQ
t (rT )}

4
, and (A38)

HskewnessQt (rT ) =
cmomentQn,t

∣∣
n=5

{SDQ
t (rT )}

5
. (A39)

The right-hand side of equation (A29) are quantities that can be inferred from option prices. �

B Appendix B: Proof of the expected excess return formula (9) in Result 2

In analogy to equations (A7)–(A10) and with H[rT ] =
1

MT [RT ] =
1

MT [1+rT ] ∈ C∞, we consider

mgfPt [λ] =

∫

Ω
eλrT p[rT ] drT (B1)

=

∫

Ω
eλrT

H[rT ]∫
ΩH[rT ] q[rT ] drT

q[rT ] drT (using equation (A3)) (B2)

=

∫
Ω e

λrTH[rT ] q[rT ] drT∫
ΩH[rT ] q[rT ] drT

=
E
Q
t (e

λrTH[rT ])

E
Q
t (H[rT ])

. (B3)

To express EP
t (RT −Rf,t) in terms of risk-neutral cumulants, we write equation (B3) as

mgfPt [λ] =
E
Q
t (e

λ(rT−rf,t)H[rT ])

E
Q
t (e

−λrfH[rT ])
. (B4)

Hence, we obtain

logmgfPt [λ] = logEQ
t (e

λ(rT−rf,t)H[rT ]) − logEQ
t (H[rT ]) + λ rf,t. (B5)
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It follows that

EP
t (rT ) =

d log mgfPt [λ]

dλ

∣∣∣∣
λ=0

(B6)

=
d logEQ

t (e
λ(rT−rf,t)H[rT ])

dλ

∣∣∣∣
λ=0

+ rf,t. (B7)

Next, we employ the fact that eλ(rT−rf,t) = 1 + λ(rT − rf,t) +
λ2

2 (rT − rf,t)
2 + λ3

3! (rT − rf,t)
3 +

λ4

4! (rT − rf,t)
4 + · · · , and H[rT ] = H[rf,t] +H ′[rf,t](rT − rf,t) +

H′′[rf,t]
2 (rT − rf,t)

2 +
H′′′[rf,t]

3! (rT −

rf,t)
3 +

H′′′′[rf,t]
4! (rT − rf,t)

4 + · · · . Furthermore, assuming that one can switch the order of taking

expectations and the infinite summations of the terms in the Taylor series expansion, we note that

E
Q
t (e

λ(rT−rf,t)H[rT ]) = E
Q
t ({1 + λ(rT − rf,t) +

λ2

2
(rT − rf,t)

2 +
λ3

3!
(rT − rf,t)

3 +

λ4

4!
(rT − rf,t)

4 + · · · }{H[rf,t] +H ′[rf,t](rT − rf,t) +
H ′′[rf,t]

2
(rT − rf,t)

2

+
H ′′′[rf,t]

3!
(rT − rf,t)

3 +
H ′′′′[rf,t]

4!
(rT − rf,t)

4 + · · · }), (B8)

= c0 + c1[λ] (κ
Q
1 − κQ1 ) + c2[λ]κ

Q
2 + c3[λ]κ

Q
3 + c4[λ] {κ

Q
4 + 3(κQ2 )

2}+ · · ·

= c0(1 +
1

c0
{c2[λ]κ

Q
2 + c3[λ]κ

Q
3 + c4[λ] {κ

Q
4 + 3(κQ2 )

2}+ · · · }
︸ ︷︷ ︸

≡ x[λ]

) (B9)

= c0(1 + x[λ]). (B10)

In deriving equation (B9), the cumulants under Q are defined as κQ1 = E
Q
t (rT ) = rf,t, κ

Q
2 =

E
Q
t ({rT − µQ1 }

2), κQ3 = E
Q
t ({rT − µQ1 }

3), and κQ4 ≡ E
Q
t ({rT − µQ1 }

4)− 3 (κQ2 )
2.

Each cj [λ] (for j = 1, · · · ) in equation (B9) depends on λ, where for example,

c0 = H[rf,t], (B11)

c1[λ] = λH[rf,t] + H ′[rf,t], (B12)

c2[λ] =
λ2H[rf,t] + 2λH ′[rf,t] + H ′′(rf,t)

2
, (B13)

c3[λ] =
λ3H[rf,t]

6
+

1

2
λ2H ′[rf,t] +

λH ′′[rf,t]

2
+
H ′′′[rf,t]

6
, and (B14)

c4[λ] =
λ4H[rf,t]

24
+
λ3H ′[rf,t]

6
+

1

4
λ2H ′′[rf,t] +

λH ′′′[rf,t]

6
+
H ′′′′[rf,t]

24
, (B15)

...
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Substituting the formula log(1 + x) = x− x2

2 + x3

3 − x4

4 + x5

5 . . . into equation (B10), we have

logEQ
t (e

λ(rT−rf,t)H[rT ]) = log c0 + log(1 + x[λ]) (B16)

= log c0 + x[λ]−
x2[λ]

2
+
x3[λ]

3
−
x4[λ]

4
. . . . (B17)

Then, using equation (B7), and rearranging, we have

EP
t (rT )− rf,t =

dx[λ]

dλ

∣∣∣∣
λ=0

−
1

2

dx2[λ]

dλ

∣∣∣∣
λ=0

+
1

3

dx3[λ]

dλ

∣∣∣∣
λ=0

−
1

4

dx4[λ]

dλ

∣∣∣∣
λ=0

+ · · · (B18)

=
H ′[rf,t]

H [rf,t]
κQ2 +

H ′′[rf,t]

2H [rf,t]
κQ3 +

H ′′′[rf,t]

6H [rf,t]
{κQ4 + 3(κQ2 )

2} −

(
H ′[rf,t]κ

Q
2 +

H′′ [rf,t]κ
Q
3

2 +
H′′′ [rf,t]{κ

Q
4
+3(κQ

2
)2}

6

)(
H′′ [rf,t]κ

Q
2

2 +
H′′′ [rf,t]κ

Q
3

6 +
H′′′′ [rf,t]{κ

Q
4
+3(κQ

2
)2}

24

)

(H [rf,t])2

· · · .

Assuming (κQ2 )
2 ≈ 0 (i.e., ignoring the effect of square of the risk-neutral variance of market return)

and some cross-product risk-neutral return moments (i.e., κQ2 κ
Q
3 ≈ 0, and so on), we see that

EP
t (RT −Rf,t) =

H ′[rf,t]

H[rf,t]
κQ2 +

H ′′[rf,t]

2H[rf,t]
κQ3 +

H ′′′[rf,t]

6H[rf,t]
κQ4 + · · · . (B19)

Equation (B19) is in agreement with equation (A28) when H[rT ] =
1

MT [1+rT ] = exp(−m0 + 1 +

φ (rT − rf,t)). �

C Appendix C: Proof of Lemma 1

In what follows, we suppress the subscript T on the random variable XT .

Since EP
t (X) is in the domain of g, we have

covPt (g[X],X) = EP
t ({X − EP

t (X)}{g[X] − EP
t (g[X])}) (C1)

= EP
t ({X − EP

t (X)}{g[X] − g[EP
t (X)]}) + EP

t ({X − EP
t (X)}{g[EP

t (X)]− EP
t (g[X])})

= EP
t ({X − EP

t (X)}{g[X] − g[EP
t (X)]}) + {g[EP

t (X)] − EP
t (g[X])}EP

t (X − EP
t (X))︸ ︷︷ ︸

=0

= EP
t ({X − EP

t (X)}{g[X] − g[EP
t (X)]}). (C2)
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The lemma follows by noticing that if g[X] is decreasing on D, when X ≤ (≥)EP
t (X), we have

g[X] ≥ (≤) g[EP
t (X)], which implies that (X − EP

t (X))(g[X] − g[EP
t (X)]) ≤ 0 everywhere.

Furthermore, if g[X] is increasing on D, when X ≤ (≥)EP
t (X), we have g[X] ≤ (≥) g[EP

t (X)],

which implies that (X − EP
t (X))(g[X] − g[EP

t (X)]) ≥ 0 everywhere. �

D Appendix D: Proof of Result 3

For brevity, we again suppress the subscript T on the random variable XT .

It suffices to notice that if g′[X] ≤ (≥)0, then g[X] is decreasing (increasing).

Apply Lemma 1 by setting, for any positive integer n,

X = Rn
T and g[X] = MT [X

1

n ]X. (D1)

Then

g′[X] = M ′
T [X

1

n ]
1

n
X

1

n
−1X + MT [X

1

n ] (D2)

=
M ′

T [RT ]RT

n
+ MT [RT ] (D3)

=
MT [RT ]RT

n

(
M ′

T [RT ]

MT [RT ]
+

n

RT

)
. (D4)

Next, to obtain EP
t (R

n
T ), notice that

covPt (MT [RT ]R
n
T , R

n
T ) = EP

t (MT [RT ]R
2n
T )− EP

t (MT [RT ]R
n
T )E

P
t (R

n
T ) (D5)

= EP
t (MT [RT ])E

Q
t (R

2n
T ) − EP

t (MT [RT ])E
Q
t (R

n
T )E

P
t (R

n
T ) (D6)

=
E
Q
t (R

2n
T )

Rf,t
−

E
Q
t (R

n
T )

Rf,t
EP
t (R

n
T ). (D7)

Rearranging,

EP
t (R

n
T ) =

E
Q
t (R

2n
T )−Rf,t cov

P
t (MT [RT ]R

n
T , R

n
T )

E
Q
t (R

n
T )

. (D8)
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In particular, for n = 1,

EP
t (RT ) =

E
Q
t (R

2
T )−Rf,t cov

P
t (MT [RT ]RT , RT )

E
Q
t (RT )

(D9)

= Rf,t +
varQt (RT )

Rf,t
− covPt (MT [RT ]RT , RT ). (D10)

Furthermore, for n = 2,

EP
t (R

2
T ) =

E
Q
t (R

4
T ) − Rf,t cov

P
t (MT [RT ]R

2
T , R

2
T )

E
Q
t (R

2
T )

(D11)

=
E
Q
t (R

4
T )

E
Q
t (R

2
T )

−
Rf,t

E
Q
t (R

2
T )

covPt (MT [RT ]R
2
T , R

2
T ). (D12)

We have provided the intermediate steps of the proof. �
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Table 1: Conditional expected excess return of the market

Reported are (i) estimates of (φ,m0) of the specification of MT in equation (3) and (ii) features of the
conditional expected excess return of the market (based on equation (4) of Result 1). We obtain the
following estimates of φ and m0 by solving a minimum discrepancy problem:

φ m0

Estimate 2.274 1.007
Bootstrap 5th percentile value 1.30 1.002
Bootstrap 95th percentile value 3.29 1.015

Specifically, one solves infM∈M EP(M logM) with M ≡ {M > 0 such that EP(M(R − Rf )) = 0, EP(M) =
EP(R−1

f,t ) ≡ µM , and EP(M logM) <∞}, where EP(.) is unconditional expectation. The optimal solution is

M∗ = exp(m∗
0−1−φ∗(R−Rf )), where (φ

∗,m∗
0) solve arg inf(φ,m0) {−m0 µM+EP(exp(m0−1−φ(R−Rf )))}

(e.g., Borovička, Hansen, and Scheinkman (2016, Section VIII.B)). The sample period for estimating φ
is 1926:07 to 2018:12 (1,110 monthly observations), and the time series of RT − Rf,t is taken from the
data library of Kenneth French. We adopt a bootstrap procedure and draw (Rf,t, RT ) with replace-
ment. Then, we reestimate (φ, m0). The reported confidence intervals are based on 10,000 bootstrap samples.

For each date t, we compute the conditional expected excess return of the market as

EP
t (RT ) − Rf,t =

1

φ

(
{φSDQ

t (RT )}
2 +

1

2
{φSDQ

t (RT )}
3 × SkewnessQt (RT )

+
1

6
{φSDQ

t (RT )}
4 × {KurtosisQt (RT ) − 3}

+
1

24
{φSDQ

t (RT )}
5 {HskewnessQt (RT )︸ ︷︷ ︸

hyperskewness

−10 SkewnessQt (RT )} + . . .


 ,

where SDQ
t (RT ) ≡

√
varQt (RT ), Skewness

Q
t (RT ), KurtosisQt (RT ), and HskewnessQt (RT ) are, respectively, the

conditional risk-neutral return volatility, skewness, kurtosis, and hyperskewness, respectively. The reported
features of EP

t (RT ) − Rf,t rely on data from the S&P 500 index options market from January 1990 to
December 2018 (29 years, 348 option expiration cycles). All reported numbers are in annualized percentage
units.

Percentiles
Average SD 5th 50th 95th

(i) Expected excess return of the market (annualized, %) 8.97 9.99 1.8 5.8 26.2

(ii) 1
φ
({φSDQ

t (RT )}
2 + 1

2 {φSD
Q
t (RT )}

3 × SkewnessQt (RT )) 8.91 9.92 1.8 5.8 25.8

(iii) 1
φ
{φSDQ

t (RT )}
2 9.84 11.3 1.9 6.4 30.6

(iv) 1
6φ

{φSDQ
t (RT )}

4 × {KurtosisQt (RT )− 3} 0.049 0.16 -0.1 0.00 0.20

(v) 1
24φ

{φSDQ
t (RT )}

5 {HskewnessQt (RT )− 10 SkewnessQt (RT )} 0.006 0.07 -0.02 -0.00 0.02

(vi) Martin (2017) lower bound, R−1
f,t var

Q
t (RT ) 4.32 4.96 0.8 2.8 13.4

(vii) {EP
t (RT )−Rf,t} − {R−1

f,t var
Q
t (RT )} 4.64 4.96 1.0 3.0 13.6
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Table 2: Estimates of conditional expected excess return of the market from alternative
models of MT

Reported are estimates of (m0, φ, φz) of the specification of MT in equation (10); that is, MT [RT ] =
exp (m0 − 1− {φ+ φz zt}(RT −Rf,t)). We consider zt to be either the prior month change in realized
market variance or the prior one month return on the HML factor. The market variance is constructed
as the sum of daily squared log returns. To estimate (m0, φ, φz), one solves arg inf(m0,φ,φz) {−m0 µM +

EP(exp(m0 − 1 − (φ + φz zt)(R − Rf )))}, where EP(.) is unconditional expectation. The sample period for
estimation is 1926:07 to 2018:12 (1,110 monthly observations), and the time series of RT − Rf,t is taken
from the data library of Kenneth French. We adopt a bootstrap procedure and draw (Rf,t, RT , zt) with re-
placement. Then, we reestimate (m0,φ,φz). The reported confidence intervals are based on 10,000 bootstrap
samples.

zt is change in market variance zt is HML
φ m0 φz φ m0 φz

Estimate 2.277 1.005 -50.29 2.202 1.005 8.69

Bootstrap 5th percentile value 1.372 1.000 -175.38 1.218 1.000 -11.01
Bootstrap 95th percentile value 3.339 1.013 82.20 3.230 1.013 29.79

For each date t, we compute the conditional expected excess return of the market using the formula in
equation (9) of Result 2. The reported features of EP

t (RT ) − Rf,t rely on data from the S&P 500 index
options market from January 1990 to December 2018 (29 years, 348 option expiration cycles). All reported
numbers are in annualized percentage units.

EP
t (RT )−Rf,t (annualized, %)

Percentiles
Average SD 5th 50th 95th

(i) zt is change in market variance 8.84 9.96 1.81 5.7 24.8

(ii) zt is HML factor 8.53 8.64 1.8 5.6 25.9
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Table 3: Testing the NCC when ZT [RT ] contains the (i) gross return of the market and
(ii) the gross return of an at-the-money straddle, or a 2% out-of-the-money strangle

In Model A, the gross returns in ZT [RT ] are

ZT [RT ] =

(
RT

Rstraddle
T

)
, where Rstraddle

T =
St max(RT − 1, 0) + St max(1−RT , 0)

callt,T [St] + putt,T [St]
.

In Model B, the gross returns in ZT [RT ] are

ZT [RT ] =

(
RT

Rstrangle
T

)
, where Rstrangle

T =
St max(RT − e0.02, 0) + St max(e−0.02 −RT , 0)

callt,T [Ste0.02] + putt,T [Ste−0.02]
.

The form of the projected SDF, MT [RT ], is

MT [RT ] = Z⊤
T [RT ]α, and we infer α = {E(Z⊤

T [RT ]ZT [RT ])}
−1 1.

Reported is the unconditional correlation between MT [RT ]RT and RT , denoted as NCCT . SD is standard
deviation of MT [RT ] = Z⊤

T [RT ]α. We adopt a bootstrap procedure and draw ZT [RT ] with replacement.
Then, we reestimate α. The reported confidence intervals are based on 10,000 bootstrap samples. All
reported results rely on data from the S&P 500 index options market from January 1990 to December 2018
(29 years, 348 option expiration cycles).

Panel A: SDF depends on RT and Rstraddle
T (Model A)

Properties of MT [RT ] = Z⊤
T [RT ]α

αmarket αstraddle NCCT SD Mean Minimum
(annual,%) (monthly) (annual, %)

Estimates 0.73 0.30 0.26 78 0.992 72

Bootstrap
5th 0.61 0.17 0.13 45 0.987 61
95th 0.83 0.48 0.49 114 0.997 82

Panel B: SDF depends on RT and Rstrangle
T (Model B)

Properties of MT [RT ] = Z⊤
T [RT ]α

αmarket αstrangle NCCT SD Mean Minimum
(annual, %) (monthly) (annual, %)

Estimates 0.83 0.21 0.23 80 0.992 81

Bootstrap
5th 0.76 0.11 0.09 46 0.987 74
95th 0.89 0.35 0.47 120 0.997 87
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Table 4: Testing the NCC when logMT [RT ] depends on excess returns of variance in
down and up equity markets (Model C)

In Model C, we allow for asymmetric effects of return variance on the SDF. Specifically, the form of the
projected SDF, MT [RT ], is

MT [RT ] = exp
(
m0 − 1 + η−variance 1RT<1 (Rvariance

T −Rf,t) + η+variance 1RT>1 (Rvariance
T −Rf,t)

)
.

We compute the gross return, Rvariance
T , based on the payoff of the squared log contract, and accordingly

synthesize its price from options

Rvariance
T =

{logRT }
2

qt,{logRT }2

, where

qt,{logRT }2 = R−1
f,tE

Q
t ({logRT }

2) =

∫

K<St

2(1− log K
St
)

K2
putt,T [K] dK +

∫

K>St

2(1− log K
St
)

K2
callt,T [K] dK.

Reported is the unconditional correlation betweenMT [RT ]RT and RT , denoted as NCCT . SD is the standard
deviation of MT [RT ]. We obtain the estimates of (m0, η

−
variance, η

+
variance) by solving infM∈M EP(M logM)

with M ≡ {M > 0 such that EP(M{1RT<1(R
variance
T − Rf,t)}) = 0, EP(M{1RT>1(R

variance
T −

Rf,t)}) = 0, EP(M) = EP(R−1
f,t ) ≡ µM , and EP(M logM) < ∞}, where EP(.) is uncondi-

tional expectation (e.g., Borovička, Hansen, and Scheinkman (2016, Section VIII.B)). The optimal so-
lution is M∗ = exp(m∗

0 − 1 + (η−variance)
∗ 1RT<1 (Rvariance

T − Rf,t) + (η+variance)
∗ 1RT>1 (Rvariance

T −
Rf,t)), where (m∗

0, (η
−
variance)

∗, (η+variance)
∗) solve arg inf(m0,η

−

variance
,η

+

variance
) {−m0 µM + EP(exp(m0 − 1 +

η−variance 1RT<1 (Rvariance
T − Rf,t) + η+variance 1RT>1 (Rvariance

T − Rf,t)))}. We adopt a bootstrap procedure
and draw (Rf,t, RT , R

variance
T ) with replacement. Then, we reestimate (m0, η

−
variance, η

+
variance). The re-

ported confidence intervals are based on 10,000 bootstrap samples. All reported results rely on data from
the S&P 500 index options market from January 1990 to December 2018 (29 years, 348 option expiration
cycles).

Properties of MT [RT ]
m0 η−variance η+variance NCCT SD Mean Minimum

(annual, %) (monthly) (annual, %)

Estimate 1.132 0.118 0.647 0.12 250 0.998 60

Bootstrap
5th 1.082 0.008 0.470 0.04 179 0.998 41
95th 1.233 0.267 1.111 0.21 343 0.998 68
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A New Formula for the Expected Excess Return of the Market

Internet Appendix: Not for Publication

Abstract

Section A describes the data on S&P 500 equity index, interest rates, and options on the S&P 500

index.



I Internet Appendix

A Interest rates and options data on the S&P 500 index

S&P 500 index options (ticker, SPX): The data on S&P 500 index options are daily and con-

structed over the sample period of January 1990 to December 2018. The call and put option data

are extracted from the Optsum historical database (Market Data Express), maintained by the

Chicago Board Options Exchange (CBOE).

The S&P 500 index options are European style and expire on the third Friday of the expiration

month. We focus on the nearest maturity options and construct the data by expiration cycle dates

(of which there are 348 in total).

The start date for the first expiration cycle is January 22, 1990. The final expiration cycle starts

on December 24, 2018, and ends on January 18, 2019.

Our calculation of the number of days during each expiration cycle takes into account the fact

that these options expire at the market close prior to August 24, 1992, and expire at the market

open afterward. Accordingly, the Friday on which the option expires is included in the expiration

cycle prior to August 24, 1992, and is excluded afterward.

The option price in our calculations is the midpoint of the bid and ask quotes, and we only

keep out-of-the-money options (i.e., K/St < 1 for puts and St/K < 1 for calls). The final sample

contains 36,630 end-of-the-day option price observations.

Gross interest rate (Rf,t): Constructed from (daily) four-week interest rate series (Center for

Research in Security Prices) and is scaled to match the number of days in the options expiration

cycles. �

1
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Figure 1: Expected excess return of the market

Plotted is the expected excess return of the market (expressed in annualized percentage terms)
and is computed following equation (4). The study period is January 1990 to December 2018 (348
options expiration cycles).



1990 1995 2000 2005 2010 2015 2020

SPX Expiration Cycles

0

10

20

30

40

th
e

 L
o

w
e

r 
B

o
u

n
d

D
if

fe
re

n
c

e
 B

e
tw

e
e

n
 t
h

e
 E

x
p

e
c

te
d

 E
x
c

e
s

s
 R

e
tu

rn
 a

n
d

Difference Between the Expected Excess Return and the Lower Bound

Figure 2: Difference between the expected excess return of the market and the lower
bound

Plotted is the difference between the expected excess return of the market and the lower bound
(expressed in annualized percentage terms):

{EP
t (RT ) − Rf,t} − R−1

f,t var
Q
t (RT )︸ ︷︷ ︸

lower bound

.

The expected excess return of the market is computed following equation (4), whereas the lower
bound, R−1

f,t var
Q
t (RT ), is based on Martin (2017, equation (5)). The study period is January 1990

to December 2018 (348 options expiration cycles).


