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Abstract

We propose a new decomposition of the realized covariance matrix into components based

on the signs of the underlying high-frequency returns. Under an asymptotic setting in

which the sampling interval goes to zero, we derive the asymptotic properties of the result-

ing realized semicovariance measures. The first-order asymptotic results highlight how

the concordant components and the mixed-sign component load differently on economic

information concerning stochastic correlation and jumps. The second-order asymptotics,

taking the form of a novel non-central limit theorem, further reveals the fine structure

underlying the concordant semicovariances, as manifest in the form of co-drifting and

dynamic “leverage” type effects. In line with this anatomy, we empirically document

distinct dynamic dependencies in the different realized semicovariance components based

on data for a large cross-section of individual stocks. We further show that the accuracy

of portfolio return variance forecasts may be significantly improved by using the real-

ized semicovariance matrices to “look inside” the realized covariance matrices for signs

of direction.
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1. Introduction

The covariance matrix of asset returns arguably constitutes the most crucial input

for asset pricing, portfolio and risk management decisions. Correspondingly, there is a

substantial literature devoted to the estimation, modeling, and prediction of covariance

matrices dating back more than half-a-century (e.g., Kendall (1953), Elton and Gruber

(1973), and Bauwens, Laurent, and Rombouts (2006)). Meanwhile, a large and rapidly

growing recent literature has forcefully advocated for the use of high-frequency intraday

data for a more reliable estimation of lower-frequency realized return covariance matrices

(e.g., Andersen, Bollerlsev, Diebold, and Labys (2003), Barndorff-Nielsen and Shephard

(2004), and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011)).

Set against this background, we propose a new decomposition of the realized co-

variance matrix into three realized semicovariance matrix components dictated by the

signs of the underlying high-frequency returns. The realized semicovariance matrices

may be seen as a high-frequency multivariate extension of the semivariances first pro-

posed in the finance literature several decades ago (e.g., Markowitz (1959), Mao (1970),

Hogan and Warren (1972, 1974), and Fishburn (1977)). They also naturally extend the

high-frequency based realized semivariances proposed more recently (Barndorff-Nielsen,

Kinnebrock, and Shephard (2010)) to a multivariate context.

To fix ideas, let Xt = (X1,t, . . . , Xd,t)
> denote a d-dimensional log-price process, sam-

pled on a regular time grid {i∆n : 0 ≤ i ≤ [T/∆n]} over some fixed time span T > 0.

Let the ith return of X be denoted by ∆n
iX ≡ Xi∆n −X(i−1)∆n . The realized covariance

matrix (Barndorff-Nielsen and Shephard (2004)) is then defined as:

Ĉ ≡
[T/∆n]∑
i=1

(∆n
iX) (∆n

iX)> . (1.1)

If we let p (x) ≡ max {x, 0} and n (x) ≡ min {x, 0} denote the component-wise positive

and negative elements of the real vector x, the corresponding “positive,” “negative,” and

“mixed” realized semicovariance matrices are then simply defined as:

P̂ ≡
[T/∆n]∑
i=1

p (∆n
iX) p (∆n

iX)> , N̂ ≡
[T/∆n]∑
i=1

n (∆n
iX)n (∆n

iX)> ,

M̂ ≡
[T/∆n]∑
i=1

(
p (∆n

iX)n (∆n
iX)> + n (∆n

iX) p (∆n
iX)>

)
.

(1.2)

Note that Ĉ = P̂ + N̂ + M̂ for any sampling frequency ∆n. The concordant realized

semicovariance matrices, P̂ and N̂ , are defined as sums of vector outer-products and thus

are positive semidefinite. By contrast, the mixed semicovariance matrix, M̂ , has diagonal

elements that are identically zero, and thus is necessarily indefinite.
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Figure 1: Decomposition of the Realized Covariance
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Note: The figure plots the time series of the concordant semicovariance (P̂ +N̂),

the mixed semicovariance (M̂) and the realized covariance (Ĉ). Each series is
constructed as the 25-day moving average of the corresponding daily realized
semicovariance measures averaged across 500 randomly selected pairs of S&P
500 stocks over the 1993–2014 period. The dataset is described in Section 4.

As an initial empirical illustration of the different dynamic dependencies and informa-

tion conveyed by the realized semicovariances, Figure 1 plots the daily realized covariance

averaged across 500 randomly-selected pairs of S&P 500 stocks, together with its con-

cordant (P̂ + N̂) and mixed (M̂) semicovariance components.1 The mixed component

is, of course, always negative, while the concordant component is always positive. The

two components are typically fairly similar in absolute magnitude during “normal” time

periods. In periods of high volatility, however, the concordant component increases sub-

stantially more than the mixed component declines, in line with the widely held belief

that during periods of financial market stress correlations and tail dependencies among

most financial assets tend to increase. As such, the (total) realized covariance is largely

determined by the concordant realized semicovariance components in these “crisis” peri-

ods.

To help understand these empirical features, consider a simple setting in which the

vector log-price process Xt is generated by a driftless Brownian motion with unit volatility

and constant correlation ρ.2 By the law of large numbers, the probability limits (as

1More precisely, we compute for each day C ≡ (1/500)
∑
j 6=k Ĉjk, where the sum is over 500 randomly

selected asset pairs, and define P , N and M similarly. More detailed descriptions of the data and the
procedures used in calculating the realized semicovariances are provided in Section 4 below. To avoid
cluttering the figure, we sum P and N into the single concordant component, and smooth the daily
measures using a 25-day moving average.

2Although stylized, this simple model captures the central force in the first-order asymptotic behavior
of the semicovariance estimators in the no-jump setting. Theorem 1 provides a more general asymptotic
result for Itô semimartingales.
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Figure 2: Signed Return-Pairs for DJIA Stocks.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5 September 18, 2013

Return of Asset k

R
et

ur
n 

of
 A

ss
et

 j

-0.4 -0.2 0.0 0.2 0.4
-0.4

-0.2

0.0

0.2

0.4 February 25, 2013

Return of Asset k

Note: The figure shows a scatter plot of the one-minute returns of each pair of the 30
Dow Jones Industrial Average stocks on two days in 2013.

∆n → 0) of the (j, k) off-diagonal elements of the realized semicovariance matrices are

then given by

plim P̂jk = plim N̂jk = ψ(ρ), plim M̂jk = −2ψ(−ρ), (1.3)

where

ψ(ρ) = (2π)−1
(
ρ arccos (−ρ) +

√
1− ρ2

)
, (1.4)

corresponding to E[Z1Z21{Z1<0,Z2<0}] for (Z1, Z2) bivariate standard normally distributed

with correlation ρ. As these expressions illustrate, the relative contribution of the concor-

dant and mixed semicovariance components to the (total) covariance depends crucially on

the value of ρ. Indeed, as ρ increases to 1, the limiting value of the concordant component

P̂ + N̂ approaches one while the mixed component M̂ approaches zero, and vice versa

when ρ decreases to −1. This, of course, is also consistent with the empirical observation

from Figure 1 that the concordant component accounts for most of the covariance in

periods of market stress, which are generally believed to be accompanied by increased

positive correlations.

This simple diffusive setting highlights the potentially different information conveyed

by the concordant and the mixed semicovariance components. It does not, however,

reveal any differences between the P̂ and N̂ components as they have the same limits in

this stylized setting. This is at odds with the intuition that these signed measures ought

to carry distinct economic information as a result of the types of “news” that arrive on

different days. By way of illustration, consider the high-frequency returns for the 30 Dow

Jones Industrial Average (DJIA) stocks on the two different days presented in Figure
4



2.3 On September 18, 2013, shown in the left panel, the Federal Reserve announced

that it would not taper its asset-purchasing program, in contrast to what the market

had been anticipating; individual stocks responded abruptly with positive jumps at the

announcement time, resulting in much larger estimates of P̂ than N̂ . By contrast, the

right panel shows the returns on February 25, 2013, when the DJIA drifted down by

1.5% over the course of the day amid concerns, according to market anecdotes, about the

political uncertainty in Italy, in turn resulting in a much larger estimates of N̂ than P̂ .4

Hence, the empirical estimates of P̂ and N̂ can indeed be very different depending on the

“directional” content of the news and the corresponding information processing process,

whether it manifests in the form of price jumps and/or apparent price drifts. As such, the

difference P̂ − N̂ , which we refer to as the concordant semicovariance differential (CSD),

is likely to carry additional useful information.

Motivated by these empirical observations, in Section 2 we derive both the first- and

the second-order asymptotics for the positive and the negative semicovariance estimators

in a general Itô semimartingale setting, focusing particularly on a deeper understanding

of their information content. The limit theory identifies three distinct channels through

which P̂ and N̂ may differ: directional co-jumps, a type of “co-drifting,” and a specific

form of dynamic leverage effect. While the “co-jump” channel manifests straightforwardly

in the first-order asymptotics, the latter two channels take the form of second-order bias

terms in a non-central limit theorem. These bias terms are specific to our analysis of

the semicovariances, and methodologically speaking sets our asymptotic analysis apart

from the usual high-frequency econometric analysis, in which central limit theorems are

generally applied for the purpose of conducting statistical inference (see, e.g., Aı̈t-Sahalia

and Jacod (2014)). By contrast, the main purpose of our higher-order asymptotic results

is to further “dissect” the semicovariance estimators, thereby allowing for additional

theoretical and empirical insights by appropriately comparing and contrasting the relevant

terms.

More specifically, in line with the different intraday price behavior evident for the two

days depicted in Figure 2, we rely on a standard truncation technique (Mancini (2001))

to obtain two CSD estimators, corresponding to separate jump and diffusive “signals,”

respectively. For the former, we establish a feasible central limit theorem that may be

used to construct formal statistical inference. For the latter diffusive component (which

is related to price drift and a form of leverage effect and, hence, much more complicated),

we provide a standard error estimator that quantifies its sampling variability in a well-

defined sense, and which, under more restrictive regularity conditions, also results in an

asymptotically valid and unbiased test.

Implementing the new inference procedures with high-frequency data for the 30 DJIA

3Further details on the underlying data are provided in Section 3.
4Source: https://money.cnn.com/2013/02/25/investing/stocks-markets/index.html.
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stocks over a nine-year period reveals strong statistical evidence for significant differ-

ences in the P̂ and N̂ semicovariance components on many different days. Consistent

with economic intuition, we find that large differences in the jump semicovariance com-

ponents are typically associated with “sharp” public news announcements (e.g., FOMC

announcements). Meanwhile, large differences in the diffusive semicovariance components

are typically associated with more difficult-to-interpret news, which manifests in the form

of common price drifts within the day.5 In addition to the more detailed discussion of

such event days, Section 3 further documents that days with significantly different P̂ and

N̂ are associated with subsequent different dynamic dependencies both across and within

the three realized semicovariance components.

This naturally suggests that decomposing the realized covariance matrix into its semi-

covariance components may be useful for volatility forecasting. In an effort to corroborate

this conjecture, we analyze a large cross-section of stocks comprised of all of the S&P 500

constituents spanning more than two decades. We show that the out-of-sample forecasts

of return variances for portfolios comprised of up to one hundred stocks may indeed be

significantly improved by “looking inside” the covariance matrix through the lens of the

new semicovariance measures. Moreover, the gains from doing so increase with the num-

ber of stocks included in the portfolio, although in line with the gains from näıve portfolio

diversification the relative gains appear to plateau at around 30-40 stocks in the port-

folio. Further dissecting the forecasting gains, we find that the models that incorporate

the additional information that resides in the realized semicovariances generally respond

faster to new information compared with standard models that only use realized vari-

ances or realized semivariances (see, e.g., Corsi (2009) and Patton and Sheppard (2015)).

Interestingly, while the erratic nature of volatility during the financial crisis leads most

existing volatility forecasting models to reduce the weight on recent observations, the new

semicovariance-based models developed here actually increase the weight, primarily due

to an increase in the short-run importance of the negative semicovariance component.

The forecasting gains obtained through the use of the realized semicovariances are nat-

urally linked to the early work on parametric asymmetric volatility models (e.g., Kroner

and Ng (1998) and Cappiello, Engle, and Sheppard (2006)). The new realized semico-

variance measures themselves and our CSD-based tests, in particular, are also closely

related to other tests for asymmetric dependencies that have previously been proposed

in the literature (e.g., Longin and Solnik (2001), Ang and Chen (2002) and Hong, Tu,

and Zhou (2007)). They are also related to existing empirical work on the correlations

between asset returns in “bear” versus “bull” markets, and notions of asymmetric tail

dependencies (e.g., Patton (2004), Poon, Rockinger, and Tawn (2004), and Tjøsthem and

Hufthammer (2013)), along with more recent work on high-frequency based co-skewness

5The two days plotted in Figure 2 also correspond to these two scenarios, and are indeed detected by
using the new inference method, as further discussed in Section 3 below.
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and co-kurtosis measures (e.g., Neuberger (2012) and Amaya, Christoffersen, Jacobs,

and Vasquez (2015)), as well as recent work on jumps and co-jumps (e.g., Das and Up-

pal (2004), Bollerslev, Law, and Tauchen (2008), Lee and Mykland (2008), Mancini and

Gobbi (2012), Jacod and Todorov (2009), Aı̈t-Sahalia and Xiu (2016) and Li, Todorov,

and Tauchen (2017b)). In contrast to all of these existing studies, however, we retain the

covariance matrix as the summary measure of dependence, and instead use information

from signed high-frequency returns to “look inside” the realized covariance matrix as a

way to reveal additional information about the inherent dependencies, both dynamically

and cross-sectionally at a given point in time.

The rest of the paper is organized as follows. Section 2 presents the first- and second-

order asymptotic properties of the realized semicovariances. Section 3 discusses our em-

pirical findings related to the implementation of the semicovariance-based tests. Our

results pertaining to the use of the realized semicovariances in the construction of im-

proved volatility forecasts are discussed in Section 4. Section 5 concludes. Technical

regularity conditions and proofs are deferred to the appendix. Additional robustness

checks and extensions are available in a supplemental appendix.

2. Asymptotic properties of realized semicovariances

This section presents the asymptotic properties of the realized semicovariances. Sec-

tions 2.1 and 2.2 present the first- and the second-order asymptotics, respectively. Section

2.3 describes feasible inference methods. Below, for a matrix A, we denote its (j, k) ele-

ment by Ajk and its transpose by A>. Convergence in probability and stable convergence

in law are denoted by
P−→ and

L-s−→, respectively. All limits are for the sample frequency

∆n → 0 on a probability space (Ω,F ,P).

2.1. First-order asymptotic properties

Suppose that the log-price vector Xt is an Itô semimartingale of the form

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs + Jt, (2.1)

where b is the Rd-valued drift process, W is a d-dimensional standard Brownian motion,

σ is the d × d dimensional stochastic volatility matrix and J is a finitely active pure-

jump process. We denote the spot covariance matrix of X by ct ≡ σtσ
>
t and further

set vj,t ≡
√
cjj,t and ρjk,t ≡ cjk,t/vj,tvk,t. That is, vj,t and ρjk,t denote the spot volatility

of asset j and the spot correlation coefficient between assets j and k, respectively. We

explicitly allow for so-called “leverage effect” (i.e., dependence between changes in the

price and changes in volatility), stochastic volatility of volatility, volatility jumps and

price-volatility co-jumps.
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We begin by characterizing the first-order limiting behavior of the realized semico-

variance estimators defined by equation (1.2) in the introduction. Let ∆Xs denote the

price jump occurring at time s, if a jump occurred, and set it to zero if no jump occurred

at time s. Further define

P † ≡
∑
s≤T

p(∆Xs)p(∆Xs)
>,

N † ≡
∑
s≤T

n(∆Xs)n(∆Xs)
>,

M † ≡
∑
s≤T

(
p(∆Xs)n(∆Xs)

> + n(∆Xs)p(∆Xs)
>) .

These measures characterize the discontinuous parts of the semicovariance measures, as

formally spelled out in the following theorem.

Theorem 1 Under Assumption 1 in the appendix, (P̂ , N̂ , M̂)
P−→ (P,N,M), where P ,

N and M are d× d matrices with their (j, k) elements given by

Pjk ≡
∫ T

0

vj,svk,sψ(ρjk,s)ds+ P †jk,

Njk ≡
∫ T

0

vj,svk,sψ(ρjk,s)ds+N †jk,

Mjk ≡ −2

∫ T

0

vj,svk,sψ(−ρjk,s)ds+M †
jk,

and ψ(·) is defined in equation (1.4).

It follows from Theorem 1 that each of the realized semicovariances contains both

diffusive and jump covariation components. Importantly, the limiting variables P and

N share exactly the same diffusive component, but their jump components differ. In

particular,

P̂ − N̂ P−→ P −N = P † −N †.

That is, the first-order asymptotic behavior of the concordant semicovariance differential

(CSD) is fully characterized by the “directional co-jumps.” Consequently, in line with

the stylized model in equation (1.2) discussed in the introduction, Theorem 1 cannot

distinguish the information conveyed by P̂ and N̂ in periods when there are no jumps.

Hence, in order to reveal the differential information inherent in the realized measures

more generally, we turn next to a more refined second-order asymptotic analysis.

2.2. Second-order asymptotic properties

Since the main theoretical lessons about the second-order asymptotic behavior of

the concordant realized semicovariance components can be readily learnt in a bivariate
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setting, we set d = 2 and focus on the analysis of P̂12 and N̂12 throughout this subsection.6

Correspondingly, we also write ρt in place of ρ12,t for simplicity.

We need to impose some additional structure on the volatility dynamics. In particular,

we will assume that the stochastic volatility σt is also an Itô semimartingale of the form

σt = σ0 +

∫ t

0

b̃sds+

∫ t

0

σ̃sdWs + M̃t +
∑
s≤t

∆σs1{‖∆σs‖>σ}, (2.2)

where b̃ is the drift, σ̃ is the d×d×d tensor-valued “volatility of volatility” process, M̃ is

a local martingale that is orthogonal to the Brownian motion W .7 We note that the local

martingale M̃ may contain both an orthogonal (w.r.t., W ) Brownian component and

compensated “small” volatility jumps. Meanwhile, the term
∑

s≤t ∆σs1{‖∆σs‖>σ} collects

the “big” volatility jumps (with an arbitrary but fixed threshold σ > 0), which may occur

during major news announcements (see, e.g., Bollerslev, Li, and Xue (2018)). Further

regularity conditions on the σ process are collected in the appendix.

Theorem 2, below, describes the F -stable convergence in law of the normalized statis-

tic ∆
−1/2
n (P̂12 − P12, N̂12 − N12). The limit variable turns out to be fairly complicated,

but it may be succinctly expressed as

B(1) +B(2) + ζ + ζ̃ + ξ, (2.3)

where B(1) and B(2) are bias terms, and (ζ, ζ̃, ξ) capture sampling variabilities that arise

from various sources. Before presenting the actual limit theorem, we begin by briefly

describing each of these separate terms.

Bias components due to price drift, B(1). The first type of bias is related to the price

drift, which is defined for the semicovariance estimators P̂12 and N̂12 respectively as

B(1) =

(
B

(1)
P

B
(1)
N

)
≡

 1
2
√

2π

∫ T
0

(
b1,s
v1,s

+ b2,s
v2,s

)
v1,sv2,s (1 + ρs) ds

− 1
2
√

2π

∫ T
0

(
b1,s
v1,s

+ b2,s
v2,s

)
v1,sv2,s (1 + ρs) ds

 . (2.4)

We note that B
(1)
P = −B(1)

N , so the effects of price drift on P̂ and N̂ will always be of

opposite signs. Other things equal, this bias term is proportional to the average spot

“Sharpe ratio” of the two assets

1

2

(
b1,s

v1,s

+
b2,s

v2,s

)
. (2.5)

6Our theory can be easily extended to include the mixed component M̂ and to a joint setting across
different asset pairs. These extensions, however, necessitate more complicated notation (and discussion).
Since our empirical study only involves pairwise analysis, we purposely refrain from presenting these
most general results to avoid unnecessary technicality. Details for the more general setting are available
on request.

7By convention, the (j, k) element of the stochastic integral
∫ t

0
σ̃sdWs equals

∑d
l=1

∫ t
0
σ̃jkl,sdWl,s.
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In particular, the B(1) term tends to be more pronounced when the two assets drift in

the same direction, akin to a “co-drift” type phenomenon.

Bias components due to continuous price-volatility covariation, B(2). The second bias

term stems from the fact that the volatility matrix process σt may be partially driven by

the Brownian motion W (i.e., σ̃ 6= 0), corresponding to a “dynamic leverage” type effect.

To more precisely describe this bias term for P̂ , define f1(x) ≡ 1{x1≥0}max{x2, 0} and

f2 (x) ≡ max{x1, 0}1{x2≥0} and then set, for any 2× 2 matrix A,

Fj (A) ≡ E
[
fj (AW1)

∫ 1

0

WsdW
>
s

]
, j = 1, 2.

The bias term in P̂ due to the common price-volatility Brownian dependence may then

be expressed as

B
(2)
P ≡

2∑
j=1

∫ T

0

Trace [σ̃j,sFj (σs)] ds, (2.6)

where σ̃j,s denotes the 2×2 matrix [σ̃jkl,s]1≤k,l≤2. The bias term B
(2)
N for N̂ may be defined

similarly, and it can be shown that B
(2)
P = −B(2)

N .8

Diffusive sampling error spanned by price risk, ζ. The third component captures the

sampling variability in p (∆n
iX1) p (∆n

iX2) and n (∆n
iX1)n (∆n

iX2) that is spanned by the

Brownian price shock σtdWt. Formally, ζ = (ζP , ζN)> where

ζP = −ζN ≡
∫ T

0

(
c−1
s γs

)>
(σsdWs) , (2.7)

and the γt process is defined as9

γt ≡
(1 + ρt)

2 v1,tv2,t

2
√

2π

(
v1,t

v2,t

)
. (2.8)

Note that the quadratic covariation matrix of the local martingale ζ equals
∫ T

0
Γsds,

where

Γt ≡

(
γ>t c

−1
t γt −γ>t c−1

t γt

−γ>t c−1
t γt γ>t c

−1
t γt

)
. (2.9)

Diffusive sampling error orthogonal to price risk, ζ̃. While ζ defined above captures

the diffusive risk in the semicovariances spanned by the Brownian shocks to the price

8More precisely, if we set g1(x) ≡ 1{x1≤0}min{x2, 0}, g2 (x) ≡ min{x1, 0}1{x2≤0}, and Gj (A) ≡
E[gj (AW1)

∫ 1

0
WsdW

>
s ], the B

(2)
N bias term is then given by B

(2)
N ≡

∑2
j=1

∫ T
0

Trace[σ̃j,sGj (σs)] ds. The

assertion that B
(2)
P = −B(2)

N follows from fj (−x) = −gj (x) for j = 1, 2.
9Further, γ(i−1)∆n

is computed as E[f(σ(i−1)∆n
∆n
iW/∆

1/2
n )σ(i−1)∆n

∆n
iW/∆

1/2
n |F(i−1)∆n

], where

f (x) = p(x1)p(x2). Hence, c−1
(i−1)∆n

γ(i−1)∆n
corresponds to the population regression coefficient ob-

tained from regressing f(σ(i−1)∆n
∆n
iW/∆

1/2
n ) on the Brownian shock σ(i−1)∆n

∆n
iW/∆

1/2
n .
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process, ζ̃ captures the diffusive risk component orthogonal to those stocks. This limit

variable may be represented by its F -conditional distribution as

ζ̃ =

(
ζ̃P

ζ̃N

)
=

∫ T

0

γ̄1/2
s dW̃s, (2.10)

where W̃ is a 2-dimensional standard Brownian motion that is independent of the σ-field

F , and the γ̄ process is defined by

γ̄t ≡ Γt − Γt, (2.11)

where

Γt ≡ v2
1,tv

2
2,t

(
Ψ (ρt)− ψ (ρt)

2 −ψ (ρt)
2

−ψ (ρt)
2 Ψ (ρt)− ψ (ρt)

2

)
, (2.12)

and

Ψ (ρ) ≡ 3ρ
√

1− ρ2 + (1 + 2ρ2) arccos (−ρ)

2π
, (2.13)

with Ψ (ρ) corresponding to E
[
Z2

1Z
2
21{Z1<0,Z2<0}

]
for (Z1, Z2) standard normally dis-

tributed with correlation ρ.

Jump-induced sampling error, ξ. The price jumps also induce sampling errors. Let Tj
for j ∈ {1, 2} denote the collection of jump times of (Xj,t)t∈[0,T ], with the corresponding

“signed” subsets denoted by

Tj+ ≡ {τ ∈ Tj : ∆Xj,τ > 0}, Tj− ≡ {τ ∈ Tj : ∆Xj,τ < 0}.

For each τ ∈ T1 ∪ T2 associate the variables (κτ , ξ̃τ−, ξ̃τ+) that are, conditionally on F ,

mutually independent with the following conditional distributions: κτ ∼ Uniform[0, 1],

ξ̃τ− ∼MN (0, cτ−), and ξ̃τ+ ∼MN (0, cτ ). Further define η̃τ = (η̃1,τ , η̃2,τ )
> ≡ √κτ ξ̃τ−+

√
1− κτ ξ̃τ+.10 The limiting variable ξ = (ξP , ξN)> may then be expressed as

ξP ≡
∑

τ∈T1+∩T2+

(∆X1,τ η̃2,τ + ∆X2,τ η̃1,τ )

+
∑

τ∈T1+\T2

∆X1,τp (η̃2,τ ) +
∑

τ∈T2+\T1

∆X2,τp (η̃1,τ ) ,

10It is instructive to recall the intuition for these limiting variables. The uniform variable κτ captures
the indeterminacy of the jump time within a discrete sampling interval, while

√
κτ ξ̃τ− and

√
1− κτ ξ̃τ+

capture the distribution of the Brownian increment before and after the jump time, respectively. The
variable η̃τ in turn represents the limiting behavior of the Brownian sampling error around the jump
time τ .
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ξN ≡
∑

τ∈T1−∩T2−

(∆X1,τ η̃2,τ + ∆X2,τ η̃1,τ )

+
∑

τ∈T1−\T2

∆X1,τn (η̃2,τ ) +
∑

τ∈T2−\T1

∆X2,τn (η̃1,τ ) .

Note that the first component in ξP (resp. ξN) concerns the times when both assets have

positive (resp. negative) jumps, while the other two terms are active when one asset

jumps upwards (resp. downwards) and the other asset does not jump. Interestingly,

the latter terms involve the half-truncated doubly mixed Gaussian variable p(η̃τ ) (resp.

n (η̃τ )). To the best of our knowledge, this type of limiting distribution is new to the

literature.

With the definitions above, we are now ready to state the stable convergence in law

of the realized semicovariances.

Theorem 2 Under Assumption 2 in the appendix,

∆−1/2
n

(
P̂12 − P12

N̂12 −N12

)
L-s−→

(
B

(1)
P

B
(1)
N

)
+

(
B

(2)
P

B
(2)
N

)
+

(
ζP

ζN

)
+

(
ζ̃P

ζ̃N

)
+

(
ξP

ξN

)
.

Theorem 2 depicts a non-central limit theorem for the positive and negative realized

semicovariances, where (B(1), B(2)) represent bias terms, while (ζ, ζ̃, ξ) stem from various

sources of “sampling errors.” The latter sampling error terms are all formed as (local)

martingales and have zero mean under mild integrability conditions.

However, the presence of the bias terms means that Theorem 2 is not directly suitable

for the construction of confidence intervals for the (P,N) estimand; but that is not our

goal either. Instead, the main insight derived from Theorem 2 is to reveal the differential

second-order behavior of the realized semicovariances P̂ and N̂ , about which the first-

order asymptotics in Theorem 1 remains entirely silent in the absence of jumps. Indeed,

while Theorem 1 states that P̂ and N̂ have the same limit in the no-jump case, Theorem

2 clarifies that they actually load on higher-order “signals” B(1) and B(2) in the exact

opposite way (i.e., BP = −BN). From a theoretical perspective, this therefore explains

why P̂ and N̂ may behave differently. From an empirical perspective, it helps guide our

understanding of the actual P̂ and N̂ estimates discussed in Section 3, and the use of

these measures in the construction of improved volatility forecasts discussed in Section 4.

2.3. Tests based on concordant semicovariance differentials

Even though Theorem 2 does not allow for the construction of standard confidence

intervals, it is still possible to develop feasible inference methods for the difference P̂ −N̂ ,

that is, the CSD. In particular, the asymptotic theory in the previous subsection reveals

three types of signals underlying the CSD: a directional co-jump effect (i.e., P † − N †),
12



a co-drifting effect (i.e., B
(1)
P − B

(1)
N ), and a dynamic leverage effect (i.e., B

(2)
P − B

(2)
N ).

Empirically, it is of great interest to separate the variation due to jumps from that due

to the diffusive price moves. Below, we use the standard truncation method (see, e.g.,

Mancini (2001, 2009)) to achieve such a separation. As in Section 2.2, we consider a

bivariate setting, or d = 2, and focus on the inference for P̂12 − N̂12.

The truncation method involves a sequence un ∈ R2
+ of truncation thresholds satisfy-

ing uj,n � ∆$
n for some $ ∈ (0, 1/2) and j ∈ {1, 2}. Under our maintained assumption

of finite activity jumps, it can be shown that the index set

Î ≡ {i : −un ≤ ∆n
iX ≤ un does not hold}

locates the jumps of the vector log-price process X with probability approaching one.11

As a result, the diffusive and jump returns may be separated, allowing for the separate

estimation of the diffusive components of the semicovariances using the “small” (non-

jump) returns:

P̂ ? ≡
∑
i/∈Î

p(∆n
iX)p(∆n

iX)>, N̂? ≡
∑
i/∈Î

n(∆n
iX)n(∆n

iX)>,

and the jump components of the semicovariances using the “jump” returns:

P̂ † ≡
∑
i∈Î

p(∆n
iX)p(∆n

iX)>, N̂ † ≡
∑
i∈Î

n(∆n
iX)n(∆n

iX)>.

Given the aforementioned jump detection result, the asymptotic property of these trun-

cated estimators can be established as a straightforward extension of Theorem 2, stated

as follows.

Proposition 1 Under Assumption 2 in the appendix, the following convergences hold

jointly

∆−1/2
n

(
P̂ †12 − P

†
12

N̂ †12 −N
†
12

)
L-s−→ ξ, ∆−1/2

n

(
P̂ ?

12 − P ?
12

N̂?
12 −N?

12

)
L-s−→ B(1) +B(2) + ζ + ζ̃ ,

where P ?
12 = N?

12 ≡
∫ T

0
v1,sv2,sψ(ρs)ds.

Proposition 1 allows for the construction of feasible inference for each of the two

separate CSD components, P̂ †12−N̂
†
12 and P̂ ?

12−N̂?
12, respectively. We will refer to these as

the jump (resp. diffusive) concordant semicovariance differential, or JCSD (resp. DCSD)

for short.

11See Proposition 1 of Li, Todorov, and Tauchen (2017b). The inequality −un ≤ ∆n
i X ≤ un is

interpreted element-by-element.
13



We start with a discussion of how to implement the JCSD test, which is the simpler

of the two as it admits a central limit theorem. In particular, it follows immediately from

Proposition 1,

∆−1/2
n

(
P̂ †12 − N̂

†
12 −

(
P †12 −N

†
12

))
L-s−→ ξP − ξN ,

where, as discussed above, ξP and ξN are centered doubly-mixed Gaussian variables.

Hence, to consistently estimate the distribution of the limiting variable, we first need to

estimate the spot covariance matrix before and after each detected jump time. In order

to do so, we choose an integer sequence kn of local windows that satisfies kn → ∞ and

kn∆n → 0, and set, for each i,

ĉi− ≡
1

kn∆n

kn∑
l=1

(
∆n
i−lX

) (
∆n
i−lX

)>
1{−un≤∆n

i−lX≤un},

ĉi+ ≡
1

kn∆n

kn∑
l=1

(
∆n
i+lX

) (
∆n
i+lX

)>
1{−un≤∆n

i+lX≤un}.

Algorithm 1 describes the requisite steps for implementing the resulting JCSD test for

the null hypothesis P †12 = N †12, that is, equal directional jump covariation.

Algorithm 1 (JCSD Test).

Step 1. Draw random variables (κ∗i , ξ̃
∗
i−, ξ̃

∗
i+) that are mutually independent such that

κ∗i ∼ Uniform[0, 1] and ξ̃∗i± ∼MN (0, ĉi±). Set η̃∗i = (η̃∗i,1, η̃
∗
i,2) =

√
κ∗i ξ̃

∗
i− +

√
1− κ∗i ξ̃∗i+.

Step 2. Let ∆n
iX
∗
j ≡ ∆n

iXj1{|∆n
i Xj |>uj,n} for j ∈ {1, 2} and set

ξ∗P = ∆−1/2
n

∑
i∈Î

(
p
(
∆n
iX
∗
1 + ∆1/2

n η̃∗i,1
)
p
(
∆n
iX
∗
2 + ∆1/2

n η̃∗i,2
)
− p (∆n

iX
∗
1 ) p (∆n

iX
∗
2 )
)
,

ξ∗N = ∆−1/2
n

∑
i∈Î

(
n
(
∆n
iX
∗
1 + ∆1/2

n η̃∗i,1
)
n
(
∆n
iX
∗
2 + ∆1/2

n η̃∗i,2
)
− n (∆n

iX
∗
1 )n (∆n

iX
∗
2 )
)
.

Step 3. Repeat steps 1–2 many times. Compute the 1− α (resp. α) quantile of ξ∗P − ξ∗N
as the critical value of ∆

−1/2
n (P̂ †12− N̂

†
12) for the null hypothesis P †12 = N †12 in favor of the

one-sided alternative P †12 > N †12 (resp. P †12 < N †12) at significance level α. �

Algorithm 1 may be seen as a parametric bootstrap that exploits the approximate

(parametric) doubly-mixed Gaussian distribution of the detected jump returns given the

estimated spot covariances, with ξ∗P and ξ∗N being the bootstrap analogue of the original

normalized estimators. While this type of simulation-based inference is often used in

the study of jumps, a non-standard feature of Algorithm 1 is its use of the truncated

return ∆n
iX
∗
j = ∆n

iXj1{|∆n
i Xj |>uj,n}, which shrinks the detected diffusive returns to zero.

This shrinkage is needed in situations where exactly one asset jumps at time τ , so that

the sampling variability contributed by the other (no-jump) asset, say j, is given by the

half-truncated doubly-mixed Gaussian variable like p (η̃τ,j). This distribution may in turn
14



be mimicked by ∆
−1/2
n p(∆n

iX
∗
j + ∆

1/2
n η̃∗i,j) = p(η̃∗i,j), which differs from the “un-shrunk”

variable ∆
−1/2
n p(∆n

iXj + ∆
1/2
n η̃∗i,j).

Proposition 2 Under Assumption 2 in the appendix, the conditional distribution of

ξ∗P−ξ∗N given the data converges in probability to the F-conditional distribution of ξP−ξN
under the uniform metric. Consequently, the test described in Algorithm 1 has asymp-

totic level α under the null {P †12 = N †12} and asymptotic power of one under one-sided

alternatives.

We turn next to the conduct of feasible inference using the DCSD statistic P̂ ?
12− N̂?

12.

This involves some additional non-standard theoretical subtlety. Proposition 1 implies

that

∆−1/2
n

(
P̂ ?

12 − N̂?
12

)
−D1 −D2

L-s−→ ζP − ζN + ζ̃P − ζ̃N , (2.14)

where D1 ≡ B
(1)
P −B

(1)
N and D2 ≡ B

(2)
P −B

(2)
N capture co-drift and dynamic leverage effects,

respectively. The first-order limiting variables P ?
12 and N?

12 exactly cancel with each other

in the P̂ ?
12 − N̂?

12 difference. Consequently, as revealed by the convergence in (2.14), the

remaining “signal” carried by the DCSD is given by the higher-order term D1 +D2, which

is comparable in magnitude with the statistical noise term ζP − ζN + ζ̃P − ζ̃N (defined

as a local martingale). Since the signal-to-noise ratio does not diverge to infinity even in

large samples, the resulting test is generally not consistent.

A further non-standard complication related to (2.14) stems from the fact that the

limiting variable ζP − ζN + ζ̃P − ζ̃N is generally not mixed Gaussian. Specifically, while

ζ̃P − ζ̃N is F -conditional Gaussian, the remaining part

ζP − ζN = 2

∫ T

0

(
c−1
s γs

)>
(σsdWs)

is generally not mixed Gaussian unless, of course, the stochastic volatility σ is independent

of the Brownian motion W that drives the diffusive price moves.12

Although these non-standard features of the limit theory prevent us from conducting

formal tests in the most general setting, it is nevertheless possible to assess the sampling

variability of P̂ ?
12−N̂?

12 in a well-defined way. Indeed, it follows from (2.7) and (2.10) that

the quadratic variation of the continuous local martingale ζP − ζN + ζ̃P − ζ̃N is given by

Σ? ≡ 2

∫ T

0

v2
1,sv

2
2,sΨ (ρs) ds.

Therefore,
√

Σ? may be naturally used as the “standard error” for gauging the sampling

12This complication arises from the fact that the functions x 7→ p (x1) p (x2) and x 7→
n (x1)n (x2) are not globally even. Consequently, the local covariance between p (∆n

i X1) p (∆n
i X2) (or

n (∆n
i X1)n (∆n

i X2)) and the Brownian increment ∆n
iW is non-zero, resulting in γt 6= 0 in general.
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variability of the centered variable ∆
−1/2
n (P̂ ?

12 − N̂?
12) − (D1 + D2). The Σ? variable is

defined as an integrated functional of the spot covariance matrix and may therefore be

consistently estimated using a nonparametric “plug-in” estimator Σ̂?.13 These results

suggest a DCSD-based test described in the following algorithm.

Algorithm 2 (DCSD Test).

Step 1. Define v̂1,i, v̂2,i and ρ̂i implicitly by decomposing the spot covariance matrix

estimator ĉi+ as

ĉi+ =

(
v̂2

1,i ρ̂iv̂1,iv̂2,i

ρ̂iv̂1,iv̂2,i v̂2
2,i

)
,

and set

Σ̂? ≡ 2∆n

[T/∆n]− kn + 1

[T/∆n]−kn∑
i=0

v̂2
1,iv̂

2
2,iΨ (ρ̂i) . (2.15)

Step 2. Use the 1 − α quantile of a standard normal distribution zα as the critical

value for the t-statistic ∆
−1/2
n (P̂ ?

12 − N̂?
12)/

√
Σ̂? for one-sided tests of the null hypothesis

D1 +D2 = 0.

The DCSD test described in Algorithm 2 should be properly interpreted. In par-

ticular, due to the aforementioned lack of mixed Gaussianity for the limiting variable

under the most general conditions, the t-statistic ∆
−1/2
n (P̂ ?

12− N̂?
12)/

√
Σ̂? is generally not

asymptotically standard normally distributed. For this reason, the asymptotic level of

the proposed one-sided test is not guaranteed to be α. Instead, the t-statistic may be

interpreted as a well-defined “signal-to-noise” measure, as opposed to a formal statistical

test. That being said, mixed Gaussianity can be restored under the additional assump-

tion that the volatility process σ is independent of the Brownian motion W . In this case,

the limiting variable ζP − ζN + ζ̃P − ζ̃N is, conditional on the σ-field generated by the

σ process, centered Gaussian with conditional variance Σ?. Consequently, the t-statistic

∆
−1/2
n (P̂ ?

12 − N̂?
12)/

√
Σ̂? converges in σ-conditional law to a standard Normal distribu-

tion. Correspondingly, in that situation, it then also readily follows that the DCSD test

described in Algorithm 2 has asymptotic level α under the null and is asymptotically

unbiased, with strictly nontrivial power under the alternative.

13Theorem 9.4.1 in Jacod and Protter (2012) shows the consistency of a class of “plug-in” estimators
for integrated volatility functionals. However, their theory requires the test function to have “polynomial
growth” in the spot covariance matrix, which cannot be verified for the spot correlation. This restriction
is relaxed in the extension of Li and Xiu (2016) and Li, Todorov, and Tauchen (2017a). Under our

maintained assumptions, the latter theory can be directly invoked to show Σ̂?
P−→ Σ?.
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3. Empirical semicovariance tests

We begin our empirical investigations by looking at the realized semicovariances for

the 30 Dow Jones Industrial Average (DJIA) stocks.14 Our estimation is based on one-

minute returns obtained from the Trades and Quotes (TAQ) database, spanning the

period from January 2006 to December 2014, for a total of 2,265 trading days. Our choice

of a relatively high one-minute sampling frequency and a fairly short recent sample for

this part of our analysis is dictated by the need to reliably estimate the spot covariance

matrix used for implementing the tests described in the previous section.15 To help more

clearly pinpoint within-day market-wide price moves and economic events associated with

the significance of the tests, we further exclude the returns for the first half-hour of the

trading day in the calculation of the tests.

3.1. Economic news and differences in semicovariances

We start by calculating the concordant JCSD and DCSD semicovariance-based tests

for all of the 435 unique DJIA stock pairs and 2,265 days in the sample, resulting in

close to one million test statistics for each of the two tests.16 We rely on one-sided

versions of the tests and a 5% significance level. The average rejection rates for both of

the tests far exceed this nominal level: the JCSD test rejects in favor of positive (resp.

negative) co-jumps for about 30% (resp. 32%) of the pairs, while the DCSD test suggests

a significantly positive (resp. negative) difference for 13% (resp. 10%) of all stock pairs.17

To help shed additional light on these test results, Table 1 lists the days with the most

rejections for each of the two tests for each of the nine years in the sample. In addition

to the date and the rejection frequencies, we also include a short description of the most

important economic events that occurred on each of these days. As Panel A shows, all

but one of the days with the most rejections for the JCSD test are associated with FOMC

statements and/or changes in the federal funds rate, the only exception being a major

geopolitical event in 2014. This finding is consistent with the prior literature that links

high-frequency-detected jumps in individual assets with public news announcements (e.g.,

Andersen, Bollerslev, and Diebold (2007), Lee and Mykland (2008) and Lee (2012)). It is

also in line with the literature on testing for co-jumps and the argument that those jumps

14We use the DJIA composition as of September 23, 2013, which remained unchanged until the end of
our sample period.

15The choice of a one-minute sampling frequency also mirrors that of Li, Todorov, Tauchen, and Chen
(2017), among others, in their estimation of spot covariances; see ?, Hansen and Lunde (2006) and Jacod,
Li, and Zheng (2017) for further discussion of market microstructure effects.

16We rely on the dynamic threshold advocated by Bollerslev and Todorov (2011a,b) based on three
times the trailing bipower variation, adjusted for the intraday periodicity in the volatility. We set the
local window kn = 45.

17We do not intend to make a formal statistical statement jointly across all pairs. Instead, we view
the rejection frequencies as simple summary statistics of the pairwise test results.
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Table 1: Top Rejection Days by Year

Year Date Direction % Headline Event

Panel A. JCSD Test

2006 June 29 + 100 Fed raises short-term rate by a quarter-percentage
point.

2007 September 18 + 99 Fed cuts short-term rate by a half-percentage point.
2008 December 16 + 100 Fed cuts short-term rate by a quarter-percentage

point.
2009 March 18 + 100 Fed announces it will buy up to $300 billion in long-

term Treasuries.
2010 August 10 + 98 Fed announces it will continue Quantitative Easing.
2011 September 22 + 100 Fed announces Operation Twist.
2012 September 13 + 100 Fed announces it will continue buying Mortgage

Backed Securities.
2013 September 18 + 98 Fed announces it will sustain the asset buying pro-

gram.
2014 August 5 − 97 Russian troops are reported lining on the borders

of Ukraine.

Panel B. DCSD Test

2006 July 19 + 57 Bernanke explains to the Senate Banking Commit-
tee how the Fed sees the economic slowdown.

2007 August 29 + 58 Bernanke writes letter to senator that Fed is mon-
itoring and ready to step in if necessary.

2008 January 2 − 67 Markets react to poor manufacturing, housing and
credit news.

2009 March 23 + 90 Obama administration announces its plan to buy
$1 trillion in bad bank assets.

2010 July 7 + 76 EU reveals its first list of stress test banks.
2011 June 1 − 83 Moody’s cuts Greece’s bond rating by three

notches.
2012 June 21 − 84 Rumors of Moody’s downgrade for global banks.
2013 February 25 − 83 Political uncertainty surrounding Italian elections.
2014 February 3 − 85 Janet Yellen sworn in as the new Fed chair.

Note: The table reports the top rejection dates by year for the daily semicovariance-based
tests across all 435 DJIA stocks-pairs. The first column gives the date, the second gives
the direction in which the rejections occurred, and the third provides the fraction of pairs of
stocks for which the test rejects at the 5% level in that direction. The final column summarizes
headline economic news events for the different days. The top Panel A reports the results for
the jump CSD test, while the bottom Panel B is based on the diffusive CSD test.
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Figure 3: DJIA Cumulative Returns on Representative Event Days
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Note: The figure plots the cumulative return of the 30 Dow Jones Industrial Average
stocks on two of the event dates associated with market-wide jump CSD and diffusive
CSD events from Table 1.

are naturally associated with economy-wide news that affect all assets (e.g., Bollerslev,

Law, and Tauchen (2008) and Lahaye, Laurent, and Neely (2011)).

In contrast to the “sharp” economic events associated with the JCSD test, Panel

B shows that the days with the most rejections for the DCSD test are typically asso-

ciated with “softer” and more difficult-to-interpret information. Kyle-type equilibrium

microstructure models (Kyle (1985)) can be used to establish a more formal economic

link between the “soft” information and price drift (which drives the DCSD test through

the co-drift effect). In these models, informed traders trade strategically with liquidity

traders to maximize their profit, and they do so patiently for the sake of managing the

market marker’s belief. As shown more formally by Back (1992), informed traders’ opti-

mal order flow is smooth (i.e., differentiable) in time, which in turn determines the drift

of the equilibrium price. In a general setting with stochastic liquidity, Collin-Dufresne

and Fos (2016) further show that, in equilibrium, the price drift exhibits mean reversion

towards the asset’s true value, where the mean reversion is strong (weak) when the short-

term liquidity is high (low) relative to the long-term liquidity. This equilibrium theory

suggests that, other things equal, the price drift is greater in magnitude when there is

higher level of mispricing and/or the revelation of the private information is more immi-

nent. The latter effect may manifest in the form of “soft” information gathered through

news articles.

To more clearly illustrate the distinct price dynamics on these “sharp” and “soft”

event days identified by the two different tests, Figure 3 plots the cumulative returns

throughout the day for each of the 30 DJIA stocks for two representative days selected
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Table 2: Conditional First-Order Autocorrelations

Conditioning Information

Unconditional P̂ ?
jk � N̂?

jk P̂ ?
jk � N̂?

jk P̂ †jk � N̂ †jk P̂ †jk � N̂ †jk

Ĉjk 0.641 0.732 0.757 0.642 0.687

P̂jk 0.510 0.769 0.574 0.536 0.560

N̂jk 0.658 0.608 0.773 0.659 0.704

M̂jk 0.407 0.447 0.451 0.444 0.410

Note: The table reports the autocorrelations between the realized measures at time
t+ 1 and t, conditional on the rejection of CSD-based tests at time t. The first column
presents the unconditional autocorrelations, while columns two and three (resp. four
and five) report the autocorrelations conditional on the DCSD (resp. JCSD) test, where
we use the � and � symbols to denote statistically significant inequalities.

from Table 1: September 18, 2013 and February 25, 2013.18 For the jump event detected

by the JCSD test (left panel), all stocks experienced a large positive shock at 2pm when

the FOMC meeting statement was released, stating that the Fed would sustain its asset-

purchasing program. This announcement led to an immediate one-off average return of

more than 1% for all stocks, whilst the prices appeared relatively stable before, and after,

that statement release. By contrast, for the diffusive event detected by the DCSD test

(right panel), we observe slow and steadily decreasing price paths throughout the day for

all of the stocks. The total daily return is large, with the median daily return around

negative 2%, but no “extreme” returns occurred for any of the stocks during the course

of that day.

3.2. Dynamic dependencies and differences in semicovariances

The significant differences in the realized semicovariance components highlighted in

the previous subsection naturally raises the question of whether they also lead to different

dynamic dependencies in the different components across days. To shed light on this

question, we compute, for each pair of stocks, the first-order autocorrelation between the

realized semicovariance measures on day t + 1 and day t, conditional on the DCSD or

JCSD tests being significant on day t. The resulting conditional autocorrelations averaged

across all of the stock pairs are reported in columns two through five of Table 2.

Looking first at the unconditional autocorrelations reported in the first column, we

see that on average P̂ and M̂ both have lower persistence than the realized covariance

Ĉ, while N̂ appears to be more strongly persistent. This effectively represents the mul-

tivariate equivalent of the univariate result of Patton and Sheppard (2015) that negative

realized semivariances tend to be more persistent than their positive counterparts.

18Figure 2 discussed in the introduction is also based on these same two days. The Supplemental
Appendix S1 presents analogous plots for all of the event days listed in Table 1.
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Meanwhile, conditioning on the outcome of the CSD-based tests leads to notably

different autocorrelations. In particular, Ĉ generally appears to be more persistent after

a diffusive event detected by the DCSD test. The effect of co-jumps and a rejection by

the JCSD test is smaller and depends on the direction of the rejection: the persistence

is slightly higher after negative co-jumps. This again may be seen as a multivariate

extension of the effect of signed jump variation presented in Patton and Sheppard (2015).

The impact of the CSD-based tests on the realized semicovariance dynamics is some-

what more complex. The persistence of P̂ , in particular, is higher following a positive

DCSD event on the previous day, with a much smaller increase after a negative DCSD

event. On the other hand, the persistence of N̂ actually drops after a positive DCSD

event, but increases after a negative DCSD event. This is consistent with the idea that

certain types of “soft” news is processed over multiple days. By comparison, the dynamic

dependency after a JCSD jump event also shows a different pattern: the persistence of

both the positive and the negative realized semicovariances only increases after negative

co-jumps, while the effect of positive co-jumps are negligible.

4. Forecasting with realized semicovariances

The results discussed in the previous section highlight the additional information and

economic insights afforded by realized semicovariances beyond those from standard real-

ized covariances. The results also point to the existence of different dynamic dependen-

cies, both conditionally and unconditionally, in the realized semicovariance components.

In this section we further explore these empirical differences from the perspective of

forecasting future variances and covariances.

To allow for the construction of larger dimensional portfolios, we expand our previous

sample of 30 DJIA stocks to include all of the S&P 500 constituent stocks. We also

consider a longer sample period from January 1993 to December 2014, for a total of 5,541

trading days. In order to reliably estimate models for covariances and semicovariances,

we include only stocks with at least 2,000 daily observations, resulting in a total of 749

unique stocks. Most of these stocks are not as actively traded as the DJIA stocks, es-

pecially during the earlier part of the sample. Correspondingly, since we only require

consistent estimates for this part of our analysis, we rely on a coarser 15-minute sam-

pling scheme to construct the realized measures. Finally, similar to most existing work

on volatility forecasting (e.g., Hansen, Huang, and Shek (2012), and Noureldin, Shep-

hard, and Sheppard (2012)), we focus on the intra-daily period excluding the overnight

returns.19

19The supplemental appendix contains empirical results that include the overnight returns. All of our
main empirical findings remain qualitatively unaltered.
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4.1. Vector autoregressions for realized semicovariances

The differential dynamic dependencies of the average realized semicovariance compo-

nents for the S&P 500 stocks evident in the previously discussed Figure 1, underscored

by the first-order sample autocorrelations for the more limited sample of DJIA stocks

shown in Table 2, suggest that more accurate volatility and covariance forecasts may be

obtained by separately modeling the realized semicovariance components, P̂ , N̂ , and M̂ ,

that make up the realized covariance.

In order to investigate this conjecture and better characterize the dynamic depen-

dencies inherent in the semicovariance components, we estimate a vector version of the

popular HAR model of Corsi (2009), in which each of the elements in the realized semico-

variance matrix is allowed to depend on its own daily, weekly, and monthly lags, as well

as the lags of the other realized semicovariance components. Specifically, for each pair of

assets (j, k) we estimate the following three-dimensional vector autoregression: P̂jk,t

N̂jk,t

M̂jk,t

 =

 φjk,P

φjk,N

φjk,M

+ Φjk,Day

 P̂jk,t−1

N̂jk,t−1

M̂jk,t−1

+ Φjk,Week

 P̂jk,t−2:t−5

N̂jk,t−2:t−5

M̂jk,t−2:t−5


+Φjk,Month

 P̂jk,t−6:t−22

N̂jk,t−6:t−22

M̂jk,t−6:t−22

+

 εPjk,t
εNjk,t
εMjk,t

 ,

(4.1)

where P̂t−l:t−k ≡ 1
k−l+1

∑k
s=l P̂t−s, with the other components defined analogously.20

The first three columns of Table 3 report the resulting parameter estimates aver-

aged across 500 randomly selected (j, k) pairs of stocks. The table reveals a clear block

structure in the coefficients of this general specification. Most notably, the dynamic de-

pendencies in P̂ and N̂ are almost exclusively driven by the lagged N̂ terms, while the

dynamic behavior of the mixed M̂ elements is primarily determined by their own lags,

with the monthly lag receiving the largest weight.

The last two columns of Table 3 report the parameter estimates from regressing the re-

alized covariances Ĉ on the lagged realized semicovariances and the lagged covariances.21

The model with individual semicovariances clearly reveals the most important compo-

nents: the three lags of N̂ and the monthly lag of M̂ constitute the main drivers of

the realized covariance Ĉ. Interestingly, the models based on the semicovariances also

put a greater weight on more recent information compared to the standard HAR model

20To simplify the interpretation of the estimates, we define the weekly variables to exclude the daily
lag and the monthly variables to similarly exclude the daily and weekly lags. This, of course, does not
affect the overall fit of the model.

21Note that due to the linear nature of the HAR model and the fact that realized semicovariances
sum exactly to the realized covariance, each coefficient in the fourth column is simply the sum of the
corresponding coefficients in the first three columns.
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Table 3: Semicovariance HAR Estimates

P̂jk,t N̂jk,t M̂jk,t Ĉjk,t
P̂jk,t−1 0.038** 0.050** -0.035** 0.052**

P̂jk,t−2:t−5 0.004** 0.057** -0.002** 0.059**

P̂jk,t−6:t−22 -0.074** 0.023** 0.099** 0.048**

N̂jk,t−1 0.248** 0.192** -0.096** 0.344**

N̂jk,t−2:t−5 0.312** 0.250** -0.090** 0.472**

N̂jk,t−6:t−22 0.349** 0.206** -0.021** 0.534**

M̂jk,t−1 -0.075** -0.072** 0.141** -0.006**

M̂jk,t−2:t−5 -0.044** -0.049** 0.209** 0.116**

M̂jk,t−6:t−22 0.028** -0.020** 0.409** 0.417**

Ĉjk,t−1 0.184**

Ĉjk,t−2:t−5 0.305**

Ĉjk,t−6:t−22 0.304**

R2 0.397** 0.376** 0.354** 0.313** 0.284**
R2
adj 0.395** 0.374** 0.352** 0.311** 0.283**

Note: The table reports the average parameter estimates for the vec-
tor HAR model in (4.1) averaged across 500 randomly selected pairs
of stocks. The first three columns report results for the unrestricted
models. The fourth column reports the estimates from a model that
restricts the rows of Φjk,Day, Φjk,Week and Φjk,Month to be the same,

corresponding to a model for Ĉj,kt, whilst the final column reports the

results of a standard HAR model on Ĉjk,t. ** and * signify that the
estimates for that coefficient are significant at the 5% level for 75%
and 50% of the randomly selected pairs of stocks, respectively.

reported in the last column: normalizing each of the explanatory variables by their sam-

ple means, the semicovariance-based HAR models effectively put a weight of 0.339 on

lagged daily information, while the final column shows that a standard HAR model on

average puts a weight of only 0.184 on the daily lag, implying a more muted reaction to

new information. These differences are naturally associated with an improved fit of the

semicovariance-based models, as shown by the R2s in the bottom two rows. In the next

section we investigate whether this improved in-sample fit is accompanied by a similar

improvement in out-of-sample forecast performance for models that utilize the realized

semicovariances.

4.2. Portfolio volatility forecasting

The realized variance of a portfolio obviously depends on the realized semicovariances

of the assets included in the portfolio. In particular, utilizing the result that Ĉ = P̂ +
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N̂ + M̂ , the realized variance of a portfolio with portfolio weights w may be expressed as

R̂V
w
≡ w>Ĉw

= w>P̂w + w>N̂w + w>M̂w

≡ P̂w + N̂w + M̂w, (4.2)

where we use the superscript w to indicate the relevant (scalar-valued) portfolio quanti-

ties. These portfolio semicovariance measures are distinctly different from the portfolio

semivariances of Barndorff-Nielsen, Kinnebrock, and Shephard (2010), which only de-

pend on the high-frequency returns of the portfolio. The portfolio semicovariances, on

the other hand, depend on the high-frequency returns for all of the individual assets

included in the portfolio, and cannot be computed using only returns on the portfolio

itself.

To explore whether portfolio semicovariances convey useful information beyond famil-

iar realized variances and semivariances, we extend the HAR model of Corsi (2009) to

allow the forecasts to depend on each of the realized portfolio semicovariance components.

Accordingly, the one-day-ahead forecast for the portfolio return variance is constructed

from

RV w
t+1|t = φ0 + φDay,P P̂

w
t + φWeek,P P̂

w
t−1:t−4 + φMonth,P P̂

w
t−5:t−21

+φDay,NN̂
w
t + φWeek,NN̂

w
t−1:t−4 + φMonth,NN̂

w
t−5:t−21 (4.3)

+φDay,MM̂
w
t + φWeek,MM̂

w
t−1:t−4 + φMonth,MM̂

w
t−5:t−21.

We will refer to this model as the SemiCovariance HAR (SCHAR) model. The general

SCHAR model in (4.3) is obviously quite richly parameterized. Hence, motivated by the

results in Table 3, we also consider a restricted version, in which we only include the

daily, weekly and monthly lags of N̂w, and the monthly lag of M̂w. We will refer to this

specification as the restricted SCHAR model, or SCHAR-r for short.

If the parameters associated with the lagged realized semicovariance component all

coincide (i.e., φj,P = φj,N = φj,M = φj for j ∈ {Day, Week, Month}), the SCHAR model

trivially reduces to the basic HAR model and the corresponding forecasting scheme

RV w
t+1|t = φ0 + φDayR̂V

w

t + φWeekR̂V
w

t−1:t−4 + φMonthR̂V
w

t−5:t−21. (4.4)

This simple and easy-to-implement model has arguably emerged as the benchmark for

judging alternative realized volatility-based forecasting procedures in the literature.

In addition to this commonly-used benchmark, we also consider the forecasts from

the Semivariance HAR (SHAR) model of Patton and Sheppard (2015). This model uses
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the portfolio realized semivariances defined as

P̂SV =

[T/∆n]∑
i=1

p
(
w>∆n

iX
)2
, N̂SV =

[T/∆n]∑
i=1

n
(
w>∆n

iX
)2
,

to decompose the daily realized variance into positive and negative semivariances, result-

ing in the forecasting scheme:

RV w
t+1|t = φ0 +φDay,+P̂SV t +φDay,−N̂SV t +φWeekR̂V

w

t−1:t−4 +φMonthR̂V
w

t−5:t−21. (4.5)

This model has been found to perform particularly well from the perspective of portfolio

variance forecasting, performing on par with or better than the forecasts from other

HAR-style models, and as such constitutes another particularly challenging benchmark.

We consider equally-weighted portfolios comprised of d = 10 (“small”) and 100

(“large”) stocks randomly selected from the full set of 749 individual stocks. In each

case, we ensure that the selected stocks contain an overlap of at least 1,100 daily obser-

vations. We then construct rolling out-of-sample forecasts based on each of the different

models, with model parameters re-estimated daily using the most recent 1,000 daily ob-

servations. We rely on the commonly used mean-square-error (MSE) and QLIKE loss

functions to evaluate the performance of the forecasts vis-a-vis the actual portfolio real-

ized variances R̂V
w

t+1.22 Table 4 reports the resulting losses averaged across 500 randomly

selected portfolios. In addition, for each of the 500 portfolios, we also compute the ratio of

each model’s average loss relative to the benchmark HAR model, and report the average

of these ratios over all of the random samples.23

Consistent with Patton and Sheppard (2015), the SHAR-based forecasts that utilize

the portfolio realized semivariances do result in fairly large relative gains vis-a-vis the

benchmark HAR-based forecasts, especially for the large dimensional portfolios. The

performance of the unrestricted SCHAR model, however, is mixed: it has smaller MSE

loss than the HAR forecasts, but underperforms that same benchmark under QLIKE loss.

This finding is hardly surprising. There is ample evidence in the forecasting literature

emphasizing the importance of parsimony (see, e.g., Zellner (1992)), and the results in

Table 3 clearly suggest that the unrestricted SCHAR model is “over-parameterized,”

and as such is likely to perform poorly in a forecasting context. Indeed, looking at the

results for the restricted SCHAR-r model guided by the estimates in Table 3, we see that

the forecasts from this model unambiguously outperform those from the other models;

the 13.8% improvement in terms of predictive accuracy (measured by MSE) for the large

22The MSE and QLIKE loss functions may both be formally justified for the purpose of volatility
model forecast evaluation based on the use of imperfect ex-post volatility proxies; see Patton (2011).

23The supplemental appendix reports corroborative evidence from a series of additional robustness
checks.
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Table 4: Performance Comparison for Portfolio Variance Forecasts

MSE QLIKE
Model Average Ratio Average Ratio

Panel A. Small Portfolio Case (d =10)

HAR 1.849 1.000 0.141 1.000
SHAR 1.671 0.966 0.139 0.986
SCHAR 1.643 0.955 0.210 1.318
SCHAR-r 1.567 0.908 0.139 0.979

Panel B. Large Portfolio Case (d =100)

HAR 0.048 1.000 0.119 1.000
SHAR 0.045 0.935 0.115 0.957
SCHAR 0.045 0.976 0.236 1.495
SCHAR-r 0.041 0.862 0.111 0.925

Note: The table reports the loss for forecasting the portfolio variance for portfolios
of size d = 10 and 100 for each of the different forecasting models. The reported
numbers are based on 500 randomly selected portfolios. The Average column
provides the average loss over time and all portfolios. The Ratio column gives the
time-average ratio of losses across all sets of portfolios relative to the HAR model.

portfolio case is particularly impressive. As such, this clearly shows the benefit of utilizing

the additional information inherent in the realized semicovariances, compared to both the

HAR- and SHAR-based forecasts that only rely on the portfolio realized (semi)variances.

These gains in forecast accuracy are not unique to our specific choice of the two

portfolio dimensions highlighted in Table 4. Figure 4 plots the median loss ratios for the

HAR, SHAR and SCHAR-r models for all values of d ranging from 2 to 100, together

with the 10% and 90% quantiles for the SCHAR-r forecasts computed across the 500

random portfolio-formations. As the figure shows, the median loss ratios for the SCHAR-

r model are systematically below those of the other two models, the only exception being

the QLIKE loss for d = 2. Also, the gains from using the information in the realized

semicovariances accrue relatively quickly as the number of stocks in the portfolio increases,

and for the QLIKE loss appear to reach somewhat of a plateau for d ≈ 40 stocks.

The gains in forecast accuracy obtained from using the realized semicovariance mea-

sures are not restricted to the one-day forecast horizon analyzed in Table 4 and Figure 4

either. To illustrate, we report in Table 5 the results for 5-day and 22-day ahead forecasts,

corresponding to one week and one month, respectively. For simplicity we rely on “direct”

forecasts constructed by simply replacing the left-hand-side variable in the estimation of

the different models with the realized portfolio variance over the relevant horizon.24 As

24The construction of “iterated” forecasts for the SHAR and SCHAR models would necessitate ad-
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Figure 4: Median Loss Ratios
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Note: The graph plots the median loss ratios as a function of the number of stocks in
the portfolio, d. The ratio is calculated as the average loss of the models divided by the
average loss of of the standard HAR, based on 500 random samples of d-stock portfolios.

the table shows, if anything the forecast improvements obtained by the SCHAR-r model

vis-a-vis the standard HAR model appear even larger over longer forecast horizons; as a

case in point the 18.4% relative improvement (measured by MSE) for the large portfolio

at the monthly horizon is especially impressive.

To help further understand the source of these improvements it is instructive to rep-

resent the SHAR and SCHAR models as HAR models with time-varying parameters. To

illustrate the idea, consider the forecasts from a SCHAR-type model based only on the

lagged daily realized semicovariances,

RV w
t+1|t = φ0 + φDay,P P̂

w
t + φDay,NN̂

w
t + φDay,MM̂

w
t

= φ0 +

(
φDay,P

P̂w
t

R̂V
w

t

+ φDay,N
N̂w
t

R̂V
w

t

+ φDay,M
M̂w

t

R̂V
w

t

)
R̂V

w

t

≡ φ0 + φDay,tR̂V
w

t .

ditional modeling assumptions about the realized semi(co)variances; for further discussion of “direct”
versus “iterated” volatility forecasts see, e.g., Bollerslev, Hood, Huss, and Pedersen (2018) and the
references therein.
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Table 5: Long-Horizon Results

MSE QLIKE
Model Average Ratio Average Ratio

Panel A. Weekly Forecasts, Small Portfolio Case (d =10)

HAR 1.314 1.000 0.086 1.000
SHAR 1.222 0.958 0.083 0.967
SCHAR 1.075 0.900 0.151 1.596
SCHAR-r 1.062 0.874 0.085 0.974

Panel B. Weekly Forecasts, Large Portfolio Case (d =100)

HAR 0.028 1.000 0.070 1.000
SHAR 0.026 0.917 0.065 0.936
SCHAR 0.024 0.881 0.068 0.981
SCHAR-r 0.023 0.823 0.062 0.884

Panel C. Monthly Forecasts, Small Portfolio Case (d =10)

HAR 1.407 1.000 0.108 1.000
SHAR 1.372 0.982 0.106 0.982
SCHAR 1.121 0.906 0.160 1.339
SCHAR-r 1.135 0.867 0.111 1.000

Panel D. Monthly Forecasts, Large Portfolio Case (d =100)

HAR 0.031 1.000 0.071 1.000
SHAR 0.030 0.954 0.068 0.956
SCHAR 0.028 0.926 0.060 0.859
SCHAR-r 0.025 0.816 0.058 0.837

Note: The table reports the loss for forecasting the portfolio variance for portfolios of
size d = 10 and 100 for each of the different forecasting models, for weekly and monthly
horizons. The reported numbers are based on 500 randomly selected portfolios. The
Average column provides the average loss over time and all portfolios. The Ratio column
gives the time-average ratio of losses across all sets of portfolios relative to the HAR
model.

As these equations show, even though the φDay,P , φDay,N and φDay,M parameters used in

the formulation of the model are all constant, the model may alternatively be interpreted

as a first-order autoregression for R̂V
w

t+1 with a time-varying autoregressive parameter

φDay,t. This idea obviously generalizes to the SHAR and the more elaborate SCHAR-r

forecasting models used in our empirical analysis, in which the parameters associated

with the weekly and monthly lags in the implied HAR-type representations would be

time-varying as well.
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Figure 5: Implied HAR Parameters
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Note: The figure plots the implied HAR-type parameters for predicting the variance of
a ten-stock portfolio, averaged across 500 randomly selected portfolios. The models are
estimated over the full sample period.

In order to explicitly quantify these effects, Figure 5 plots the daily, weekly and

monthly time-varying HAR parameters implied by the SHAR and SCHAR-r models for

d = 10, averaged across 500 randomly selected ten-stock portfolios.25 In addition to

the implied daily, weekly and monthly parameters, the last panel reports their sum as a

measure of the overall persistence of the different models.

The daily, weekly, and monthly parameters for the HAR model are by definition all

constant, with an average implied persistence of around 0.94. By comparison, the implied

25In contrast to the out-of-sample forecast results in Table 4, which are based on a rolling estimation
scheme, Figure 5 plots the implied parameter estimates obtained over the full sample period. Requiring
observations to be available over the full sample reduces the number of stocks to 121. To avoid “con-
taminating” the results by a few influential outliers, we exclude any portfolios for which the maximum

P̂w/R̂V
w

, N̂w/R̂V
w

and M̂w/R̂V
w

ratios exceed ten, and further smooth the implied parameters using
a centered 50-day moving average.
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daily parameter estimates for the SHAR model vary slightly above the constant daily

HAR parameter, while the constant weekly parameter for the SHAR model is slightly

below that of the HAR model. As such, the overall persistence of the SHAR-based

forecasts are generally very close to that of the standard HAR-based forecasts, which

explains why the two models perform fairly similar over the longer monthly forecast

horizon analyzed in Table 5.

By contrast, the implied time-varying daily and weekly HAR parameters for the

SCHAR-r model both far exceed those of the standard HAR model, especially over the

earlier part of the sample. On the other hand, the implied time-varying monthly pa-

rameters for the SCHAR-r model are typically less than the monthly parameters for the

standard HAR and SHAR models. Meanwhile, the sum of the three implied parameters

for the SCHAR-r model are typically greater than for the other two models.26 Thus, not

only do the superior SCHAR-based forecasts respond more quickly to new information,

the forecasts are typically also more persistent and slower to mean-revert than the bench-

mark HAR- and SHAR-based forecasts. This explains why the SCHAR-r model performs

well not just over the short one-day forecast horizon, but also over the longer monthly

forecast horizons. It also highlights the usefulness of the richer information residing in the

new realized semicovariance measures for volatility forecasting purposes more generally.

5. Conclusion

We propose a new decomposition of the realized covariance matrix based on the signs

of the underlying high-frequency returns into separate positive, negative and mixed-

sign realized semicovariance components. Under a standard infill asymptotic setting for

continuous-time Itô semimartingales, we derive the first- and second-order asymptotic

properties of these new realized semicovariance measures. The asymptotic theory, taking

the form of a non-central limit theorem, reveals the differential information carried by

each of the realized semicovariance components, related to stochastic correlation, signed

co-jumps, and notions of co-drifting and dynamic leverage effects. Using high-frequency

data for a large cross-section of U.S. equities, we demonstrate how the asymptotic theory

may be used in understanding key features of the realized semicovariance components as-

sociated with different economic events. Consistent with the theory, we further document

distinctly different dynamic dependencies in the different realized semicovariance compo-

nents. These differences in turn translate into markedly superior forecast performance

for models that utilize the realized semicovariance measures.

26Even though the sum of the autoregressive coefficients for the SCHAR-r model occasionally exceeds
unity, this does not necessarily imply non-stationarity, as the temporal variation in the realized semico-
variance measures may induce stationarity; see Conley, Hansen, Luttmer, and Scheinkman (1997) and
Nielsen and Rahbek (2014) for a discussion of volatility-induced stationarity.
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Appendix A. Regularity conditions

In this appendix, we describe the regularity conditions that are needed for the asymp-

totic theory presented in the main text.

Assumption 1 The process X is an Itô semimartingale defined on a filtered probability

space (Ω,F , (Ft),P) of the form (2.1) with

Jt =

∫ t

0

∫
R
δ (s, u)µ (ds, du) ,

where the process b is locally bounded, the process σ is càdlàg and takes value in Rd⊗d,

δ is a predictable function and µ is a Poisson random measure defined on R+ × R with

compensator ν (dt, du) = dt⊗ λ (du) for some finite measure λ on R.

Assumption 2 We have Assumption 1. Moreover, the process σ has the form (2.2)

such that (i) σt is non-singular almost surely for all t; (ii) b̃ is locally bounded; (iii)

σ̃ is d × d × d càdlàg adapted process; (iv) the process M̃ is a local martingale that is

orthogonal to W with ‖∆M̃t‖ ≤ σ for some constant σ > 0 and its predictable quadratic

covariation process has the form 〈M̃, M̃〉t =
∫ t

0
q̃sds for some locally bounded process q̃;

(v) the compensator of the pure-jump process
∑

s≤t ∆σs1{‖∆σs‖>σ} has the form
∫ t

0
qsds

for some locally bounded process q.

Overall, these assumptions are fairly mild and quite standard in the analysis of high-

frequency data. In particular, they allow for price and volatility jumps and co-jumps,

as well as the so-called leverage effect. The only notable restriction is the finite activity

of the price jumps. As in Li, Todorov, and Tauchen (2017b), we purposely impose this

condition because, in the current paper, the empirical interest vis-a-vis jumps mainly

concerns “large” market-wide co-jumps, which occur relatively infrequently (and thus

aligned with the finite-activity condition). Relaxing this condition would greatly com-

plicate our technical exposition, without leading to any change in the actual numerical

implementation.

Appendix B. Proofs

Appendix B.1. Notation and preliminary results

We begin by defining some notation. Recall that for j ∈ {1, . . . , d}, Tj = {τ : ∆Xj,τ 6=
0} collects the jump times of asset j, and

Tj+ ≡ {τ ∈ T : ∆Xj,τ > 0}, Tj− ≡ {τ ∈ T : ∆Xj,τ < 0}.

That is, Tj+ and Tj− collect the times at which asset j has positive and negative jumps,

respectively. For each jump time τ , we denote by i (τ) the unique random integer i such
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that (i− 1) ∆n < τ ≤ i∆n. We then set

Ij ≡ {i (τ) : τ ∈ Tj} and Ij± ≡ {i (τ) : τ ∈ Tj±}. (B.1)

Recall that p (x) ≡ max {x, 0} and n (x) ≡ min{x, 0}. To simplify notation, we

denote, for x, y ∈ R,

f (x, y) ≡ p (x) p (y) , g (x, y) ≡ n (x)n (y) , m (x, y) = p (x)n (y) .

Note that f and g are both continuously differentiable except on {(x, y) : x = 0 or y = 0},
with gradients

∂f (x, y) =

(
1{x≥0}max {y, 0}
max {x, 0} 1{y≥0}

)
, ∂g (x, y) =

(
1{x≤0}min {y, 0}
min {x, 0} 1{y≤0}

)
.

For generic functions h, h1 and h2 defined on Rd, and an invertible d × d matrix a

such that c = aa>, we define the following quantities:

Rc (h) ≡ EU [h (aU)] , γc (h) ≡ EU [h (aU) (aU)] ,

γ̂a (h) ≡ EU [h (aU)U ] ,

Hj ≡ hj (aU)−Rc (h)−
(
c−1γc (hj)

)>
aU, j = 1, 2,

γ̄c (h1, h2) ≡ CovU (H1, H2) ,

Γc (h1, h2) ≡ CovU

((
c−1γc (h1)

)>
aU,

(
c−1γc (h2)

)>
aU
)
,

Γc (h1, h2) ≡ CovU (h1 (aU) , h2 (aU)) ,

(B.2)

where U is a generic d-dimensional standard normal variable, and EU and CovU are

the expectation and covariance operators with respect to U , respectively. We note that,

except for γ̂a (h), the expected values in (B.2) depend on a only through c = aa>, which

explains our notation Rc (·), γc (·), etc.

We need to establish a few identities among these functionals. Observe that the

variable Hj is the residual obtained from projecting the demeaned variable hj (aU) −
EU [hj (aU)] onto aU , with c−1γc (hj) the corresponding projection coefficient. Since a is

nonsingular, this residual may alternatively be written as

Hj = hj (aU)− EU [hj (aU)]− γ̂a (hj)
> U.

Hence, the functional γ̄c (h1, h2) can be rewritten as

γ̄c (h1, h2) = EU

[(
h1 (aU)− γ̂a (h1)> U

)(
h2 (aU)− γ̂a (h2)> U

)]
−EU [h1 (aU)]EU [h2 (aU)] .

(B.3)
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We further note that Γc (h1, h2) computes the covariance of h1 (aU) − EU [h1 (aU)] and

h2 (aU)−EU [h2 (aU)], while Γc (h1, h2) computes the covariance of their projections. By

a decomposition of covariance, we then deduce

γ̄c (h1, h2) = Γc (h1, h2)− Γc (h1, h2) . (B.4)

In addition,

Γc (h1, h2) = γc (h1)> c−1γc (h2) . (B.5)

Our analysis for the semicovariances relies on some explicit calculations of the expec-

tations in (B.2). Lemma 1, below, provides the details for c taking the form

c =

(
v2

1 ρv1v2

ρv1v2 v2
2

)
. (B.6)

The proof is done by direct integration, and is omitted for brevity.

Lemma 1 The following statements hold when the matrix c has the form (B.6):

(a) Rc (f) = Rc (g) = v1v2ψ (ρ) and Rc (m) = −v1v2ψ (−ρ);

(b) Rc (∂f) = −Rc (∂g) =
(
2
√

2π
)−1

(1 + ρ) (v2, v1)>;

(c) γc (f) = −γc (g) =
(
2
√

2π
)−1

(1 + ρ)2 v1v2 (v1, v2)>;

(d) Γc (f, f) = Γc (g, g) = v2
1v

2
2(Ψ (ρ)− ψ (ρ)2) and Γc (f, g) = −v2

1v
2
2ψ (ρ)2.

Appendix B.2. Proofs

Proof of Theorem 1. Let X ′ denote the continuous part of X, that is, X ′t ≡
∫ t

0
bsds+∫ t

0
σsdWs. We define P̂ ′ in the same way as P̂ , but with X replaced by X ′. It follows

that

P̂jk = P̂ ′jk +
∑

i∈Ij∪Ik

p (∆n
iXj) p (∆n

iXk)−
∑

i∈Ij∪Ik

p
(
∆n
iX
′
j

)
p (∆n

iX
′
k) .

By Theorem 3.4.1(b) in Jacod and Protter (2012) and Lemma 1(a),

P̂ ′jk
P−→
∫ T

0

vj,svk,sψ(ρjk,s)ds. (B.7)

We also note that∑
i∈Ij∪Ik

p (∆n
iXj) p (∆n

iXk) =
∑

τ∈Tj∪Tk

p
(
∆n
i(τ)Xj

)
p
(
∆n
i(τ)Xk

)
,

and ∆n
i(τ)X → ∆Xτ pathwise. Hence,

∑
i∈Ij∪Ik

p (∆n
iXj) p (∆n

iXk)
P−→ P †jk. (B.8)
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Finally, by a standard estimate for continuous Itô semimartingales and the fact that Ij∪Ik
is almost surely finite, we deduce that

∑
i∈Ij∪Ik p

(
∆n
iX
′
j

)
p (∆n

iX
′
k) = Op(∆n). This

estimate, combined with (B.7) and (B.8), implies the asserted convergence P̂jk
P−→ Pjk.

The proof for N̂ and M̂ follows essentially the same argument. Q.E.D.

Proof of Theorem 2. Step 1. We begin by outlining the basic steps of the proof.

First, we decompose

∆−1/2
n

(
P̂12 − P12

)
=

5∑
j=1

P̃ (j), ∆−1/2
n

(
N̂12 −N12

)
=

5∑
j=1

Ñ (j),

where 

P̃ (1) ≡ ∆−1/2
n

 ∑
i∈I1+∩I2+

p (∆n
iX1) p (∆n

iX2)− P †12

 ,

P̃ (2) ≡ ∆−1/2
n

∑
i∈I1+\I2

p (∆n
iX1) p (∆n

iX2) ,

P̃ (3) ≡ ∆−1/2
n

∑
i∈I2+\I1

p (∆n
iX1) p (∆n

iX2) ,

P̃ (4) ≡ ∆−1/2
n

∑
i∈I1−∪I2−

p (∆n
iX1) p (∆n

iX2) ,

P̃ (5) ≡ ∆−1/2
n

( ∑
i/∈I1∪I2

p (∆n
iX1) p (∆n

iX2)− P ?
12

)
,

and 

Ñ (1) ≡ ∆−1/2
n

 ∑
i∈I1−∩I2−

n (∆n
iX1)n (∆n

iX2)−N †12

 ,

Ñ (2) ≡ ∆−1/2
n

∑
i∈I1−\I2

n (∆n
iX1)n (∆n

iX2) ,

Ñ (3) ≡ ∆−1/2
n

∑
i∈I2−\I1

n (∆n
iX1)n (∆n

iX2) ,

Ñ (4) ≡ ∆−1/2
n

∑
i∈I1+∪I2+

n (∆n
iX1)n (∆n

iX2) ,

Ñ (5) ≡ ∆−1/2
n

( ∑
i/∈I1∪I2

n (∆n
iX1)n (∆n

iX2)−N?
12

)
.

To prove the assertion of Theorem 2, it suffices to show the following joint stable

convergence in law (
4∑
j=1

P̃ (j),
4∑
j=1

Ñ (j)

)>
L-s−→ ξ, (B.9)

(
P̃ (5), Ñ (5)

)> L-s−→ B(1) +B(2) + ζ + ζ̃ . (B.10)
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In steps 2 and 3, below, we prove these claims in turn. We note that, by a standard

argument, it is easy to show that the convergences in (B.9) and (B.10) hold jointly with F -

conditionally independent limits (as they involve non-overlapping Brownian increments).

Therefore, the remaining task is to show (B.9) and (B.10).

Step 2. This step proves the claim in (B.9). Let T ≡ T1 ∪T2 collect all jump times of

the bivariate process X. We set, for each τ ∈ T ,

η̂τ = (η̂1,τ , η̂2,τ )
> ≡ ∆−1/2

n

(
∆n
i(τ)X −∆Xτ

)
.

By Proposition 4.4.10 in Jacod and Protter (2012),

(η̂τ )τ∈T
L-s−→ (η̃τ )τ∈T , (B.11)

where η̃τ = (η̃1,τ , η̃2,τ )
> ≡ √κτ ξ̃τ− +

√
1− κτ ξ̃τ+ (recall the definitions in Section 2.2).

From (B.11), it is easy to derive the following representations uniformly for all τ ∈ T
(note that T is finite almost surely): for j ∈ {1, 2},

p
(
∆n
i(τ)Xj

)
=


∆Xj,τ + ∆

1/2
n η̂j,τ + op(∆

1/2
n ), if τ ∈ Tj+,

∆
1/2
n p (η̂j,τ ) + op(∆

1/2
n ), if τ ∈ T \ T j,

op(∆
1/2
n ), if τ ∈ Tj−,

(B.12)

and

n
(
∆n
i(τ)Xj

)
=


op(∆

1/2
n ), if τ ∈ Tj+,

∆
1/2
n n (η̂j,τ ) + op(∆

1/2
n ), if τ ∈ T \ T j,

∆Xj,τ + ∆
1/2
n η̂j,τ + op(∆

1/2
n ), if τ ∈ Tj−.

(B.13)

Using these representations, we further deduce

P̃ (1) =
∑

τ∈T1+∩T2+

(∆X1,τ η̂2,τ + ∆X2,τ η̂1,τ ) + op(1),

P̃ (2) =
∑

τ∈T1+\T2

∆X1,τp (η̂2,τ ) + op(1),

P̃ (3) =
∑

τ∈T2+\T1

∆X2,τp (η̂1,τ ) + op(1),

P̃ (4) = op(1),

and 

Ñ (1) =
∑

τ∈T1−∩T2−

(∆X1,τ η̂2,τ + ∆X2,τ η̂1,τ ) + op(1),

Ñ (2) =
∑

τ∈T1−\T2

∆X1,τn (η̂2,τ ) + op(1),

Ñ (3) =
∑

τ∈T2−\T1

∆X2,τn (η̂1,τ ) + op(1),

Ñ (4) = op(1).
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These representations, together with the convergence (B.11), imply (B.9).

Step 3. This step proves the claim in (B.10). Let X ′ denote the continuous part of

X, that is,

X ′t ≡
∫ t

0

bsds+

∫ t

0

σsdWs.

We define P̂ ′ and N̂ ′ in the same way as P̂ and N̂ , but with X replaced by X ′. It is easy

to see that P̂ ′ −
∑

i/∈I1∪I2 p (∆n
iX1) p (∆n

iX2) and N̂ ′ −
∑

i/∈I1∪I2 n (∆n
iX1)n (∆n

iX2) are

Op(∆n). Hence, it suffices to prove the claim with P̃ (5) and Ñ (5) replaced, respectively,

by the following variables:

P̃ ′ ≡ ∆−1/2
n

(
P̂ ′12 − P ?

12

)
, Ñ ′ ≡ ∆−1/2

n

(
N̂ ′12 −N?

12

)
.

In order to derive the stable convergence in law of (P̃ ′, Ñ ′), we apply Theorem 5.3.5 in

Jacod and Protter (2012) to the test function x 7→ (p(x1)p (x2) , n (x1)n (x2)). To do so,

it is enough to verify that the limiting variables B(1), B(2), ζ and ζ̃ coincide with Jacod

and Protter’s A, A
′
, U and U

′
variables. Turning to the details, we first note that, by

Lemma 1(a), we can rewrite

P ?
12 =

∫ T

0

Rcs (f) ds, N?
12 =

∫ T

0

Rcs (g) ds. (B.14)

By Lemma 1(b), we can rewrite B
(1)
P and B

(1)
N as

B
(1)
P =

∫ T

0

b>s Rcs (∂f) ds, B
(1)
N =

∫ T

0

b>s Rcs (∂g) ds. (B.15)

Given (2.6), no further rewriting is needed for the B(2) term.

By Lemma 1(c), we can rewrite

γt = γct (f) and − γt = γct (g) . (B.16)

Hence, γt = σtγ̂σt (f) = −σtγ̂σt (g) and, by (2.7),

ζP =

∫ T

0

γ̂σs (f)> dWs, ζN =

∫ T

0

γ̂σs (g)> dWs. (B.17)

By (B.16) and (B.5), we see that Γt defined in (2.9) can be written as

Γt =

(
Γct (f, f) Γct (f, g)

Γct (g, f) Γct (g, g)

)
. (B.18)
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By Lemma 1(d), we see that Γt defined in (2.12) can be expressed equivalently as

Γt =

(
Γct (f, f) Γct (f, g)

Γct (g, f) Γct (g, g)

)
. (B.19)

Recall from (2.11) that γ̄t ≡ Γt − Γt. By (B.4), (B.18) and (B.19), it follows that

γ̄t =

(
γ̄ct (f, f) γ̄ct (f, g)

γ̄ct (g, f) γ̄ct (g, g)

)
.

In view of (B.3), we verify that the local quadratic variation of the ζ̃ term coincide with

that defined in (5.2.4) of Jacod and Protter (2012).

We are now ready to apply Theorem 5.3.5 in Jacod and Protter (2012) to finish the

proof of (B.10) and, hence, the assertion of Theorem 2. Q.E.D.

Proof of Proposition 1. By Proposition 1 in Li, Todorov, and Tauchen (2017b), the

set Î coincides with I1 ∪ I2 with probability approaching one and, in restriction to such

events,

P̂ ?
12 =

∑
i/∈I1∪I2

p (∆n
iX1) p (∆n

iX2) , P̂ †12 =
∑

i∈I1∪I2

p (∆n
iX1) p (∆n

iX2) ,

N̂?
12 =

∑
i/∈I1∪I2

n (∆n
iX1)n (∆n

iX2) , N̂ †12 =
∑

i∈I1∪I2

n (∆n
iX1)n (∆n

iX2) .

The assertion of Proposition 1 then follows from (B.9) and (B.10) in the proof of Theorem

2. Q.E.D.

Proof of Proposition 2. Let T = T 1 ∪ T2. For notational simplicity, we denote, for

each subset S ⊆ T ,

ξ∗P (S) ≡ ∆−1/2
n

∑
τ∈S

(
p
(
∆n
i(τ)X

∗
1 + ∆1/2

n η̃∗i(τ),1

)
p
(
∆n
i(τ)X

∗
2 + ∆1/2

n η̃∗i(τ),2

)
−p
(
∆n
i(τ)X

∗
1

)
p
(
∆n
i(τ)X

∗
2

))
.

(B.20)

By Proposition 1 in Li, Todorov, and Tauchen (2017b), Î coincides with I1 ∪ I2 with

probability approaching one. Hence, we can restrict our calculations to such events

without loss of generality. In particular, we can write ξ∗P as ξ∗P (T ) using the notation

(B.20). We can then decompose ξ∗P as

ξ∗P = ξ∗P (T1+ ∩ T2+) + ξ∗P (T1+ \ T2) + ξ∗P (T2+ \ T1) + ξ∗P (T1− ∪ T2−) .

We note that ∆n
i(τ)X

∗
j = 0 for all τ ∈ T \ T j with probability approaching one. It is then
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easy to deduce that

p
(
∆n
i(τ)X

∗
j + ∆1/2

n η̃∗i(τ),j

)
=


p(∆n

i(τ)X
∗
j ) + ∆

1/2
n η̃∗i(τ),j + op(∆

1/2
n ), if τ ∈ Tj+,

∆
1/2
n p(η̃∗i(τ),j) + op(∆

1/2
n ), if τ ∈ T \ T j,

op(∆
1/2
n ), if τ ∈ Tj−.

From there, we readily deduce that

ξ∗P (T1+ ∩ T2+) =
∑

τ∈T1+∩T2+

(
p(∆n

i(τ)X
∗
1 )η̃∗i(τ),2 + p(∆n

i(τ)X
∗
2 )η̃∗i(τ),1

)
+ op(1),

ξ∗P (T1+ \ T2) =
∑

τ∈T1+\T2

p(∆n
i(τ)X

∗
1 )p
(
η̃∗i(τ),2

)
+ op(1),

ξ∗P (T2+ \ T1) =
∑

τ∈T2+\T1

p(∆n
i(τ)X

∗
2 )p
(
η̃∗i(τ),1

)
+ op(1),

ξ∗P (T1− ∪ T2−) = op(1).

(B.21)

By a standard result for spot covariance estimation (see, e.g., Theorem 9.3.2 in Jacod

and Protter (2012)), we have that ĉi(τ)±
P−→ cτ±. Consequently,

(
η̃∗i(τ)

)
τ∈T

L|F−→ (η̃τ )τ∈T ,

where
L|F−→ denotes the convergence in probability of F -conditional laws under the uniform

metric. In addition, we note that p(∆n
i(τ)X

∗
j )

P−→ ∆Xj,τ for all τ ∈ Tj+. Combining

these convergence results with (B.21), we deduce that ξ∗P
L|F−→ ξP . Evidently, the same

argument can be used to show that ξ∗N
L|F−→ ξN , jointly with ξ∗P

L|F−→ ξP , which implies the

first assertion of Proposition 2 (i.e., ξ∗P − ξ∗N
L|F−→ ξP − ξN). The size and power properties

of the test readily follow from here. Q.E.D.
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