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ABSTRACT 
We conduct a fundamental analysis of detailed financial information to predict earnings. Since 
2012, all U.S. public companies must tag quantitative amounts in financial statements and 
footnotes of their 10-K reports using the eXtensible Business Reporting Language (XBRL). 
Leveraging machine learning methods, we combine the high-dimensional XBRL-tagged 
financial data into a summary measure for the direction of one-year-ahead earnings changes. The 
measure shows significant out-of-sample predictive power: the area under the curve ranging 
from 67.52 to 68.66 percent is significantly higher than that of a random guess, which is 50 
percent. Hedge portfolios are formed based on this measure during 2015-2018. The annual size-
adjusted returns to the hedge portfolios range from 5.02 to 9.74 percent. These returns survive 
after accounting for transaction costs and using the five-factor Fama and French (2015) model. 
Our measure and strategies outperform those of Ou and Penman (1989), who extract the 
summary measure from 65 accounting variables using logistic regressions. Additional analyses 
suggest that the outperformance stems from both nonlinear predictor interactions missed by 
regressions and the use of more detailed financial data. 
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1. Introduction 

Corporate financial reports—financial statements as well as footnote disclosures—

contain numerous accounting items. Understanding the extent to which these detailed financial 

data help predict corporate performance is of first-order importance to accounting research and 

investment practitioners. Documenting predictive power of detailed financial data empirically 

however poses two challenges. First, the high dimensionality of these data makes a regression 

approach infeasible. For example, the number of predictors (i.e., financial items) often exceeds 

the number of observations for model estimation. Traditional regression methods break down in 

such a scenario. While prior work often turns to a relatively small set of selected financial ratios 

(e.g., Ou and Penman 1989), the extent of lost information from not using all available data is 

unclear. Accordingly, the predictive ability of detailed financial information in its entirety is still 

unknown. Second, despite listed companies’ financial reports being publicly available, arranging 

the entire detailed financial information in a machine-readable format for a large-scale analysis is 

non-trivial. Commercial data vendors typically collect only part of this information. In this paper, 

we address these two challenges. By doing so, we conduct a fundamental analysis of 

comprehensive financial data in predicting future earnings and stock returns. 

We address the first challenge by using two machine learning methods: random forests 

and stochastic gradient boosting, which have recently achieved remarkable success in real-world 

applications (Zhou 2012; Mullainathan and Spiess 2017; Liu 2021). Both methods, built on 

ensemble learning, combine a large set of estimators from decision trees. Unlike regressions, a 

crucial feature of these methods is their ability to estimate models where the number of 

predictors is greater than the number of observations. More importantly, theoretical literature 

offers little guidance for the selection of key financial variables and the functional forms in 
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financial statement analysis. The high-dimensional predictor sets may enter non-linearly with 

various interactions. The machine learning algorithms, on the other hand, are explicitly designed 

to accommodate complex associations and cast a wide net in their specification search. These 

algorithms are also specialized for prediction tasks as they offer high out-of-sample predictive 

performance by using the “regularization” (e.g., tuning a parameter such as the number of 

decision trees in random forests) for model selection and mitigation of overfitting. 

To overcome the second challenge of arranging detailed information in a machine-

readable format, we take advantage of financial reports filed in eXtensible Business Reporting 

Language (XBRL) format. XBRL is an extensible markup language comprised of a standard list 

of tags to describe business and financial information. It provides a means to convert the 

information from human-readable formats (e.g., paper, PDF, HTML) to a machine-readable 

format, comparable to the shift from paper maps to digital maps. Since 2012, all U.S. public 

companies must enclose quantitative amounts in financial statements and footnotes of their 10-K 

reports with XBRL tags (see Appendix A for two examples). As such, the XBRL-tagged data 

include all detailed financial information in financial reports (e.g., a line item breakdown and 

footnote disclosures). They are standardized and free of charge, available from companies’ and 

the U.S. Securities and Exchange Commission (SEC)’s Websites. The XBRL-tagged financial 

data are point-in-time: any revision will be captured in a separate XBRL file; hence there is no 

backfilling or updating of the original filings. This feature avoids hindsight bias and enables the 

construction of implementable trading strategies. Nevertheless, XBRL documents need not be 

audited, and errors in these documents expose the filers to limited liability within two years after 

the initial adoption (SEC 2009). When the standard taxonomy does not provide a tag for a 

financial element, a company can create a custom tag called an “extension.” Research finds 
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errors and unnecessary extensions in XBRL documents, as semantically equivalent tags already 

exist in the taxonomy, particularly in early adoption years (Debreceny et al. 2010, 2011). 

Our sample is comprised of over 8,000 XBRL filings from 2012 to 2018. These filings 

contain more than 4,000 unique financial items in standard tags common throughout our sample 

period. We take all the items for the current and lagged years, divide them by total assets, and 

compute the annual percentage changes, which yield over 12,000 explanatory variables (i.e., 

4,000 × 3 for current values, lagged values, and percentage changes). To extract a summary 

measure of fundamentals from the detailed financial data, we employ the machine learning 

models to predict the direction of one-year-ahead earnings changes.  

As proposed by Ou and Penman (1989), the advantages of using the direction of one-

year-ahead earnings changes are three-folds. First, conceptually, this measure can better capture 

fundamentals than future stock returns, which reflect both fundamentals and compensation for 

risk. Second, the one-year horizon disregards information about earnings more than one year 

ahead and thus yields conservative results toward finding no abnormal trading profits. Third, 

extant evidence suggests that earnings forecasts based on firm characteristics are not 

substantially more accurate than forecasts obtained from the random-walk model (Gerakos and 

Gramacy 2013; Li and Mohanram 2014). In other words, it is difficult to predict the amount of 

changes in earnings. As such, examining a simpler task of predicting the direction of earnings 

changes can be worthwhile. While losing some information, the binary specification helps 

mitigate the concern about low out-of-sample performance from predicting the amount of 

earnings changes.1 Using this measure also permits a direct comparison between our models and 

those in Ou and Penman (1989).  

 
1 The approach of predicting the direction of earnings changes originated from Freeman et al. (1982) and was 
adopted by Ou and Penman (1989) and Ou (1990). Freeman et al. (1982, 643) argue that the variability in earnings 
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For each year in the test period, from 2015 to 2018, we use the second and third 

preceding years as the machine learning training period to estimate models and the preceding 

year as the validation period to select the model that yields the best out-of-sample performance. 

The chosen model is then applied to the year in the test period to produce the summary measure 

Pr, which characterizes the probability of an increase in next year’s earnings. We also compare 

our results with Ou and Penman (1989) by constructing a summary measure from estimating 

logistic regressions using their 65 financial variables. Ou and Penman’s (1989) method serves 

here as a prominent example of a regression model with expert-selected financial ratios.2 

We find significant out-of-sample predictability of the machine learning models using the 

detailed financial data concerning the direction of the next year’s earnings changes. The area 

under the Receiver Operating Characteristics (ROC) curve (AUC) in the test period ranges from 

67.52 to 68.66 percent. To understand the predictive power sources, we estimate each variable’s 

importance by computing the decrease in the AUC when that variable is randomly shuffled 

(Breiman 2001). The majority of the top 10 most important variables pertain to earnings 

components (e.g., operating income and earnings per share), suggesting that earnings are still 

leading indicators for valuation among financial numbers. We also classify the variables into six 

groups (the five financial statements and footnotes) and find that in aggregate, footnote 

disclosures contribute the most to our models’ predictive power, followed by the balance sheet, 

 
changes is too large to be compared to the variability in expected earnings changes conditional on explanatory 
variables. The substantial noise relative to the amount of data that is typically available makes it difficult to reject 
the random-walk hypothesis. They propose to reduce the variability in earnings changes by transforming the amount 
to the direction of earnings changes. While focusing on the direction of earnings changes, we examine predictability 
of the machine learning methods concerning the amount of earnings changes in Section 5.6.  
2 We choose Ou and Penman (1989) since it is a highly influential study and establishes a comprehensive model of 
predicting an earnings increase. It won the 1991 AAA Notable Contributions to Accounting Literature Award and 
was identified as the 11th most cited article during 1976-1993 by Brown (1996). It was cited by 1398 (283) articles 
on Google Scholar (Web of Science) as of April 1, 2021. Nevertheless, we examine analyst earnings forecast as 
another example to evaluate our models in Section 6.   
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income statement, and cash flow statement. Comprehensive income statement and shareholders’ 

equity statement contribute the least. Among footnote disclosures, the top 10 most important 

variable list is dominated by tax-related items (e.g., valuation allowance for deferred tax assets), 

consistent with tax items carrying important information about future taxable income (Miller and 

Skinner 1998; Lev and Nissim 2004; Hanlon 2005; Thomas and Zhang 2011). We also observe 

meaningful nonlinear and interaction effects of preditors.  

We form hedge portfolios three months after the fiscal-year end based on the machine 

learning summary measure Pr and hold them for 12 months. The size-adjusted returns to the 

hedge portfolios range from 5.02 to 9.74 percent. The results persist after accounting for 

transaction costs, using alternative earnings measures, and excluding microcaps. The returns are 

concentrated in long positions and thus are unlikely explained by limits to arbitrage arising from 

short-sell constraints. Inconsistent with risk-based explanations, the excess returns are robust to 

controlling for exposure to Fama and French’s (2015) five risk-factors and using industry-

adjusted returns. 

Our summary measures and trading strategies significantly outperform Ou and Penman’s 

(1989), which exhibit only an AUC of 61.69 percent and size-adjusted returns of 2.1 to 2.7 

percent in the test period. We investigate the source of this superior performance by applying the 

same machine learning methods to Ou and Penman’s 65 financial variables. The summary 

measures and trading strategies from these methods with the 65 variables significantly 

outperform the original Ou and Penman’s and marginally underperform those we build using 

both machine learning and detailed financial data. The results suggest that our models’ superior 

performance stems from primarily nonlinear predictor interactions in machine learning, which 
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are missed by regressions, and secondarily the use of more detailed financial information in 

XBRL documents.  

We suspect that data quality issues offset the richness of detailed financial data in XBRL 

documents and thus conduct two sets of additional analyses to address these issues. First, we use 

Compustat as an alternative source of detailed financial information to XBRL. Compared with 

XBRL-tagged financial data, Compustat has the advantage of more extensive standardized 

adjustments to improve data quality and the disadvantage of less detailed coverage of financial 

information. We continue to find robust predictive power of detailed financial data from 

Compustat similar to XBRL-tagged data under machine learning. Thus, the influence of noise in 

XBRL documents (relative to Compustat) is on par with their additional financial details. 

Second, we find better predictive performance in more recent years than in the early period, 

likely due to low-quality XBRL-tagged financial data in the early years. We also partition the 

sample based on firm-level data quality and observe worse predictive performance in the 

subsample with low data quality. The results suggest that data quality issues reduce the 

usefulness of detailed financial data in XBRL documents. 

Finally, we use analysts’ forecasts to evaluate our machine learning methodology. We 

find that our summary measure Pr outperforms analysts’ earnings forecasts in predicting the 

direction of earnings changes and is positively associated with analysts’ forecast errors. It 

appears that these professional financial report users have not fully incorporated the detailed 

information in financial reports into their forecasts. 

Our study makes three contributions. First and foremost, we contribute to the 

fundamental analysis literature (e.g., Green et al. 2013, 2017) by applying machine learning 

algorithms to a large set of detailed financial data. Analyzing the detailed data is increasingly 
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important since extant research examines only a handful of summary financial items (e.g., past 

earnings and book value of equity) and reports a growing dissatisfaction with the relevance of 

those items to investors’ decisions (Ramesh and Thiagarajan 1996; Lev and Zarowin 1999; Core 

et al. 2003; Balachandran and Mohanram 2011; Lev 2018). Two recent papers employ machine 

learning methods to forecast future earnings using a small group of financial statement variables 

(Anand et al. 2019; Hunt et al. 2019). They do not examine and thus cannot speak to the 

usefulness of detailed financial data to investors, which we address in this study.  

Second, we add to the XBRL literature. The SEC (2009) commented that the XBRL 

format of financial reports could “improve its usefulness to investors. In this format, financial 

statement information could be downloaded directly into spreadsheets, analyzed in a variety of 

ways using commercial off-the-shelf software, and used within investment models in other 

software formats.” Despite the stated goal, the usefulness of XBRL-tagged financial data to 

investors remains an open question for an issue important to regulators, practitioners, and 

academics.3 Existing literature finds that the adoption of XBRL influences capital market 

outcomes (Blankespoor et al. 2014; Dong et al. 2016; Bhattacharya et al. 2018; Kim et al. 2019a) 

and corporate reporting decisions (Blankespoor 2019; Kim et al. 2019b). These studies assume 

that XBRL-tagged financial data contain useful fundamental signals for investors. This 

assumption, however, is challenged by research documenting errors and unnecessary extensions 

in XBRL filings (Debreceny et al. 2010, 2011) and the associated adverse consequences in the 

 
3 Richardson et al. (2010, 446) call for more research on the usefulness of XBRL-tagged financial data: “The 
development and US adoption of eXtensible Business Reporting Language (XBRL)… means that users now have 
substantially more information in machine readable form to conduct large-scale archival analyses for the usefulness 
of that information for forecasting purposes. The set of information contained in financial reports is too detailed to 
list, but we expect to see research efforts utilizing this information to be worthwhile.” 
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capital markets (Li and Nwaeze 2015, 2018; Kirk et al. 2016).4 Our fundamental analysis 

provides direct evidence indicating that XBRL filings still inform investors’ forecasts and 

investment decisions despite the data quality issues. 

Finally, an emerging line of research uses machine learning algorithms in accounting and 

finance research. Several studies use these algorithms to detect accounting fraud or restatements 

(Cecchini et al. 2010; Perols 2011; Bao et al. 2020; Bertomeu et al. 2020). Barth et al. (2018) 

examine the value relevance of accounting numbers using decision trees. Ding et al. (2020) 

employ machine learning to improve reserve estimates in the insurance industry. Researchers 

also apply machine learning to refine the measurement of expected stock returns (Freyberger et 

al. 2020; Gu et al. 2020) and to extract information from 10-K textual disclosure (Li 2010; 

Frankel et al. 2016; Dyer et al. 2017; Cohen et al. 2020). We demonstrate that machine learning 

can help advance one of the most widely studied areas in research and practice—fundamental 

analysis of quantitative information in financial reports. 

 

2. Background 

2.1. Machine Learning Using Decision Trees 

 We use two widely accepted machine learning methods based on decision trees. Decision 

trees are a popular statistical learning approach for incorporating nonlinearities and interactions. 

Unlike regressions, trees are built nonparametrically and designed to group observations with 

similar predictors. The average of the outcome variable within each group forms the forecast 

(i.e., the predicted value). The tree “grows” in a sequence of steps. At each step, the sample 

 
4 Another line of research uses tag characteristics to capture financial reporting complexity and comparability 
(Scherr and Ditter 2017; Hoitash and Hoitash 2018; Hoitash et al. 2018). See Perdana et al. (2015) for a survey of 
XBRL research. 
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leftover from the preceding step is split based on one predictor variable. Typically, the algorithm 

will try every possible cutoff for each predictor and choose the split that minimizes forecast 

errors (“impurity”) before the next step. The split stops when a further partition cannot reduce 

forecast errors, or a tree attribute (e.g., tree depth 𝐿𝐿 or the minimum number of elements in a 

group 𝑏𝑏) reaches a prespecified threshold that can be selected adaptively using a validation 

sample (Hastie et al. 2009; Varian 2014).  

Figure 1 presents an example with two predictors, “EPS” and “Lev” (i.e., earnings per 

share and leverage), to forecast the direction of earnings changes. Suppose the tree in the left 

panel is the final output. It describes how each observation is assigned to a group based on its 

predictor value. A blue box (“a node”) represents a split, and a green box (“a leaf”) indicates a 

final partition. First, the sample is sorted on EPS. Observations with EPS above the breakpoint of 

0.5 are assigned to Group 1. Those with EPS below 0.5 are then further sorted by Lev: 

observations with Lev below 0.7 go to Group 2, while those with Lev above 0.7 are assigned to 

Group 3. The right panel of Figure 1 shows how the space of “EPS” and “Lev” is partitioned by 

this tree model. Finally, the forecast for observations in each partition is the simple average of 

the outcome variable among observations in that partition. We can recast the forecasts of the tree 

as a linear function: 𝑦𝑦� = 𝛽𝛽11{𝐸𝐸𝐸𝐸𝐸𝐸>0.5} + 𝛽𝛽21{𝐸𝐸𝐸𝐸𝐸𝐸≤0.5}1{𝐿𝐿𝐿𝐿𝐿𝐿<0.7} + 𝛽𝛽31{𝐸𝐸𝐸𝐸𝐸𝐸≤0.5}1{𝐿𝐿𝐿𝐿𝐿𝐿≥0.7}, where 𝛽𝛽𝑖𝑖 

denotes the mean of the outcome variable for group 𝑖𝑖 and 1{.} is set to one when the curly bracket 

statement is true, and zero otherwise (Mullainathan and Spiess 2017).  

The advantages of a decision tree are four-fold. First, while considering all explanatory 

variables, it uses only one predictor for each split and generates forecasts nonparametrically. As 

a result, there is no need to require a sufficient number of observations relative to the number of 

predictors necessary for traditional regression analysis. Second, a decision tree is invariant to 
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monotonic transformations of predictors. Third, it can approximate a high degree of 

nonlinearities. Fourth, a tree of depth 𝐿𝐿 allows 𝐿𝐿 − 1 way interactions. The flexibility, however, 

also makes decision trees prone to overfit and thus calls for regularization. We consider two tree 

regularizers: random forests and stochastic gradient boosting. Both combine forecasts from many 

different trees into a single forecast (an “ensemble learning” approach). 

Random forests use two procedures to regularize decision trees. First, in the bootstrap 

aggregation procedure, also known as “bagging” (Breiman 2001), a tree is grown based on each 

of 𝑚𝑚 different bootstrap samples of the data, as shown in Figure 2. For a given observation, there 

are 𝑚𝑚 predictions, and the final forecast is the simple average of the 𝑚𝑚 predictions. Trees tend to 

overfit the individual bootstrap samples, which makes their individual predictions ineffective. 

Averaging over 𝑚𝑚 predictions reduces this ineffectiveness (i.e., variance in the predicted model) 

and enhances the predictive performance. Second, if there is a dominant predictor in the data, 

then most of the bagged trees will split on this predictor at a low level, leading to a significant 

correlation among their ultimate forecasts. The “dropout” procedure decorrelates trees by 

considering only a random subset of predictors (𝑘𝑘 variables) for splitting in each tree. As a result, 

the dominant predictor may not be considered for some trees. The decreased correlation among 

predictors can further improve the variance reduction and mitigate the issue of overfitting. 

Unlike random forests, which grow trees independently, stochastic gradient boosting 

builds a tree based on the previous tree’s forecast errors (“boosting”), as shown in Figure 3. It 

starts by averaging the outcome variable as an initial prediction (𝐹𝐹0(𝑥𝑥)), which is a weak 

prediction. It then fits a shallow tree (e.g., with depth 𝐿𝐿=1) to the residuals from the initial 

prediction (𝑟𝑟0 = 𝑦𝑦 − 𝐹𝐹0(𝑥𝑥)). The fitted value is shrunken by a factor 𝜌𝜌 ∈ (0,1)  (i.e., the learning 

rate) to help prevent the model from overfitting the residuals and is added to the initial prediction  
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𝐹𝐹1(𝑥𝑥) = 𝐹𝐹0(𝑥𝑥) +  𝜌𝜌 × 𝑟𝑟0�  to form an ensemble prediction. Then the next tree with the same 

shallow depth 𝐿𝐿 is used to fit the residuals from the previous prediction. This procedure is 

repeated 𝑚𝑚 times, and the output of this additive model of shallow trees is the final ensemble 

prediction. The “stochastic” procedure uses a random sample in each iteration to decorrelate 

estimates at different iterations. Friedman (2002) shows that this procedure effectively reduces 

the variance of the combined model. 

 

2.2. Detailed Financial Accounting Data in XBRL Format  

The SEC mandate of 2009 (“Interactive Data to Improve Financial Reporting”) required 

public companies to provide their financial reports in the XBRL format by submitting them to 

the SEC and posting them on their corporate Websites.5 The XBRL format disclosure is in 

addition to disclosure in the traditional electronic filing formats of ASCII or HTML (see 

Appendix A). The requirements begin for the first quarterly report for a period ending after a) 

June 15, 2009 for large accelerated filers with a public equity float over $5 billion, b) June 15, 

2010 for other large accelerated filers (with a public equity float over $700 million), and c) June 

15, 2011 for all remaining filers. In the first year of XBRL filings, companies must tag each 

quantitative item on the face of financial statements and each footnote as a block. In the 

subsequent filing years, companies must also tag the detailed quantitative disclosures within the 

footnotes.6 The mandate requires filers to completely align their XBRL report to the traditional 

ASCII or HTML report (SEC 2009). As a result, a restated financial statement (due to errors or 

 
5 In 2005, the SEC established a voluntary XBRL filing program to prepare companies for the submission of XBRL 
filings. Through April 2008, over 75 companies have filed in the XBRL format. See Bartley et al. (2011), Efendi et 
al. (2016), and Hsieh and Bedard (2018) for studies on the voluntary filing program.  
6 The tagging requirement is exempt for a few types of quantitative values in footnotes, such as those in “the $1.99 
pancake special,” “1% fat milk,” and “drilling 700 feet”  (see https://www.sec.gov/corpfin/interactive-data-cdi; 
Question 146.16). 

https://www.sec.gov/corpfin/interactive-data-cdi
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changes in reporting practices) does not change the original XBRL document. It will be reported 

in a subsequent filing (e.g., a 10-K/A), for which there is another XBRL document. This point-

in-time feature avoids issues related to data backfilling in capital market research.  

 XBRL U.S., a non-profit organization (a spinoff from AICPA), under contract with the 

SEC, created the first U.S. GAAP taxonomy in 2008. Like a dictionary, the taxonomy includes a 

standard list of tags for financial statement items and associated contextual information for 

software to recognize and process without human intervention. The contextual information 

includes definitions, authoritative references to U.S. GAAP/SEC regulations, and calculation 

relationships with other tags (e.g., Accounts Receivable, Net = Accounts Receivable, Gross – 

Allowance for Doubtful Accounts). The FASB took over the maintenance of the taxonomy from 

XBRL U.S. after the SEC mandate of 2009 and updated it every year since 2011. The annual 

update occurs for reasons such as changes in accounting standards, technical corrections, and 

actual use of tags.  

Preparers must tag the quantitative items in the financial reports with the appropriate 

elements from the standard list. Appendix A provides two examples. In the first example, the 

amount of cash and cash equivalents on the balance sheet is tagged by 

“CashAndCashEquivalentsAtCarryingValue” in the XBRL document. The opening tag also 

contains contextual information about the taxonomy (“us-gaap”), the unit (“usd”), the period 

(“AsOf29Dec2012”), and the decimal points for presentation (“-3” for in thousands). In the 

second example, the amount of work in process inventory, as disclosed in a footnote, is tagged 

by “InventoryWorkInProcess.” When there is no appropriate tag in the standard list for a 

financial concept, a company can create a company-specific tag, called an “extension.” The 

mandate does not require companies to obtain assurance on the XBRL filings or involve third 
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parties, such as auditors or consultants.7 The XBRL documents submitted within 24 months 

since the initial adoption are protected from liability for failure to comply with the tagging 

requirements (SEC 2009).   

 While the mandate is intended to improve financial reports’ usefulness, research 

documents data quality issues with the XBRL-tagged data in early adoption years. Debreceny et 

al. (2010) find that one quarter of the XBRL filings by the initial 400 large companies in the first 

round of submissions had errors such as misuse of debit/credit, missing values in calculation 

relationships, and wrong values. Debreceny et al. (2011) take a close look at extensions in XBRL 

filings of 67 large accelerated filers in the first round of submission. They find that 41 percent of 

them are unnecessary as appropriate tags already exist in the taxonomy, likely due to premature 

search in the taxonomy or inadequate understanding of the tagging structure. The errors and 

unnecessary extensions make it difficult to effectively use the XBRL-tagged financial data 

(Harris and Morsfield 2012). 

Despite the complaints, the SEC, XBRL U.S., and third parties continue to invest in 

improving the data quality. The SEC periodically issues staff observations, updates to filer 

practices, and even “Dear CFO” letters on XBRL quality.8 Michael Willis, the assistant director 

of the SEC Office of Structured Disclosure, states that the commission is focusing on data-driven 

regulation, developing data quality tools, and working with the FASB on U.S. GAAP taxonomy 

enhancements.9 The Data Quality Committee of XBRL U.S. sets guidance and validation rules to 

 
7 Plumlee and Plumlee (2008) and Boritz and No (2009) discuss the potential challenges of XBRL documents’ 
assurance. 
8 For example, in July 2014, the SEC Division of Corporation Finance sent letters to certain companies regarding the 
requirement to include calculation relationships in the XBRL filings 
(https://www.sec.gov/divisions/corpfin/guidance/xbrl-calculation-0714.htm). 
9 See “SEC’s Increasingly Sophisticated Use of XBRL-Tagged Data” at 
https://www.undergrad.haslam.utk.edu/sites/default/files/files/SECs_Increasingly_Sophisticated_Use_of_XBRL_Ta
gged_Data.pdf. 

https://www.sec.gov/divisions/corpfin/guidance/xbrl-calculation-0714.htm
https://www.undergrad.haslam.utk.edu/sites/default/files/files/SECs_Increasingly_Sophisticated_Use_of_XBRL_Tagged_Data.pdf
https://www.undergrad.haslam.utk.edu/sites/default/files/files/SECs_Increasingly_Sophisticated_Use_of_XBRL_Tagged_Data.pdf
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prevent or detect inconsistencies or errors in XBRL documents. The committee also collects and 

publishes real-time errors in XBRL filings.10 Third-party filing service companies such as XBRL 

Cloud also monitor for data quality issues in XBRL filings.11 Using a sample of over 4000 

XBRL filings from 2009 to 2010, Du et al. (2013) find a reduction in the number of errors per 

filing. Blankespoor (2019) computes the number of unique user-day-filing downloads of XBRL 

filings from the SEC EDGAR Website by year. She finds that the number rises from about 1 

million in 2012 to 6 million in 2014, suggesting an increasing demand for XBRL-tagged 

financial data. 

 

3. Data and Methodology 

3.1. Data 

Table 1 shows our sample selection. We first obtain XBRL 10-K and 10-K/A 

submissions between June 15, 2012 and March 31, 2018 from the SEC Website.12 To take 

advantage of detailed footnote disclosures in XBRL format, we restrict our sample to 

submissions with a reporting period ending on or after June 15, 2012. After merging them with 

pro forma earnings from I/B/E/S, we obtain 10,073 submissions.13 We require that these 

companies have share price data from CRSP, yielding 8,381 submissions. Requiring non-zero 

 
10 The errors can be found at https://xbrl.us/data-quality/filing-results/. 
11 See https://edgardashboard.xbrlcloud.com/edgar-dashboard/. 
12 Starting from 2014, the SEC parses all the XBRL documents and puts the XBRL-tagged items in relational 
databases, available for bulk download at https://www.sec.gov/dera/data/financial-statement-data-sets.html. We 
examine annual reports for two reasons. First, many disclosures are not required for quarterly reports, making the 
fourth-quarter data incomparable to those in the previous three. For example, the Statement of Stockholders’ Equity 
was not required in 10-Q filings prior to 2018. Second, this design facilitates the comparison between our study with 
Ou and Penman (1989). 
13 When we use US GAAP earnings per share to calculate earnings changes and do not require pro forma earnings, 
the final sample size increases. Our inferences are unchanged by using this sample but become weaker (see Online 
Appendix Table A1), consistent with US GAAP earnings being less informative about fundamentals than pro forma 
earnings (Bentley et al. 2018; Bradshaw et al. 2018). 

https://xbrl.us/data-quality/filing-results/
https://edgardashboard.xbrlcloud.com/edgar-dashboard/
https://www.sec.gov/dera/data/financial-statement-data-sets.html


15 
 

total assets from the XBRL documents leads to a sample of 8,358 submissions. We leverage the 

point-in-time nature of XBRL submissions by retaining only the most recent financial data as of 

the portfolio formation date, resulting in a sample of 8,149 submissions.14 Panel A and Panel B 

of Table 2 report the number of XBRL submissions by calendar period and by industry, 

respectively.15 As expected, there are only 119 submissions of XBRL documents for 10-K filings 

in 2012 as the detailed footnote tagging for all firms is available only after June 15, 2012.  

A submission contains both numerical and contextual data. Retaining only the numerical 

data, we obtain 167,136 unique tag names (for both custom and standard tags) from the 8,149 

submissions. Figure 4a shows a histogram by the number of unique tag names. More than 30 

percent of submissions use 250 to 300 unique tags, and an average submission uses 284 unique 

tags. For each submission, we divide the number of unique custom tags by the number of unique 

tags (i.e., the proportion of custom tags) and plot a histogram by this variable in Figure 4b. For 

about 30 percent of submissions, 15 to 20 percent of unique tags are extensions, and the average 

proportion of extensions is 15.5 percent. Some standard tags are deprecated, and some are added 

over the years due to changes in accounting standards. We identify uncommon standard tags as 

those that have not been used at least once in each year of our sample period 2012-2018.16 Figure 

4c presents a histogram by the proportion of uncommon standard tags (i.e., the number of unique 

uncommon standard tags divided by the number of unique tags). Close to 40 percent of 

submissions contain 2 to 4 percent uncommon standard tags, and the average proportion of these 

 
14 We keep only XBRL documents filed before the portfolio formation date. If a company has an XBRL 10-K 
submission and an XBRL 10-K/A submission to revise financial statements (but not footnotes) before the portfolio 
formation date, we merge the two submissions by using the revised financial statement items from the 10-K/A and 
the footnote items from the 10-K. 
15 We include the financial industry (banking, insurance, real estate, trading) to fully explore investment space. 
Nevertheless, excluding firms in this industry does not alter our inferences. 
16 For example, a standard tag “UnrecognizedTaxBenefitsResultingInNetOperatingLossCarryforward” was 
deprecated in the 2014 U.S. GAAP taxonomy as ASU 2013-11 about income taxes became effective in 2014.   
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tags is 4.5 percent, suggesting no major changes to standard tags. As our prediction analysis 

requires predictors to be populated across firms, we exclude all custom and uncommon standard 

tags, yielding 4,627 unique common standard tags.17 Figure 4d shows a histogram by the number 

of these tags. 

In some cases, identical tags are used to describe financial data for a co-registrant, for 

example, a guarantor subsidiary. We retain only the consolidated data. Also, some tags are used 

with dimensions (e.g., for segment reporting). Although the U.S. GAAP taxonomy provides 

many standard dimensions, SEC (2016) reports that 50 percent of filers use custom dimensions, 

which significantly compromises dimensional data comparability. As such, we discard 

disaggregate items tagged with dimensions. Companies use identical tags in a submission to refer 

to items of different reporting periods. For instance, multiple items identically tagged as 

“NetIncomeLoss” are found spanning different reporting periods such as current and prior years. 

For each of the 4,627 tags, we select current and prior fiscal year data and compute the 

percentage changes, which creates 13,881 predictors. Then for predictors with missing values, 

we fill in zeros.18 

The FASB maps the tags in each U.S. GAAP taxonomy to financial statement categories. 

The map is “organized to roughly correspond to the arrangement of elements in the order in 

which they might be found in a financial statement” (FASB 2018).  Using this map, we classify 

 
17 The drastic drop in the number of unique tag names (from 167,136 to 4,627) given the proportion of custom tags 
is due to the firm-specific nature of custom tags. For example, suppose there are 1000 documents; each document 
contains 200 standard tags and 50 custom tags that other firms never use. The average proportion of custom tags 
across the 1000 documents is 20% (=50/250), but custom tags account for 50,000 (= 50 × 1000) out of 50,200 (= 
200 + 50 × 1000) unique tags. 
18 Creating an indicator variable for missing values in each predictor, which will double the number of predictors, 
does not alter our inferences. Dropping the percentage change predictors does not affect our inferences (See Online 
Appendix Table A2). Also, adding indicators for the Fama and French 30 industries to the models does not affect 
our inferences. This is unsurprising as many items unique to certain industries (e.g., 
“CapitalizedSoftwareDevelopmentCostsForSoftwareSoldToCustomers”)  have already captured the industry effects. 
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the predictors into six categories: balance sheet, income statement, cash flow statement, 

comprehensive income statement, shareholders’ equity statement, and footnote disclosures. A tag 

may be associated with both a financial statement and footnote disclosures (e.g., 

“InventoryNet”), as a company refers to a financial statement item in a footnote when disclosing 

more information about that item. We classify the tag into the corresponding financial statement. 

This procedure allows us to classify 4,503 of 4,627 tags. The remaining 124 tags are mapped to 

multiple financial statements. We manually assign them to the statement with a more natural fit 

(see Online Appendix Table A3). Panel A of Table 3 shows that a substantial portion of the 

predictors belongs to footnotes. Panels B to G list the top 10 most populated (i.e., non-zero) 

current predictors by financial statement category and present descriptive statistics for the 

predictor values across the 8,149 submissions. Finally, we scale the current and lagged predictors 

by total assets (except for total assets itself and items on a per-share basis).  

 

3.2. Methodology 

Earnings. We use machine learning methods to predict the direction of one-year-ahead 

earnings changes. Recent studies demonstrate that earnings used by analysts are of higher quality 

and more value-relevant to investors, relative to GAAP earnings and non-GAAP earnings 

reported by managers (Bentley et al. 2018; Bradshaw et al. 2018). As such, we use the annual 

change in I/B/E/S-reported earnings per share as the outcome variable. We check the robustness 

of our results using two alternative measures (ROE and EBIT) in Section 5.1.  Following Ou and 

Penman (1989), we adjust for the firm-specific trend by subtracting the average change in EPS 

over the past four years from the current EPS changes. This procedure helps mitigate the concern 
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that earnings increases tend to outnumber earnings decreases, and some earnings changes are 

anticipated due to drift. An earnings increase/decrease is coded after taking out the drift term.19 

Parameters. Table 4 shows the parameters of the two machine learning methods. The 

setting of these parameters follows standard practice in machine learning. In random forests, the 

dropout convention is to randomly select 𝑘𝑘 = �𝑝𝑝 variables for consideration in each tree, where 

𝑝𝑝 is the number of predictors (Breiman 2001). As such, we choose the integers between 110 and 

120 for this dropout procedure. We allow the machine to grow 500 to 2000 trees with an 

increment of 100 and bootstrap 50 percent of the sample for each tree. The minimum number of 

observations in a leaf (i.e., terminal node) are integers from 1 to 4. For stochastic gradient 

boosting, the machine can grow 500 to 2000 trees with an increment of 100 with three possible 

learning rates (0.005, 0.01, and 0.05). We randomly pick 50 percent of the sample to estimate 

each tree. The early stopping criteria for gradient boosting are typically stricter (than random 

forests) as the idea is to chain a series of weak learners to mitigate overfitting. As such, we set 

the tree depth to 1 to 4 and set the minimum number of observations in a leaf to 10.  

Sample splitting. In machine learning, the data are typically split into training, validation, 

and testing samples. Models are estimated in the training sample, selected in the validation 

sample, and then applied to the test sample. We use a rolling sample splitting scheme, in which 

the training and validation samples gradually shift forward in time, but the number of years in 

each sample is held constant. As shown in Figure 5, for each year in the test period from 2015 to 

 
19 An alternative way to account for anticipation due to drift is comparing actual earnings in fiscal year t + 1 with the 
consensus analyst forecast issued in the month following the earnings release for fiscal year t. In other words, one 
can use the sign of analysts’ forecast errors to proxy for earnings changes’ direction. However, if analysts 
incorporate financial information more than the drift into their forecasts, the predictive power of our explanatory 
variables will deteriorate. To make the predictability of detailed financial data independent of analysts’ ability and to 
make our models comparable to Ou and Penman’s (1989), we do not adopt this alternative way in primary analyses 
but report the results of using this alternative way in Online Appendix Table A4. 
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2018 (green), the models are trained in the second and third preceding years (blue) and validated 

in the preceding year (yellow) to tune the parameters as shown in Table 4. This rolling sample 

splitting scheme has the benefit of using more recent information for prediction.  

Excess Returns. Once we apply the estimated model to the year in the test period, we 

obtain the summary measure 𝑃𝑃𝑟𝑟� . A hedge portfolio is then formed based on this measure. Figure 

6 shows the timeline of the trading strategy. For each stock in the sample, it is assigned to a long 

(short) position three months after its fiscal year-end, when 𝑃𝑃𝑟𝑟�  > 0.5 or 0.6 (<0.5 or 0.4). The 

positions are held for 12 months. We measure excess returns using the size-adjusted returns 

(SAR). For stock i, it is calculated as  

𝑆𝑆𝑆𝑆𝑅𝑅𝑖𝑖 = �(1 + 𝑅𝑅𝑖𝑖𝑖𝑖)
12

𝑖𝑖=1

−�(1 + 𝑅𝑅𝑠𝑠𝑖𝑖)
12

𝑖𝑖=1

, 

where 𝑅𝑅𝑖𝑖𝑖𝑖 is the return on stock i in month t, and 𝑅𝑅𝑠𝑠𝑖𝑖 is the value-weighted returns on the market 

capitalization-matched decile portfolio in month t. When computing SAR, we use the NYSE 

breakpoints to assign each stock to its corresponding size decile (Hou et al., 2020). Moreover, 

the return data are corrected for delisting bias, as suggested by Shumway (1997) and Shumway 

and Warther (1999). The results are stronger when we use market-adjusted returns, for which 𝑅𝑅𝑠𝑠𝑖𝑖 

is replaced with the value-weighted returns on the market portfolio in month t, 𝑅𝑅𝑚𝑚𝑖𝑖 

(untabulated). 

 

4. Predicting the Direction of Earnings Changes 

4.1. Primary Results 

 Table 5 reports the out-of-sample prediction performance in the test period for all the 

observations (𝑃𝑃𝑟𝑟� > 0.5 and 𝑃𝑃𝑟𝑟� ≤ 0.5) and observations excluding borderline cases (𝑃𝑃𝑟𝑟� ≥ 0.6 
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and 𝑃𝑃𝑟𝑟� ≤ 0.4).20 We observe that on average, 61.9 to 67.5 percent of observations are correctly 

predicted. Among predicted increases, 60.05 to 65.64 percent are actually earnings increases. 

These statistics however depend on specific cutoffs (e.g., 0.5 or 0.6). We also report the AUC, 

which is equivalent to the probability that a randomly chosen earnings increase will be ranked 

higher by a classifier than will a randomly chosen earnings decrease observation (Fawcett 2006). 

The AUC ranges from 67.52 to 68.66 percent depending on methods (RF or SGB) and samples 

(the full sample or the sample with 𝑃𝑃𝑟𝑟� ≥ 0.6 and 𝑃𝑃𝑟𝑟� ≤ 0.4), significantly higher than 50 percent 

of a random guess. Following Carpenter and Bithell (2000), we construct a bootstrap p-value for 

the difference between our AUCs and 50 percent. Specifically, we use a bootstrap sample with 

the same size as the original test sample to compute a bootstrap AUC and repeat this 10,000 

times. The p-value is the proportion of 10,000 bootstrap AUCs that are below 50 percent. We 

observe that all the p-values are less than 0.01, indicating that our models’ predictive power is 

unlikely to be a random outcome.21 The results suggest that the machine learning models extract 

meaningful fundamental signals from the detailed financial data.  

To understand the predictive power sources, we estimate each variable’s importance by 

computing the AUC decrease when that variable is randomly shuffled (Breiman 2001). Since a 

model is trained and validated for each test year, a predictor has four importance values (one for 

each test year of 2015-2018) under each method (random forests or stochastic gradient boosting). 

We compute the correlation of importance values between two consecutive years across all 

predictors (i.e., N = 13,881). For the three pairs of consecutive years (2015 vs. 2016, 2016 vs. 

 
20 The chosen parameter values for each method are reported in Online Appendix Table A5. The values are 
relatively stable over time and do not cluster on the lower or upper bounds, suggesting that the allowed range for 
each parameter is typically not binding. For example, in only one out of eight cases (two methods × four test years), 
the chosen number of trees is at the boundary (500; stochastic gradient boosting for the test year of 2017). 
21 To address the issue related to overlapping training/validation sets for test years (2015-2018), we construct a 
bootstrap p-value for each test year and observe that all the p-values are less than 0.01. 
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2017, and 2017 vs. 2018), the correlation coefficients are 0.98, 0.98, and 0.98, respectively, for 

random forests, and 0.82, 0.75, and 0.85, respectively, for stochastic gradient boosting. The 

results suggest that the importance of a variable in predicting the direction of one-year-ahead 

earnings changes is highly stable over time. As such, we average the four importance values for 

each predictor. Table 6 Panel A presents the top 10 most important variables. Most of them 

pertain to earnings, such as “NetIncomeLoss” and “EarningsPerShareBasic.” The results suggest 

that among all the financial items in 10-K filings, earnings are still the most critical metrics for 

fundamental analysis. For stochastic gradient boosting, several balance-sheet items and tax-

related variables also make into the top 10 list. We also observe cash flows from investing 

activities and SG&A in the top 70 list for stochastic gradient boosting and R&D expense in the 

top 70 list for random forests (untabulated). The results suggest that investment activities exhibit 

sizable predictive power for the direction of earnings changes in the next year, but the power is 

not as strong as earnings and tax-related items.22  

  Figure 7 shows the sum of variable importance by category. In aggregate, footnote 

disclosures contribute the most in forecasting the direction of one-year-ahead earnings changes, 

followed by balance sheet, income statement, and cash flow statement. Comprehensive income 

statement and shareholders’ equity statement contribute the least to the predictive power. The 

results are consistent with footnote disclosures carrying important information for valuation (De 

Franco et al. 2011). As shown in Table 3 Panel A, footnote disclosures contain the most tags 

(2,443 out of 4,627), which can explain their importance in aggregate. Figure 7 also reports the 

mean of variable importance within each category. We observe that items from financial 

 
22 The results are likely due to the focus on one-year-ahead earnings changes; investments and R&D will probably 
be stronger contributors for longer-term earnings predictions. Given the limited number of years of data, we do not 
examine their importance in predicting long-term earnings and leave it to future research. 
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statements on average play a stronger role than footnote items, but the latter’s importance is still 

considerable.  

Table 6 Panels B and C show the top 10 important variables within each category. We 

observe many tax-related items (e.g., “DeferredTaxAssetsValuationAllowance”) in the top 10 

list for footnote disclosures, consistent with tax items carrying important information on future 

taxable income (Miller and Skinner 1998; Lev and Nissim 2004; Hanlon 2005; Thomas and 

Zhang 2011). For example, Miller and Skinner (1998) manually collect valuation allowance for 

deferred tax assets for 200 companies and find that it is negatively associated with future taxable 

income. 

To visualize the marginal effect of tax items on 𝑃𝑃𝑟𝑟� , we construct partial dependence plots 

(Hastie et al. 2009).23 Figure 8a shows a nonlinear negative effect of the valuation allowance for 

deferred tax assets (the top 1 predictor from footnotes) under random forests, consistent with 

Miller and Skinner (1998). We also observe an interaction effect in Figure 8b: 𝑃𝑃𝑟𝑟�  becomes 

higher when the valuation allowance is lower and lagged operating income (the top 1 predictor 

under random forests) is higher. The results suggest that the valuation allowance provides 

additional details on the growth of operating income by revealing management’s assessment of 

future taxable income. Figure 8c presents a nonlinear negative effect of tax benefits related to the 

exercise of employee stock options (Hanlon and Shevlin 2002; the top 1 predictor from 

footnotes) under stochastic gradient boosting. Figure 8d shows an interaction effect: 𝑃𝑃𝑟𝑟�   becomes 

 
23 In a one-way partial dependence plot, for each value of a predictor (in the x-axis), we force all observations in the 
training sample to assume that value for the predictor without changing any data points for other predictors, compute 
the forecasts using the chosen model, and average forecasts across all observations. The value of the average 
forecast is for the y-axis. In a two-way partial dependence plot, for each value combination of two predictors (in 
both the x-axis and y-axis), we force all observations in the training sample to assume the value combination for the 
two predictors without changing any data points for other predictors, compute the forecasts using the chosen model, 
and average forecasts across all observations. The value of the average forecast is coded by color. 
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lower when both the tax benefits and lagged retained earnings (the top 1 predictor under 

stochastic gradient boosting) are higher. The results are consistent with Bartov and Mohanram’s 

(2004) finding that the exercise of executive stock options predicts disappointing earnings and 

reveals management’s private information on the reversal of previously inflated earnings.   

 Finally, we compare the out-of-sample performance between our models and Ou and 

Penman’s (1989), who estimate the summary measure by applying logistic regressions to 65 

accounting variables from Compustat.24 For each year in the test period (2015-2018), we use the 

past three years to estimate a logistic model and then apply the model to the test year. Follow 

their variable selection approach, we first run a univariate logistic regression for each of the 65 

variables and retain only variables that load significantly at the 10 percent level. Second, a 

multivariate logistic regression is estimated using all remaining variables. We then drop all 

variables with coefficients that are not significant at the 10 percent level. In a final stage, for the 

remaining variables, we delete the variables that do not load significantly at the 10 percent level 

stepwise until all explanatory variables have statistically significant coefficients at the 10 percent 

level. We refer to this logistic model with Ou and Penman’s 65 variables as OP/Logit. To better 

understand the difference between our models and OP/Logit, we also apply the machine learning 

methods to the 65 variables and refer to the two models as OP/RF and OP/SGB. 

Figure 9 reports the ROC curves for these three models and our two models (XBRL/RF 

and XBRL/SGB). We find that our models significantly outperform OP/Logit by a large margin. 

The XBRL/RF (XBRL/SGB) model exhibits an AUC of 67.52 (67.54) percent, compared with 

61.79 percent for OP/Logit. We also observe an AUC of 66.63 (66.87) percent for the OP/RF 

 
24 Ou and Penman (1989) use 68 financial variables. We exclude three variables (%∆ in total uses of funds, %∆ in 
total sources of funds, and %∆ in funds) as they are no longer reported. None of the three variables is statistically 
significantly associated with the direction of one-year-ahead earnings changes in Ou and Penman (1989). 
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(OP/SGB) model, which is significantly higher than that of OP/Logit and marginally lower than 

XBRL/RF (XBRL/SGB). Following Carpenter and Bithell (2000), we construct a bootstrap p-

value for the AUC difference. Specifically, for each comparison between two data/method 

combinations, we use a bootstrap sample with the same size as the original test sample to 

compute a bootstrap AUC for each combination and repeat this 10,000 times. The p-value is the 

proportion of 10,000 bootstrap AUC differences that are below zero. We observe that all the p-

values are less than 0.1 except for XBRL/SGB vs. OP/SGB, for which the p-value is 0.108. 

Thus, the improvements in predictive power are unlikely to be random outcomes.25 The results 

suggest that our models’ superior performance comes from primarily flexible functional forms in 

machine learning and secondarily more detailed financial information in XBRL documents, 

which are not used under human experts’ guidance and potentially suffer from data quality 

issues. We address the data quality issues in Sections 4.2. and 4.3. 

 

4.2. Using Compustat as an Alternative Source of Detailed Financial Information 

We use Compustat as an alternative source of detailed financial information to XBRL. 

Compared with XBRL-tagged data, Compustat has its own advantages, such as more extensive 

standardized adjustments to improve data quality and disadvantages, such as less detailed 

coverage of financial information.26 There are 883 financial items from Compustat, for which we 

take current values, lagged values, and percentage changes, resulting in 2,649 predictors. We 

scale the current and lagged predictors by total assets (except for total assets itself and items on a 

 
25 To address the issue related to overlapping training/validation sets for test years (2015-2018), we construct the 
pairwise bootstrap p-values for each test year and observe that all the p-values are less than 0.1 except for XBRL/RF 
vs. OP/RF and XBRL/SGB vs. OP/SGB in 2015, which is unsurprising, given the data quality issues in the early 
years in the training sample (2012-2013) for 2015. 
26 The adjustments create discrepancies between the accounting numbers in Compustat and 10-K filings (Chychyla 
and Kogan 2015). 
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per-share basis). Table 7 Panel A reports the predictive power of detailed financial information 

from Compustat similar to XBRL-tagged data. The results suggest that the influence of noise in 

XBRL documents is on par with their additional financial details relative to Compustat. 

 

4.3. Variation in Data Quality 

 We conduct two additional tests based on variation in XBRL data quality. First, since 

errors in XBRL documents expose the filers to limited liability within two years after the initial 

adoption (SEC 2009), we classify the test year 2015 as the early period, the training period 

(2012-2013) for which is fully covered by the liability protection, and 2016-2018 as the late 

period. As shown in Table 7 Panel B, our model exhibits a higher AUC in the late period than 

the early period. The bootstrap p-value for the AUC difference between the two periods is 0.049 

for random forests and 0.307 for stochastic gradient boosting. The results suggest that data 

quality issues in early adoption years decrease the usefulness of detailed financial data in XBRL 

documents.27 

 Second, we use the proportion of unique custom and uncommon standard tags in an 

XBRL submission as an inverse measure of data quality at the firm level. This measure captures 

the amount of information lost due to the use of extensions and uncommon tags that cannot be 

used for modeling and thus were removed before the analysis. We split the test sample by the 

year median and report the AUC of each subsample in Table 7 Panel C. Our model exhibits a 

higher AUC for firms with high data quality than other firms. The bootstrap p-value for the AUC 

 
27 We also repeat this analysis using all Compustat items, which do not experience the same data quality changes as 
XBRL documents. We observe, as expected, an insignificant AUC difference between the early and late periods (see 
Online Appendix Table A6).    
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difference between the two subsamples is less than 0.01 for both methods. The results suggest 

that low data quality reduces the predictive power of detailed financial data in XBRL documents. 

 

5. Portfolio Returns 

5.1. Primary Results 

 Table 8 reports the size-adjusted returns over the 12 months on the portfolios constructed 

according to the estimated summary measure 𝑃𝑃𝑟𝑟�  using machine learning and detailed financial 

data. In the top panel for random forests, we observe a monotonic increase in the 12-month SAR 

as 𝑃𝑃𝑟𝑟�  moves from below 0.1 to above 0.8. A similar pattern is observed in the bottom panel for 

stochastic gradient boosting except for the two extreme sort portfolios (𝑃𝑃𝑟𝑟� ≤ 0.2 and  

𝑃𝑃𝑟𝑟� > 0.8 ), which consist of only a handful of stocks and thus are subject to substantial noise. A 

hedge portfolio with a long (short) position for stocks with 𝑃𝑃𝑟𝑟� > 0.5 (𝑃𝑃𝑟𝑟� ≤ 0.5) yields size-

adjusted returns of 5.02 percent for random forests and 6.57 percent for stochastic gradient 

boosting. These returns account for 38.7 and 50.7 percent of returns from a strategy with perfect 

foresight of the direction of one-year-ahead earnings changes.  

To evaluate the extent to which the returns are generated by chance, we place them in the 

distribution of hedge returns under the null hypothesis that 𝑃𝑃𝑟𝑟�  is unrelated to subsequent stock 

returns. Specifically, for each model, we randomly draw with replacement the same number of 

stocks as those in the long and short positions, compute the 12-month size-adjusted returns for 

this pseudo hedge portfolio, and repeat this process 10,000 times. The p-values less than 0.0001 

for both returns (5.02 and 6.57 percent) suggest that they are unlikely to be random outcomes. 

When we exclude the borderline cases and take a long (short) position for stocks with 𝑃𝑃𝑟𝑟� > 0.6 
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(𝑃𝑃𝑟𝑟� ≤ 0.4), the size-adjusted returns are more impressive, 9.43 percent for random forests and 

9.74 percent for stochastic gradient boosting.  

 Figure 10 reports the returns on the short and long positions of our strategies by year. 

Most of the returns come from the long rather than the short positions. The results suggest that 

the hedge returns are unlikely explained by limits to arbitrage arising from short-sell constraints. 

We also observe that the returns are larger in more recent years (2016-2018) than the first year 

(2015) of the test period, consistent with the findings in Table 7 Panel B.  

Finally, we compare our strategies with Ou and Penman’s (1989) and those based on the 

application of our machine learning methods to their 65 accounting variables. Figure 11 reports 

the size-adjusted returns for the five models, as discussed in the previous section. As the results 

are similar for the 0.5 cutoff in Figure 11a and 0.4/0.6 cutoffs in Figure 11b, we focus on the 

latter. The strategy of applying machine learning methods to the 65 variables generates size-

adjusted returns of 8.14 percent for OP/RF and 5.88 percent for OP/SGB. These returns are 

significantly higher than 2.69 percent from Ou and Penman’s original strategy (OP/Logit), and 

marginally lower than 9.43 percent for XBRL/RF and 9.74 percent for XBRL/SGB.28 The results 

mirror the findings of the predictability of the five models in Section 4.1.  

 

5.2. Transaction Costs 

 To assess the impacts of transaction costs on our trading profits, we follow Novy-Marx 

and Velikov (2016) and estimate the effective bid-ask spread using a Bayesian Gibbs sampler on 

 
28 We conduct a bootstrap test for the difference in returns between each pair of portfolios (i.e., OP/Logit vs. OP/RF, 
OP/RF vs. XBRL/RF, OP/Logit vs. OP/SGB, and OP/SGB vs. XBRL/SGB). Specifically, we randomly draw with 
replacement the same number of stocks as those in the long and short positions for each portfolio in a pair and 
compute the 12-month size-adjusted returns for the pseudo hedge portfolio. We then take a difference in returns 
between the two pseudo hedge portfolios and repeat this process 10,000 times. The p-value is based on the actual 
difference with respect to the distribution of simulated differences. The p-values are less than 0.001 for all pairs. 
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a generalized Roll (1984) model, as proposed by Hasbrouck (2009). The mean (median) 

transaction cost from 1993 to 2005 is 0.0129 (0.0138), consistent with Hasbrouck (2009). The 

summary statistics for the estimated transaction costs from 2009 to 2019 (see Online Appendix 

Table A7) are consistent with Novy-Marx and Velikov’s (2016) finding that the round-trip 

transaction costs are less than 1 percent over the period of 2000-2009. We also observe a 

decrease in transaction costs over time, from 0.805 percent in 2009 to 0.335 percent in 2019. 

Since 12 percent of stock-year observations during 2011-2019 have insufficient daily returns to 

estimate the spread, following Novy-Marx and Velikov (2016), we impute the values of stock-

years with similar market capitalization (MKVLT) and idiosyncratic volatility (IVOL).29 

Specifically, in each calendar year, we rank all stocks on MKVLT and IVOL. For stock i, we 

select stock j with the shortest Euclidean distance in rank space of the two characteristics: 

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑖𝑖𝑖𝑖 = ��𝑟𝑟𝑑𝑑𝑑𝑑𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝐿𝐿𝑇𝑇𝑖𝑖 − rank𝑟𝑟𝑟𝑟𝑟𝑟𝐿𝐿𝑇𝑇𝑖𝑖�
2

+ �𝑟𝑟𝑑𝑑𝑑𝑑𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝐿𝐿𝑖𝑖 − rank𝑟𝑟𝑟𝑟𝑟𝑟𝐿𝐿𝑖𝑖�
2
. Table 9 

reports the size-adjusted returns net of the transaction costs. We continue to observe statistically 

and economically important returns, ranging from 4.77 to 9.30 percent.  

 

5.3. Alternative Earnings Measures 

 We use pro forma earnings per share to measure the direction of earnings changes, as 

recent studies demonstrate that the earnings used by analysts are of higher quality and more 

value-relevant to investors, relative to GAAP earnings and non-GAAP earnings reported by 

managers (Bentley et al. 2018; Bradshaw et al. 2018). To assess our results’ sensitivity to this 

measurement choice, we use two alternative measures: ROE and EBIT per share. As shown in 

 
29 The idiosyncratic volatility is calculated as the standard deviation of residuals from regressing daily returns of a 
given year on Fama-French three factors by firm, with the requirement of at least two months of daily return 
observations.  
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Table 10 Panel A, we continue to find robust size-adjusted returns net of transaction costs on a 

hedge portfolio with a long (short) position for stocks with 𝑃𝑃𝑟𝑟� > 0.6 (𝑃𝑃𝑟𝑟� ≤ 0.4).   

  

5.4. Excluding Microcaps 

 Microcaps refer to stocks with market capitalization below the 20th percentile of the 

NYSE stocks (Fama and French 2008; Novy-Marx and Velikov 2016). These tiny stocks are on 

average only about 3 percent of the total market capitalization but account for about 60 percent 

of the total number of stocks. Microcaps typically exhibit the largest dispersion in signals of 

trading strategies and thus often account for more than 60 percent of the stocks in extreme sort 

portfolios. As they are relatively illiquid, strategies that take disproportionately large positions in 

these stocks are more expensive to trade. We exclude microcaps from the portfolios and report 

the size-adjusted returns net of transaction costs on a hedge portfolio with a long (short) position 

for stocks with 𝑃𝑃𝑟𝑟� > 0.6 (𝑃𝑃𝑟𝑟� ≤ 0.4) in Table 10 Panel B. We continue to observe robust excess 

returns on the hedge portfolios.  

 

5.5. Risk-based Explanations 

 The size-adjusted returns have accounted for compensations for risk to some extent. We 

further control for the conventional risk factors. Specifically, we estimate the following five-

factor model of Fama and French (2015):  

𝑅𝑅𝑝𝑝𝑖𝑖 − 𝑅𝑅𝐹𝐹𝑖𝑖 = 𝑑𝑑𝑖𝑖 + 𝑏𝑏𝑖𝑖(𝑅𝑅𝑀𝑀𝑖𝑖 − 𝑅𝑅𝐹𝐹𝑖𝑖) + 𝑑𝑑𝑖𝑖𝑆𝑆𝑟𝑟𝐵𝐵𝑖𝑖 + ℎ𝑖𝑖𝐻𝐻𝑟𝑟𝐿𝐿𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑅𝑅𝑟𝑟𝑊𝑊𝑖𝑖 + 𝑑𝑑𝑖𝑖𝐶𝐶𝑟𝑟𝑆𝑆𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖, 

where 𝑅𝑅𝑝𝑝𝑖𝑖 is the monthly returns on a hedge portfolio with a long (short) position for stocks with 

𝑃𝑃𝑟𝑟� > 0.6 (𝑃𝑃𝑟𝑟� ≤ 0.4) and 𝑅𝑅𝐹𝐹𝑖𝑖 is the one-month T-bill rate. The explanatory variables are the 

market returns in excess of the one-month T-bill rate (𝑅𝑅𝑀𝑀𝑖𝑖 − 𝑅𝑅𝐹𝐹𝑖𝑖), and returns on size (SMB), 
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book-to-market (HML), profitability (RMW), and investment (CMA) portfolios. As shown in 

Table 10 Panel C columns (1) and (3), our portfolios generate monthly excess returns of 0.79 to 

0.94 percent, which translate into annualized returns of 9.48 to 11.28 percent. We compute the 

Newey-West standard errors and find that the excess returns are also significantly higher than 

zero with p-values < 0.05 and 0.01. We also adjust the dependent variable by subtracting Fama-

French 30 industry monthly returns for each stock in the portfolio (Richardson et al. 2010). 

Columns (2) and (4) report monthly industry-adjusted excess returns of 0.66 to 0.69 percent, 

significantly higher than zero with p-values < 0.1 and 0.05.  

 

5.6. Predicting the Amount of Earnings Changes 

 We predict the direction of earnings changes since prior research demonstrates that it is 

difficult to predict the amount of earnings changes (Gerakos and Gramacy 2013; Li and 

Mohanram 2014), and transforming the amount to the direction reduces the variability in 

earnings changes (Freeman et al. 1982). Nevertheless, we use the two machine learning methods 

to predict the amount of earnings changes following the same rolling windows in Figure 5 and 

timeline in Figure 6. Consistent with prior research, we observe a low out-of-sample R2 of 8 

percent (5.8 percent) for random forests (stochastic gradient boosting). A hedge portfolio with a 

long (short) position for stocks with the predicted earnings changes ∆Earnıngs� > 0 

(∆Earnıngs� ≤ 0) yields size-adjusted returns of 0.098 percent (p-value = 0.4668) for random 

forests and 0.109 percent (p-value = 0.4601) for stochastic gradient boosting. The results suggest 

that focusing on the direction of earnings changes is preferable to make our machine learning 

models successful. 
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6. Analysts’ Earnings Forecasts 

 In Sections 4 and 5, we use predictions from Ou and Penman’s (1989) model as a 

prominent example to evaluate our summary measure 𝑃𝑃𝑟𝑟� . In this section, we use analysts’ 

earnings forecasts as another example. We take the consensus (i.e., median) analyst forecast in 

the month following the portfolio formation and compare it with the realized earnings in fiscal 

year t to determine whether analysts forecast an earnings increase or decrease. Table 11 Panel A 

shows an AUC of 63.62 percent for analysts’ prediction of an earnings increase, which is 

significantly lower than those of our models, which are reproduced in columns (2)-(3) (bootstrap 

p-value < 0.01). A hedge portfolio with a long (short) position for stocks with a predicted 

earnings increase (decrease) yields size-adjusted returns of 2.49 percent, lower than those from 

our models. 

Finally, we examine whether analysts fully understand the implications of detailed 

financial data on future earnings changes. We compute analysts’ forecast errors as the actual 

earnings in fiscal year t + 1 minus the consensus (i.e., median) analyst forecast in the month 

following the portfolio formation, scaled by the close price on the portfolio formation date, 

multiplied by 100. We regress analysts’ forecast errors on 𝑃𝑃𝑟𝑟� , the log of market cap, and book-

to-market ratios. Table 11 Panel B shows a significant positive coefficient on 𝑃𝑃𝑟𝑟�  for random 

forests (0.48 with a p-value < 0.1) and stochastic gradient boosting (0.59 with a p-value < 0.05). 

The results suggest that analysts fail to fully incorporate detailed financial information into their 

forecasts.30 

 
30 We also examine whether analysts’ earnings forecasts help improve our hedge returns to the extent that some 
earnings increases/decreases are anticipated and thus do not help earn future excess returns. A hedge portfolio with a 
long (short) position for stocks with 𝑃𝑃𝑟𝑟� > 0.5 and an earnings decrease predicted by analysts (𝑃𝑃𝑟𝑟� ≤ 0.5 and an 
earnings increase predicted by analysts) yields size-adjusted returns of 6.40 percent for random forests and 7.01 
percent for stochastic gradient boosting, higher than the original returns (5.02 and 6.57 percent, respectively). 
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7. Conclusion 

We conduct a fundamental analysis of a large set of detailed financial information aimed 

at predicting earnings. Since 2012, all U.S. public companies must tag quantitative amounts in 

financial statements and footnotes of their 10-K reports using XBRL. Applying machine learning 

methods (random forests and stochastic gradient boosting), we combine the detailed financial 

data into a summary measure for the direction of one-year-ahead earnings changes. The measure 

shows significant out-of-sample predictive power concerning the direction of earnings changes. 

The AUC ranging from 67.52 to 68.66 percent is significantly higher than that of a random 

guess, which is 50 percent.  Hedge portfolios are formed based on this measure during the period 

2015-2018. The annual size-adjusted returns to the hedge portfolios range from 5.02 to 9.74 

percent. These returns persist after accounting for transaction costs and risk.  

Our measure and strategies outperform those of Ou and Penman (1989), who extract the 

summary measure from 65 accounting variables using logistic regressions. Additional analyses 

suggest that the outperformance stems from primarily nonlinear predictor interactions, missed by 

regressions, and secondarily the use of more detailed financial data in XBRL documents. The 

former indicates that machine learning can unleash more predictive power of financial statements 

concerning future earnings and returns. The latter suggests that, despite data quality issues, 

XBRL-tagged detailed financial data (with little access cost) still serve as useful inputs for 

fundamental analysis. Overall, our evidence suggests that applying machine learning to the 

detailed financial data in XBRL documents can reveal valuable fundamental signals that have 

not been fully impounded into stock prices.  
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Appendix A: Examples of XBRL-tagged Financial Items 
 
This appendix shows where an XBRL document is filed and how financial items are tagged in the XBRL document. 
The following screenshot shows where a human-readable HTML document and the corresponding machine-readable 
XBRL document are located on the SEC EDGAR Website for Littelfuse, an electronic manufacturer. 
 

 
 
Example 1: Items on the face of financial statements 

Cash and cash equivalents from the human-readable HTML document: 

 
 

Cash and cash equivalents from the machine-readable XBRL document: 

 

Human-readable 
HTML document 

Machine-readable 
XBRL document 
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Example 2: Items in the footnotes 

Work in process inventory from the human-readable HTML document: 

 

 

Work in process inventory from the machine-readable XBRL document: 
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Figure 1 A Decision Tree Example 
 

 

 

 

 

 

 

 

 

 

 

In this figure, the left panel presents an example with two predictors, “EPS” and “Lev” (i.e., earnings per share and leverage), to forecast the direction of one-
year-ahead earnings changes. Suppose the tree in the left panel is the final output. It describes how each observation is assigned to a group based on its predictor 
value. A blue box (“a node”) represents a split and a green box (“a leaf”) indicates a final partition. First, the sample is sorted on EPS. Observations with EPS 
above the breakpoint of 0.5 are assigned to Group 1. Those with EPS below 0.5 are then further sorted by Lev: observations with below 0.7 go to Group 2, while 
those with Lev above 0.7 are assigned to Group 3. The right panel shows how the space of “EPS” and “Lev” is partitioned by this tree model.  

Lev < 0.7 Group 1 

EPS > 0.5 

Group 2 Group 3 

True False 

True False 

EPS    0.5 

Lev      0.7                     1 
0 

1 

Group 1 

Group 2 Group 3 
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Figure 2 A Random Forest Example 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
This figure shows how an ensemble prediction is generated by random forests. A tree is grown based on each of 𝑚𝑚 different bootstrap samples of the data 
considering only a random subset of predictors (𝑘𝑘 variables) for splitting. For a given observation, there are 𝑚𝑚 predictions, and the final forecast is the simple 
average of the 𝑚𝑚 predictions.   

Bootstrap sample 1 with 
random 𝑘𝑘 variables 
 

Bootstrap sample 2 with 
random 𝑘𝑘 variables 
 

Bootstrap sample m with 
random 𝑘𝑘 variables 
 

  

 

  

  

 

  

 

  

• • • 

 

  

Ensemble prediction 𝑦𝑦� = 𝑟𝑟𝑒𝑒𝑑𝑑𝑑𝑑( 𝑦𝑦�1 , 𝑦𝑦�2 , …, 𝑦𝑦�𝑚𝑚 ) 

 

 𝑦𝑦�1  𝑦𝑦�2  𝑦𝑦�𝑚𝑚 
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Figure 3 A Stochastic Gradient Boosting Example 

 

 

 

 

 

 

 

 

 

 

 

 

 

This figure shows how an ensemble prediction is generated by stochastic gradient boosting. It starts by averaging the outcome variable as an initial prediction 
(𝐹𝐹0(𝑥𝑥)). It then fits a shallow tree (e.g., with depth 𝐿𝐿=1) to the residuals from the initial prediction (𝑟𝑟0 = 𝑦𝑦 − 𝐹𝐹0(𝑥𝑥)). The fitted value is shrunken by a factor 𝜌𝜌 ∈
(0,1)  (i.e., the learning rate) to help prevent the model from overfitting the residuals and added to the initial prediction  𝐹𝐹1(𝑥𝑥) = 𝐹𝐹0(𝑥𝑥) +  𝜌𝜌 × 𝑟𝑟0�  to form an 
ensemble prediction. Then the next tree with the same shallow depth 𝐿𝐿 is used to fit the residuals from the previous prediction. This is repeated 𝑚𝑚 times and the 
output of this additive model of shallow trees is the final ensemble prediction. To reduce the correlation among estimates at different iterations, the “stochastic” 
procedure introduces randomness by using a random sample in each iteration.  
 

 
 

 

 

Random sample 1 to forecast 
residuals 𝑟𝑟0 = 𝑦𝑦 − 𝐹𝐹0(𝑥𝑥) 

Random sample 2 to forecast 
residuals 𝑟𝑟1 = 𝑦𝑦 − 𝐹𝐹1(𝑥𝑥) 
 

Random sample m to forecast 
residuals 𝑟𝑟𝑚𝑚−1 = 𝑦𝑦 − 𝐹𝐹𝑚𝑚−1(𝑥𝑥) 

  

 

  

 

  

 

• • • 

 𝐹𝐹0(𝑥𝑥)                           𝐹𝐹1(𝑥𝑥) = 𝐹𝐹0(𝑥𝑥) +  𝜌𝜌 × 𝑟𝑟0�                         𝐹𝐹2(𝑥𝑥) = 𝐹𝐹1(𝑥𝑥) +  𝜌𝜌 × 𝑟𝑟1�                                                         𝐹𝐹𝑚𝑚(𝑥𝑥) = 𝐹𝐹𝑚𝑚−1(𝑥𝑥) +  𝜌𝜌 × 𝑟𝑟𝑚𝑚−1�  

Ensemble prediction  𝑦𝑦� = 𝐹𝐹𝑚𝑚(𝑥𝑥) 
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Figure 4 Tag Distribution Across XBRL Submissions 
 

  
Figure 4a: Histogram by the number of unique tags Figure 4b: Histogram by the proportion of custom tags 

  
Figure 4c: Histogram by the proportion of uncommon 
standard tags 

Figure 4d: Histogram by the number of common 
standard tags 

 
Frequency refers to the proportion of XBRL documents in the 8,149 submissions. Figure 4a shows the histogram by 
the number of total unique tags (including both custom and standard tags). Figure 4b shows the histogram by the 
proportion of custom tags, calculated as the number of unique custom tags divided by the number of unique tags. 
Figure 4c shows the histogram by the proportion of uncommon standard tags, calculated as the number of unique 
uncommon standard tags divided by the number of unique tags. Uncommon standard tags are standard tags that have 
not be used at least once in each year. Figure 4d shows the histogram by the number of common standard tags, 
which are standard tags that have been used at least once in each year. We use 4,627 unique common standard tags 
in subsequent analyses.  
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Figure 5 Rolling Windows for Machine Learning 
 

 

2012 2013 2014 2015 2016 2017 2018 
 

 Training 
          

2012 2013 2014 2015 2016 2017 2018 
 

 Validation 
          

2012 2013 2014 2015 2016 2017 2018 
 

 Testing 
       

 

  

2012 2013 2014 2015 2016 2017 2018 
 

 Unused 
          
          

 
This figure illustrates the rolling window procedure through which the 
machine learning models are trained, validated, and used to predict the 
direction of the one-year-ahead change in earnings. For each year in the 
test period from 2015 to 2018 (green), the models are trained in the 
second and third preceding years (blue) and validated in the preceding 
year (yellow) to tune the parameters in our machine learning models (as 
shown in Table 4).  
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Figure 6 Timeline of the Trading Strategy 
 
 

 

 
This figure shows the timeline of the trading strategy. For each stock in the sample, 
it is assigned to a long (short) position three months after its fiscal year-end, when 
𝑃𝑃𝑟𝑟�  > 0.5 or 0.6 (<0.5 or 0.4). The positions are held for twelve months. 

 

Fiscal year-end t 

Position assigned 3 months after 
fiscal year-end t 

Fiscal year-end t – 1 
Position held for one year 
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Figure 7 Group Importance 

 
Figure 7a Group importance for random forests 

 

 
Figure 7b Group importance for stochastic gradient boosting 

 
 
Figures 7a and 7b show the importance of predictors grouped by financial statement category for random forests 
and stochastic gradient boosting, respectively. Each predictor is classified into balance sheet, income statement, 
comprehensive income statement, cash flow statement, shareholders’ equity statement, or footnotes. The 
importance of a predictor is computed as the decrease in the AUC when that variable is randomly shuffled. The 
sum and mean of the predictor importance grouped by financial statement category are reported. 
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Figure 8 Partial Dependence Plots 

  
Figure 8a: Valuation allowance for deferred tax assets 
(random forests) 

Figure 8b: Valuation allowance for deferred tax assets 
and operating income (random forests) 

  
Figure 8c: Tax benefits of share-based compensation 
(stochastic gradient boosting) 

Figure 8d: Tax benefits of share-based compensation 
and retained earnings (stochastic gradient boosting) 

 

Figures 8a and 8c show one-way partial dependence plots and Figures 8b and 8d show two-way partial dependence 
plots. In a one-way partial dependence plot, for each value of a predictor (in the x-axis), we force all observations in 
the training sample to assume that value for that predictor without changing any data points for other predictors, 
compute the forecasts using the chosen model, and average forecasts across all observations. The value of the 
average forecast is for the y-axis. In a two-way partial dependence plot, for each value combination of two 
predictors (in both the x-axis and y-axis), we force all observations in the training sample to assume the value 
combination for those two predictors without changing any data points for other predictors, compute the forecasts 
using the chosen model, and average forecasts across all observations. The value of the average forecast is coded by 
color.   
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Figure 9 Comparison of Out-of-sample AUC for Different Data/Method Combinations 

 
 
 
This figure compares out-of-sample AUC for different data/method combinations. The data consist of Ou and Penman’s 
(1989) variables (OP) and our XBRL items (XBRL). The employed methods are logistic regression (Logit), random 
forests (RF), and stochastic gradient boosting (SGB). For each comparison between two data/method combinations 
(e.g., OP/Logit vs. XBRL/RF), the bootstrap p-value is the proportion of 10,000 bootstrap AUC differences that are 
below zero. We use a bootstrap sample with the same size as the original sample to compute the bootstrap AUC for 
each combination and the AUC difference between the two combinations. 



48 
 

 

 

Figure 10 Abnormal Returns by Year 

 

 

 

 
Figure 10a Random forests with 𝑃𝑃𝑟𝑟�  > 0.5 and <0.5  Figure 10b Random forests with 𝑃𝑃𝑟𝑟�  > 0.6 and <0.4 
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Figure 10c Stochastic gradient boosting with 𝑃𝑃𝑟𝑟�  > 0.5 and <0.5  Figure 10d Stochastic gradient boosting with 𝑃𝑃𝑟𝑟�  > 0.6 and <0.5 

 
 
Figure 10a presents 12-month size-adjusted returns from taking long positions in stocks with 𝑃𝑃𝑟𝑟� > 0.5 and short positions in stocks with 𝑃𝑃𝑟𝑟� ≤ 0.5 using 
random forests. Figure 10b presents 12-month size-adjusted returns from taking long positions in stocks with 𝑃𝑃𝑟𝑟� ≥ 0.6 and short positions in stocks with 𝑃𝑃𝑟𝑟� ≤ 
0.4 using random forests. Figure 10c shows 12-month size-adjusted returns from taking long positions in stocks with 𝑃𝑃𝑟𝑟� > 0.5 and short positions in stocks 
with 𝑃𝑃𝑟𝑟� ≤ 0.5 using stochastic gradient boosting. Figure 10d shows 12-month size-adjusted returns from taking long positions in stocks with 𝑃𝑃𝑟𝑟� ≥ 0.6 and 
short positions in stocks with 𝑃𝑃𝑟𝑟� ≤ 0.4 using stochastic gradient boosting. The size-adjusted return for a hedge portfolio is the difference between the size-
adjusted abnormal returns of the long and short positions. 
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Figure 11 Comparison of Abnormal Returns for Different Data/Method Combinations 

 

 

 
Figure 11a Abnormal returns with 𝑃𝑃𝑟𝑟�  > 0.5 and <0.5  Figure 11b Abnormal returns with 𝑃𝑃𝑟𝑟�  > 0.6 and <0.4 

 
 
Figure 11a compares mean 12-month size-adjusted returns for different data/method combinations from taking long positions in stocks with 𝑃𝑃𝑟𝑟� > 0.5 and 
short positions in stocks with 𝑃𝑃𝑟𝑟� ≤ 0.5. Figure 11b compares mean 12-month size-adjusted returns for different data/method combinations from taking long 
positions in stocks with 𝑃𝑃𝑟𝑟� ≥ 0.6 and short positions in stocks with 𝑃𝑃𝑟𝑟� ≤ 0.4. The data consist of Ou and Penman’s (1989) variables (OP) and our XBRL 
items (XBRL). The employed methods are logistic regression (Logit), random forests (RF), and stochastic gradient boosting (SGB). 
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Table 1 Sample Selection 

 
 

 Number of submissions 
(1) XBRL filings for 10-K and 10-K/A between June 15, 2012 and March 31, 
2018 that can be matched to pro forma earnings from I/B/E/S 

10,073 

(2) Requiring stock price data available from CRSP 8,381 
(3) Requiring non-zero total assets 8,358 
(4) Retaining the most recent XBRL filings as of the portfolio formation date     8,149 
  
 
This table shows the sample selection procedure. We start our sample with XBRL filings for 10-K and 10-K/A 
between June 15, 2012 and March 31, 2018 that can be matched to pro forma earnings from I/B/E/S. To ensure 
compliance with mandatory footnote disclosure in the XBRL format, we require that an XBRL filing has a 
reporting period ending on or after June 15, 2012. We require a filing to have stock price data available from 
CRSP and non-zero total assets. Exploiting the point-in-time nature of XBRL-tagged financial data, we only 
retain the most recent filings as of the portfolio formation date. 
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Table 2 Sample Distribution 
 
Panel A: XBRL filings by calendar period  

Calendar Period Number of submissions 
2012Q3-2012Q4 119 
2013Q1-2013Q4 1,206 
2014Q1-2014Q4 1,304 
2015Q1-2015Q4 1,375 
2016Q1-2016Q4 1,371 
2017Q1-2017Q4 1,460 

2018Q1 1,314 
Total 8,149 

 
Panel B: XBRL filings by industry 

Industry Number of submisssions 
Food Products 149 
Beer & Liquor 23 
Tobacco Products 21 
Recreation 79 
Printing and Publishing 66 
Consumer Goods 121 
Apparel 94 
Healthcare, Medical Equipment, Pharmaceutical Products 588 
Chemicals 205 
Textiles 26 
Construction and Construction Materials 210 
Steel Works 102 
Fabricated Products and Machinery 303 
Electrical Equipment 87 
Automobiles and Trucks 170 
Aircraft, ships, and railroad equipment 56 
Precious Metals, Non-Metallic, and Industrial Metal Mining 92 
Coal 10 
Petroleum and Natural Gas 390 
Utilities 248 
Communication 165 
Personal and Business Services 1,353 
Business Equipment 995 
Business Supplies and Shipping Containers 126 
Transportation 194 
Wholesale 202 
Retail 374 
Restaurants, Hotels, Motels 222 
Banking, Insurance, Real Estate, Trading 1,344 
Other 134 
Total 8,149 
 
Panel A shows the number of XBRL filings by year for the final sample of 8,149 filings. Panel B provides the 
number of XBRL filings by Fama-French 30-industry classification. 
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Table 3 Summary Statistics 
 
Panel A: Number of predictors by financial statement category 

Financial Statement Category Number of Current Predictors Number of Lagged Predictors Number of %∆ Predictors Total 
Balance Sheet 639 639 639 1,917 
Income Statement 740 740 740 2,220 
Cash Flow Statement 87 87 87 261 
Comprehensive Income Statement 131 131 131 393 
Shareholders’ Equity Statement 587 587 587 1,761 
Footnotes 2,443 2,443 2,443 7,329 
Total 4,627 4,627 4,627 13,881 

 
Panel B: Top 10 most populated current predictors (i.e., non-zero values) from Balance Sheet 

Predictor Frequency Mean Q1 Median Q3 
Assets t 8,149 17,281.54 648.90 2,247.50 7,739.48 
LiabilitiesAndStockholdersEquity t 8,138 17,290.44 648.93 2,245.22 7,730.65 
RetainedEarningsAccumulatedDeficit t 7,882 2,672.38 -71.66 195.64 1,402.41 
CashAndCashEquivalentsAtCarryingValue t 7,836 762.66 43.25 133.65 479.34 
PropertyPlantAndEquipmentNet t 7,641 2,638.33 47.47 219.90 1,035.82 
StockholdersEquity t 7,635 3,699.93 219.88 702.92 2,282.85 
AccumulatedDepreciationDepletionAndAmortizationPropertyPlantAndEquipment t 7,349 2,052.62 50.78 238.90 956.60 
CommonStockSharesAuthorized t 7,066 142,369.72 100.00 210.00 500.00 
AccumulatedOtherComprehensiveIncomeLossNetOfTax t 7,022 -297.63 -107.91 -8.58 -0.01 
PropertyPlantAndEquipmentGross t 6,935 4,659.43 108.59 485.09 1,982.24 

 

Panel C: Top 10 most populated current predictors (i.e., non-zero values) from Income Statement 
Predictor Frequency Mean Q1 Median Q3 
IncomeTaxExpenseBenefit t 7,903 153.03 0.75 18.73 96.02 
WeightedAverageNumberOfSharesOutstandingBasic t 7,312 316.50 32.75 66.16 165.82 
WeightedAverageNumberOfDilutedSharesOutstanding t 7,292 306.07 33.23 68.00 169.64 
NetIncomeLoss t 7,280 314.61 -0.77 30.80 164.65 
EarningsPerShareBasic t 7,227 1.28 0.10 0.75 2.02 
EarningsPerShareDiluted t 7,210 1.20 0.08 0.70 1.92 
OperatingIncomeLoss t 6,669 475.35 3.61 66.28 310.50 
AmortizationOfIntangibleAssets t 5,890 76.53 2.80 11.84 37.86 
InterestExpense t 5,672 162.74 5.99 29.78 107.64 
IncomeLossFromContinuingOperationsBeforeIncomeTaxesMinorityInterestAndIncomeLossFromEquityMethodInvestments t 4,794 493.18 4.64 71.61 329.66 
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Panel D: Top 10 most populated current predictors (i.e., non-zero values) from Cash Flow Statement 
Predictor Frequency Mean Q1 Median Q3 
DeferredIncomeTaxExpenseBenefit t 7,252 105.66 -12.28 -0.04 11.87 
CashAndCashEquivalentsPeriodIncreaseDecrease t 7,166 20.01 -26.00 2.86 51.53 
ShareBasedCompensation t 6,939 45.94 4.88 13.44 36.00 
PaymentsToAcquirePropertyPlantAndEquipment t 6,041 307.97 9.89 39.36 148.60 
NetCashProvidedByUsedInInvestingActivities t 5,672 -705.14 -507.93 -115.04 -20.38 
NetCashProvidedByUsedInOperatingActivities t 5,647 997.09 44.45 175.49 660.75 
NetCashProvidedByUsedInFinancingActivities t 5,626 -267.87 -194.89 -15.86 59.51 
IncreaseDecreaseInAccountsReceivable t 5,063 36.00 -2.68 5.30 28.23 
Depreciation t 4,963 201.04 10.33 34.20 113.19 
DepreciationDepletionAndAmortization t 4,943 351.03 16.66 59.63 197.85 

 
Panel E: Top 10 most populated current predictors (i.e., non-zero values) from Comprehensive Income Statement 

Predictor Frequency Mean Q1 Median Q3 
ComprehensiveIncomeNetOfTax t 6,899 450.00 -1.73 56.98 276.68 
OtherComprehensiveIncomeLossNetOfTax t 4,616 -27.54 -30.69 -0.60 10.00 
OtherComprehensiveIncomeLossForeignCurrencyTransactionAndTranslationAdjustmentNetOfTax t 3,554 -47.83 -25.10 -1.23 1.90 
ComprehensiveIncomeNetOfTaxIncludingPortionAttributableToNoncontrollingInterest t 3,206 769.20 14.39 139.37 584.73 
OtherComprehensiveIncomeLossNetOfTaxPortionAttributableToParent t 2,384 -33.09 -18.90 -0.42 6.62 
OtherComprehensiveIncomeLossPensionAndOtherPostretirementBenefitPlansAdjustmentNetOfTax t 2,235 -13.37 -9.37 -0.02 9.00 
ComprehensiveIncomeNetOfTaxAttributableToNoncontrollingInterest t 2,209 38.64 -0.12 2.20 20.00 
OtherComprehensiveIncomeUnrealizedHoldingGainLossOnSecuritiesArisingDuringPeriodNetOfTax t 2,038 3.94 -0.60 0.00 1.00 
OtherComprehensiveIncomeUnrealizedGainLossOnDerivativesArisingDuringPeriodNetOfTax t 1,666 0.96 -2.20 0.06 2.84 
OtherComprehensiveIncomeLossDerivativesQualifyingAsHedgesNetOfTax t 1,491 -0.01 -2.00 0.20 3.67 

 
Panel F: Top 10 most populated current predictors (i.e., non-zero values) from Shareholders’ Equity Statement 

Predictor Frequency Mean Q1 Median Q3 
CommonStockSharesOutstanding t 5,529 97,794.45 31.99 60.39 146.21 
AdjustmentsToAdditionalPaidInCapitalSharebasedCompensationRequisiteServicePeriodRecognitionValue t 4,786 39.81 4.77 13.00 31.90 
TreasuryStockValue t 4,087 2,296.51 22.90 190.00 1,107.70 
StockIssuedDuringPeriodSharesStockOptionsExercised t 3,854 413.75 0.10 0.44 1.30 
StockholdersEquityIncludingPortionAttributableToNoncontrollingInterest t 3,782 6,379.97 490.33 1,378.19 4,630.00 
StockIssuedDuringPeriodValueStockOptionsExercised t 2,774 17.33 0.63 3.18 11.70 
CommonStockDividendsPerShareDeclared t 2,609 0.98 0.30 0.66 1.28 
TreasuryStockValueAcquiredCostMethod t 2,319 1,213.40 7.47 58.95 319.33 
StockIssuedDuringPeriodValueShareBasedCompensation t 2,120 47.01 1.00 6.97 29.26 
DividendsCommonStockCash t 2,035 316.86 17.02 62.93 198.00 

 

 
 



55 
 

Panel G: Top 10 most populated current predictors (i.e., non-zero values) from Footnotes 
Predictor Frequency Mean Q1 Median Q3 
OperatingLeasesFutureMinimumPaymentsDueInTwoYears t 7,091 64.62 4.10 12.91 42.96 
OperatingLeasesFutureMinimumPaymentsDueCurrent t 7,062 73.22 4.87 15.46 50.29 
OperatingLeasesFutureMinimumPaymentsDueInThreeYears t 7,060 143.75 3.31 10.60 35.33 
OperatingLeasesFutureMinimumPaymentsDueInFourYears t 6,935 46.65 2.68 8.80 29.00 
OperatingLeasesFutureMinimumPaymentsDueInFiveYears t 6,570 40.10 2.30 7.48 25.00 
CurrentStateAndLocalTaxExpenseBenefit t 6,371 14.23 0.17 1.59 7.20 
CurrentIncomeTaxExpenseBenefit t 6,347 285.83 2.55 20.40 90.52 
DeferredFederalIncomeTaxExpenseBenefit t 6,310 11.73 -8.69 0.28 13.00 
OperatingLeasesFutureMinimumPaymentsDue t 6,309 428.10 20.96 70.00 254.30 
OperatingLeasesFutureMinimumPaymentsDueThereafter t 6,288 202.01 5.87 25.00 97.00 
      
 
Panel A shows the number of current predictors, lagged predictors, and percentage changes by financial statement category. Panels B, C, D, E, F, and G 
provide lists of top 10 most populated (i.e., non-zero) current predictors from balance sheet, income statements, cash flow statements, comprehensive income 
statements, shareholders’ equity statements, and footnotes, respectively, and descriptive statistics for the predictor values. Frequency counts the number of 
XBRL filings with a non-zero predictor value. Except for per share items, all predictor values are in millions. 
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Table 4 Parameters for Machine Learning 

 
Parameters Random forests Stochastic gradient boosting 
# of variables (k) From 110 to 120  
# of trees (m) 500, 600, 700,... 2000 500, 600, 700,…, 2000 
Learning rate (ρ)  0.005, 0.01, 0.05 
Tree depth (L)  1, 2, 3, 4 
Min. # of obs. in a leaf (b) 1, 2, 3, 4 10 
Bagging 0.5 0.5 
 
 
This table presents the parameter values considered in training the respective machine 
learning model. # of variables (k) is the number of variables (i.e., predictors) to be randomly 
selected when forming a split in a tree. # of trees (m) is the number of trees to be grown. 
Learning rate (ρ) is the extent to which each tree iteration contributes to the base tree. Tree 
depth (L) is the maximum depth of each tree. Min. # of obs. in a leaf (b) is the minimum 
number of observations in the terminal nodes of each tree. Bagging is the fraction of 
observations to be randomly selected to grow a tree. 
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Table 5 Summary of Out-of-sample Prediction Performance 
 

  
Random forests 

Stochastic gradient 
boosting 

Probability thresholds     
 Long 𝑃𝑃𝑟𝑟� > 0.5 𝑃𝑃𝑟𝑟� ≥ 0.6 𝑃𝑃𝑟𝑟� > 0.5 𝑃𝑃𝑟𝑟� ≥ 0.6 
 Short 𝑃𝑃𝑟𝑟� ≤ 0.5 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.5 𝑃𝑃𝑟𝑟� ≤ 0.4 
     
Number of observations 5,520 3,338 5,520 3,649 
Number of earnings increases 2,552 1,362 2,552 1,547 
Number of earnings decreases 2,968 1,976 2,968 2,102 
     
% correctly predicted 61.90 67.50 62.26 66.90 
% of predicted increases that are actual earnings increases 60.10 65.64 60.05 64.50 
AUC (%) 67.52 68.62 67.54 68.66 
Bootstrap p-value for AUC vs. 50% <0.01 <0.01 <0.01 <0.01 
 
 
This table presents a summary of prediction performance using different probability cutoffs. The full prediction 
sample consists of 5,520 firm-year observations from 2015 to 2018. For each method of random forest and 
stochastic gradient boosting, two sets of probability thresholds are considered. In the first set of probability 
thresholds, 𝑃𝑃𝑟𝑟� > 0.5 and 𝑃𝑃𝑟𝑟� ≤ 0.5, we assign stocks with predicted probability of an increase in next year’s 
earnings greater than (less than or equal to) 0.5 to the long (short) position. In the second set of probability 
thresholds, 𝑃𝑃𝑟𝑟� ≥ 0.6 and 𝑃𝑃𝑟𝑟� ≤ 0.4, we assign stocks with predicted probability of an increase in next year’s 
earnings greater than or equal to 0.6 (less than or equal to 0.4) to the long (short) position. The AUC does not 
depend on the thresholds, but varies with the sample and the model. The bootstrap p-value is the proportion of 
10,000 bootstrap AUCs that are below 50%. We use a bootstrap sample with the same size as the original sample 
to compute each bootstrap AUC. 
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Table 6 Importance of Predictors 
 
Panel A: Top 10 most important predictors 

Random forests Stochastic gradient boosting 
OperatingIncomeLoss  t - 1 
NetIncomeLoss  t 
ComprehensiveIncomeNetOfTax  t - 1 
ComprehensiveIncomeNetOfTax  t 
OperatingIncomeLoss  t 
NetIncomeLoss  t - 1 
EarningsPerShareBasic  t - 1 
EarningsPerShareDiluted  t - 1 
EarningsPerShareDiluted  t 
IncomeLossFromContinuingOperationsBeforeIncomeTaxesMinorityInterestAndIncomeLossFromEquityMethod
Investments  t - 1 

RetainedEarningsAccumulatedDeficit  t - 1 
%∆LiabilitiesCurrent 
EarningsPerShareBasicAndDiluted  t 
OperatingIncomeLoss  t - 1 
EmployeeServiceShareBasedCompensationTaxBenefitFromCompensationExpense  t 
IncomeTaxReconciliationChangeInDeferredTaxAssetsValuationAllowance  t 
NetIncomeLoss  t 
%∆StockholdersEquity 
TreasuryStockValue  t - 1 
ShortTermInvestments  t - 1 
 

 
Panel B: Top 10 most important predictors by financial statement category (random forests) 

Balance Sheet Cash Flow Statement 
RetainedEarningsAccumulatedDeficit  t 
RetainedEarningsAccumulatedDeficit  t - 1 
%∆LiabilitiesCurrent 
%∆StockholdersEquity 
OtherAssetsNoncurrent  t - 1 
LiabilitiesCurrent  t 
AssetsCurrent  t 
OtherAssetsNoncurrent  t 
%∆EmployeeRelatedLiabilitiesCurrent 
AccumulatedOtherComprehensiveIncomeLossNetOfTax  t 

NetCashProvidedByUsedInOperatingActivities  t - 1 
NetCashProvidedByUsedInOperatingActivities  t 
ShareBasedCompensation  t 
IncomeTaxesPaid  t 
%∆DeferredIncomeTaxExpenseBenefit 
NetCashProvidedByUsedInOperatingActivitiesContinuingOperations  t 
IncreaseDecreaseInAccountsReceivable  t - 1 
NetCashProvidedByUsedInInvestingActivities  t - 1 
CashAndCashEquivalentsPeriodIncreaseDecrease  t 
%∆CashAndCashEquivalentsPeriodIncreaseDecrease 

  
Income Statement Comprehensive Income Statement 

OperatingIncomeLoss  t - 1 
NetIncomeLoss  t 
OperatingIncomeLoss  t 
NetIncomeLoss  t - 1 
EarningsPerShareBasic  t - 1 
EarningsPerShareDiluted  t - 1 
EarningsPerShareDiluted  t 
IncomeLossFromContinuingOperationsBeforeIncomeTaxesMinorityInterestAndIncomeLossFromEquityMethod
Investments  t - 1 
EarningsPerShareBasic  t 
EarningsPerShareBasicAndDiluted  t 

ComprehensiveIncomeNetOfTax  t - 1 
ComprehensiveIncomeNetOfTax  t 
%∆ComprehensiveIncomeNetOfTax 
OtherComprehensiveIncomeLossNetOfTax  t - 1 
ComprehensiveIncomeNetOfTaxIncludingPortionAttributableToNoncontrollingInterest  t - 1 
OtherComprehensiveIncomeLossNetOfTax  t 
%∆OtherComprehensiveIncomeLossNetOfTax 
%∆OtherComprehensiveIncomeLossForeignCurrencyTransactionAndTranslationAdjustmentNetOfTax 
OtherComprehensiveIncomeLossForeignCurrencyTransactionAndTranslationAdjustmentNetOfTax  t 
ComprehensiveIncomeNetOfTaxIncludingPortionAttributableToNoncontrollingInterest  t 
 

  
Shareholders’ Equity Statement Footnotes 

AdjustmentsToAdditionalPaidInCapitalSharebasedCompensationRequisiteServicePeriodRecognitionValue  t 
CommonStockSharesOutstanding  t 
TreasuryStockValue  t - 1 
%∆CommonStockSharesOutstanding 
TreasuryStockValue  t 
CommonStockSharesOutstanding  t - 1 
AdjustmentsToAdditionalPaidInCapitalSharebasedCompensationRequisiteServicePeriodRecognitionValue  t - 1 
%∆AdjustmentsToAdditionalPaidInCapitalSharebasedCompensationRequisiteServicePeriodRecognitionValue 
%∆TreasuryStockValue 
%∆StockholdersEquityIncludingPortionAttributableToNoncontrollingInterest 

DeferredTaxAssetsValuationAllowance  t 
IncomeLossFromContinuingOperationsBeforeIncomeTaxesDomestic  t 
IncomeTaxReconciliationIncomeTaxExpenseBenefitAtFederalStatutoryIncomeTaxRate  t 
IncomeLossFromContinuingOperationsBeforeIncomeTaxesDomestic  t - 1 
DeferredTaxAssetsValuationAllowance  t - 1 
IncomeTaxReconciliationIncomeTaxExpenseBenefitAtFederalStatutoryIncomeTaxRate  t - 1 
CurrentIncomeTaxExpenseBenefit  t 
CurrentFederalTaxExpenseBenefit  t 
CurrentFederalTaxExpenseBenefit  t - 1 
CurrentIncomeTaxExpenseBenefit  t - 1 
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Panel C: Top 10 most important predictors by financial statement category (stochastic gradient boosting) 
Balance Sheet Cash Flow Statement 

RetainedEarningsAccumulatedDeficit  t - 1 
%∆LiabilitiesCurrent 
%∆StockholdersEquity 
ShortTermInvestments  t - 1 
%∆EmployeeRelatedLiabilitiesCurrent 
AccountsPayableCurrent  t - 1 
AccruedIncomeTaxesCurrent  t - 1 
%∆AccruedIncomeTaxesCurrent 
LongTermDebtAndCapitalLeaseObligations  t - 1 
TradingSecurities  t - 1 

PaymentsForRepurchaseOfCommonStock  t - 1 
%∆ShareBasedCompensation 
PaymentsForRepurchaseOfCommonStock  t 
EffectOfExchangeRateOnCashAndCashEquivalents  t 
IncomeTaxesPaid  t 
ProceedsFromSaleOfAvailableForSaleSecurities  t - 1 
NetCashProvidedByUsedInInvestingActivities  t - 1 
%∆IncomeTaxesPaid 
NetCashProvidedByUsedInInvestingActivities  t 
ProceedsFromInsuranceSettlementInvestingActivities  t - 1 

  
Income Statement Comprehensive Income Statement 

EarningsPerShareBasicAndDiluted  t 
OperatingIncomeLoss  t - 1 
NetIncomeLoss  t 
%∆IncomeLossFromContinuingOperationsBeforeIncomeTaxesMinorityInterestAndIncomeLossFromEquityMet
hodInvestments 
%∆NetIncomeLoss 
BusinessCombinationAcquisitionRelatedCosts  t - 1 
EarningsPerShareBasic  t - 1 
ProfitLoss  t 
AntidilutiveSecuritiesExcludedFromComputationOfEarningsPerShareAmount  t 
NetIncomeLossAvailableToCommonStockholdersBasic  t 

ComprehensiveIncomeNetOfTax  t - 1 
OtherComprehensiveIncomeLossForeignCurrencyTransactionAndTranslationAdjustmentNetOfTax  t 
%∆OtherComprehensiveIncomeLossNetOfTaxPortionAttributableToParent 
OtherComprehensiveIncomeLossNetOfTax  t 
OtherComprehensiveIncomeLossNetOfTaxPortionAttributableToParent  t 
%∆OtherComprehensiveIncomeUnrealizedHoldingGainLossOnSecuritiesArisingDuringPeriodTax 
OtherComprehensiveIncomeUnrealizedHoldingGainLossOnSecuritiesArisingDuringPeriodTax  t - 1 
OtherComprehensiveIncomeLossDerivativesQualifyingAsHedgesNetOfTax  t - 1 
OtherComprehensiveIncomeUnrealizedHoldingGainLossOnSecuritiesArisingDuringPeriodNetOfTax  t - 1 
OtherComprehensiveIncomeLossPensionAndOtherPostretirementBenefitPlansNetUnamortizedGainLossArisin
gDuringPeriodBeforeTax  t - 1 

  
Shareholders’ Equity Statement Footnotes 

TreasuryStockValue  t - 1 
StockIssuedDuringPeriodValueNewIssues  t 
StockIssuedDuringPeriodValueNewIssues  t - 1 
StockholdersEquityOther  t - 1 

StockIssuedDuringPeriodValueStockOptionsExercised  t 
%∆StockIssuedDuringPeriodValueNewIssues 
%∆DividendsCommonStockCash 
TreasuryStockValue  t 
%∆CommonStockDividendsPerShareDeclared 
%∆TreasuryStockValue 
 

EmployeeServiceShareBasedCompensationTaxBenefitFromCompensationExpense  t 
IncomeTaxReconciliationChangeInDeferredTaxAssetsValuationAllowance  t 
%∆AllocatedShareBasedCompensationExpense 
UndistributedEarningsOfForeignSubsidiaries  t 
CurrentForeignTaxExpenseBenefit  t 
%∆ShareBasedCompensationArrangementByShareBasedPaymentAwardOptionsOutstandingNumber 
%∆DeferredTaxAssetsNetNoncurrent 
%∆CapitalLeasesLesseeBalanceSheetAssetsByMajorClassAccumulatedDeprecation 
%∆ShareBasedCompensationArrangementByShareBasedPaymentAwardOptionsOutstandingWeightedAverage
ExercisePrice 
UnrecognizedTaxBenefitsDecreasesResultingFromSettlementsWithTaxingAuthorities  t 

  

 
Panel A provides a list of top 10 most important predictors for random forests and stochastic gradient boosting. Panel B presents a list of top 10 most important 
predictors by financial statement category for random forests. Panel C presents a list of top 10 most important predictors by financial statement category for 
stochastic gradient boosting. Each predictor is classified into balance sheet, cash flow statement, income statement, comprehensive income statement, 
shareholders’ equity statement, or footnotes. Importance of a predictor is computed as the decrease in the AUC when that variable is randomly shuffled. 

 
 
  



60 
 

Table 7 Additional Analyses for Out-of-sample Prediction Performance 
  

Panel A: Using detailed financial data from Compustat 
  

Random forests 
Stochastic gradient 

boosting 
Probability thresholds     
 Long 𝑃𝑃𝑟𝑟� > 0.5 𝑃𝑃𝑟𝑟� ≥ 0.6 𝑃𝑃𝑟𝑟� > 0.5 𝑃𝑃𝑟𝑟� ≥ 0.6 
 Short 𝑃𝑃𝑟𝑟� ≤ 0.5 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.5 𝑃𝑃𝑟𝑟� ≤ 0.4 
     
AUC (%) 67.50 69.40 67.39 68.66 
Bootstrap p-value for AUC vs. 50% <0.01 <0.01 <0.01 <0.01 

 
Panel B: Temporal changes in data quality 

  
Random forests 

Stochastic gradient 
boosting 

Probability thresholds     
 Long 𝑃𝑃𝑟𝑟� > 0.6 𝑃𝑃𝑟𝑟� ≥ 0.6 𝑃𝑃𝑟𝑟� > 0.6 𝑃𝑃𝑟𝑟� ≥ 0.6 
 Short 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.4 
     
Period Early Late Early Late 
AUC (%) 66.96 70.88 68.86 69.98 
Bootstrap p-value for AUC vs. 50% <0.01 <0.01 <0.01 <0.01 
Bootstrap p-value for AUC difference 0.049 0.307 

 
Panel C: Partition on firm-level data quality  

  
Random forests 

Stochastic gradient 
boosting 

Probability thresholds     
 Long 𝑃𝑃𝑟𝑟� > 0.6 𝑃𝑃𝑟𝑟� ≥ 0.6 𝑃𝑃𝑟𝑟� > 0.6 𝑃𝑃𝑟𝑟� ≥ 0.6 
 Short 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.4 
     
Data quality Low High Low High 
AUC (%) 65.99 70.82 64.70 71.83 
Bootstrap p-value for AUC vs. 50% <0.01 <0.01 <0.01 <0.01 
Bootstrap p-value for AUC difference <0.01 <0.01 

 
Panel A presents AUCs of using Compustat as an alternative source of detailed financial information to XBRL. The 
bootstrap p-value for AUC vs. 50% is the proportion of 10,000 bootstrap AUCs that are below 50%. We use a 
bootstrap sample with the same size as the original sample to compute each bootstrap AUC. Panel B shows AUCs of 
two subsamples by period. The early period is 2015 and the late period is 2016-2018. The bootstrap p-value for 
AUC difference is the proportion of 10,000 bootstrap AUC differences that are below zero. We use a bootstrap 
sample with the same size as the original subsample to compute the bootstrap AUC for each subsample and the 
AUC difference between the two subsamples. Panel C shows AUCs of two subsamples based on a firm-level data 
quality measure. High (low) data quality means the proportion of custom and uncommon standard tags in a 
submission is below (above) the year median value.  
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Table 8 Size-Adjusted Returns 
Random forests 

𝑃𝑃𝑟𝑟�  portfolio 𝑃𝑃𝑟𝑟�  values N % correctly predicted 12-month SAR (%)  
1 𝑃𝑃𝑟𝑟� ≤ 0.1 31 83.87 -7.71  
2 0.1 < 𝑃𝑃𝑟𝑟� ≤ 0.2  336 79.17 -0.53  
3 0.2 < 𝑃𝑃𝑟𝑟� ≤ 0.3  1,009 69.87 1.88  
4 0.3 < 𝑃𝑃𝑟𝑟� ≤ 0.4 1,473 59.27 1.71  
5 0.4 < 𝑃𝑃𝑟𝑟� ≤ 0.5 1,432 49.09 1.70  
6 0.5 < 𝑃𝑃𝑟𝑟� ≤ 0.6 754 61.67 3.72  
7 0.6 < 𝑃𝑃𝑟𝑟� ≤ 0.7 266 71.05 5.68  
8 0.7 < 𝑃𝑃𝑟𝑟� ≤ 0.8 150 84.00 15.36  
9 𝑃𝑃𝑟𝑟� > 0.8 69 92.75 23.90  

      
Hedge portfolio      
 Long 𝑃𝑃𝑟𝑟� > 0.5   5.02*** (<0.0001)  Short 𝑃𝑃𝑟𝑟� ≤ 0.5   
Perfect foresight    12.97  
      
Hedge portfolio      
 Long 𝑃𝑃𝑟𝑟� ≥ 0.6   9.43*** (<0.0001)  Short 𝑃𝑃𝑟𝑟� ≤ 0.4   
Perfect foresight    12.85  

Stochastic gradient boosting 
𝑃𝑃𝑟𝑟�  portfolio 𝑃𝑃𝑟𝑟�  values N % correctly predicted 12-month SAR (%)  

1 𝑃𝑃𝑟𝑟� ≤ 0.2  33 87.88 6.26  
2 0.2 < 𝑃𝑃𝑟𝑟� ≤ 0.3  1,141 73.09 0.59  
3 0.3 < 𝑃𝑃𝑟𝑟� ≤ 0.4 1,908 58.96 1.61  
4 0.4 < 𝑃𝑃𝑟𝑟� ≤ 0.5 1,323 49.66 1.45  
5 0.5 < 𝑃𝑃𝑟𝑟� ≤ 0.6 548 61.86 4.34  
6 0.6 < 𝑃𝑃𝑟𝑟� ≤ 0.7 284 73.94 9.45  
7 0.7 < 𝑃𝑃𝑟𝑟� ≤ 0.8 209 84.21 14.27  
8 𝑃𝑃𝑟𝑟� > 0.8 74 90.54 10.36  

      
Hedge portfolio      
 Long 𝑃𝑃𝑟𝑟� > 0.5   6.57*** (<0.0001)  Short 𝑃𝑃𝑟𝑟� ≤ 0.5   
Perfect foresight    12.97  
      
Hedge portfolio      
 Long 𝑃𝑃𝑟𝑟� ≥ 0.6   

9.74*** (<0.0001)  Short 𝑃𝑃𝑟𝑟� ≤ 0.4   
Perfect foresight    13.03  
 
This table presents 12-month size-adjusted returns on portfolios based on 𝑃𝑃𝑟𝑟� , the estimated probability of an 
increase in next year’s earnings in the test period (2015-2018). For each portfolio, the number of observations 
(N), the proportion of accurate predictions (% correctly predicted), and 12-month size-adjusted return (SAR) are 
reported. % correctly predicted is the proportion of observations with a correct prediction using 𝑃𝑃𝑟𝑟� = 0.5 as a 
cutoff. We consider two hedge portfolios. The first hedge portfolio takes a long (short) position in stocks with 
𝑃𝑃𝑟𝑟� > 0.5 (≤ 0.5). The second hedge portfolio takes a long (short) position in stocks with 𝑃𝑃𝑟𝑟� ≥ 0.6 (≤ 0.4). The 
resulting 12-month size-adjusted return is reported for each hedge portfolio. The p-values in parentheses pertain 
to 12-month size-adjusted abnormal returns and are calculated from a bootstrap distribution of 10,000 pseudo 
abnormal returns under the null hypothesis that our predictors do not have any predictive power. For each of 
10,000 iterations, we randomly assign stocks to the long and short positions and calculate a pseudo 12-month 
size-adjusted return. The 12-month size-adjusted returns for the perfect foresight strategy are calculated from 
taking a long (short) position in stocks with an increase (a decrease) in next year’s earnings. ***, **, and * denote 
statistical significance at the 0.01, 0.05, and 0.1 levels, respectively. 
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Table 9 Size-Adjusted Returns Net of Transaction Costs 
Random forest 

𝑃𝑃𝑟𝑟�  portfolio 𝑃𝑃𝑟𝑟�  values N % correctly predicted 12-month SAR (%)  
1 𝑃𝑃𝑟𝑟� ≤ 0.1 31 83.87 -8.08  
2 0.1 < 𝑃𝑃𝑟𝑟� ≤ 0.2  336 79.17 -1.01  3 0.2 < 𝑃𝑃𝑟𝑟� ≤ 0.3  1,009 69.87 1.41 
4 0.3 < 𝑃𝑃𝑟𝑟� ≤ 0.4 1,473 59.27 1.23  
5 0.4 < 𝑃𝑃𝑟𝑟� ≤ 0.5 1,432 49.09 1.15  
6 0.5 < 𝑃𝑃𝑟𝑟� ≤ 0.6 754 61.67 3.08  
7 0.6 < 𝑃𝑃𝑟𝑟� ≤ 0.7 266 71.05 4.82  8 0.7 < 𝑃𝑃𝑟𝑟� ≤ 0.8 150 84.00 14.32 
9 𝑃𝑃𝑟𝑟� > 0.8 69 92.75 23.02  

      
Hedge portfolio      
 Long 𝑃𝑃𝑟𝑟� > 0.5   4.77*** (<0.0001)  Short 𝑃𝑃𝑟𝑟� ≤ 0.5   
Perfect foresight    12.95  
      
Hedge portfolio      
 Long 𝑃𝑃𝑟𝑟� ≥ 0.6   8.98*** (<0.0001)  Short 𝑃𝑃𝑟𝑟� ≤ 0.4   
Perfect foresight    12.80  

Stochastic gradient boosting 
𝑃𝑃𝑟𝑟�  portfolio 𝑃𝑃𝑟𝑟�  values N % correctly predicted 12-month SAR (%)  

1 𝑃𝑃𝑟𝑟� ≤ 0.2  33 87.88 5.68  
2 0.2 < 𝑃𝑃𝑟𝑟� ≤ 0.3  1,141 73.09 0.10  
3 0.3 < 𝑃𝑃𝑟𝑟� ≤ 0.4 1,908 58.96 1.13  
4 0.4 < 𝑃𝑃𝑟𝑟� ≤ 0.5 1,323 49.66 0.94  
5 0.5 < 𝑃𝑃𝑟𝑟� ≤ 0.6 548 61.86 3.65  
6 0.6 < 𝑃𝑃𝑟𝑟� ≤ 0.7 284 73.94 8.59  
7 0.7 < 𝑃𝑃𝑟𝑟� ≤ 0.8 209 84.21 13.28  
8 𝑃𝑃𝑟𝑟� > 0.8 74 90.54 9.38  

      
Hedge portfolio      
 Long 𝑃𝑃𝑟𝑟� > 0.5   6.25*** (<0.0001)  Short 𝑃𝑃𝑟𝑟� ≤ 0.5   
Perfect foresight    12.95  
      
Hedge portfolio      
 Long 𝑃𝑃𝑟𝑟� ≥ 0.6   9.30*** (<0.0001)  Short 𝑃𝑃𝑟𝑟� ≤ 0.4   
Perfect foresight    12.98  

 
This table presents 12-month size-adjusted returns net of transaction costs on portfolios based on 𝑃𝑃𝑟𝑟� , the estimated 
probability of an increase in next year’s earnings in the test period (2015-2018). The transaction costs are estimated 
as the effective bid-ask spread following Novy-Marx and Velikov (2016). For each portfolio, the number of 
observations (N), the proportion of accurate predictions (% correctly predicted), and 12-month size-adjusted return 
(SAR) are reported. % correctly predicted is the proportion of observations with a correct prediction using 𝑃𝑃𝑟𝑟� = 0.5 
as a cutoff. We consider two hedge portfolios. The first hedge portfolio takes a long (short) position in stocks with 
𝑃𝑃𝑟𝑟� > 0.5 (≤ 0.5). The second hedge portfolio takes a long (short) position in stocks with 𝑃𝑃𝑟𝑟� ≥ 0.6 (≤ 0.4). The 
resulting 12-month size-adjusted return is reported for each hedge portfolio. The p-values in parentheses pertain to 
12-month size-adjusted abnormal returns and are calculated from a bootstrap distribution of 10,000 pseudo abnormal 
returns under the null hypothesis that our predictors do not have any predictive power. For each of 10,000 iterations, 
we randomly assign stocks to the long and short positions and calculate a pseudo 12-month size-adjusted return. The 
12-month size-adjusted returns for the perfect foresight strategy are calculated from taking a long (short) position in 
stocks with an increase (a decrease) earnings in the next year. ***, **, and * denote statistical significance at the 
0.01, 0.05, and 0.1 levels, respectively. 
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Table 10 Additional Analyses For Abnormal Returns 
 

Panel A: Alternative earnings measures 
 ROE t + 1 EBIT t + 1 
 RF SGB RF SGB 
Probability thresholds     
 Long 𝑃𝑃𝑟𝑟� ≥ 0.6 𝑃𝑃𝑟𝑟� ≥ 0.6 𝑃𝑃𝑟𝑟� ≥ 0.6 𝑃𝑃𝑟𝑟� ≥ 0.6 
 Short 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.4 
     
SAR net of transaction costs (%) 6.46*** 5.43*** 8.92*** 8.52*** 
p-value (<0.0001) (<0.0001) (<0.0001) (<0.0001) 
Perfect foresight SAR net of transaction costs (%) 9.98 10.68 14.32 13.35 

 
 
Panel B: Excluding microcaps 

 Random forests Stochastic gradient boosting 
Probability thresholds   
 Long 𝑃𝑃𝑟𝑟� ≥ 0.6 𝑃𝑃𝑟𝑟� ≥ 0.6 
 Short 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.4 
   
SAR net of transaction costs (%) 7.65*** 7.34*** 
p-value (<0.0001) (<0.0001) 
Perfect foresight SAR net of transaction costs (%) 10.69 10.74 
   

 
Panel C: Controlling for five-factors 

Dep. Var. = 𝑅𝑅𝑝𝑝𝑖𝑖 − 𝑅𝑅𝐹𝐹𝑖𝑖 
 Random forests Stochastic gradient boosting 
 (1) (2) (3) (4) 

Intercept 0.79** 0.66* 0.94*** 0.69** 
 (0.34) (0.33) (0.27) (0.31) 

𝑅𝑅𝑟𝑟𝑑𝑑 − 𝑅𝑅𝐹𝐹𝑑𝑑 0.01 -0.06 0.05 -0.04 
 (0.11) (0.14) (0.13) (0.18) 

𝑆𝑆𝑟𝑟𝐵𝐵𝑖𝑖 0.33** 0.52*** 0.53*** 0.67*** 
 (0.14) (0.16) (0.13) (0.17) 

𝐻𝐻𝑟𝑟𝐿𝐿𝑖𝑖  -0.54** -0.30 -0.56** -0.31 
 (0.25) (0.24) (0.22) (0.21) 

𝑅𝑅𝑟𝑟𝑊𝑊𝑖𝑖 -0.26 -0.10 -0.34 -0.22 
 (0.23) (0.28) (0.21) (0.29) 

𝐶𝐶𝑟𝑟𝑆𝑆𝑖𝑖 -0.32 -0.03 0.09 0.23 
 (0.28) (0.26) (0.25) (0.24) 

Industry-adjusted No Yes No Yes 
N 51 51 51 51 
R2 0.32 0.19 0.37 0.26 

 
Panel A presents 12-month size-adjusted returns (SAR) net of transaction costs on portfolios based on 𝑃𝑃𝑟𝑟� , the 
estimated probability of an increase in next year’s earnings using two alternative earnings measures (ROE t + 1 and 
EBIT t + 1) in the test period (2015-2018). ROE is defined as net income divided by book value of equity at the fiscal 
year-end. EBIT is defined as earnings before interest and tax deflated by the number of common shares outstanding 
at the fiscal year-end. The transaction costs are estimated as the effective bid-ask spread following Novy-Marx and 
Velikov (2016). Panel B presents 12-month size-adjusted returns (SAR) of net of transaction costs on portfolios 
based on 𝑃𝑃𝑟𝑟� , the estimated probability of an increase in next year’s earnings, excluding microcaps. Microcaps are 
defined as those with market capitalization of less than the 20th percentile of NYSE market capitalization. For each 
method of random forest and stochastic gradient boosting, long (short) positions are taken in stocks with predicted 
probability of an increase in next year’s earnings greater than or equal to 0.6 (less than or equal to 0.4). The p-values 
in parentheses are calculated from a bootstrap distribution of 10,000 pseudo abnormal returns under the null 
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hypothesis that our predictors do not have any predictive power. For each of 10,000 iterations, we randomly assign 
stocks to the long and short positions and calculate a pseudo 12-month size-adjusted return net of transaction costs. 
The 12-month size-adjusted returns net of transaction costs for the perfect foresight strategy are calculated from 
taking long (short) positions in stocks with an increase (a decrease) in next year’s earnings. Panel C presents results 
from regressing excess returns of our trading strategies on Fama-French (2015)  five-factors. For each method of 
random forest and stochastic gradient boosting, long (short) positions are taken in stocks with predicted probability 
of an increase in next year’s earnings greater than or equal to 0.6 (less than or equal to 0.4). In columns (1) and (3), 
the dependent variable is the monthly hedge portfolio returns in excess of 1-month T-bill rate. In columns (2) and 
(4), we adjust the dependent variable by subtracting Fama-French 30 industry monthly returns for each stock in the 
portfolio. The explanatory variables are the market returns in excess of 1-month T-bill rate on market (𝑅𝑅𝑟𝑟𝑑𝑑 − 𝑅𝑅𝐹𝐹𝑑𝑑), 
and returns on the size (SMB), book-to-market (HML), profitability (RMW), and investment (CMA) portfolios. 
Returns are in percentage. Newey-West standard errors are presented in parentheses.  ***, **, and * denote 
statistical significance at the 0.01, 0.05, and 0.10 levels, respectively. 
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Table 11 Analysts’ Earnings Forecasts 

 
Panel A: Predicting the direction of one-year-ahead earnings changes and abnormal returns 
 

 (1) (2) (3) 
 Analyst forecasts Random forests Stochastic gradient boosting 
Long Forecast an increase 𝑃𝑃𝑟𝑟� ≥ 0.6 𝑃𝑃𝑟𝑟� ≥ 0.6 
Short Forecast a decrease 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.4 
Hedge portfolio SAR (%) 2.49 9.43 9.74 
AUC (%) 63.62 68.62 68.66 
  (2) – (1) (3) – (1) 
Bootstrap p-value for AUC difference  <0.01 <0.01 

 
Panel B: Analysts’ forecast errors 

Dep. Var. = Analysts’ forecast errors 
 Random forests Stochastic gradient boosting 
 (1) (2) 

Intercept -1.10*** -1.17*** 
 (0.22) (0.23) 

 𝑃𝑃𝑟𝑟�  0.48* 0.59** 
 (0.26) (0.29) 

log(MKVLT) 0.09*** 0.10*** 
 (0.02) (0.02) 

BTM -0.08 -0.08 
 (0.07) (0.07) 

N 4,256 4,256 
R2 0.006 0.006 

 
Panel A column (1) shows the AUC for analysts’ prediction of an earnings increase and 12-month size-adjusted returns 
(SAR) on a hedge portfolio with a long (short) position for stocks with a predicted earnings increase (decrease). We 
take the consensus (i.e., median) analyst forecast in the month following the portfolio formation and compare it with 
the realized earnings in fiscal year t to find out whether analysts forecast an earnings increase or decrease. The results 
in columns (2)-(3) are reproduced from Tables 5 and 8. Panel B presents results from regressing analysts’ forecast 
errors on the predicted probability of increasing earnings (𝑃𝑃𝑟𝑟�), log of market value of equity (log(MKVLT)) and book-
to-market value of equity (BTM). Analysts’ forecast errors are calculated as the actual earnings in fiscal year t + 1 
minus the consensus (i.e., median) analyst forecast in the month following the portfolio formation, scaled by the close 
price on the portfolio formation date, multiplied by 100. Standard errors are presented in parentheses. ***, **, and * 
denote statistical significance at the 0.01, 0.05, and 0.10 levels, respectively. 
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Online Appendix 

Fundamental Analysis of Detailed Financial Data:  
A Machine Learning Approach 

 
 
 This appendix provides supplemental materials that support the manuscript “Fundamental 
Analysis of Detailed Financial Data: A Machine Learning Approach.”  
 
The materials include the following tables.  
 
Table A1: Predicting direction of earnings changes without requiring pro forma earnings 
Table A2: Dropping the %∆ variables 
Table A3: Classification of tags associated with multiple financial statements 
Table A4: Using the direction of analysts’ forecast errors as a proxy for earnings changes 
Table A5: Chosen parameter values 
Table A6: Falsification tests for temporal changes in data quality using detailed financial data 
from Compustat  
Table A7: Summary Statistics of Estimated Transaction Costs 
 
  



2 
 

Table A1: Predicting direction of earnings changes without requiring pro forma earnings 
 
Panel A presents descriptive statistics between our sample and the sample without requiring pro forma earnings. 
ROA is the return on assets, MKVLT is market capitalization, BTM is book-to-market, and LEV is book leverage. 
Panel B presents out-of-sample prediction performance when we use the new sample and US GAAP earnings to 
compute the direction of earnings changes. For each method of random forest and stochastic gradient boosting, two 
sets of probability thresholds are considered. In the first set of probability thresholds, 𝑃𝑃𝑟𝑟� > 0.5 and 𝑃𝑃𝑟𝑟� ≤ 0.5, we 
assign stocks with predicted probability of an increase in next year’s earnings greater than (less than or equal to) 0.5 
to the long (short) position. In the second set of probability thresholds, 𝑃𝑃𝑟𝑟� ≥ 0.6 and 𝑃𝑃𝑟𝑟� ≤ 0.4, we assign stocks 
with predicted probability of an increase in next year’s earnings greater than or equal to 0.6 (less than or equal to 
0.4) to the long (short) position. The resulting 12-month size-adjusted return (SAR) is reported for each hedge 
portfolio. The AUC does not depend on the thresholds, but varies with the sample and the model. The bootstrap p-
value is the proportion of 10,000 bootstrap AUCs that are below 50%. We use a bootstrap sample with the same size 
as the original sample to compute each bootstrap AUC.  
 
Panel A: Descriptive statistics  

 Our sample (N=8,149)  Without requiring pro forma earnings (N=20,512) 
 Mean Q1 Median Q3  Mean Q1 Median Q3 
ROA 0.013 0.002 0.030 0.065  -0.061 -0.031 0.014 0.056 
MKVLT 7.692 6.510 7.645 8.870  6.707 5.255 6.745 8.108 
BTM 0.499 0.221 0.398 0.677  0.576 0.225 0.454 0.781 
LEV 0.230 0.043 0.203 0.349  0.211 0.008 0.139 0.340 

 
Panel B: Out-of-sample prediction performance 

  
Random forests 

Stochastic gradient 
boosting 

Probability thresholds     
 Long 𝑃𝑃𝑟𝑟� > 0.5 𝑃𝑃𝑟𝑟� ≥ 0.6 𝑃𝑃𝑟𝑟� > 0.5 𝑃𝑃𝑟𝑟� ≥ 0.6 
 Short 𝑃𝑃𝑟𝑟� ≤ 0.5 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.5 𝑃𝑃𝑟𝑟� ≤ 0.4 
     
AUC (%) 60.85 62.47 60.69 61.66 
Bootstrap p-value for AUC vs. 50% <0.01 <0.01 <0.01 <0.01 
Hedge portfolio SAR (%) 3.32 4.50 3.08 6.39 
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Table A2: Dropping the %∆ variables 
 
This table presents out-of-sample prediction performance when we drop the 4,627 percentage change predictors (as 
shown in Table 3 Panel A). For each method of random forest and stochastic gradient boosting, two sets of 
probability thresholds are considered. In the first set of probability thresholds, 𝑃𝑃𝑟𝑟� > 0.5 and 𝑃𝑃𝑟𝑟� ≤ 0.5, we assign 
stocks with predicted probability of an increase in next year’s earnings greater than (less than or equal to) 0.5 to the 
long (short) position. In the second set of probability thresholds, 𝑃𝑃𝑟𝑟� ≥ 0.6 and 𝑃𝑃𝑟𝑟� ≤ 0.4, we assign stocks with 
predicted probability of an increase in next year’s earnings greater than or equal to 0.6 (less than or equal to 0.4) to 
the long (short) position. The resulting 12-month size-adjusted return (SAR) is reported for each hedge portfolio. 
The AUC does not depend on the thresholds, but varies with the sample and the model. The bootstrap p-value is the 
proportion of 10,000 bootstrap AUCs that are below 50%. We use a bootstrap sample with the same size as the 
original sample to compute each bootstrap AUC. 
 
 

  
Random forests 

Stochastic gradient 
boosting 

Probability thresholds     
 Long 𝑃𝑃𝑟𝑟� > 0.5 𝑃𝑃𝑟𝑟� ≥ 0.6 𝑃𝑃𝑟𝑟� > 0.5 𝑃𝑃𝑟𝑟� ≥ 0.6 
 Short 𝑃𝑃𝑟𝑟� ≤ 0.5 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.5 𝑃𝑃𝑟𝑟� ≤ 0.4 
     
AUC (%) 68.00 69.50 67.31 68.72 
Bootstrap p-value for AUC vs. 50% <0.01 <0.01 <0.01 <0.01 
Hedge portfolio SAR (%) 5.13 9.29 6.07 10.17 
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Table A3: Classification of tags associated with multiple financial statements 
 
We classify 4,503 of 4,627 tags into five financial statements and footnote disclosures based on the U.S. GAAP 
taxonomy. The remaining 124 tags are associated with multiple financial statements. This table shows how we 
classify them into the financial statement categories. 
 

Balance Sheet 
Cash 
CashAndCashEquivalentsAtCarryingValue 
RestrictedCashAndCashEquivalents 
RestrictedCashAndCashEquivalentsAtCarryingValue 
DisposalGroupIncludingDiscontinuedOperationCashAndCashEquivalents 
DividendsPayableCurrentAndNoncurrent 
TemporaryEquityCarryingAmountIncludingPortionAttributableToNoncontrollingInterests 
RestrictedCashAndCashEquivalentsNoncurrent 
 

Income Statement 
CostOfGoodsSoldDepreciation 
CostOfGoodsSoldAmortization 
CostOfServicesDepreciation 
CostOfServicesAmortization 
InventoryWriteDown 
ProvisionForLoanAndLeaseLosses 
ResearchAndDevelopmentInProcess 
DepreciationNonproduction 
AmortizationOfAcquisitionCosts 
AmortizationOfIntangibleAssets 
AmortizationOfDeferredSalesCommissions 
AmortizationOfRegulatoryAsset 
AmortizationOfLeasedAsset 
AmortizationOfDeferredLeasingFees 
AmortizationOfNuclearFuelLease 
AmortizationOfAdvanceRoyalty 
AmortizationOfDeferredPropertyTaxes 
AmortizationOfDeferredHedgeGains 
OtherAmortizationOfDeferredCharges 
OtherDepreciationAndAmortization 
DepletionOfOilAndGasProperties 
RecapitalizationCosts 
CarryingCostsPropertyAndExplorationRights 
OtherRestructuringCosts 
RestructuringCharges 
EnvironmentalRemediationExpense 
ImpairmentOfLongLivedAssetsToBeDisposedOf 
ImpairmentOfLongLivedAssetsHeldForUse 
ImpairmentOfIntangibleAssetsIndefinitelivedExcludingGoodwill 
GoodwillImpairmentLoss 
ImpairmentOfRealEstate 
ImpairmentOfOngoingProject 
ImpairmentOfLeasehold 
ImpairmentOfIntangibleAssetsFinitelived 
ExplorationAbandonmentAndImpairmentExpense 
ImpairmentOfOilAndGasProperties 
ImpairmentLossesRelatedToRealEstatePartnerships 
DisposalGroupNotDiscontinuedOperationLossGainOnWriteDown 
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OtherAssetImpairmentCharges 
AssetImpairmentCharges 
AssetRetirementObligationAccretionExpense 
AccretionExpense 
AccretionExpenseIncludingAssetRetirementObligations 
ProductWarrantyExpense 
ProvisionForDoubtfulAccounts 
GainLossOnSaleOfProperty 
GainLossOnDispositionOfAssets 
GainLossOnSaleOfPropertyPlantEquipment 
GainLossOnDispositionOfIntangibleAssets 
EquityMethodInvestmentRealizedGainLossOnDisposal 
GainOrLossOnSaleOfStockInSubsidiary 
GainLossOnSaleOfStockInSubsidiaryOrEquityMethodInvestee 
GainLossOnSaleOfBusiness 
GainLossOnSaleOfOtherAssets 
TradingSecuritiesUnrealizedHoldingGainLoss 
MarketableSecuritiesUnrealizedGainLossExcludingOtherThanTemporaryImpairments 
TradingSecuritiesRealizedGainLoss 
AvailableforsaleSecuritiesGrossRealizedGainLossExcludingOtherThanTemporaryImpairments 
HeldtomaturitySecuritiesSoldSecurityRealizedGainLossExcludingOtherThanTemporaryImpairments 
MarketableSecuritiesRealizedGainLossExcludingOtherThanTemporaryImpairments 
MarketableSecuritiesGainLossExcludingOtherThanTemporaryImpairments 
CostmethodInvestmentsRealizedGainLossExcludingOtherThanTemporaryImpairments 
GainLossOnInvestmentsExcludingOtherThanTemporaryImpairments 
GainLossOnInvestments 
GainLossOnSecuritizationOfFinancialAssets 
DisposalGroupNotDiscontinuedOperationGainLossOnDisposal 
GainLossOnContractTermination 
PublicUtilitiesAllowanceForFundsUsedDuringConstructionAdditions 
ForeignCurrencyTransactionGainLossBeforeTax 
AmortizationOfFinancingCosts 
GainsLossesOnExtinguishmentOfDebt 
IncomeLossFromEquityMethodInvestments 
DiscontinuedOperationIncomeLossFromDiscontinuedOperationBeforeIncomeTax 
DiscontinuedOperationTaxEffectOfDiscontinuedOperation 
IncomeLossFromDiscontinuedOperationsNetOfTax 
ProfitLoss 
NetIncomeLossAttributableToRedeemableNoncontrollingInterest 
NetIncomeLossAttributableToNoncontrollingInterest 
NetIncomeLoss 
IncomeLossIncludingPortionAttributableToNoncontrollingInterest 
AmortizationOfLeaseIncentives 
AmortizationOfMortgageServicingRightsMSRs 
ProvisionForOtherCreditLosses 
ProvisionForOtherLosses 
ProvisionForLoanLeaseAndOtherLosses 
GainLossOnSaleOfEquityInvestments 
GainLossOnSaleOfDebtInvestments 
GainLossOnSaleOfDerivatives 
GainLossOnSaleOfMortgageLoans 
MortgageServicingRightsMSRImpairmentRecovery 
GainLossOnSalesOfLoansNet 
AmortizationOfDeferredLoanOriginationFeesNet 
GainLossOnSaleOfSecuritiesNet 
GainLossOnSaleOfCapitalLeasesNet 
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GainLossOnSaleOfLeasedAssetsNetOperatingLeases 
GainsLossesOnSalesOfInvestmentRealEstate 
RealizedInvestmentGainsLosses 
DeferredPolicyAcquisitionCostAmortizationExpense 
AmortizationOfValueOfBusinessAcquiredVOBA 
GainLossOnSalesOfAssetsAndAssetImpairmentCharges 
 

Comprehensive Income Statement 
OtherThanTemporaryImpairmentLossesInvestmentsPortionRecognizedInEarningsNet 
OtherComprehensiveIncomeLossNetOfTax 
ComprehensiveIncomeNetOfTaxAttributableToNoncontrollingInterest 
OtherThanTemporaryImpairmentLossesInvestmentsPortionInOtherComprehensiveIncomeLossBeforeTaxPortion
AttributableToParentAvailableforsaleSecurities 
OtherThanTemporaryImpairmentLossesInvestmentsPortionInOtherComprehensiveIncomeLossBeforeTaxIncludi
ngPortionAttributableToNoncontrollingInterestHeldtomaturitySecurities 
OtherThanTemporaryImpairmentLossesInvestmentsPortionInOtherComprehensiveIncomeLossNetOfTaxPortion
AttributableToParentAvailableforsaleSecurities 
OtherThanTemporaryImpairmentLossesInvestmentsPortionInOtherComprehensiveIncomeLossNetOfTaxIncludin
gPortionAttributableToNoncontrollingInterestAvailableforsaleSecurities 
OtherThanTemporaryImpairmentLossesInvestmentsPortionInOtherComprehensiveIncomeLossTaxPortionAttribu
tableToParentAvailableforsaleSecurities 
OtherThanTemporaryImpairmentLossesInvestmentsPortionInOtherComprehensiveIncomeLossTaxIncludingPorti
onAttributableToNoncontrollingInterestHeldtomaturitySecurities 
 

Shareholders’ Equity Statement 
TreasuryStockValue 
StockholdersEquityIncludingPortionAttributableToNoncontrollingInterest 
PreferredStockRedemptionPremium 
PreferredStockRedemptionDiscount 
PreferredStockSharesOutstanding 
CommonStockSharesOutstanding 
CommonStockDividendsPerShareDeclared 
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Table A4: Using the sign of analysts’ forecast errors as a proxy for the direction of earnings 
changes 
 
This table presents out-of-sample prediction performance when we use the sign of analysts’ forecast errors as a 
proxy for the direction of earnings changes. Specifically, we compare actual earnings in fiscal year t + 1 with the 
consensus analyst forecast issued in the month following the earnings release for fiscial year t to define an earnings 
increase/decrease. For each method of random forest and stochastic gradient boosting, two sets of probability 
thresholds are considered. In the first set of probability thresholds, 𝑃𝑃𝑟𝑟� > 0.5 and 𝑃𝑃𝑟𝑟� ≤ 0.5, we assign stocks with 
predicted probability of an increase in next year’s earnings greater than (less than or equal to) 0.5 to the long (short) 
position. In the second set of probability thresholds, 𝑃𝑃𝑟𝑟� ≥ 0.6 and 𝑃𝑃𝑟𝑟� ≤ 0.4, we assign stocks with predicted 
probability of an increase in next year’s earnings greater than or equal to 0.6 (less than or equal to 0.4) to the long 
(short) position. The resulting 12-month size-adjusted return (SAR) is reported for each hedge portfolio. The AUC 
does not depend on the thresholds, but varies with the sample and the model. The bootstrap p-value is the proportion 
of 10,000 bootstrap AUCs that are below 50%. We use a bootstrap sample with the same size as the original sample 
to compute each bootstrap AUC. 
 

  
Random forests 

Stochastic gradient 
boosting 

Probability thresholds     
 Long 𝑃𝑃𝑟𝑟� > 0.5 𝑃𝑃𝑟𝑟� ≥ 0.6 𝑃𝑃𝑟𝑟� > 0.5 𝑃𝑃𝑟𝑟� ≥ 0.6 
 Short 𝑃𝑃𝑟𝑟� ≤ 0.5 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.5 𝑃𝑃𝑟𝑟� ≤ 0.4 
     
AUC (%) 57.38 58.64 56.57 58.13 
Bootstrap p-value for AUC vs. 50% <0.01 <0.01 <0.01 <0.01 
Hedge portfolio SAR (%) 2.52 11.20 4.24 8.81 
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Table A5: Chosen parameter values 

This table shows the chosen parameter values for the two machine learning methods for each test year. 

Random forests 
 2015 2016 2017 2018 
# of variables (k) 114 116 115 120 
# of trees (m) 1,000 1,000 1,000 1,000 
Min. # of obs. In a leaf (b) 1 3 2 3 
     

Stochastic gradient boosting 
 2015 2016 2017 2018 
# of trees (m) 800 700 500 700 
Learning rate (ρ) 0.005 0.01 0.01 0.005 
Tree depth (L) 4 3 3 4 
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Table A6: Falsification tests for temporal changes in data quality using detailed financial 
data from Compustat  
 
This table shows AUCs of two subsamples by period using detailed financial data from Compustat, which do not 
experience the same data quality changes as XBRL documents. The early period is 2015 and the late period is 2016-
2018. The bootstrap p-value for AUC difference is the proportion of 10,000 bootstrap AUC differences that are 
below zero. We use a bootstrap sample with the same size as the original subsample to compute the bootstrap AUC 
for each subsample and the AUC difference between the two subsamples. 
 

  
Random forests 

Stochastic gradient 
boosting 

Probability thresholds     
 Long 𝑃𝑃𝑟𝑟� > 0.6 𝑃𝑃𝑟𝑟� ≥ 0.6 𝑃𝑃𝑟𝑟� > 0.6 𝑃𝑃𝑟𝑟� ≥ 0.6 
 Short 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.4 𝑃𝑃𝑟𝑟� ≤ 0.4 
     
Period Early Late Early Late 
AUC (%) 69.56 69.68 67.49 67.93 
Bootstrap p-value for AUC vs. 50% <0.01 <0.01 <0.01 <0.01 
Bootstrap p-value for AUC difference 0.4774 0.4184 
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Table A7: Summary Statistics of Estimated Transaction Costs 
 
We estimate the effective bid-ask spread using a Bayesian Gibbs sampler on a generalized Roll (1984) model, as 
proposed by Hasbrouck (2009). The summary statistics of the estimated transaction costs for all stocks from 2009 to 
2019 are shown below.  
 

 
Year Mean Median Std. Dev. 
2009 0.00805 0.00454 0.01058 
2010 0.00441 0.00269 0.00532 
2011 0.00429 0.00272 0.00534 
2012 0.00412 0.00242 0.00544 
2013 0.00340 0.00211 0.00396 
2014 0.00316 0.00210 0.00324 
2015 0.00377 0.00246 0.00392 
2016 0.00391 0.00244 0.00447 
2017 0.00333 0.00208 0.00365 
2018 0.00371 0.00245 0.00366 
2019 0.00335 0.00197 0.00392 
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