Discussion of Monfort, Pegoraro, Renne, and Roussellet

"Staying at Zero with Affine Processes: A New Dynamic Term Structure Model"

Francis X. Diebold
University of Pennsylvania
(With special thanks to Leo Krippner and Minchul Shin)

Volatility Institute Stern School, NYU Seventh Annual Conference

Favorite Books

Lots of Constrained Series in Finance

"Soft" barriers:

- Exchange rate target zones
- Inflation corridors

"Hard" barriers:

- Volatilities: e.g., asset returns
- Durations: e.g., intertrade
- ▶ Rare-event counts: e.g., bankruptcies
- Nominal bond yields

Lots of Associated Constrained Processes in Financial Econometrics

- Vols: GARCH, stochastic volatility, and more
- Durations: ACD and more
- ► GAS and MEM (Creal, Koopman, and Lucas, 2013; Harvey, 2013)

What About Bond Yields?

Duffie-Kan (1996) Gaussian affine term structure model (GATSM):

State x_t is an affine diffusion under the risk-neutral measure:

$$dx_t = K(\theta - x_t)dt + \sum dW_t$$

Instantaneous risk-free rate r_t is affine in x_t :

$$r_t = \rho_0 + \rho_1' x_t$$

Duffie-Kan arbitrage-free result:

$$y_t(\tau) = -\frac{1}{\tau}B(\tau)'x_t - \frac{1}{\tau}C(\tau)$$

- Arbitrage-free
- Simple (closed-form)
- But fails to respect the ZLB

Constrained Processes for Bonds

- Square root: $dx_t = k(\theta x_t) dt + \sigma \sqrt{x_t} dW_t$ (Cox, Ingersol and Ross, 1976)
- Others: lognormal, quadratic
- Autoregressive gamma (ARG(1)) (Gourieroux and Jasiak, 2006)
- ► *ARG*0(1) (MPRR, 2015)

ARG(1)

 x_t is an ARG(1) process if $x_t|x_{t-1}$ is distributed non-central gamma with:

- ▶ Non-centrality parameter βx_{t-1}
- ▶ Scale parameter c > 0
- ▶ Degree of freedom parameter $\delta > 0$
 - Non-negative (obvious)
 - Diffusion limit is CIR (not obvious)

Simulated ARG(1) Realization

But Alas...

ARG0(1)

If $x_t \sim ARG(1)$, then

$$|x_t|z_t \sim Gamma(\delta + z_t, c)$$

 $|z_t|x_{t-1} \sim Poisson(\beta x_{t-1})$

If $x_t \sim ARG0(1)$, then

$$x_t|z_t \sim \textit{Gamma}(z_t, c)$$

 $z_t|x_{t-1} \sim \textit{Poisson}(\alpha + \beta x_{t-1})$

- ▶ ARG0 takes $\delta \to 0$, which makes $x_t = 0$ a mass point. (As $\delta \to 0$, $G(\delta, c) \to Dirac's$ delta.)
- Introduces α , which governs probability of escaping the ZLB. (Note that $\alpha = 0 \implies x_t = 0$ is an absorbing state.)

Simulated ARG0(1) Realization

ARG0 Approach

$$x_t|z_t \sim \textit{Gamma}(z_t, c)$$

 $z_t|x_{t-1} \sim \textit{Poisson}(\alpha + \beta x_{t-1})$

- 1. Arbitrage-free
- 2. Simple (closed-form)
- 3. Respects the ZLB

End of story?

Shadow-Rate Approach (Shadow/ZLB GATSM)

$$x_{s,t} = \mu(1 - \rho) + \rho x_{s,t-1} + \varepsilon_t$$
$$x_t = \max(x_{s,t}, 0)$$

- 1. Arbitrage-free
- 2. Simple (simulation)
- 3. Respects the ZLB

Shadow Rates and ZLB Rates

Shadow-Rate Approach (Shadow/ZLB GATSM)

$$x_{s,t} = \mu(1 - \rho) + \rho x_{s,t-1} + \varepsilon_t$$
$$x_t = \max(x_{s,t}, 0)$$

- Arbitrage-free
- 2. Simple (simulation)
- 3. Respects the ZLB
- 4. Sample path feature probabilities (e.g., lift-off from ZLB)
- 5. Sample path integral densities (e.g., effective stimulus)

But MPRR could also do points 4 and 5...

6. Shadow rate path and shadow yield curve

Final Thoughts on Relative Performance

Much boils down to:

- Value of the shadow rate path and shadow yield curve
- Views about "simplicity"

My balance tips slightly toward shadow/ZLB GATSM

Interesting question:

With appropriate constraints on the Gamma and Poisson processes, can MPRR "replicate" a shadow/ZLB GATSM, but without the mechanism of shadow short rates and the shadow yield curve?

