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Lots of Constrained Series in Finance

“Soft” barriers:

I Exchange rate target zones

I Inflation corridors

“Hard” barriers:

I Volatilities: e.g., asset returns

I Durations: e.g., intertrade

I Rare-event counts: e.g., bankruptcies

I Nominal bond yields
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Lots of Associated Constrained Processes
in Financial Econometrics

I Vols: GARCH, stochastic volatility, and more

I Durations: ACD and more

I GAS and MEM
(Creal, Koopman, and Lucas, 2013; Harvey, 2013)
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What About Bond Yields?

Duffie-Kan (1996) Gaussian affine term structure model (GATSM):

State xt is an affine diffusion under the risk-neutral measure:

dxt = K (θ − xt)dt + Σ dWt

Instantaneous risk-free rate rt is affine in xt :

rt = ρ0 + ρ′1xt

Duffie-Kan arbitrage-free result:

yt(τ) = −1

τ
B(τ)′xt −

1

τ
C (τ)

– Arbitrage-free
– Simple (closed-form)

– But fails to respect the ZLB
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Constrained Processes for Bonds

I Square root: dxt = k(θ − xt) dt + σ
√
xt dWt

(Cox, Ingersol and Ross, 1976)

I Others: lognormal, quadratic

I Autoregressive gamma (ARG (1))
(Gourieroux and Jasiak, 2006)

I ARG0(1)
(MPRR, 2015)
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ARG (1)

xt is an ARG (1) process if
xt |xt−1 is distributed non-central gamma with:

I Non-centrality parameter βxt−1

I Scale parameter c > 0

I Degree of freedom parameter δ > 0

– Non-negative (obvious)

– Diffusion limit is CIR (not obvious)
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Simulated ARG (1) Realization
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But Alas...
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ARG0(1)

If xt ∼ ARG (1), then

xt |zt ∼ Gamma(δ + zt , c)

zt |xt−1 ∼ Poisson(βxt−1)

If xt ∼ ARG0(1), then

xt |zt ∼ Gamma(zt , c)

zt |xt−1 ∼ Poisson(α + βxt−1)

I ARG0 takes δ → 0, which makes xt = 0 a mass point.
(As δ → 0, G (δ, c)→ Dirac’s delta.)

I Introduces α, which governs probability of escaping the ZLB.
(Note that α = 0 =⇒ xt = 0 is an absorbing state.)
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Simulated ARG0(1) Realization

11 / 24



ARG0 Approach

xt |zt ∼ Gamma(zt , c)

zt |xt−1 ∼ Poisson(α + βxt−1)

1. Arbitrage-free

2. Simple (closed-form)

3. Respects the ZLB

End of story?
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Shadow-Rate Approach (Shadow/ZLB GATSM )

xs,t = µ(1− ρ) + ρxs,t−1 + εt

xt = max(xs,t , 0)

1. Arbitrage-free

2. Simple (simulation)

3. Respects the ZLB
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Shadow Rates and ZLB Rates
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Shadow-Rate Approach (Shadow/ZLB GATSM)

xs,t = µ(1− ρ) + ρxs,t−1 + εt

xt = max(xs,t , 0)

1. Arbitrage-free

2. Simple (simulation)

3. Respects the ZLB

4. Sample path feature probabilities (e.g., lift-off from ZLB)

5. Sample path integral densities (e.g., effective stimulus)

But MPRR could also do points 4 and 5...

6. Shadow rate path and shadow yield curve
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Final Thoughts on Relative Performance

Much boils down to:

– Value of the shadow rate path and shadow yield curve

– Views about “simplicity”

My balance tips slightly toward shadow/ZLB GATSM

Interesting question:
With appropriate constraints on the Gamma and Poisson processes,
can MPRR “replicate” a shadow/ZLB GATSM, but without the
mechanism of shadow short rates and the shadow yield curve?

16 / 24


