

Local-Momentum Autoregression and the Modeling of Interest Rate Term Structure

Jin-Chuan Duan

Business School, Risk Management Institute, and Department of Economics

(www.rmi.nus.edu.sg/duanjc)

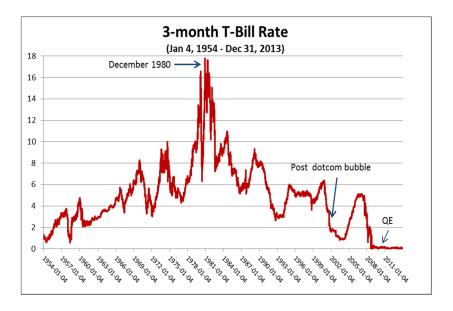
National University of Singapore

(April 2015)

(The 7th Annual NYU-Stern School Volatility Institute Conference)

(04/2015) 1 / 27

A D N A B N A B N



(04/2015) 2 / 27

Standard mean-reversion

$$\Delta X_t = \kappa_x(\mu - X_{t-1}) + \sigma_x \varepsilon_t$$

$$\varepsilon_t | \mathcal{F}_{t-1} \sim D(0, 1)$$

Is the AR(1) model of this type suitable for modeling interest rates or other highly persistent systems with long periods of directional moves?

4 6 1 1 4

How about adding a latent stochastic central tendency factor?

$$\Delta X_t = \kappa_x(\mu_t - X_{t-1}) + \sigma_x \varepsilon_t$$

$$\Delta \mu_t = \kappa_\mu (\bar{\mu} - \mu_{t-1}) + \sigma_\mu \epsilon_t$$

$$\varepsilon_t | \mathcal{G}_{t-1} \sim D(0, 1)$$

Note: Adding a latent stochastic central tendency factor is an idea in Balduzzi, Das and Foresi (1998, *Review of Economics and Statistics*), because empirical evidence suggests that the short-term interest rate tends to move towards the long term interest rate.

(04/2015) 4 / 27

< ロ > < 同 > < 回 > < 回 > < 回 > <

Local-momentum with latent central tendency (LM-CTAR)

$$\begin{split} \Delta X_t &= \kappa_x \left(\mu_t - X_{t-1} \right) + \omega \left(\bar{X}_{(t-1)|n} - X_{t-1} \right) + \sigma_x \varepsilon_t \\ \Delta \mu_t &= \kappa_\mu \left(\bar{\mu} - \mu_{t-1} \right) + \sigma_\mu \epsilon_t \\ \bar{X}_{(t-1)|n} &= \sum_{i=t-n}^{t-1} b_{t-i} X_i \\ \varepsilon_t |\mathcal{G}_{t-1} &\sim D(0,1), \ \epsilon_t |\mathcal{G}_{t-1} \sim D(0,1) \end{split}$$

where $\sum_{i=1}^{n} b_i = 1$ with $b_i \ge 0$ for $i = 1, 2, \dots, n$. $\bar{X}_{(t-1)|n}$ is meant to be some sort of moving weighted sample mean.

(Note: Exponentially decaying weights with *n* being set to ∞ lead to a 3-dimensional Markov system, i.e., $(X_t, \bar{X}_{t|\infty}, \mu_t)$, with one extra decaying parameter and an additional latent factor, $\bar{X}_{t|\infty}$.)

Duan&Miao (NUS)

Local-Momentum Autoregression ...

(04/2015) 5 / 27

Local-momentum without latent central tendency (LM-AR)

$$\Delta X_t = \kappa_x \left(\bar{\mu} - X_{t-1} \right) + \omega \left(\bar{X}_{(t-1)|n} - X_{t-1} \right) + \sigma_x \varepsilon_t$$
$$\bar{X}_{(t-1)|n} = \sum_{i=t-n}^{t-1} b_{t-i} X_i$$
$$\varepsilon_t | \mathcal{G}_{t-1} \sim D(0, 1)$$

(04/2015) 6 / 27

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Interesting features

- Local momentum building: $\omega < 0$
- Local momentum preserving: ω > 0

Basic properties

- Stationarity and ergodicity of LM-CTAR can be characterized by recognizing it as ARMA(n,∞). The spectral radius of the AR coefficient matrix less than 1 is both sufficient and necessary, because the MA(∞) coefficients are absolutely summable.
- Easy to verify sufficiency conditions are given in the paper.

LM-CTAR model in a matrix form

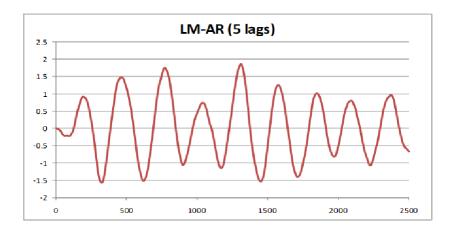
$$\mathbf{X}_t = \mathbf{A} + \mathbf{B}\mathbf{X}_{t-1} + \mathbf{Z}_t$$

$$\mathbf{X}_{t} = \begin{bmatrix} X_{t} \\ X_{t-1} \\ \vdots \\ X_{t-n+1} \end{bmatrix} \mathbf{Z}_{t} = \begin{bmatrix} \kappa_{x}(\mu_{t} - \bar{\mu}) + \sigma_{x}\varepsilon_{t} \\ 0 \\ \vdots \\ 0 \end{bmatrix} \mathbf{A} = \begin{bmatrix} \kappa_{x}\bar{\mu} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
$$\mathbf{B} = \begin{bmatrix} 1 - \kappa_{x} - \omega(1 - b_{1}) & \omega b_{2} & \dots & \omega b_{n-1} & \omega b_{n} \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix}$$

Local-Momentum Autoregression ...

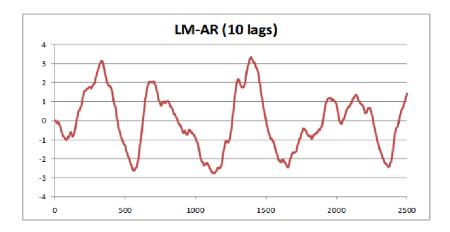
< • • • • • •

(04/2015) 8 / 27



A simulated sample path for the LM-AR with 5 lags. The parameters are: $\bar{\mu} = 0, \kappa_x = 0.001, \omega = -0.5, \sigma_x = 0.002$ and $\sigma_{\mu} = 0$.

(04/2015) 9/27



A simulated sample path for the LM-AR with 10 lags. The parameters are: $\bar{\mu} = 0, \kappa_x = 0.001, \omega = -0.2, \sigma_x = 0.02$ and $\sigma_{\mu} = 0$.

(04/2015) 10 / 27

Continuous-time LM-CTAR

$$dX_t = \left[\kappa_x \left(\mu_t - X_t\right) + \omega \left(\bar{X}_t(\tau) - X_t\right)\right] dt + \sigma_x dW_{xt}$$

$$d\mu_t = \kappa_\mu \left(\bar{\mu} - \mu_{t-1}\right) dt + \sigma_\mu dW_{\mu t}$$

$$\bar{X}_t(\tau) = \int_{t-\tau}^t b(t-s) X_s ds$$

where $\kappa_{\mu} > 0$, $\sigma_{\mu} > 0$, $\kappa_{x} \ge 0$, $\sigma_{x} > 0$, and $\int_{0}^{\tau} b(s)ds = 1$ with $b(s) \ge 0$ for $0 \le s \le \tau$; and W_{xt} and $W_{\mu t}$ are two independent Wiener processes.

(Note: Again exponentially decaying weights with *n* being set to ∞ can lead to a 3-dimensional Markov system, i.e., $(X_t, \bar{X}_{t|\infty}, \mu_t)$, with one extra decaying parameter and an additional latent factor, $\bar{X}_{t|\infty}$.)

US Treasury rates (constant maturity, continuously compounded)

Maturity	# of Points	Mean	Median	Standard
				Deviation
1 month	641	0.015144	0.009636	0.016606
3 months	3080	0.047902	0.047220	0.031239
6 months	2831	0.052203	0.051244	0.031604
1 year	2451	0.057484	0.055555	0.031759
5 years	2674	0.060156	0.058458	0.027835
10 years	2674	0.063239	0.060107	0.025515
20 years	2327	0.063808	0.058458	0.024891
	Skewness	Excess	Maximum	Minimum
		Kurtosis		
1 month	0.942746	-0.397540	0.052626	0
3 months	0.885921	1.416064	0.176280	0
6 months	0.718757	1.086112	0.167857	0.000304
1 year	0.484282	0.759180	0.166050	0.000811
5 years	0.521315	0.396290	0.150745	0.005584
10 years	0.721610	0.391892	0.147040	0.014199
20 years	1.016944	0.596012	0.146522	0.020880

(Every Wednesday in the period of Jan 4, 1954 to December 31, 2013) E 🔊 🔍

Duan&Miao (NUS)

Local-Momentum Autoregression ...

(04/2015) 12 / 27

Using the weekly series of one interest rate (3-month)

Parameter	AR(1)	CTAR	LM-AR	LM-CTAR	
	0.046387	0.046832	0.047097	0.045395	
μ	(0.024706)	(0.019745)	(0.019325)	(0.022350)	
1.	0.002632	0.004181	0.003381	0.105702	
k _x	(0.000941)	(0.001324)	(0.000977)	(0.025165)	
Ø			-0.071005	-0.075354	
ω			(0.004154)	(0.007143)	
-	0.002328	0.002189	0.002314	0.002177	
σ_x	(0.000008)	(0.000019)	(0.000008)	(0.000041)	
1.		0.295870		0.003284	
k_{μ}		(0.039138)		(0.001234)	
<i>c</i>		0.134946		0.002511	
σ_{μ}		(0.048605)		(0.000132)	
Log-likelihood	14231.12	14247.24	14249.08	14253.61	
$\rho(\mathbf{B})$			0.995690	0.825882	
Data points	3130				
Missing data	50				

(Both versions of the local-momentum model use a 7-week moving-window average.)

Duan&Miao (NUS)

(04/2015) 13 / 27

A 3-factor term structure model

The base interest rate dynamic has two components: global driver (X_t) and local variation (v_t) :

$$r_t = X_t + v_t$$

(Note: The base rate is driven by 3 latent factors, because X_t is latent, X_t 's central tendency is also latent, and v_t is latent.)

The local variation is a standard AR(1) process:

$$\Delta \mathbf{v}_t = -\kappa_v \mathbf{v}_{t-1} + \sigma_v \xi_t$$

$$\xi_t | (\mathcal{G}_t \cup \mathbf{v}_{t-1}) \sim \mathbf{N}(0, 1)$$

where $0 < \kappa_v < 2$, and $(\mathcal{G}_t \cup v_{t-1})$ denotes the minimum σ -algebra generated by \mathcal{G}_t and v_{t-1} .

(04/2015) 14 / 27

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The 3-factor model in a matrix form

$$egin{array}{rll} r_t &=& \mathbf{H}'\mathbf{X}_t^* \ \mathbf{S}\mathbf{X}_t^* &=& \mathbf{C}+\mathbf{D}\mathbf{X}_{t-1}^*+\mathbf{W}_t \end{array}$$

where

$$\mathbf{H} = \begin{bmatrix} \mathbf{1} \\ \mathbf{0}_{n-1} \\ 0 \\ 1 \end{bmatrix} \mathbf{X}_{t}^{*} = \begin{bmatrix} \mathbf{X}_{t} \\ \mu_{t} - \bar{\mu} \\ \mathbf{v}_{t} \end{bmatrix} \mathbf{W}_{t} = \begin{bmatrix} \sigma_{X}\varepsilon_{t} \\ \mathbf{0}_{n-1} \\ \sigma_{\mu}\varepsilon_{t} \\ \sigma_{V}\xi_{t} \end{bmatrix} \mathbf{C} = \begin{bmatrix} \mathbf{A} \\ 0 \\ 0 \end{bmatrix}$$
$$\mathbf{D} = \begin{bmatrix} \mathbf{B} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 1 - \kappa_{\mu} & 0 \\ \mathbf{0} & 0 & 1 - \kappa_{V} \end{bmatrix} \mathbf{S} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & -\kappa_{X} & 0 \\ \mathbf{0} & \mathbf{I}_{(n-1)\times(n-1)} & \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} & 0 & 1 \end{bmatrix}$$
$$\mathbf{U} = \begin{bmatrix} \sigma_{X}^{2} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}_{(n-1)\times(n-1)} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \sigma_{V}^{2} \end{bmatrix}$$

Note: U is the covariance matrix for W_t , and X_t , A and B have been previously defined.

Duan&Miao (NUS)

Local-Momentum Autoregression ...

Stochastic discount factor and term structure

h: the length of one period measured as the fraction of a year. The stochastic discount factor from time $t + \tau$ back to time *t* is assumed to be $\exp[-r_t(\tau)\tau h]M_{t,t+\tau}$ where for $s \ge t$,

$$M_{t,s} = \alpha(t,s) \exp\{\sum_{j=t+1}^{s} (\lambda_0 + \lambda_1 X_{j-1})\varepsilon_j + (\psi_{\mu 0} + \psi_{\mu 1} \mu_{j-1})\epsilon_j + (\psi_{\nu 0} + \psi_{\nu 1} v_{j-1})\xi_j\}$$

Note that $\alpha(t, s)$ is the factor that makes $M_{t,s}$ a martingale for $s \ge t$.

Define a martingale measure $Q_{t,T}$ by setting $dQ_{t,T}/dP = M_{t,T}$.

Forward and spot interest rates

 $f_t(\tau)$: the one-period forward rate at time *t* starting at time $t + \tau$, where each of the τ periods is of length *h*. \mathcal{H}_t : the filtration generated by $\{(X_s, \mu_s, v_s); s \leq t\}$. It follows that, for $\tau \geq 1$,

$$f_t(\tau) = -\frac{\ln E^Q\left(e^{-r_{t+\tau}h}|\mathcal{H}_t\right)}{h}$$

Note: The base interest rate r_t equals $f_t(0)$.

Forward rates for different forward starting times can in turn be used to compute spot interest rate rates such as, for $\tau \ge 1$,

$$r_t(\tau) = \frac{1}{\tau} \sum_{j=0}^{\tau-1} f_t(j).$$

(04/2015) 17 / 27

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Risk-neutral system

$$r_t = \mathbf{H}' \mathbf{X}_t^*$$

$$\mathbf{S} \mathbf{X}_t^* = \mathbf{C}^* + \mathbf{D}^* \mathbf{X}_{t-1}^* + \mathbf{W}_t^*$$

where

$$\mathbf{C}^{*} = \begin{bmatrix} \kappa_{x}\bar{\mu} + \sigma_{x}\lambda_{0} \\ \mathbf{0}_{n-1} \\ \sigma_{\mu}\psi_{\mu0} \\ \sigma_{v}\psi_{v0} \end{bmatrix} \quad \mathbf{W}_{t}^{*} = \begin{bmatrix} \sigma_{x}\varepsilon_{t}^{O} \\ \mathbf{0}_{n-1} \\ \sigma_{\mu}\varepsilon_{t}^{O} \\ \sigma_{v}\xi_{t}^{O} \end{bmatrix}$$
$$\mathbf{D}^{*} = \begin{bmatrix} d & \omega b_{2} & \dots & \omega b_{n-1} & \omega b_{n} & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & 1 - \kappa_{\mu} + \sigma_{\mu}\psi_{\mu1} & 0 \\ 0 & 0 & \dots & 0 & 0 & 0 & 1 - \kappa_{\nu} + \sigma_{\nu}\psi_{\nu1} \end{bmatrix}$$

and
$$d = 1 - \kappa_x - \omega(1 - b_1) + \sigma_x \lambda_1$$

Duan&Miao (NUS)

・ E つへの
 (04/2015) 18 / 27

イロト イヨト イヨト イヨト

The term structure formula

For $\tau \geq 1$,

$$r_t(au) = \Phi_1(au) + \Phi_2(au) \mathbf{X}_t^*$$

where

$$\begin{split} \Phi_{1}(\tau) &= \mathbf{H}'(\mathbf{I} - \mathbf{S}^{-1}\mathbf{D}^{*})^{-1} \left(\mathbf{I} - \frac{1}{\tau} \sum_{j=0}^{\tau-1} (\mathbf{S}^{-1}\mathbf{D}^{*})^{j} \right) \mathbf{S}^{-1}\mathbf{C}^{*} \\ &- \mathbf{H}'\left(\frac{h}{2\tau} \sum_{j=0}^{\tau-1} \sum_{i=0}^{j-1} (\mathbf{S}^{-1}\mathbf{D}^{*})^{i} \mathbf{S}^{-1} \mathbf{U}(\mathbf{S}^{-1})^{\prime} [(\mathbf{S}^{-1}\mathbf{D}^{*})^{j}]^{\prime} \right) \mathbf{H} \\ \Phi_{2}(\tau) &= \mathbf{H}'\left(\frac{1}{\tau} \sum_{j=0}^{\tau-1} (\mathbf{S}^{-1}\mathbf{D}^{*})^{j} \right) \end{split}$$

イロト イヨト イヨト イヨト

Estimation by the Kalman filter

Facing yields of several maturities gives rise to the measurement equations:

$$\begin{aligned} \tilde{r}_t(\tau_1) &= \Phi_1(\tau_1) + \Phi_2(\tau_1) \mathbf{X}_t^* + \epsilon_{1t} \\ \tilde{r}_t(\tau_2) &= \Phi_1(\tau_2) + \Phi_2(\tau_2) \mathbf{X}_t^* + \epsilon_{1t} \\ \vdots \\ \tilde{r}_t(\tau_k) &= \Phi_1(\tau_k) + \Phi_2(\tau_k) \mathbf{X}_t^* + \epsilon_{kt} \end{aligned}$$

The number of identifiable parameters

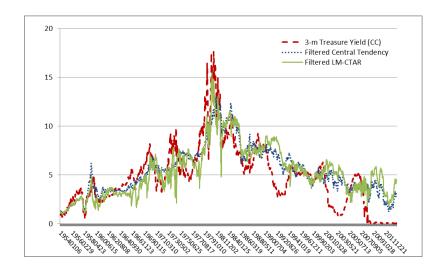
The three latent factor processes are governed by eight parameters under the physical probability, i.e., { $\bar{\mu}$, κ_x , ω , σ_x , κ_μ , σ_μ , κ_v , σ_v }. There are six parameters arising from risk-neutralization, i.e., { λ_0 , λ_1 , $\psi_{\mu 0}$, $\psi_{\mu 1}$, $\psi_{v 0}$, $\psi_{v 1}$ }, but there is only one identifiable parameter among λ_0 , $\psi_{\mu 0}$ and $\psi_{v 0}$ because these three enter into the same constant in the risk neutral system.

	CTAR+AR(1)	LM-CTAR+AR(1)		
Physical process parameters				
$\bar{\mu}$	0.103950	0.095287		
	(0.002614)	(0.002504)		
k_{x}	0.072262	0.080571		
	(0.000993)	(0.001112)		
ω		-0.007134		
		(0.000690)		
σ_x	0.002649	0.002591		
	(0.000028)	(0.000027)		
k _u	0.000189	0.000188		
F-	(0.000011)	(0.000011)		
$\sigma_{\!\mu}$	0.001440	0.001317		
ŕ	(0.000017)	(0.000018)		
k_{v}	0.008227	0.008176		
-	(0.000087)	(0.000086)		
σ_v	0.002058	0.002050		
-	(0.000019)	(0.000019)		

(04/2015) 21 / 27

· · ·	Measurement er	rors		
1 month	0.000892	0.000886		
	(0.000039)	(0.000039)		
3 months	0.000576	0.000579		
	(0.000013)	(0.000013)		
6 months	0.000746	0.000742		
	(0.000009)	(0.00009)		
1 year	0.000628	0.000636		
	(0.000010)	(0.000010)		
5 years	0.001767	0.001770		
	(0.000022)	(0.000022)		
10 years	0.000174	0.000174		
	(0.000032)	(0.000031)		
20 years	0.002362	0.002365		
	(0.000030)	(0.000030)		
Log-likelihood	96976.40	97012.06		
$\rho(\mathbf{B})$		0.891281		
Data points	3130			
Missing data	50			

(04/2015) 22 / 27

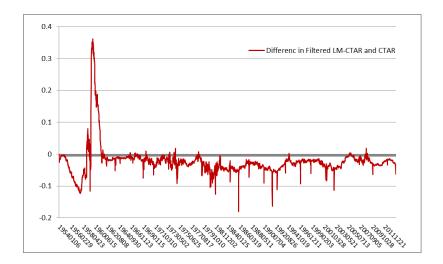


A 3-factor Gaussian term structure model built on the LM-CTAR process is fitted to the US treasury constant maturity yields (continuously compounded) of seven maturities (1 month, 3 months, 6 months, 1 year, 5 years, 10 years and 20 years). The filtered estimate of the LM-CTAR and central tendency components are plotted along with the 3-month rate, weekly from January 4, 1954 to December 31, 2013. The vertical axis is in percentage points.

Local-Momentum Autoregression ...

(04/2015) 23 / 27

< ロ > < 同 > < 回 > < 回 >



The difference in the filtered LM-CTAR and CTAR factors from two 3-factor term structure models over the sample period from January 4, 1954 to December 31, 2013.

Local-Momentum Autoregression ...

(04/2015) 24 / 27

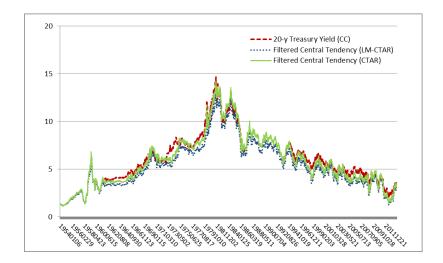
Impacts on yields by the central tendency and local momentum factors

$$\Delta r_t(\tau) = a_{\tau} + b_{\tau} \Delta \hat{\mu}_{t|t} + c_{\tau} \Delta \hat{X}_{t|t} + d_{\tau} \Delta \hat{v}_{t|t} + \epsilon_t(\tau)$$

Yield Change	Intercept	$\Delta \widehat{\mu}_{t t}$	$\Delta \widehat{X}_{t t}$	$\Delta \widehat{v}_{t t}$	R^2
$\Delta r_t(1m)$	0.000109	0.220220	0.991148	0.976043	0.9148
	(0.000083)	(0.007196)	(0.003920)	(0.008784)	
$\Delta r_t(3m)$	0.000017	0.351476	0.732278	0.952301	0.9850
	(0.000009)	(0.000573)	(0.000194)	(0.000265)	
$\Delta r_t(6m)$	0.000067	0.583060	0.413108	0.944362	0.9511
	0.000017	0.000982	0.000325	0.000449	
$\Delta r_t(1y)$	-0.000042	0.768468	0.190847	0.881598	0.9590
	(0.000018)	(0.001023)	(0.000319)	(0.000424)	
$\Delta r_t(5y)$	-0.000352	1.030643	0.039280	0.384023	0.9181
	(0.000017)	(0.001013)	(0.000327)	(0.000454)	
$\Delta r_t(10y)$	-0.000011	1.035115	0.026693	0.227487	0.9995
	(0.000001)	(0.000074)	(0.000024)	(0.000033)	0.9995
$\Delta r_t(20y)$	0.000028	0.902467	0.038297	0.191439	0.9004
	(0.000018)	(0.001052)	(0.000317)	(0.000440)	

(04/2015) 25 / 27

< ∃⇒



The filtered central tendency estimates corresponding to two versions of the 3-factor Gaussian term structure model built on, respectively, the CTAR and LM-CTAR processes from January 4, 1954 to December 31, 2013 on a weekly frequency. Also plotted is the 20-year US Treasury yields (continuously compounded) when they were available. The vertical axis is in percentage points.

(04/2015) 26 / 27

< ロ > < 同 > < 回 > < 回 >

Future Research: monetary regimes

- Does it make sense to define regimes as high, average and low rates (or volatilities)? Can one conduct monetary easing while in the low-rate regime?
- How about classifying interest rate regimes as Status Quo, Monetary Easing and Monetary Tightening? Entering Quantitative Easing (QE) is "Monetary Easing" and staying in QE will be "Status Quo".
- In terms of the local-momentum model, "Status Quo" means using the current parameter values, and entering "Monetary Easing (Tightening)" state means subtracting (adding) a positive constant from (to) $\bar{\mu}$, and this can be done repeatedly. In addition, the local-momentum parameter ω can also be regime-specific.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >