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Abstract

Are �nancial intermediaries inherently unstable, and if so, why? To address
this we analyze whether model economies with �nancial intermediation are
particularly prone to multiple, cyclic, or stochastic equilibria. Several for-
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gated investment as in Diamond; one with bank liabilities serving as payment
instruments similar to currency in Lagos-Wright; and one with intermediaries
as dealers in decentralized asset markets, similar to Du¢ e et al. Although the
economics and mathematics di¤er across speci�cations, in each case �nancial
intermediation engenders instability in a precise sense.
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Banks, as several banking crisis throughout history have demonstrated,
are fragile institutions. This is to a large extent unavoidable and is the
direct result of the core functions they perform in the economy. Finance
Market Watch Program @ Re-De�ne, Banks: How they Work and Why
they are Fragile.

Introduction

The above quotation re�ects an oft-heard view: banks, or �nancial intermediaries

more generally, are inherently unstable and prone to volatility. This seems to be

based on the notion that �nancial institutions are special compared to, say, produc-

ers or retailers, a position commonly associated with Keynes (1936), Kindleberger

(1978) and Minsky (1992) (more recently, see Shleifer and Vishny 2010, Williams

2015, Akerlof and Shiller 2009 or Reinhart and Rogo¤ 2009). Rolnick and Weber

(1986) provide evidence of the widespread acceptance of this view when they say:

�Historically, even some of the staunchest proponents of laissez-faire have viewed

banking as inherently unstable and so requiring government intervention.� As a

leading case, Friedman (1960) defended unfettered markets in virtually all contexts,

but advocated bank regulation in his program for monetary stability. As additional

evidence, consider the large literature dedicated to the study of bank runs.1

We are agnostic and do not know a priori if �nancial intermediation engenders

instability, or even if it does, we do not know if this is inherent to their activieis

or induced by policy makers�interventions (on that see, e.g., Lacker 2015 or Wein-

berg 2015). Nevertheless, it is a logical possibility that �nancial intermediation

might be inherently unstable. This project is an attempt to investigate that pos-

sibility by analyzing several formal models of �nancial intermediation and asking

if the equilibrium sets in these models exhibit instability, de�ned as a multiplicity
1For now we discuss bank runs, panics, �nancial crises, etc. without de�ning these formally.

As Rolnick and Weber (1986) put it, �There is no agreement on a precise de�nition of inherent
instability in banking. However, the conventional view is that it means that general bank panics
can occur without economy-wide real shocks.�They add �The usual explanation... involves a local
real economic shock that becomes exaggerated by the actions of incompletely informed depositors,�
and suggest this is consistent with Friedman and Schwartz�s (1963) view. In terms of models, Chari
and Jagannathan (1988) have withdrawals by informed depositors lead to withdrawals by others,
while Gu (2011) formalizes this as rational herding. Our approach is di¤erent, and avoids �xating
only on runs, but does focus squarely on volatility �without economy-wide real shocks.�
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of Pareto-ranked equilibria, or volatile dynamics arising as self-ful�lling prophecies,

including cyclic, chaotic or stochastic outcomes that entail �uctuations even when

fundamentals are constant.

Thus, saying that �nancial intermediation engenders instability means that eco-

nomic environments with this activity exhibit these types of equilibria for a larger

set of parameters than otherwise-identical environments without it. Now it is well

known that there are various ways to get instability without intermediaries �e.g.,

increasing returns in production or matching technologies �but we want to see what

intermediation can generate without such devices. Also, it is important to consider

several formal models of �nancial intermediaries since these agents in reality per-

form several distinct functions, and we want to know which if any lead to instability.

Moreover, we make an e¤ort to have intermediaries arise endogenously. As Gorton

and Whinton (2002) say at the start of their well-known survey, crucial questions

are: �Why do �nancial intermediaries exist? What are their roles? Are they inher-

ently unstable?�In this spirit we endeavor to model why they exist and what they

do as explicitly as possible before studying stability.2

There is no generally-accepted, all-purpose model of �nancial intermediaries be-

cause, as mentioned, these institutions perform a myriad of functions that are dif-

�cult to capture in a single setup: they serve as middlemen between savers and

borrowers or asset sellers and buyers; they �nd, screen and monitor investment

opportunities on behalf of depositors; they issue liabilities like demand deposits

that facilitate third-party transactions; they provide liquidity insurance or maturity

transformation; they are safe keepers of cash and other valuables; and they main-

2Without making too much of this, one might say that we want models of intermediation, not
just with intermediation. It does not su¢ ce to simply assert that households lend to banks and
banks lend to �rms but households do not lend to �rms �that is a model with banking but not
of banking. By analogy, Clower (1965) said money buys goods and goods buy money but goods
do not buy goods, and while a popular shortcut, it is hard to argue that Clower (cash-in-advance)
constraints constitute the last word in monetary theory. We feel similarly about banking theory
(see Wright 2017 for more on this). Now it is not necessary for every study to have everything
endogenous �e.g., Debreu (1959) makes progress in a model with �rms and households but not
of �rms and households, which is �ne for his purposes, if not for industrial organization or family
economics. But surely it is desirable for �nancial institutions to emerge endogenously when asking
if they are unstable as �the direct result of the core functions they perform�(from the epigraph).
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tain privacy (secrecy) about their assets or customers. As di¤erent approaches are

naturally used to formalize these diverse activities, we consider several distinct spec-

i�cations, and while they all are constructed using building blocks from o¤-the-shelf

models, the ways in which we combine and apply them are somewhat novel.

The �rst formulation extends Diamond and Dybvig�s (1983) insurance-based

model to an in�nite horizon, to highlight bankers�reputation as in Gu et al. (2013a),

based on Kehoe and Levine (1993). The second features �xed costs of investment as

in Diamond (1984) or Huang (2017). The third, an adaptation of Nosal et al. (2017),

puts middlemen like those in Rubinstein and Wolinsky (1987) into an OTC asset

market similar to Du¢ e et al. (2005), where such agents are called market-makers,

dealers or brokers (so while they are not banks, it is standard to interpret them

as asset-market intermediaries). The fourth has bank liabilities serving as payment

instruments, similar to cash in Lagos and Wright (2005) or Berentsen et al. (2007),

in an environment where these liabilities are less susceptible to loss or theft, as in

He et al. (2007) and Sanches and Williamson (2010), or less sensitive to information,

as in Andolfatto and Martin (2013) and Dang et al. (2017).

We �nd in each case that �nancial intermediaries can indeed engender instability:

an economy with these institutions is more likely to have multiple Pareto-ranked

equilibria or volatile dynamics than the same economy without them. In some cases,

without intermediation there is a unique equilibrium and it is stable, but with it there

are multiple or volatile equilibria; in other cases both can have multiple or volatile

equilibria, but intermediation expands the set of parameters for which this is true.

Further, while the logic di¤ers across models, in each case the results are directly

related to the raison d�etre for intermediation. Yet while �nancial intermediation

may be fragile in this sense, we emphasize that it still tends to increase welfare.

As the intermediation literature is vast, for that we refer to standard sources

(e.g., Freixas and Rochet 2008; Calomiris and Haber 2014; Vives 2016). Di¤erent

from some work in the area, we always use in�nite-horizon models, since we are

interested in economic dynamics, and since �nite-horizon models are ill suited for
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capturing many phenomena �e.g., unsecured credit, which we use extensively below,

and �at (outside) currency, which we do not use but in principle could (we do use

inside money in some cases). We also try to minimize exogenous restrictions on

prices, contracts or behavior. This is to see if instability, if it does arise, arises

from intermediation per se, not from convenient-but-extraneous features like noise

traders, sticky prices, arbitrary expectations or ad hoc restrictions on contracts.

To be clear, we have frictions like limited commitment, imperfect information,

and spatial separation, but they are imposed on the environment, not on prices, con-

tracts or behavior. By way of example, while there seems to be confusion about this,

one can show the baseline Diamond-Dybvig model cannot generate bank runs unless

one rules out contracts with suspension clauses (the proof is actually in their original

paper). The goal here is to rely less on those kind of restrictions and proceed more

along the lines of mechanism design, where any resource- and incentive-compatible

arrangement is allowed. Relatedly, as mentioned in fn. 1, we downplay bank runs

to focus on other types of instability. The rest of the paper involves laying out four

speci�cations, and in some cases multiple subcases, where �nancial intermediation

arises endogenously, and in each case asking about instability.

While some readers may �nd four-plus models too much for one paper, the

presentations are self contained, and each case could be skipped without loss of con-

tinuity. More importantly, a main point is to see if the instability results transcend

di¤erent ways of formalizing the role of �nancial intermediaries. Yet there is a com-

mon thread across setups: First, it should be clear that one must model frictions

explicitly to get an essential role for �nancial intermediaries, as such a role is absent

in frictionless GE theory. Now consider what Shell (1992) calls the Philadelphia

Pholk Theorem: in all models where the First Welfare Theorem does not hold there

can be multiplicity/volatility.3 It is hard to prove this in general, as the statement

concerns all models; hence, corroboration comes from showing that it works in a

3Note that Shell was thinking about sunspot equilibira, but the idea also applies to determin-
istic cycles. Also note that the converse of the Pholk Theorem is easy to prove: if the First Welfare
Theorem holds there cannot be sunspot or cyclic equilibria.
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series of models. We consider a series of models capturing many of the usual ways of

thinking about �nancial intermediaries. In each case, we �nd the frictions making

intermediation useful make multiplicity/volatility more likely.

Model 1: Insurance

The �rst speci�cation extends Diamond and Dybvig (1983) to a discrete-time,

in�nite-horizon setting, which as in Gu et al. (2013a) lets us incorporate reputational

considerations à la Kehoe and Levine (1993). The key feature of this framework is

that di¤erent agents are more or less trustworthy. To capture this in a stark way,

suppose some live forever, while at each date a [0; 1] continuum of other agents are

around only for that period. In fact the latter can be around for anyN <1 periods,

but N = 1 is obviously easiest way to make them care less about reputation. Indeed,

in Gu et al. (2013a), everyone lives forever, but some are less trustworthy because

they are less patient, cannot be as easily monitored, have greater gains from trade,

face better investment opportunities, or get fewer opportunities to misbehave.

Given this is understood, for present purposes it su¢ ces to consider agents

around for only N = 1 period. However, each period has two subperiods, to capture

the usual Diamond-Dybvig idea that the short-lived agents, while homogeneous ex

ante, face idiosyncratic shocks: they are impatient with probability � and patient

with probability 1 � �, where impatient (patient) agents derive utility only from

consumption in the �rst (second) subperiod. The shock is private information, and

conditional on it an agents has utility uj(cj), j = 1; 2, where cj is consumption in

subperiod j, with u0j > 0 and u00j < 0.4 In�nitely-lived agents have period utility

v (c) for c in either subperiod, with v0 > 0, v00 � 0 = v (0).

Short-lived agents have an endowment of 1; in�nitely-lived agents have 0. The

standard technology is this: a unit of the good invested at the start of the �rst

subperiod yields R > 1 units in the second subperiod; or, the investment can be

terminated at the end of the �rst subperiod to get back the input. The good can

4Many applications of Diamond-Dybvig assume u1 (�) = u2 (�), but not all (e.g., Peck and Shell
2003). The �exibility of the general version is useful for constructing examples.
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also be stored one-for-one across subperiods. As in any Diamond-Dybvig model, to

insure against the shocks, the short-lived agents can form a coalition that resembles

a banking arrangement. Thus, they design a contract (c1; c2) to solve

max
c1;c2

f�u1 (c1) + (1� �)u2 (c2)g (1)

st (1� �) c2 = (1� �c1)R (2)

c2 � c1; (3)

where (2) is feasibility and (3) is a truth-telling constraint (if c2 < c1 patient agents

would claim to be impatient, get c1 and store it to the next subperiod). There are

also nonnegativity constraints omitted to save space.

This problem is well understood. One result is: assuming u01 (1) > u02 (R)R and

u01 (c) � u02 (c)R at c = R= (1� � + �R), we get 1 < c�1 < c�2 < R, so (3) is not

binding, and full insurance/e¢ ciency obtains. However, this requires commitment;

otherwise, when they learn they are patient and are supposed to make transfers

to the impatient, agents will renege. Given our short-lived agents cannot commit,

naturally, there emerges a role for long-lived agents as bankers who accept deposits,

invest them, and pay o¤ depositors on demand at terms to be determined. Impor-

tantly, bankers do not have exogenous commitment ability �it is endogenous and

based on reputation. Thus, bankers honor obligations lest they get identi�ed as

renegers, whence they are punished to autarky, which is a credible threat because

there are many perfect substitutes for any given banker.

However, a banker may be tempted to misbehave as in the �cash diversion�

models in Biais et al. (2007) or DeMarzo and Fishman (2007): if he misappropriates

d deposits, he gets payo¤�d, where � is not too big, so this is socially ine¢ cient, but

he might do it opportunistically. As in Gu et al. (2013a,b), the risk is that he gets

caught, and punished, with probability � � 1, where one interpretation is that � is

the probability one generation of depositors can communicate his misbehavior to the

next generation.5 Now depositors may set d < 1, and invest 1� d on their own, to

5While � = 1 is �ne, it does not simplify things much, and it is known from other applications
that � < 1 can be interesting (e.g., the extension of Kocherlakota 1998 in Gu et al. 2016).
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reduce bank incentives to misbehave, di¤erent from most papers that simply assume

d = 1, but similar to Peck and Setayesh (2019). In addition to d, the contract now

speci�es payouts per deposit contingent on withdrawal time rj, j = 1; 2, and the

banker�s income b 2 [0; d], which he invests for utility v (bR).

Since there is more than one long-lived agent, the short-lived agents can choose

any of them to act as banker, and in the spirit of Diamond-Dybvig they make

this choice as a coalition. However, we assume they can choose only one, to avoid

determining the optimal number of bankers, something we do in Model 2, but would

be a distraction here; it can be rationalized by assuming that it is too costly to

monitor more than one banker. Still, since they can choose any one, for reasons

often summarized as Bertrand competition the contract maximizes the expected

utility of the depositors. Still, a banker may get a positive surplus �a rent on his

option to act opportunistically �because the contract must give him incentive to

not misuse deposits for his own gain.

The banker�s incentive constraint is

v (btR) + �Vt+1 � �dt + � (1� �)Vt+1; (4)

where � is his discount factor, Vt is his equilibrium payo¤, and the RHS is the

deviation payo¤, including �d for sure and Vt+1 i¤ he is not caught. Note that Vt+1

is his valuation next period, facing a new generation of depositors, and hence is taken

as given when designing a contract at t. Also note that bankers do not misuse d on

the equilibrium path, but if one were to, he would get �d but not v (Rb)+� (d� b).

This leads to the contracting problem

max
dt;r1t;r2t;bt

f�u1 (dtr1t + 1� dt) + (1� �)u2 [dtr2t + (1� dt)R]g (5)

st (1� �) dtr2t = (dt � bt � �dtr1t)R (6)

r2t � r1t (7)

�dt � v (btR) � �t; (8)

where (8) rewrites (4) using �t � ��Vt+1. Note that �t is a bank�s franchise value,

capturing the banker�s reputation for trustworthiness. Substituting (6) into (5) to

8



eliminate r2, ignoring t subscripts for now, and taking FOC�s wrt (r1; d; b) we get

r1 : d f� [u01 (c1)�Ru02 (c2)]� �1 (1� � +R�)g r1 = 0

d : f(r1 � 1)� [u01 (c1)�Ru02 (c2)] + �1 [R� (1� � +R�) r1]� �2�g d = 0

b : [�u02 (c2)� �1 + �2v
0 (bR)] b = 0;

where c1 = dr1 + 1� d and c2 = dr2 + (1� d)R, while �1 and �2 are multipliers for

constraints (7) and (8).

These FOC�s yield two critical values, �� > 0 and �̂ < ��, delineating three

regimes: (i) If � � �� then (8) is slack, and b = 0, since the franchise value keeps

the banker honest without b > 0. In this case there is a continuum of contracts

achieving the full-insurance outcome, because depositors can have the bank invest a

lot or a little, and in the latter case invest the rest on their own (exactly as in Peck

and Setayesh 2019). (ii) If � 2 [�̂; ��) we must either lower d < d� or raise b > 0

to satisfy (8). While lowering d from d� means less-than-full insurance, this is a

second-order cost by the envelope theorem, so the contract sets d = �=� and keeps

b = 0. (iii) If � < �̂, lowering d further entails too much risk, so it sets b > 0. In

case (i), one of the payo¤-equivalent contracts has r1 = r2, and (ii)-(iii) the unique

contract has r1 = r2; hence wlog we set r1 = r2 = r from now on.

In regime (iii), (d; r; b) satis�es

b = d=R [R� (1� � +R�) r] (9)

� = �d� v (bR) (10)
u02 (c2)

u01 (c1)�Ru02 (c2)
=

�

1� � +R�

�
(R� 1) (1� �)

�
v0 (bR)� 1

�
(11)

with c1 = 1�d+(d� b)R= (1� � +R�), c2 = (1� d)R+(d� b)R= (1� � +R�).

These and the analogs from regimes (i)-(ii) characterize the contract given �, and in

particular, one can easily check b0 (�) < 0 8� < �̂, which is important below. This

is shown in Fig. 1 for the following parameterization:6

6Notice �̂ > 0 here (in fact, for the example �̂ = 0:3257 and �� = 0:600); the case �̂ < 0 is less
interesting because it never has banking in steady state. In terms of primitives, one can show that
�̂ > 0 i¤ � [u01 (1)�Ru02 (R)] [(R� 1) (1� �) v0 (0)� �] > u02 (R) (1� � +R�)�:
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Figure 1: Model 1, bank contract vs �

Example 1: Let v (b) = Bb,

u1 (c1) = A1
(c1 + ")1��1 � "1��1

1� �1
and u2 (c2) = A2

(c2 + ")1��2 � "1��2

1� �2
;

where B = 0:95, �1 = �2 = 2, " = 0:01, A1 = 1, A2 = 0:1, R = 2:1, � = 0:7,

� = 0:25, � = 0:6 and � = 0:99.

As mentioned, the contract takes � as given. To embed this in general equilib-

rium, use �t � ��Vt+1 to write Vt = v (btR) + �Vt+1 as a dynamical system,

�t�1 = f (�t) � ��v[b (�t)R] + ��t; (12)

where b (�t) comes from the contracting problem. Equilibrium is de�ned as a nonneg-

ative, bounded path for �t solving (12), from which the other endogenous variables

follow using the FOC�s. A stationary equilibrium, which is the same as a steady

state here, solves �� = f
�
��
�
. The nature of steady state depends on whether �̂ � 0

or �̂ > 0 (conditions for which are given in fn. 6). Appendix A proves:

Proposition 1 If �̂ � 0 the unique steady state has no banking, d = 0. If �̂ > 0

the unique steady state has �� 2 (0; �̂) and banking, d > 0.

For dynamic equilibria, �rst note from (12) that f (�t) has a linear term that is

increasing and a nonlinear term that is decreasing because b0 (�) < 0. If the net e¤ect

implies f 0 (�t) < 0 over some range the system can exhibit nonmonotone dynamics.
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For Example 1, Fig. 2a shows f and f�1, which cross on the 45o line at �� = 0:3215.

In this case the system is monotone and there is a unique equilibrium �the steady

state, because it is the only bounded path solving (12). But now consider:

Example 2: Same as above except �1 = 10 and � = 1:

As Fig. 2b shows, now f 0(��) < �1, and so f and f�1 intersect not only on the

45o, but also o¤ it, at (�L; �H) and (�H ; �L) with �H = 0:0696 and �L = 0:0689. As

is standard (see Azariadis 1993), this means there is a two-cycle equilibrium where

�t oscillates deterministically between �L and �H . It also means there are sunspot

equilibria where �t �uctuates randomly between values close to �L and �H (see

Appendix B). Thus we can get deterministic or stochastic volatility with banking

and not without it. That does not mean banking is a bad idea, as it provides

insurance to agents who cannot insure each other due to commitment issues. To

be clear, it is obvious that if we were to eliminate banking, say through taxation or

regulation, the unique outcome is autarky and all agents are worse o¤.

Figure 2a: Model 1, monotone f Figure 2b: Model 1, nonmonotone f

The intuition is straightforward: if next period Vt+1 is high then this period �t

is high and we can discipline bankers with low bt; but that makes the current Vt and

hence �t�1 low. This induces a tendency towards oscillations, but for a cycle the

e¤ect has to dominate the linear term in f(�t), which is why parameters matter.
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Fig. 3 plots time series of (�; d; b; r) over the cycle in Example 2. Notice r moves

with � and b against �. Whether d moves with or against � depends on parameters,

but here it is the latter. While the point is not to take this example seriously

in a quantitative sense, it is worth noting that the theory does make qualitative

predictions, and does not say �anything goes.�

Figure 3: Model 1, time series for a two-cycle

Fig. 4 displays the existence of two-cycles in a di¤erent way, as �xed points of

the second iterate f 2 = f � f , for another parameterization:

Example 3: B = 1, �1 = 14, �2 = 1:5, " = 0:01, A1 = 1, A2 = 0:075, R = 2:2,

� = 1, � = 0:28, � = 0:75 and � = 0:76.

Notice f 2 has three �xed points, ��, plus �L and �H from the two-cycle. Also shown

is f 3, which has seven �xed points, �� plus a pair of three-cycles. Standard results

(again see Azariadis 1993) say the existence of three-cycles implies the existence of

n�cycles for any integer n, plus chaos, which is basically a cycle with n =1.
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Figure 4: Model 1, two- and three-cycles

To summarize, banking can introduce many equilibria, including deterministic,

stochastic and chaotic dynamics, directly attributable to the idea that banks depend

on trust, and to some extent that is a self-ful�lling prophecy. However, in any

equilibrium with banking all agents are better o¤ than they are without it.

Model 2: Delegated Investment with Fixed Costs

The next formulation has intermediation originating from economies of scale,

based on Diamond (1984) and Huang (2017) (see also Leland and Pyle 1976 or

Boyd and Prescott 1986 on the bigger picture). Time is discrete and continues

forever as in Model 1, but here all agents are in�nitely lived. Also, they are now

spatially separated �say, across a large number of islands �and randomly relocated

at the end of each period, following a literature on banking including Champ et

al. (1996), Bencivenga and Smith (1991), Smith (2002) and Bhattacharya et al.

(2005).7 Economies of scale are captured as follows: agents must pay a �xed cost �,

7The main function of random relocation here is to let us avoid long-term contracting con-
siderations, which are interesting but complicated (e.g., in Gu et al. 2013a, bankers�rewards can
be backloaded over multi-period contracts). Elsewhere in the paper we avoid those issues using
short-lived agents, but here we want all agents to be long-lived, so that ex ante anyone can po-
tentially be a banker. In any case, it is important to emphasize that these are not restrictions
on contracting per se, but assumptions on the environment that impinge on the contract. Does
it matter? Yes, because without making them explicit one cannot know, in general, how these
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in terms of goods, to locate/evaluate/monitor investment projects, after which any

project returns R per unit invested.

Period utility is u (x) � c (d), where x is consumption and d investment, with

u0; c0 > 0 and c00 � 0 > u00 and u (0) = c (0) = 0. Also, u0 (0)R > c0 (0), so that

agents invest if � = 0. If � > 0 the payo¤ is

W1 = max
x;d

fu (x)� c (d)g st x = Rd� �; (13)

from investing on one�s own (omitting nonnegativity constraints as above). Suppose

� is too high to support this, so W1 < 0, while the autarky payo¤ is W0 = 0. Now

consider agents forming a coalition where some, that we call depositors, delegate

their investment to others, that we call bankers, to share the �xed cost.

As is standard in models with nonconvexities, the coalition uses a lottery to

chose a subset of members to act as bankers.8 Thus, !t is the probability of being a

banker, equal to the measure of bankers if the island population is normalized to 1.

As in Model 1, bankers have the option to misbehave, with � and � playing similar

roles. The relevant incentive condition is therefore

�Vt+1 �
� (1� !t)xt

!t
+ (1� �)�Vt+1; (14)

where the RHS is the deviation payo¤, given each depositor is promised xt and each

banker controls (1� !t)xt=!t of the resources. The trade-o¤, emphasized in Huang

(2017), is that having fewer banks saves on �xed costs but raises their temptation

to misbehave, because they must be larger, given total deposits. The contract

maximizes the payo¤ to the representative agent on an island

W (�) = max
!;X;D;x;d

f! [u (X)� c (D)] + (1� !) [u (x)� c (d)]g (15)

st !X + (1� !)x = R [!D + (1� !) d]� �! (16)

u (x)� c (d) � 0 (17)
1� !

!
x � �; (18)

assumptions impinge on all endogenous variables.
8This is similar to, e.g., Rogerson�s (1988) indivisible-labor model, except unlike his, our agents

cannot commit, so our contracts must be incentive compatible before and after the lottery.
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where �t � ��Vt+1=�, while (X;D) and (x; d) are the consumption/investment

allocations of bankers and depositors.9

Substituting (16) into (15) to eliminate X, and letting � and 
 be multipliers,

we get the FOC�s:

D : u0 (X)R� c0 (D) = 0

d : (1� !) [u0 (X)R� c0 (d)]� �c0 (d) = 0

x : (1� !) [u0 (x)� u0(X)] + �u0 (x)� 

1� !

!
= 0

! : !

�
u (X)� c (D)� [u (x)� c (d)] + u0 (X)

x�Rd

!
+ 


x

!2

�
= 0

One can check W 0 (�) � 0. Moreover, W (0) = 0, so we get no banking at � = 0.

In the limit as � ! 1 we get ! ! 0, which means very few banks but they are

huge. Also as �!1 we get W (�)! W � � maxx;d [u (x)� c (d)] st x = Rd, which

totally dissipates the �xed cost (i.e., delivers the same payo¤ as � = 0).

Fig. 5 shows the contract given � for the following parameterization:

Example 4: Let

u (x) = A
(x+ ")1�� � "1��

1� �
and c (d) = Bd;

with A = " = 0:001, � = 2, B = 0:1, � = 230, R = 1:2, � = 0:76, � = 0:95 and

� = 9.

Notice that there is a cuto¤ ~�, which is ~� = 0:0182 in this example, and banking is

viable i¤ � � ~�.
9Here (16) is the resource constraint, (17) is the incentive constraint for depositors, and (18),

which rewrites (14), is the incentive constraint for bankers.
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Figure 5: Model 2, bank contract vs �

Using Vt = W (�t) + �Vt+1 and emulating the methods from Model 1 we get

�t = f
�
�t+1

�
� ��

�
W
�
�t+1

�
+ ��t+1: (19)

Equilibrium is a bounded, nonnegative solution to (19). Notice f (�) = �� for

� � ~�, and f (�) < � for big � due to the fact that W � W �. Then we have:

Proposition 2 There is a steady state at �� = 0, without banking. There can be

steady states with banking, generically an even number that alternate between stable

and unstable.

Fig. 6 shows Example 4 has three steady states, � = 0, plus two with banking,

�2 > �1 > 0. This is di¤erent from Model 1, which has a unique steady state ��, and

has nonstationary equilibria i¤ f 0
�
��
�
< �1. Now f 0 (�) > 0, so deterministic cycles

are impossible, but if there are multiple steady states we can use a di¤erent approach

to construct sunspot equilibria around the stable ones.10 Appendix B shows there

are equilibria where � �uctuates between �A and �B for any �A 2 (0; �1) and

�B 2 (�1; �2). In particular, �A < ~� means we switch stochastically between dt > 0
10To give credit where credit is due, in Model 2 we use the method in Azariadis (1981), while

in Model 1 we use the method in Azariadis and Guesnerie (1986).
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and dt = 0 �i.e., random episodes of crises, where deposits dry up and banking

shuts down, due to sunspots, which are fundamentally irrelevant events. This is

again di¤erent from Model 1, where dt can �uctuate, but only with dt > 0 8t.

Figure 6: Model 2, monotone f with multiple
steady states

While Models 1 and 2 are di¤erent, in terms of economics and mathematics,

Appendix C presents an environment that integrates elements of both. It has two

agents on each island, one that is in�nitely lived and one that is only around for

one period, who negotiate the contract using generalized Nash bargaining (having

just two is simpler, but we also considered many depositors and one banker, with

multilateral bargaining, and got similar results). There are gains to delegating

investment due to � > 0, as in Model 2, but only long-lived agents can act as

bankers, as in Model 1. Letting � denote bankers� bargaining power, we get a

dynamical system �t = f
�
�t+1

�
that can be nonmonotone for � < 1. Appendix C

shows we can have multiple steady states, with f 0 (�) > 0 around the stable ones

and hence sunspot equilibria as in the benchmark Model 2, as well as f 0 (�) < �1

around the unstable steady states and hence cycles and sunspots as in Model 1.

The reason f (�) can be decreasing in Appendix C is a well-known (see Kalai
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1977) feature of Nash bargaining: agents with bargaining power � < 1 can get a

smaller surplus when the bargaining set expands. Here bankers� surplus can fall

with �, similar to b0 (�) < 0 in Model 1. That does not happen in the baseline

Model 2, where agents are ex ante identical and all get a bigger surplus when �

increases. Details aside, the point is that there are distinct ways for banking to

engender instability based on trust issues, but it is still the case that agents are

better o¤ in any equilibrium with banking than they are without it.11

Model 3: Asset Market Intermediation

Banks are not the only interesting �nancial intermediaries. Work following Du¢ e

et al. (2005) studies OTC asset markets using search theory, where agents may trade

with each other, or with middlemen/dealers. However, most of these papers give

middlemen access to a frictionless interdealer market, so they never hold assets in

inventory (with exceptions, e.g., Weill 2007). Our middlemen are more like those in

Rubinstein andWolinsky (1987), who buy goods from producers and hold inventories

until they sell to consumers, except here they trade assets and not goods, which

Nosal et al. (2017) argue matters a lot. The presentation below builds on that work,

but amends the setup in many ways �e.g., it adds heterogeneity, modi�es the market

composition conditions (see fn. 13), and switches from continuous to discrete time,

all of which a¤ect the results signi�cantly.12

There are large numbers of three risk-neutral types, B, S and M , for asset

buyers, sellers and middlemen. Type M agents stay in the market forever, while

type S and B stay for one period (we also studied alternatives, like letting everyone

stay forever, with similar results). Upon exit S and B are replaced by �clones�to

maintain stationarity (a device borrowed from Burdett and Coles 1997). Type B

agents, sometimes called end users, want to acquire an asset �let�s call it capital �
11Model 1 can be interpreted as bargaining where banks have � = 0. Hence, one may conjecture

that dynamics like those in Appendix C emerge in Model 1 if we allow � 2 (0; 1), but then Model
1 becomes intractable; the setup in Appendix C is relatively tractable.

12A key margin in this framework concerns entry by some types, as in many search models
going back to Diamond (1982). Somewhat relatedly, Admati and Pfeiderer (1988), Pagano (1989)
and Allen and Gale (1994) also show that entry results in endogenous market composition, and
that can induce volatility in prices.
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to implement a project for pro�t � > 0, where � is observable when agents meet,

but random across end users with CDF given by F (�). The originators of capital,

type S, if they enter the market each bring 1 indivisible unit; those that stay out

put their capital to alternative uses, de�ning their opportunity cost of participation,

denoted �s > 0, which for simplicity is the same for all S.

TypeM agents, who are always in the market, can acquire capital from S, but as

usual in these models their inventories are restricted to k 2 f0; 1g (with exceptions,

e.g., Lagos and Rocheteau 2009, but they do not study the issues analyzed here).

Let nt be the measure of type M at t with k = 1. Capital held by M depreciates

by disappearing each period with probability � � 0, but while he holds it M gets

a return � > 0. His crucial choice is then, if he has k = 1 and meets B, should he

trade or keep k for himself? This depends on fundamentals, of course, including the

end user�s �, but as we show below, it can also depend on beliefs.

Market composition is determined as follows: the measures nm and nb of types

M and B are �xed, but entry by S makes ns endogenous.13 Given this, the meeting

technology is standard: each period everyone in the market contacts someone with

probability �, and each contact is a random draw from the participants. In partic-

ular, if Nt is the total measure of participants then types M and S both meet type

B with probability �nb=Nt, so M has no advantage over S in that regard. When

B and S meet they trade for sure since this is S�s only chance and cost �s is sunk.

Similarly, when S meets M with k = 0 they trade for sure. When M with k = 1

meets B, however, they may or may not trade.

As regards prices, if type j gives i capital the latter pays pij (in terms of trans-

ferable utility) determined by bargaining. Thus, if �ij is the total surplus available

when i and j meet, as long as �ij > 0 they trade, and type i�s surplus is �ij�ij,

where �ij 2 [0; 1] is his bargaining power. To �esh this out, let Vs;t and Vb;t be

13Entry by S is nice because it lets us compare economies with the same entry conditions with
and without middlemen. Still, results for entry by M are given in Appendix D; entry by B is less
interesting and hence omitted. These alternatives are all better than Nosal et al. (2017), where
agents choose to be either type M or S. That is awkward because in cyclic equilibria they switch
back and forth over time between being M and S. Here no one switches, but participation by a
type can vary, as in conventional search theory (e.g., Pissarides 2000).
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value functions for types S and B; let Vk;t be the value function for M when he has

k 2 f0; 1g; and let �t = V1;t � V0;t be M�s gain from having inventory. Then

�bs;t = �, �ms;t = (1� �) ��t+1, �bm;t = � � (1� �) ��t+1;

where � 2 (0; 1) is M�s discount factor. Note there are no continuation values or

threat points for S and B, as they are in the market for just one period, but while

that simpli�es the algebra it is not otherwise important. In any case, bargaining

yields

pbs;t = �sb�, pms;t = �sm (1� �) ��t+1, pbm;t = �mb� + �mb (1� �) ��t+1: (20)

When M with k = 1 and B with project � meet, they trade with probability

� t = � (�;Rt), where

� (�;R) =

8<:
0 if � < R
[0; 1] if � = R
1 if � > R

(21)

and Rt � (1� �) ��t+1 is the reservation value of a project making �mb = 0. Hence,

the market payo¤ for B with project � is

Vb;t (�) =
�ns;t
Nt

�bs� +
�nt
Nt

� (�;Rt) �bm [� � (1� �) ��t+1] : (22)

The �rst term on the RHS is the probability B meets S, times his share of the

surplus; the second is the probability he meets M with k = 1, times the probability

they trade, times his share of the surplus; and note prices do not appear since they

were eliminated using (20). Similarly, the market payo¤ for S is

Vs;t =
�nb
Nt

�sb

Z 1

0

�dF (�) +
�(nm � nt)

Nt
�sm (1� �) ��t+1: (23)

The payo¤ for M depends on inventory. Using Rt = (1� �) ��t+1, we have

V0;t =
�ns;t
Nt

�msRt + �V0;t+1 (24)

V1;t = �+
�nb
Nt

�mb

Z 1

Rt

(� �Rt) dF (�) + (1� �)�V1;t+1 + ��V0;t+1: (25)

Subtracting and simplifying with integration by parts, we get

Rt�1 = (1� �) �

�
�+Rt +

�nb�mb
Nt

Z 1

Rt

[1� F (�)] d� � �ns;t�ms
Nt

Rt

�
; (26)
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giving the evolution of R over time. The evolution of inventories held by M is

nt+1 = nt (1� �)

�
1� �nb

Nt
E� (�;R)

�
+
(nm � nt)�ns;t (1� �)

Nt
; (27)

where E� (�;R) = prob (� > R) is the unconditional probability that M and B

trade. The �rst term on the RHS is current n times the probably a unit of k does

not depreciate or get traded; the second is current nm � n times the probability M

acquires k and it does not depreciate.

We can eliminate Nt in (26)-(27) using S�s entry condition, Vs;t = �s, which

reduces to

ns;t =
�nb�sbE� + � (nm � nt) �smRt

�s
� nb � nm: (28)

What�s left is a two-dimensional dynamical system that is compactly written as�
nt+1
Rt�1

�
=

�
f(nt; Rt)
g(nt; Rt)

�
: (29)

Given an initial n0, equilibrium is a nonnegative, bounded path for (nt; Rt) solving

(29).14

With no intermediaries, nm = 0, the equilibrium is basically static and it is easy

to check that it is unique. With nm > 0, �rst note that the locus of points satisfying

n = f (n;R), called the n-curve, and the locus satisfying R = g (n;R), called the

R-curve, both slope up in (n;R) space. Then, to develop some intuition, consider

the special case where � = �� is constant. As shown in Fig. 7, for this case there are

three possible regimes: (i) R < ��, so M with k = 1 and B trade with probability

� = 1; (ii) R > ��, so they trade with probability � = 0; and (iii) R = ��, so they

trade with probability � 2 (0; 1). Appendix A proves:

Proposition 3 With � = �� there exist ~� > 0 and �̂ > ~� such that: (i) if � 2 [0; ~�)

there is a unique steady state and it has R < ��; (ii) if � 2 (�̂;1) there is a unique
14A distinction between this model and others in the paper is that this system is two dimensional:

R is a jump variable, like � in the previous sections, while n is a (predetermined) state variable,
so transitions are nontrivial. The version of Model 3 in Appendix D, with entry by M instead
of S, is di¤erent: there one can solve a univariate system Rt�1 = G (Rt) to get the path for Rt,
after which nt, Nt etc. follow from simple conditions. Intuitively, with entry by M (entry by S)
the model is (is not) block recursive, as discussed in Shi (2009). Hence, Appendix D delivers more
results, including chaotic dynamics, but we still prefer entry by S as a benchmark model.
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steady state and it has R > ��; (iii) if � 2 (~�; �̂) there are three steady states, R < ��,

R > ��, and R = ��.

Figure 7: Model 3, phase plane

For several reasons we prefer a nondegenerate F (�).15 So, consider a smooth

mean-preserving spread of the degenerate case, shown in Fig. 8.

Example 6: Let

F (�) =

8<:
�1�=�0 if 0 � � � �0
�1 + (�3 � �1) (� � �0) = (�2 � �0) if �0 < � � �2
�2 + (1� �3) (� � �2) = (�4 � �2) if �2 < � � �4

(30)

with �0 = 0:99, �1 = 0:05, �2 = 1:01, �3 = 0:95 and �4 = 2. Also, let � = 1,

�s = 0:1, nb = 0:05, nm = 0:5, �sm = 0:5, �sb = 1, �mb = 0:7, � = 1=1:04, � = 0:008

and � = 0:2.

15For the nondegenerate F (�) studied below, the �at portion of the n-curve in Fig. 7 is elimi-
nated. Then in any steady state M and B are indi¤erent to trade only in the rare event � = R, in
contrast to the mixed-strategy equilibrium in the degenerate case, where they are always indi¤erent.
Moreover, with nondegenerate F (�), if R varies across pure-strategy steady states intermediation
activity does too, but not necessarily to the extreme extent of the degenerate case, where it is
either � = 1 or � = 0. Similarly, for real-time dynamics, cycles with nondegenerate F (�) have
�uctuations in intermediation activity but not necessarily between � = 0 and � = 1.
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Fig. 8 is similar to Fig. 7, except the slope of the n-curve is always positive. Hence

the results are similar to Proposition 3, including multiplicity.

Figure 8: Model 3, phase plane with two-cycle

Here is the intuition. First suppose R is low, so M trades k to B with a high

probability. Then the probability M has k = 0 is high, which is good for sellers,

so ns is high. That makes it easy for M to get k and rationalizes a low R. Now

suppose R is high, so M trades k to B with a low probability. Then the probability

M has k = 0 is low, which is bad for sellers, so ns is low. That makes it hard for M

to get k and rationalizes a high R. Moreover, market liquidity �i.e., the ease with

which agents can buy and sell k �is high (low) if R is low (high). Multiplicity means

liquidity is not pinned down by fundamentals, a recurring theme in monetary theory

(e.g., Kiyotaki and Wright 1989), but the intuition here is di¤erent. In monetary

economies, whether an agent accepts something as medium of exchange depends on

what others accept. Here, whether type M agents trade away k depends on ns, and

ns depends on whether typeM trade away k, which is a di¤erent idea. In particular,

our result requires endogenous market composition, something that is not true in

most monetary models.

Now consider a two-cycle oscillating between a liquid regime with low R and an
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illiquid regime with high R, or
�
RL; nL

�
and (nI ; RI) solving�

nI

RI

�
=

�
f(nL; RL)
g(nL; RL)

�
and

�
nL

RL

�
=

�
f(nI ; RI)
g(nI ; RI)

�
: (31)

One solution is
�
RL; nL

�
= (0:9862; 0:4504) and

�
RH ; nH

�
= (1:0103; 0:4312). Hence,

we have real-time dynamics (not just multiple steady states) with excess volatility

in liquidity, trade volume, prices and quantities. Fig. 9 shows the times series. In

the liquid regime: R is low, making M more inclined to trade with B; n is high,

because M and B traded less last period; and ns is low, because low R and high n

discourage entry by S. The illiquid regime has the opposite properties.

Figure 9: Model 3, time series for a two-cycle

We do not claim that actual data are best explained by a two-cycle, but suggest

if such a simple model can deliver equilibria where endogenous variables vary over

time, as self-ful�lling prophecies, it lends credence to the notion that intermediated

asset markets in the real world might be prone to similar instability.16 A �nal point
16Prices are also shown in Fig. 9 (averaged over � when B trades). The price B pays S is

constant over time, as it depends only on fundamentals, but the price M pays S or B pays M
moves with R. The spread can go either way, but here it moves against R. This is all broadly
consistent with the data discussed in Comerton-Forde et al. (2010), and other stylized facts (e.g.,
inventories are volatile than output). While this is obviously not a calibration, the �nding that it
is qualitatively more consistent with observations may lend further credence to the story.
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about this setup is that, as in some other models of middlemen, welfare can be higher

or lower with intermediation than without it. The reason is that while M perform

a real service by getting assets from S to B, their activity depends on bargaining

power �they like to buy low and sell high �and hence they may operate even if

they are not socially e¢ cient, say because � is very low.

Model 4: Safety and Secrecy

An important role of banks is that their liabilities facilitate third-party transac-

tions. Indeed, some say that is their de�ning characteristic: �banks are distinguished

from other kinds of �nancial intermediaries by the readily transferable or �spendable�

nature of their IOUs, which allows those IOUs to serve as a means of exchange, that

is, money... Commercial bank money today consists mainly of deposit balances that

can be transferred either by means of paper orders known as checks or electronically

using plastic �debit�cards� (Selgin 2018). We pursue this in a model with an ex-

plicit need for payment instruments, building on the framework surveyed by Lagos

et al. (2017) and Rocheteau and Nosal (2017), with banks added in two ways.

In Model 4a, bank liabilities are safe relative to other assets in the sense that

they are less susceptible to theft or loss, as in He et al. (2007) or Sanches and

Williamson (2010). Traveler�s checks are an example, but more generally, it is

obviously worse to have your cash lost or stolen than your checkbook or debit card.

Also, if merchandise turns out to be fraudulent or defective (a form of theft) it is

easier to stop payment if you use a check or credit card than if you use cash.17

Model 4b builds on the alternative idea that payment instruments originating with

banks can be, as Dang et al. (2017) put it, informationally insensitive when these

institutions act as secret keepers. See also Gorton and Pennachi (1990), Andolfatto

and Martin (2013), Andolfatto et al. (2014) and Monnet and Quintin (2017).

17Safety was a critical feature of banks historically. Consider the British goldsmiths: �At �rst
[they] accepted deposits merely for safe keeping ; but early in the 17th century their deposit receipts
were circulating in place of money�(Encyclopedia Britannica, quoted in He et al. 2005; emphasis
added). Also, �In the 17th century, notes, orders, and bills (collectively called demandable debt)
acted as media of exchange that spared the costs of moving, protecting and assaying specie�(Quinn
1997; emphasis added). Safety was also crucial for earlier bankers, including the Templars (Sanello
2003), who specialized in moving purchasing power over dangerous territory.
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While there are di¤erent approaches to modeling media of exchange, one based

on Lagos and Wright (2005) is convenient for both Models 4a and 4b. In that setup,

in each period of discrete time two markets convene sequentially: a decentralized

market, or DM, with frictions detailed below; and a frictionless centralized market,

or CM. There are two types of in�nitely-lived agents, a measure 1 of buyers and

a measure n of sellers. Their roles di¤er in the DM, but they are similar in the

CM, where they all trade a numeraire consumption good x and labor ` for utility

U (x)� `, with U 0 > 0 > U 00. They also trade assets in the CM, like the trees in the

standard Lucas (1978) model, giving o¤ a dividend � > 0 in the CM in numeraire.

All agents discount by � 2 (0; 1) between one CM and the next DM, but wlog they

do not discount between the DM and CM.

In the DM agents meet bilaterally, where sellers can provide a good q (di¤erent

from x) that buyers want. Let � be the probability a buyer meets a seller, so that

�=n is the probability a seller meets a buyer. In any meeting, if a seller produces for

a buyer the former incurs cost c (q) and the latter gets utility u (q), where c (0) =

u (0) = 0, c0; u0 > 0 and c00 � 0 > u00. Also, let q� satisfy u0 (q�) = c0 (q�). Goods

q and x are nonstorable, so they cannot serve as commodity money. Credit is not

viable because there is limited commitment and DM trading is anonymous. Hence,

as is standard in these models, sellers only produce if they get assets in exchange.

Let the terms of trade be given by a generic mechanism, as in Gu and Wright

(2016), meaning this: for a buyer to get q, he must give the seller assets worth v (q) in

CM numeraire, for some function with v (0) = 0 and v0 (q) > 0. A simple example

is Kalai�s (1977) proportional bargaining solution, v (q) = �c (q) + (1� �)u (q).

Generalized Nash is similar but the formula for v(q) is more complicated when

liquidity constraints are operative. For a fairly general class of mechanisms, Gu

and Wright (2016) show this: if a buyer has enough assets to make his liquidity

constraint slack, he gets the e¢ cient q = q� and pays p� = v(q�); but if he has assets

worth p < p�, he gives them all to the seller and gets q = v�1 (p) < q�.

In Model 4a, assets can be held in forms that di¤er in safety and liquidity,

26



where safety is captured by the probability of being stolen (or lost), and liquidity is

captured by whether it can be used as means of payment in the DM. To maintain

stationarity, any assets that are stolen (or lost) return to the system next period,

say because thieves (or �nders) bring them to the CM. Let a =(a1; a2) be a buyer�s

portfolio: a1 denotes assets held in a safe but illiquid form, say hidden in one�s

basement, meaning that it cannot be stolen (or lost) but also cannot be used in the

DM; and a2 denotes assets held in a liquid form, which means they are brought to

the DM, where can be used as payment instruments, but there is a probability � > 0

of being stolen (or lost).

The ex dividend price of the asset in terms of numeraire is  independent of

whether it is held as a1 or a2. A buyer�s CM value function is W (A) where A =

( +�)�jaj is wealth. His DM value function is V (a), which depends on his portfolio

and not just its value. A buyer�s CM problem is then

Wt (At) = max
xt;`t;ât

fU(xt)� `t + �Vt(ât)g st xt = At + `t �  t�j âj;t

where â = (â1; â2) is his updated portfolio, and the CM real wage is 1 assuming

that x is produced one-for-one with `. Given an interior solution, several standard

results are immediate: (i) xt = x� solves the FOC U 0(x�) = 1; (ii) ât solves the

FOC�s �@Vt+1=@âj;t �  t, = 0 if âj;t > 0, which is independent of at, so all buyers

exit the CM with the same portfolio; and (iii) W 0
t(At) = 1, so Wt (At) is linear in

wealth. A seller�s CM problem (not shown) is similar, with a CM payo¤ again linear

in wealth.

A buyer�s value function is

Vt+1(ât) = (1� �)
n
� [u (qt+1)� v (qt+1)] +Wt+1(Ât+1)

o
+ �Wt+1[

�
 t+1 + �

�
â1;t]

where Ât+1 is the wealth implied by ât, with qt+1 solving v (qt+1) =
�
 t+1 + �

�
â2 if�

 t+1 + �
�
â2 < v (q�), and v (qt+1) = v (q�) otherwise. The buyer�s surplus in a DM

transaction is u (q) � v (q), because of the result that W (�) is linear. Equilibrium

is described by the Euler equations, which come from inserting the derivatives of V
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into the FOC�s from the CM:

0 = â1;t
�
�
�
 t+1 + �

�
�  t

�
(32)

0 = â2;t
�
�
�
 t+1 + �

�
(1� �) [1 + �� (qt+1)]�  t

	
; (33)

where � (q) = u0 (q) =v0 (q)� 1 > 0 is the liquidity premium on assets in the DM.

If we normalize the aggregate asset supply to 1, the dynamical system implied

by the model is described as follows. At any t, there are three possible regimes: (i)

â2;t = 0; (ii) 0 < â2;t < 1; and (iii) â2;t = 1. In regime (i), inserting â1;t = 1 and

â2;t = 0 into (32) and (33), we get  t = �( t+1 + �) and (1� �) [1 + �� (0)] � 1,

with the latter equivalent to

� � �̂ � �� (0)

1 + �� (0)
: (34)

Thus, agents bring no assets to the DM if the probability of theft is high. If (34)

holds, the DM shuts down and the only possible equilibrium has  t =  F 8t, where

 F � ��= (1� �) might be called the fundamental price of the asset.18

Now assume � < �̂, and consider regime (ii), where agents hold some but not

all their assets in liquid form. Inserting â1;t,â2;t > 0 into (32) and (33), we get

 t = �
�
 t+1 + �

�
and (1� �) [1 + �� (qt+1)] = 1, which means qt+1 = ~q where

�� (~q) =
�

1� �
: (35)

One can show regime (ii) obtains i¤  t+1 + � > â2;t
�
 t+1 + �

�
= v (~q) and � < �̂.

Finally, consider regime (iii). Inserting â1;t = 0 and â2;t = 1 into (32) and (33),

we get  t � �
�
 t+1 + �

�
and

 t = �
�
 t+1 + �

�
(1� �) [1 + �� (qt+1)] ; (36)

where qt+1 = v�1( t+1 + �) < ~q. This last condition is equivalent to  t+1 � ~ �

v (~q)� �. Hence if � < �̂ the dynamic system is  t = f
�
 t+1

�
where:

f ( ) �
�
� ( + �) (1� �) [1 + �� � v�1 ( + �)] if  < ~ 

� ( + �) if  � ~ 
(37)

18One might argue that (1� �)� ( + �), and not � ( + �), is the fundamental price, since an
asset holder only gets the return when it is not stolen. A rebutal is that someone always gets the
payo¤, even if it is the thief. To avoid this issue simply interpret  F as notation for ��= (1� �).
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Equilibrium is a nonnegative and bounded path for  t = f
�
 t+1

�
.

Proposition 4 Steady state exists, is unique, and is described as follows. De�ne

~� 2 [0; �̂) by
~� =

�� � v�1( F + �)

1 + �� � v�1( F + �)
: (38)

Then (i) � � �̂ implies â1 = 1, â2 = 0 and � =  F ; (ii) � 2 (~�; �̂) implies â1 > 0,

â2 > 0 and � =  F ; and (iii) � � ~� implies â1 = 0, â2 = 1 and � >  F .

Fig. 10 shows how steady state depends on �. In regime (i) the DM is inactive

and � =  F , because assets are not safe enough to use as payment instruments. In

regime (ii) the DM is active at q = ~q > 0, but since some wealth is parked in illiquid

â1, we again have � =  F , with @q=@� < 0. Thus DM output goes down with �

because it reduces output per trade ~q, as well as the number of trades (1� �)�. In

regime (iii), which it maximizes �cash in the market�with â2 = 1, we get � >  F .

Here @q=@� < 0 not because â2 falls, but because  falls, with �.

Figure 10: Model 4a, regimes of steady state

A steady state can either be on the linear or the nonlinear branch of f (�). In the

former case, � =  F > ~ and steady state is the only equilibrium (any other path

for  t is unbounded). In the latter case,  
F < � < ~ , and we potentially have cyclic,

chaotic or stochastic equilibria where  t oscillates around � . As usual, this occurs
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when f 0
�
� 
�
< �1. So the economy may have asset prices above their fundamental

value, and these prices may exhibit excess volatility, even without banks, as is true

in many monetary models.

Figure 11: Model 4a, dynamic equilibrium

Now consider banks that take assets as deposits and issue receipts, claims on

these deposits. Let a3 denote assets on deposit and assume they are safer than a2

but still liquid � i.e., they are spendable.19 However, deposits may entail a lower

yield than the original assets, since banks may have operating costs and depositors

may be willing to sacri�ce return for safety. If � is the interest rate on deposits then

bank pro�t is

�(a3) = a3 (�� �)� k (a3) ; (39)

where k (a3) is the cost of managing deposits, with k0; k00 � 0 = k(0). Maximization

of � equates the spread �� � to marginal cost k0 (a3).

Now âj > 0 8j is possible because there are three asset characteristics �namely,

liquidity, safety and rate of return. However, to begin, suppose deposits are perfectly

liquid and safe, and set k (a3) = 0 so that � = � (we return to the general case

19One can make deposits less than perfectly liquid � i.e., some sellers do not accept them or
accept them only up to a limit �using private information (Lester et al. 2012; Li et al. 2012).

30



below). Then a3 strictly dominates a2, and the economy looks like one without

banking where � = 0. This is shown in Fig. 11, where f1 and f0 are the dynamical

systems with and without banking. Adding banks shifts up in the nonlinear branch

of f (�), which increases ~ and � , since agents can now keep assets in a safe place

and still use them for DM transactions.

Banking increases DM output, and hence welfare, because it increases the size

and number of trades. What does it do for volatility? Starting without banks,

suppose steady state is on the linear branch of f (�), so there is a unique equilibrium

 t =  F 8t. Then adding banks can shift f (�) up by enough that the new steady

state is on the nonlinear branch. Thus, banking can make possible cyclic, chaotic

and stochastic equilibria that were impossible without it. For some parameters

such outcomes are also possible without banking, but if the economy has a unique

equilibrium with banking the same is true without banking.

Fig. 11 is drawn for the following speci�cation:

Example 7: Let k(a3) = 0, c (q) = q,

u (q) =
A

1� �

�
(q + ")1�� � "1��

�
;

and use bargaining with � = 1. Also set A = 0:15, � = 3:1, " = 0:16, � = 0:033,

� = 0:8333, � = 0:85 and � = 1.

Without banks there is a unique equilibrium, the steady state � =  F = 0:1650.

With banks there is a steady state � = 0:3183 >  F plus a two-cycle where  L =

0:3193 and  H = 0:3502.

While this example makes our main point, it is worth asking what else the

model can do. We now show it generates something realistic but uncommon in

economic theory: the concurrent circulation of assets and bank liabilities as payment

instruments. So that â3 does not strictly dominate â2, consider a more general cost

function k (a3). Then bank�s FOC de�nes a supply curve that is increasing in �,

which is endogenous in equilibrium but taken as given by individuals. Equilibrium

is characterized by (32)-(33) with

v (qt+1) =
�
 t+1 + �

�
â2 +

�
 t+1 + � (â3)

�
â3;
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since DM purchases now use a2 and a3. The demand for a3 satis�es

0 = â3;t
�
�
�
 t+1 + �t

� �
1 + ���

�
q0t+1

�
+ (1� �)�� (qt+1)

�
�  t

	
(40)

where v
�
q0t+1

�
=
�
 t+1 + � (â3)

�
â3 and q0t+1 is the DM purchase when a2 is stolen.

Consider the following example:

Example 8: Let A = 2:5, � = 2:5, " = 0:001 � = 0:04; � = 0:8, � = 0:01, � = 1,

and k (a3) = 0:03a3.

There is a unique steady state in which � = 1:3125, â = (0; 0; 1) and � = 0:01.

There is also a two-cycle with  L = 1:2128, âL = (0; 0; 1),  H = 1:4760 and âH =

(0:0384; 0:2293; 0:7323). In the L state,  is low, all assets are deposited, and only

bank liabilities are used in the DM; in the H state,  is high, assets are held in all

three forms, with both a2 and a3 used in the DM. Fig. 12 shows the price  , deposits

a3, their value ( + �) a3, and the surplus u (q)� c (q) over the cycle.

Figure 12: Model 4a, time series for a two-cycle

Now consider Model 4b, based on secrecy rather than safety. First, following Hu

and Rocheteau (2015) or Lagos and Zhang (2019), assume Lucas trees die (disap-

pear) with probability � at the beginning of each CM.20 To maintain stationarity,

20For an individual, having one�s asset disappear is similar to having it stolen, so Models 4a and
4b are related. Moreover, they share the CM-DM structure, the use of generic trading mechanisms,
etc. which is why we treat Models 4a and 4b as special cases of the same environment.
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dead trees are replaced by new ones, distributed across agents as lump sum transfers

from nature. Also, this is an aggregate shock (all or no assets survive each period).

Moreover, information about the shock in the next CM is revealed in the current

DM, before agents trade, which is a hindrance to having assets serve as media of

exchange. This speci�cation is extreme, in that the asset value drops to 0 after a

shock; all we really need, however, is that it goes down.

The CM problem is

Wt (at) = max
xt;`t;ât

fU(xt)� `t + �Vt+1(ât)g st xt = ( t + �)at + `t �  tât + T

where T denotes transfers. Here the asset is the only DM means of payment, and

it is only usable when it is revealed that it will survive to the next CM. Hence,

Vt+1(ât) = (1� �) f� [u (qt+1)� v (qt+1)] +Wt+1 (ât)g+ �Wt+1 (0)

where, as in Model 4a, v (qt+1) =
�
 t+1 + �

�
ât if

�
 t+1 + �

�
ât < v (q�) and v (qt+1) =

v (q�) otherwise. Again, we get  t = f0
�
 t+1

�
, where the subscript 0 indicates there

are no banks for now, and

f0 ( ) = � (1� �) ( + �)
�
1 + �� � v�1 ( + �)

�
: (41)

Now introduce banks that take assets on deposit and issue receipts. These de-

posits are not insured �they are claims to the asset, and if the asset dies the claim

is worthless. By design, the role of banks in this formulation is not to provide insur-

ance, but to capture secrecy as follows: while an agent holding an asset can see if it

will die in the next CM, once he deposits it in a bank he cannot, and although the

banker holding the asset can see it, he may or may not inform people. This is the

idea in the literature, discussed above, where some assets are more informationally

insensitive than others and banks�role as secret keepers. Agents like to use bank

liabilities as DM payment instruments, rather than the original assets, since the

former trade at their expected value rather than their realized value. This bank

money provides a steadier stream of liquidity.
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With banks, the DM value function is

Vt+1(ât) = � [u (qt+1)� v (qt+1)] + (1� �)Wt+1 (ât) + �Wt+1 (0)

This leads to  t = f1
�
 t+1

�
, where

f1 ( ) = � (1� �) ( + �)
�
1 + �� � v�1 [(1� �) ( + �)]

	
: (42)

As � (�) is decreasing, f1 lies above f0 on the nonlinear branch, and hence f1 reaches

a higher steady state. It can be shown that the liquidity provided by deposits in

steady state is lower than that provided by the asset when the asset does not die,

but of course is higher when it dies. On net, banking can improve welfare, but it

can also engender instability.

This is shown in Fig.13 for the following parameterization:

Example 9 Same as Example 7 except A = 0:5, � = 3:5, " = 0:15, � = 0:5,

� = 0:9 and � = 0:5.

Without banking, the unique equilibrium is a steady state where  = 0:4091, and

q = q� = 0:6703 if the asset survives while q = 0 otherwise. With banking, there

is a steady state where  = 0:7187 and q = 0:6093, and welfare is higher, but

there is also a two-cycle where  L = 0:6081 and  H = 0:8514. The time series

(not shown) in this case is simple since all variables move with  . Thus, banking

eliminates fundamental cycles induced by information about realized asset values,

but introduces volatility as a self-ful�lling prophecy.
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Figure 13: Model 4b, dynamic equilibrium

The �rst part of Proposition 5 below says banks may engender volatility. The

second part says they cannot eliminate volatility due to self-ful�lling prophecies,

since if there is a unique equilibrium  t =  F 8t with banking, there is also a

unique equilibrium with  t =  F 8t without it.

Proposition 5 When the steady state � =  F is the unique equilibrium without

banking, introducing banks can introduce nonstationary equilibria. When the steady

state � =  F is the unique equilibrium with banking, steady state is the unique

equilibrium without banking.

Models 4a and 4b have similar results and intuition. In both, due to liquidity

considerations,  t = f
�
 t+1

�
has two terms: one re�ects a store-of-value component

making price today increasing in the price tomorrow; the other re�ects a medium-

of-exchange component making price today generally nonmonotone in the price to-

morrow. If the second term is decreasing and dominates the �rst, f 0
�
� 
�
< �1

and hence endogenous dynamics are possible. In Model 4a, without banks we have

f0 ( ), and with banks we have f1 ( ) = f0 ( )/(1� �) on the nonlinear branch.

This is why we can get f 00 ( ) > �1 without banks and f 01 ( ) < �1 with banks
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at a given  . In addition, steady state moves from � 0 without banking to � 1 with

banking, which can also make f 01
�
� 
�
< �1 more likely.

In Model 4a banks make the asset better as a store of value and as a medium of

exchange by reducing the risk of theft. In Model 4b banks do not make the asset a

better store of value, because there is no way to avoid the loss if the tree dies, but

they make it a better medium of exchange by keeping information secret. Hence, in

Model 4b agents unambiguously put more weight on the nonmonotone medium-of-

exchange component, making it more likely that f 01 ( ) < �1. Details aside, these

results show again how banking can engender instability, although again agents are

better o¤ with banking than without, it at least near steady states.21

Conclusion

This paper demonstrates that the varied activities of �nancial intermediaries

make multiplicity/volatility more likely in a precise sense. The result is true in

Models 1 and 2, both involving trust but di¤ering in the reason for banking (insur-

ance vs �xed costs); in Model 3, capturing not banks but dealers in OTC markets;

and in Model 4, featuring the use of bank liabilities as inside money. The di¤erent

speci�cations therefore all lend support to the notion that �nancial intermediation

engenders instability, although again we emphasize that this does not make it bad:

intermediaries improve welfare in Models 1 and 2 for sure; in Model 3 at least for

some parameters; and in Model 4 at least near steady states.22 The presentation

involved many examples, naturally, since the claim is that �nancial intermediation

may generate instability, not that it must.23 Also, the claim is not that the data

21This is not necessarily true in general �e.g., it is possible that a two-cycle equilibrium with
banking is worse than the outcome with no banking if we start the cycle in the low  state.

22Rajan (2005) argues that volatility, which he takes to be self-evidently bad, has emerged
from recent �nancial innovation. This is consistent with our theoretical �ndings, but we tend
to agree with Summers�comment: Financial innovations are like improvements in transportation
technology, which have an overwhelmingly positive impact on welfare even if they increase the
possibility of, say, plane crashes. Clearly, �nancial markets, like the airline industry, may need
some regulation, but too much can be counterproductive (e.g., Lacker 2015; Weinberg 2015).

23Also, the examples are not calibrated because we are interested here mainly in logical possibil-
ities, but future work could see if instability arises for more realistic speci�cations and parameters.
Other future work could put the various models, all of which are somewhat novel, to work in other
applications �e.g., designing regulations to improve bank performance �but the goal here was to
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are best explained by cycles or sunspots, but that when rudimentary models can

have equilibria where liquidity, prices, quantities and welfare vary as self-ful�lling

prophecies, it seems more likely that actual economies can, too.

We close by reiterating how the di¤erent setups are related. First, we believe

theories of �nancial intermediaries should use environments with explicit frictions

that give rise to an endogenous role for these institutions, as they can give rise to

monetary exchange and other arrangements meant to ameliorate the frictions. At

the same time, frictions mean there can be multiple Pareto-ranked equilibria and

belief-based dynamics. Recall the Pholk Theorem, that all models where equilibria

may be ine¢ cient can display multiplicity/volatility. Again, corroboration of this

idea consists of showing that it works in a series of environments. Our formulations

used di¤erent frictions capturing di¤erent aspects of �nancial intermediaries, and

we tried to cover all of the standard ways of studying them. While there may be

still other ways to model these institutions, we hope the above results are enough to

make a case for this: endogenizing �nancial intermediaries using explicit frictions,

in various ways, leads to the conclusion that they can be unstable.

focus exclusively on stability.
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Appendix A: Proofs of Nonobvious Results

Proposition 1: If �̂ � 0 then (12) reduces to �t�1 = ��t and the only equilibrium

is the steady state with �� = 0. If �̂ > 0 then f (0) > 0 and f(�̂) = ��̂ < �̂ implies
�� 2 (0; �̂) exists. To see it is unique, �rst solve (12) for � = ��v (bR) = (1� �) and

substitute it into (10) to get �d = (1� � + ��) v (bR) = (1� �). This implies d is

increasing in b. But (11) implies d is decreasing in b, so if they have a solution (�b; �d)

it is unique. �
Proposition 3: First, for uniqueness, note that when � = �� the equations for the

R-curve and n-curve are de�ned by�
r + �

1� �
+ ��ms

�
R� �� �nb�mb� (�� �R) + � (nb + nm) �msR

N
= 0 (43)

�n+ n (1� �)
�nb�

N
� (nm � n) (1� �)�

�
1� nb + nm

N

�
= 0 (44)

where

N =
�nb�sb�� + � (nm � n) �smR

�s
:

In the region where R > ��, where � = 0 combine (43) and (44) to eliminate N ,�
r + � +

�ms�n

nm � n

�
R = � (1� �) (45)

This implies
@R

@n
= � �ms�nm

(nm � n)2 (r + �) + (nm � n) �ms�n
< 0:

Thus we transform the system (43)-(44) to (45)-(44). As (45) is downward sloping

and (44) is upward sloping, there exists at most one steady state with R > ��.

In the region where R < ��, where � = 1, combine (43) and (44) to get�
r + �

1� �
+ ��ms

�
R = �+

nb�mb (�� �R) + (nb + nm) �msR

(1� �)nm (nb + nm � n)
[(nm � n) (1� �)�� n�] :

This implies

@R

@n
= � nb�mb (�� �R) + (nb + nm) �msR

r + � + (�ms + nb�mb) (1� �)�=N

� (nb + nm) + (1� �)�nb

nm (nb + nm � n)2
< 0 (46)

Again, since (46) is downward and (44) upward sloping, there is at most one steady

state with R < �. Similarly, when R = �� and � 2 (0; 1), the n-curve is �at and
R-curve is upward sloping. Hence, there again is at most one steady state.
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For existence, �rst, it is easily veri�ed that the R- and n-curve are upward

sloping. At n = 0 the R-curve implies R > 0 and the n-curve implies n >

0. At R = 1 the R-curve implies n = nm and the n-curve implies n = �n �
�nm (1� �) = [� + (1� �)�] < nm. Hence the curves cross at least once, and gener-

ically an odd number of times. Since we already established that there cannot be

multiple steady states in the same regime , if there is a steady state at R = ��, there

must exist two other steady states, one with R < �� and one with R > ��. Rou-

tine calculation implies @R=@� > 0, and so there exist ~�; �̂ � 0 with the properties
speci�ed in Proposition 3. �
Appendix B: Sunspot Equilibria
A dynamical system allows for a two-state sunspot equilibrium solves

�s;t�1 = �sf
�
�s;t
�
+ (1� �s) f

�
��s;t

�
(47)

where s = A;B denotes two states in the sunspot equilibrium, �s 2 (0; 1) is the
probability of staying in the same state, and f is the dynamical system in the

deterministic case. We seek a pair of probabilities (�A; �B) 2 (0; 1)
2 satisfying (47)

in stationary equilibrium.

To proceed, rewrite (47) as

�A =
f (�B)� �A

f (�B)� f (�A)
and �B =

�B � f (�A)

f (�B)� f (�A)

Consider wlog �B > �A. If f is decreasing on (�A; �B), the denominator is negative.

Then �A; �B 2 (0; 1) i¤ f (�A) > �B > �A > f (�B), which implies that f crosses

the 45 degree line from above and [f (�A)� f (�B)] = (�A � �B) < �1. Therefore, in
Model 1 where f is decreasing around the steady state, there exist sunspot equilibria

if f
�
��
�
< �1.

Similarly, if f is increasing on (�A; �B), the denominator is positive. Then

�A; �B 2 (0; 1) i¤ f (�B) > �B > �A > f (�A), which implies f crosses the 45
o

line from below on [�A; �B]. Therefore, in Model 2 where f is increasing, there

exist sunspot equilibria around a stable steady state �1 for any �A 2 (0; �1) and
�B 2 (�1; �2).

Appendix C: Bargaining in Model 2
There are two agents on each island, one who lives for one period and one who lives

forever, so the former should be the depositor and the latter the banker. Assume
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the cost � is too high for them to invest individually. If the banker�s bargaining

power is �, the generalized Nash problem is

W (�) = max
X;x;D;d

[U (X)� C(D)]�[u (x)� c(d)]1�� (48)

st X + x = R(D + d)� � (49)

u (x)� c(d) � 0 (50)

xt � �t: (51)

The last constraint is from the banker�s incentive condition �Vt+1 � �xt + (1 �
�)�Vt+1 rewritten using �t � ��Vt+1=�. Notice W 0 (�) > 0 if (51) binds, and there

is a cuto¤ ~� above which banking is viable and below which it is not.

Denote the solution ignoring (50) and (51) by (X�; x�; D�; d�). Further, consider

the case u (x�) > c (d�) and let �� = x�. Substituting (49) into the objective function

and taking FOC�s, we get

D : U 0 (X)R� C 0 (D) = 0

d : �U 0 (X)R[u (x)� c(d)]� (1� �) c0 (d) [U (X)� C(D)]� �1c
0 (d) = 0

x : ��U 0 (X) [u (x)� c(d)] + (1� �)u0 (x) [U (X)� C(D)] + �1u
0 (x)� �2 = 0

where �1 and �2 are multipliers. From this one can see the banker�s surplus may

decrease with � at least close to ��:

@[U(X)�C(D)]
@�

���
�!��

=
(1��)U 0c00(U�C)(R2U 00�C00)

(C00�R2U 00)[C0c0+(1��)c00(U�C)]��R2U 00C00(u�c) < 0:

The banker�s value function is Vt = U (Xt) � C(Dt) + �Vt+1, and using �t =

��Vt+1=� we have

�t�1 =
��

�
[U (Xt)� C(Dt)] + ��t: (52)

Now (52) can be written as

�t�1 =

8>>><>>>:
��t if �t < ~�
��

�
[U �X (�t)� C �D (�t)] + ��t if ~� � �t < ��

��

�
[U (X�)� C(D�)] + ��t: if �t � ��

Fig.AC shows the dynamical system for the following parameterization:

Example AC: Let U (x) = u (x) = Ax and C (d) = c (d) = Bd
=
, where A = 1;

B = 0:5, 
 = 5; R = 2, k = 1:5, � = 0:01, � = 0:01, � = 1 and � = 0:35.
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There are three steady states, � = 0 and �2 > �1 > 0, with f crossing the 45
o line

from below at �1 and from above at �2. Hence there are sunspot equilibria around

�1 �uctuating between any �A 2 (0; �1) and �B 2 (�1; �2), similar to the baseline
version of Model 2, and since f 0 (�2) < �1 there is a two-cycle with periodic points
�L and �H , plus sunspot equilibria for any �A 2 (�L; �2) and �B 2 (�2; �H), similar
to Model 1.

Figure AC: Nash bargaining

Appendix D: Entry by Type M in Model 3
Consider entry by M instead of S. The equations (23)-(27) are the same but now

ns is �xed while nm;t is endogenous. Also Vs;t = �s is replaced by V0;t = �m. Then

(24) yields Nt in terms of Rt,

Nt =
�ns�msRt
(1� �)�m

: (53)

From (53), Nt depends only on Rt, while with entry by S, it depends on Rt and nt.

Substituting (53) into (26), after some algebra we get Rt�1 = G (Rt), where

G (R) � � (1� �)

�
�+R +

(1� �)�mnb�mb
ns�msR

Z 1

R

[1� F (�)] d� � (1� �)�m

�
:

From this, Rt�1 depends only on Rt, while in the version with entry by S, it depends

on Rt and nt.

Hence we now get a univariate system Rt�1 = G (Rt), which determines the

path for Rt, after which Nt follows from (53), nt from (27), etc. Given a �xed point
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R = G (R),

N = �ns�msRt= (1� �)�m

nm =
�ns�msRt
(1� �)�m

� ns � nb

n =
ns (1� �) [�ns�msR� (nb + ns) (1� �)�m]

�ns�msR + (1� �) [nb� (R) + ns] (1� �)�m

To guarantee the �xed point is a steady state we must check nm; n � 0, both of

which hold i¤R � R � (ns + nb) (1� �)�m=�ns�ms (we also need n � nm but that

never binds). Hence, a solution to R = G (R) � R is a steady state with type M

active; otherwise, there is no intermediation.

Figure AD: Model 3, cycles with entry by M

One can check G (0) = 1, G0 (R) < 1 and G00 (R) � 0. Also, 8R > max (�) ; G

is linear with slope � (1� �). This is shown in the left panel of Fig.AD, from which

it is clear that there exists a unique �xed point, say R̂. In any case, we can have

R̂ > max (�) on the linear part of G (R) or R̂ < max (�), on the nonlinear part of

G (R). If G0(R̂) < �1 then R̂ is locally stable, and there exist cycles and sunspots.
There is a threshold �1 such that G

0(R̂) < �1 i¤ � < �1. We do not know if �1 > 0

or �1 < 0, in general, but all our examples gave �1 < 0. Still we have to verify

R � R, as discussed above. Is G0(R̂) < �1 and R̂ � R possible? Yes, as we now

show by way of example.

Example AD: Consider � = 1, � = 0:01, � = 0:99, nb = ns = 1, �mb = �ms = 0:5,

�m = 0:1, � = �0:1, and use the F (�) in (30), with �0 = 4:95, �1 = 0:05, �2 = 5:05,
�3 = 0:95 and �4 = 10.
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This is the example used in Fig.AD, where it can be easily checked that G0(R̂) <

�1 and R̂ < R. Hence this admits a two-cycle. Note that � < 0 in this example. If

we lower � a little more, we can get higher-order cycles and chaotic dynamics. This

is shown in the right panel of Fig.AD, where we plot G3 (R) and see that there exist

�xed points other than R̂, namely a pair of three cycles. Hence, we can explicitly

construct higher order cycles. Finally, one more result is that � < 0 implies M and

B must trade for some �, Pr (R < �) > 0, if M is in the market �just like in the

other version, a buy-and-hold-forever strategy is never a good idea at � < 0.
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