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Is 10-year yield below 2% the new normal?



long rate = expected future short rates + term premium

Could be low because short rates expected to stay low ...

I real rate near zero for a decade?

I Fed won’t hit its 2% inflation target?

... or because term premium is low or negative

I flight to safety?

I effect of large-scale asset purchases by central banks?

Answer is critical for

I monetary policy

I investment decisions

I understanding lasting consequences of 2008 downturn



long rate = expected future short rates + term premium

In principle can measure if we have correct model of expected
future short rates.

But what is information set on which these expectations are based?



Yield on any security at time t should be function of state vector
zt .

Under standard assumptions (e.g., Duffee, 2013) we would be able
to back out zt if we know the full yield curve at date t.



Three factors (level, slope, and curvature) summarize almost all
information in yield curve.

”Spanning hypothesis”: level, slope, and curvature are all that is
needed to predict bond yields and excess returns.

This is weaker than expectations hypothesis.



Recent studies reporting evidence against spanning
hypothesis

Study Proposed predictors

Joslin, Priebsch and Singleton (2014) inflation and output
Ludvigson and Ng (2009, 2010) factors from macro data sets
Cochrane and Piazzesi (2005) 4th and 5th PC

Greenwood and Vayanos (2014) maturity structure of Treasury debt



Evidence in all these studies comes from regressions of a
common form

yt+h = yield or bond return
x1t = summary of yield curve
x2t = proposed predictors

yt+h = β′1x1t + β′2x2t + ut+h

H0 : β2 = 0

Studies find:

I big increase in R2 when x2t added to regression

I very low p-value for test of H0



yt+h = β′1x1t + β′2x2t + ut+h

Our paper:

These studies did not adequately allow for small-sample
implications of high persistence of x1t and x2t .

Once small-sample consequences of persistence are accounted for,
evidence against spanning hypothesis is much less convincing.



Observation 1: serial correlation influences small-sample R2

The more the serial correlation in x2t and ut+h, the more the R2

will increase when x2t is added to the regression, even if x2t is
completely independent of ut+h at all leads and lags.



T (R2
2 − R2

1 )
d→ r ′Q−1r/γ

γ = E [yt − E (yt)]2

r ∼ N(0,S)

Q = E (x2tx
′
2t)

S =
∞∑

v=−∞
E (ut+hut+h−vx2tx

′
2,t−v )

E (ut+hut+h−vx2tx
′
2,t−v ) = E (utut−v )E (x2tx

′
2,t−v ) 6= 0

Overlapping returns induce serial correlation in ut and give change
in R2 higher mean and variance



Observation 2: Lack of strict exogeneity of x1t can affect
small-sample properties of hypothesis tests

yt+h = β′1x1t + β′2x2t + ut+h

Conventional HAC is poor approximation to small-sample
distribution when

I x1t is correlated with lagged values of ut+h

I x1t and x2t are highly persistent

This result does not depend on serial correlation of ut+h



When H0 is true, OLS coefficient can be written

b2 =

(
T∑
t=1

x̃2t x̃
′
2t

)−1( T∑
t=1

x̃2tut+h

)
x̃2t = residuals from OLS regressions of x2t on x1t :

x̃2t = x2t − AT x1t

AT =

(
T∑
t=1

x2tx
′
1t

)(
T∑
t=1

x1tx
′
1t

)−1

.



Under conventional stationary asymptotics
AT

p→ 0
b2 has the same asymptotic distribution as

b∗2 =

(
T∑
t=1

x2tx
′
2t

)−1( T∑
t=1

x2tut+h

)
,

√
Tb2

d→ N(0,Q−1SQ−1)



But when x1t and x2t are highly persistent, the regression of x2t on
x1t behaves more like a spurious regression and AT converges more
slowly to zero.

When x1t is correlated with lagged ut+h, this effect is also
correlated with

∑
x̃2tut+h and causes variance of b2 to be bigger

than Q−1SQ−1.

Result: HAC correction based on conventional asymptotics
understates the small-sample standard error of b2.



Simple example

x1t and x2t scalars

yt+1 = β1x1t + β2x2t + ut+1

x1,t+1 = ρ1x1t + ε1,t+1

x2,t+1 = ρ2x2t + ε2,t+1

ρ1, ρ2 near 1

β2 = 0

x1t = yt

ε1t , ε2t completely independent



Differs from Stambaugh bias

yt+1 = β1x1t + ut+1

x1,t+1 = ρ1x1t + ε1,t+1

ρ1 near 1

x1t correlated with ut

Stambaugh: weak exogeneity of x1t makes b1 biased confounding
inference about β1.

Our setting: x2t is strictly exogenous but lack of strict exogeneity
of x1t confounds interence about β2.



Can study effects of ρi near one using local-to-unity asymptotics

xi ,t+1 = ρixit + εi ,t+1

xi ,t+1 = (1 + ci/T )xit + εi ,t+1

E.g., approximate ρi = 0.95 and T = 100 with ci = −5 and
T →∞



b2

σ̂b2

d→∫
Jc2(λ)dW1(λ)−

[∫
Jc2(λ)Jc1(λ)dλ

] [∫
[Jc1(λ)]2dλ

]−1 [∫
Jc1(λ)dW1(λ)

]{∫
[Jc2(λ)]2dλ−

[∫
Jc2(λ)Jc1(λ)dλ

]2 [∫
[Jc1(λ)]2dλ

]−1
}1/2

Denominator strictly smaller than{∫
[Jc2(λ)]2dλ

}1/2

t-statistic is larger than predicted by asymptotic distribution



Exact small-sample distributions based on simulation
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Problem is not:

I biased estimation of b2

I inconsistent estimation of Q−1SQ−1

Instead, problem is that true small-sample variance is bigger than
Q−1SQ−1 (= ”standard error bias”)



A bootstrap procedure to calculate exact small-sample
distribution

(1) Extract first three principal components of yields along with
weight for yield n on components:

x1t = (PC1t ,PC2t ,PC3t)
′

ynt = ĥ′nx1t + v̂nt

(2) Estimate VAR for components

x1t = µ̂+ φ̂1x1,t−1 + φ̂2x1,t−2 + · · ·+ φ̂12x1,t−12 + e1t

(3) Generate artificial sample of {x∗11, ..., x
∗
1T} from estimated VAR



(4) Generate artificial yield for security n from

y∗nτ = ĥ′nx
∗
1τ + v∗nτ v∗nτ ∼ N(0, σ2

v )

(5) Estimate VAR for proposed predictors

x2t = α̂0 + α̂1x2,t−1 + α̂2x2,t−2 + · · ·+ α̂px2,t−p + e2t

(6) Generate artificial sample of {x∗21, ..., x
∗
2T} from estimated VAR

I Note this is completely independent of {x∗11, ..., x
∗
1T}



(7) Calculate properties of any statistic of interest on the
simulated data.

Advantage: Have artificial data set with same correlations and
serial dependence as original but in which the spanning hypothesis
holds by construction.

Since estimated VAR may underestimate true persistence, might
get more accurate indication of size of problem by using
bias-corrected VAR coefficients for the bootstrap simulation.



Robust HAC inference

Most HAC corrections do not address the issue.

Ibragimov and Müller (2010):
(1) Divide original sample into say q = 8 subsamples
(2) Estimate β2 separately across each subsample
(3) If approximately independent and Normal, can calculate a

t-test with q degrees of freedom from variation of b2i across
subsamples.



Application 1: Joslin, Priebsch and Singleton (2014)

Regressions of yields and returns on x1t and measure of economic
growth and inflation.

Estimated a structural no-arbitrage model based on these
forecasting relations.



JPS: predicting 12-month holding yield on ten-year bond

Ten-year bond
R̄2

1 R̄2
2 R̄2

2 − R̄2
1

Original sample: 1985–2008
Data 0.20 0.37 0.17
Simple bootstrap 0.26 0.33 0.06

(0.07, 0.48) (0.12, 0.55) (0.00, 0.25)
BC bootstrap 0.24 0.32 0.08

(0.04, 0.50) (0.09, 0.57) (0.00, 0.29)



R̄2
2 decreases when more data are added

Ten-year bond
R̄2

1 R̄2
2 R̄2

2 − R̄2
1

Original sample: 1985–2008
Data 0.20 0.37 0.17
Simple bootstrap 0.26 0.33 0.06

(0.07, 0.48) (0.12, 0.55) (0.00, 0.25)
BC bootstrap 0.24 0.32 0.08

(0.04, 0.50) (0.09, 0.57) (0.00, 0.29)

Later sample 1985–2013
Data 0.20 0.28 0.08
Simple bootstrap 0.22 0.28 0.06

(0.03, 0.46) (0.08, 0.51) (0.00, 0.20)
BC bootstrap 0.24 0.30 0.06

(0.03, 0.50) (0.07, 0.54) (0.00, 0.21)



In original sample R̄2 for predicting holding yield on two-year bond
goes from 14% to 49% when x2t is added.

Bias-corrected p-value for getting such a big increase is 0.034
(reject spanning).

But R̄2
2 drops to 28% when more data are included and p-value

rises to 0.25.



JPS: predicting the level of the yield curve

PC1 PC2 PC3 GRO INF

Original sample: 1985–2008
Coefficient 0.928 -0.013 -0.097 0.092 0.118
HAC statistic 41.205 1.312 0.508 2.214 2.400
HAC p-value 0.000 0.191 0.612 0.028 0.017
Simple bootstrap 5% c.v.’s 2.608 2.829
Simple bootstrap p-values 0.090 0.099
Simple bootstrap true size 0.120 0.171
BC bootstrap 5% c.v.’s 2.926 3.337
BC bootstrap p-values 0.127 0.145
BC bootstrap true size 0.159 0.224
IM q = 8 0.000 0.864 0.436 0.339 0.456
IM q = 16 0.000 0.709 0.752 0.153 0.554



In original sample, HAC Wald test of joint hypothesis that
coefficients on GRO and INF are both zero has bootstrap
bias-corrected p-value of 0.052.

In later sample, p-value is 0.265.



Application 2: Ludvigson and Ng (2010)

Looked at functions of up to 8 principal components in a data set
of 131 macro variables for predicting excess bond returns.

They typically used Cochrane-Piazzesi factor to control for
information in the yield curve.

We use level, slope and curvature instead.



Ludvingson Ng: predicting return on 2-year bond

PC1 PC2 PC3 F1 F2 F3 F4 F5 F6 F7 F8
Original sample: 1964–2007
Coefficient -0.071 -0.973 2.825 0.471 -0.008 -0.085 -0.346 -0.083 -0.209 -0.133 0.254
HAC statistic 1.797 2.640 3.515 2.350 0.043 1.442 2.652 0.673 1.698 1.675 2.888
HAC p-value 0.073 0.009 0.000 0.019 0.966 0.150 0.008 0.501 0.090 0.095 0.004
Bootstrap 5% c.v.’s 2.703 2.632 2.256 2.736 2.790 2.859 2.494 2.430
Bootstrap p-values 0.092 0.974 0.218 0.060 0.607 0.221 0.194 0.026
Bootstrap true size 0.153 0.121 0.088 0.150 0.145 0.157 0.116 0.112
IM q = 8 0.002 0.007 0.356 0.052 0.404 0.217 0.007 0.526 0.545 0.177 0.241
IM q = 16 0.000 0.229 0.021 0.016 0.290 0.793 0.137 0.629 0.248 0.034 0.426



Ludvigson and Ng also construct a ”return-forecasting factor” out
of the original 8 macro factors to get an optimal predictor of
interest rates.

We can perform identical calculations on our artificial samples to
examine small-sample properties of this procedure.



Ludvigson-Ng return forecasting factor H8

CP H8 R̄2
1 R̄2

2 R̄2
2 − R̄2

1

Original sample: 1964–2007
Data 0.335 0.331 0.31 0.42 0.11
HAC t-statistic 4.429 4.331
HAC p-value 0.000 0.000
Bootstrap 5% c.v./mean R̄2 4.044 0.27 0.31 0.03
Bootstrap p-value/95% CIs 0.029 (0.11, 0.45) (0.14, 0.48) (0.00, 0.11)
Bootstrap true size 0.542
Five-year bond
Data 1.115 0.937 0.33 0.42 0.09
HAC t-statistic 4.371 4.541
HAC p-value 0.000 0.000
Bootstrap 5% c.v./mean R̄2 4.031 0.27 0.31 0.03
Bootstrap p-value/95% CIs 0.018 (0.11, 0.47) (0.15, 0.49) (0.00, 0.11)
Bootstrap true size 0.564



Application 3: Cochrane and Piazzesi (2005)

Cochrane and Piazzesi found that a function of current yields that
is not spanned by level, slope, and curvature may be helpful for
predicting yields and returns.



Cochrane-Piazzesi: predicting average holding returns

PC1 PC2 PC3 PC4 PC5 Wald

Original sample: 1964–2003
Data 0.127 -2.740 6.307 16.128 -2.038
HAC statistic 1.724 5.205 2.950 5.626 0.748 31.919
HAC p-value 0.085 0.000 0.003 0.000 0.455 0.000
Bootstrap 5% c.v./mean R̄2 2.441 2.190 8.571
Bootstrap p-value/95% CIs 0.000 0.494 0.000
Bootstrap true size 0.097 0.078 0.116
IM q = 8 0.002 0.030 0.873 0.237 0.233
IM q = 16 0.000 0.004 0.148 0.953 0.283

Later sample: 1985–2013
Data 0.104 -1.586 -3.962 -9.196 9.983
HAC statistic 1.619 2.215 1.073 1.275 1.351 4.174
HAC p-value 0.106 0.027 0.284 0.203 0.178 0.124
Bootstrap 5% c.v./mean R̄2 2.656 2.367 11.321
Bootstrap p-value/95% CIs 0.317 0.283 0.289
Bootstrap true size 0.140 0.113 0.175
IM q = 8 0.011 0.079 0.044 0.803 0.435
IM q = 16 0.001 0.031 0.215 0.190 0.949



Standardized coefficients on principal components across 8
different subsamples for CP original data set
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Application 4: Greenwood and Vayanos (2014))

Greenwood-Vayanos: measure of maturity composition of Treasury
debt appears to predict return on long-term bond.

Even using conventional HAC, p-value drops to 0.06 when level,
slope and curvature added to regression.

IM tests suggest p-value is above 0.8.



Summary of contributions (econometrics)

I We already knew: if x1t is highly persistent and not strictly
exogenous, b1 is biased and hypothesis tests about β1 are
problematic (Mankiw and Shapiro, 1986; Stambaugh, 1999; Campbell

and Yogo, 2006).

I Our paper shows: even if x2t is strictly exogenous, high
persistence of x1t and x2t along with lack of strict exogeneity
of x1t make hypothesis tests about β2 problematic.



Summary of contributions (finance)

I We already knew: expectations hypothesis is violated (Fama

and Bliss, 1987; Campbell and Shiller, 1991).

I Our paper confirms: level and slope of yield curve are robust
predictors of returns.

I We thought we knew: macro and other variables also help
predict returns (Joslin, Priebsch, Singleton,2014; Ludbigson and Ng,

2009, 2010; Cochrane and Piazzesi, 2005; Greenwood and Vayasnos,

2014).

I Our paper concludes: level and slope are all that is needed;
there is no robust evidence against spanning hypothesis.


