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1 Introduction

Consumer credit penetration has increased steadily over recent decades and there is currently more that
$41 trillion U.S dollars in household debt in the world, equivalent to around 40% of GDP across countries.1

The growth of household debt has sparked a debate among researchers and policymakers about whether
consumer credit is under- or over-supplied. The former argue that households are credit constrained due to
market power or adverse selection, whereas the latter argue that moral hazard or behavioral biases induce
households to borrow too much (Zinman, 2015).2 This disagreement motivates a varied array of regulatory
interventions that seek to increase or restrict credit access, and often coexist in the marketplace. While the
regulation of consumer credit markets has been in the policy agenda for decades, its relevance increased
substantially after the 2008 financial crisis (Campbell et al., 2011a,b).3

Interest rate regulation has historically been one of the main policy instruments in consumer credit
markets (Temin and Voth, 2008). Several developed and developing countries implement some form of
interest rate regulation nowadays, often adopting interest rate caps (Maimbo and Henrı́quez, 2014). On
the one hand, regulators argue that interest rate caps limit lender usury and exercise of market power for
loan pricing, as well as their ability to exploit consumers’ behavioral biases. On the other hand, detractors
argue that interest rate regulation makes risky borrowers unprofitable and therefore may limit credit access.
Therefore, welfare implications of stronger interest rate regulation are potentially heterogeneous along
borrower risk, as it benefits protected borrowers and harms excluded ones. Despite the ambiguity in its
welfare e↵ects, research analyzing this type of regulation is somewhat limited, at least partially due to a
lack of comprehensive data and compelling research designs.

In this paper, we study the consequences of regulating consumer credit markets by studying the equi-
librium e↵ects of interest rate caps on prices, credit access, loan performance, and consumer welfare. We
exploit the Chilean consumer credit market for consumer loans as a setting, which is attractive because it
combines policy variation in interest rate regulation with extensive administrative data. Interest rate regu-
lation in this setting takes the form of interest rate caps, which vary across loan size, and were substantially
strengthened between 2013 and 2015 for part of the market. Throughout that period, interest rate caps
decreased by between 17 p.p and 24 p.p for loans smaller than $8,000, leaving larger loans una↵ected.4

For our analysis, we combine this policy variation with administrative data on the supply and demand
for consumer credit. The data cover contracts, repayment behavior and credit histories for each consumer
in the market, and loan applications for a large share of such contracts. Moreover, we complement this
data with a survey that we designed and collected from a sample of borrowers in order to describe their

1Calculations based on the IMF Global Debt Database (Mbaye et al., 2018), for 82 developed and developing countries with
available data for 2016. Beyond the average, most countries display increases in household debt as a share of GDP over time and there
is substantial cross-sectional dispersion. See Figure A.1 for an illustration of this evolution for a sample of countries.

2Research providing evidence of households being credit constrained includes Gross and Souleles (2002), Adams et al. (2009),
Jappelli and Pistaferri (2010) and Mian and Sufi (2011); whereas examples of research that suggests households might be over-borrowing
are Bertrand and Morse (2011), Stango and Zinman (2014), Bhutta and Keys (2016) and Beshears et al. (2018), among others.

3For example, the U.S. government introduced the CARD Act in 2009 and then established the Consumer Finance Protection
Bureau (CFPB) in 2010 to improve regulation and overall functioning of consumer credit markets, and European Commission has also
taken steps in a similar direction (European Commission, 2015).

4Unless otherwise noted, all monetary units are measured in U.S. dollars of December 31st, 2016. For reference, the exchange rate
at that point was of $667.29 Chilean pesos per U.S. dollar, according to the Central Bank of Chile.
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shopping process and support the interpretation of welfare e↵ects. We focus on unsecured consumer loans,
a simple product that 15% of households hold (EFH, 2014). The average contract is roughly for a three-year
loan of $6,800 with an interest rate of 23 p.p, and there is substantial dispersion in interest rates.

We start by providing evidence for the e↵ects of interest rate regulation on the distribution of transacted
interest rates. The policy change made the cap binding. At the onset of the policy change, in November 2013,
as much as 31% of contracts a↵ected by it were o↵ered at interest rates higher than their interest rate cap by
the time the policy was fully in place, in December 2015. The policy shifted the distribution of interest rates
downwards, and induced substantial bunching at the interest rate cap. One interpretation of this pattern
is that banks hold market power, since under perfect competition banks would choose not to o↵er loans
that were exposed to this regulation at rates below the interest rate cap. However, this interpretation is not
conclusive, as the pool of applicants might also change under stronger interest rate regulation.

To provide evidence of the market-level e↵ects of interest rate regulation, we exploit the variation across
loan size and time in the intensity of interest rate regulation in a di↵erences-in-di↵erences framework.
We find that the policy change had large e↵ects on prices, quantities, and loan performance. Average
transacted interest rates decreased by 9% (2.6 p.p) in response to the policy change. The quantity of credit in
the market also decreased, as the number of loan contracts went down by 19%. Part of this e↵ect stems from
a decrease in loan applications driven by riskier borrowers. Both price and quantity e↵ects are stronger for
riskier borrowers, who were more exposed to interest rate caps due to risk pricing by banks. In particular,
transacted interest rates for risky borrowers decreased by 11% (3.3 p.p) and the number of loans for them
decreased by 24%. Indeed, the borrower pool became safer and default rates decreased by 18% (1.15 p.p).

This evidence suggests that interest rates caps have strong e↵ects on credit markets, when binding. The
trade-o↵ between credit access and consumer protection is apparent in these results. Our estimates imply
that 151,027 loans for an amount of $361.6 million in loan contracts yearly were not signed due to stronger
regulation. At the same time, average monthly payments decreased by $3.26 in the regulated segment of
the market, adding up to an aggregate reduction of $31.7 million in present value per year.

Motivated by this evidence, we develop and estimate an equilibrium model of the market for consumer
loans, with two objectives. First, we couple the model with the variation available in our setting to
estimate borrowers’ willingness to pay for loans and banks’ costs. Having those inputs, we then develop a
welfare analysis of interest rate regulation. Second, we use the model to study how the e↵ects of interest rate
regulation relate to the competitive environment, and the e↵ects of counterfactual designs of this regulation.

Our model consists of three stages that cover application, pricing and repayment. First, consumers decide
whether to apply for loans or not given their credit needs. Applications depend on approval probability,
expected loan price, and application cost. Second, consumers shop across banks that o↵er homogeneous
loans produced at heterogeneous costs. We model this process as an English auction, in which consumers
shop across banks for the best contract o↵er. In equilibrium, the bank with the lowest cost signs the contract
with the consumer at an interest rate that leaves the second-lowest cost bank with zero profits. The source
of market power in our model is thus cost heterogeneity. This modeling choice has also been adopted in
recent work on markets with bargained prices (Allen et al., 2014, 2019; Salz, 2020), and overcomes a common
problem when working with contract-level data, which is that the econometrician only observes chosen
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contracts rather than the full choice set that consumers face.5 By modeling the market as an auction, we
rationalize observed contract prices as a function of banks’ latent cost structure. Third, repayment risk is
realized. The model incorporates imperfect competition and adverse selection. The comparative statics of
the model are in line with our evidence on market-level e↵ects and support our interpretation of it.

We estimate our model using data on loan applications, approvals, prices and repayment. On the
demand side, we estimate that consumers facing lower approval probabilities are less likely to apply for
loans; and that riskier borrowers have a higher willingness to pay for credit and are less price-sensitive than
safe borrowers. In terms of repayment, borrower risk score is the main correlate of repayment. Moreover,
we find no compelling evidence of adverse selection along the extensive margin of loan applications,
after conditioning on borrower risk scores. On the supply side, our cost estimates reveal substantial cost
heterogeneity that stems from di↵erences across banks, banks’ incumbency advantages over previously
related borrowers, and idiosyncratic bank-borrower cost heterogeneity. Moreover, cost estimates reveal
substantial bank market power: the average mark-up over bank marginal cost is of 29%, of which market
power accounts for 90% and borrower risk only accounts for 10%.

Adopting a revealed preferences approach, we use our model to estimate welfare e↵ects of interest rate
regulation. We find that expected consumer surplus decreased by an average and median of $82.47 and $
40.34 per month respectively, equivalent to 3.5% and 1.7% of average income. However, not all consumers
in the market lose consumer surplus under stronger regulation. Rather, 16.2% of consumers benefit from
it, although the gains of this group are substantially smaller than the losses of those for whom expected
consumer surplus decreases. Borrowers are heterogeneous in their exposure to interest rate regulation and
willingness to pay, which generates heterogeneity in consumer welfare e↵ects. In particular, risky borrowers
experience average decreases in expected consumer surplus three times those of safe borrowers, because
they are more exposed to interest rate regulation in the presence of risk pricing, and because they display
both higher willingness to pay and lower price sensitivity. Moreover, profits per consumer decrease by
$2.41 per month, which adds up to 18% of profits in the market, and implies that overall welfare decreases.

Evidence from our survey complements our estimates of welfare e↵ects. In particular, we study how the
implications of economic hardships for households vary depending on whether they are able to access bank
credit to deal with those hardships. We show that households that deal with hardships with bank credit are
less likely to decrease consumption and register unpaid bills or loan payments. These results are consistent
with our estimates of negative consumer welfare e↵ects of interest rate regulation as reflecting that reduced
credit access limits consumption smoothing and increases the risk of financial distress for households.

An important motivation for interest rate regulation is to protect consumers from the exercise of market
power by banks. We exploit our estimated model to study how the e↵ects of interest rate regulation vary
across markets with di↵erent degrees of concentration. We simulate equilibrium outcomes for a range of
scenarios in which we sequentially merge banks, from the baseline market structure to the monopoly case.
We find that adverse welfare e↵ects are smaller in more concentrated markets, which suggests that the
consumer protection role of interest rate regulation increases in less competitive markets. However, we find
that stronger interest rate regulation decreases welfare even under a monopoly.

5This approach provides both a reasonable characterization of the market and is convenient for empirical work in our setting. It is
often the case in markets with bargained prices that only transacted prices are observed, while prices of the other options in consumers’
choice sets remain unobserved. Some papers overcome this challenge by predicting prices using observed transactions, but this may
be problematic due to selection concerns (e.g., Crawford et al. 2018). Our approach avoids this prediction step.
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The design of interest rate regulation is often strikingly simple. Few countries implement designs
that go beyond having interest rate caps specific to a few loan size and type brackets.6 The mismatch
between unsophisticated regulation and sophisticated risk pricing by banks reinforces the trade-o↵ between
consumer protection and credit access by increasing the exposure of risky borrowers to interest rate caps. We
use our estimated model to address the extent to which this mismatch exacerbates the potential for adverse
e↵ects. In particular, we study risk-based interest rate caps, which combine the benefits of risk-based
pricing for dealing with borrower heterogeneity, with the potential of interest rate regulation for limiting
the exercise of market power by banks. In a simple example, this design reduces the average welfare loss of
interest rate regulation by 27%, without substantially increasing average loan prices or bank profit margins.

Overall, these results show that while interest rate regulation is meant to protect consumers facing high
interest rates, it mostly harmed consumers’ credit access and overall welfare in this setting. We highlight
that theoretical predictions regarding credit access and welfare are ambiguous and thus interest rate regu-
lation might improve outcomes in other settings. Regardless, our results inform the design of interest rate
regulation for consumer credit by providing a conceptual framework for the relationship between the impli-
cations of this regulation and market characteristics, such as market structure and borrower heterogeneity.

This paper contributes to di↵erent branches of the literature. First, it contributes to a literature that
studies the e↵ects of interest rate regulation. The most recent research finds mostly negative e↵ects on that
margin when regulation is binding (Bodenhorn, 2007; Temin and Voth, 2008; Benmelech and Moskowitz,
2010; Zinman, 2010; Rigbi, 2013; Fekrazad, 2016; Melzer and Schroeder, 2017). However, many of these
papers focus on payday loans in the U.S. In some cases, they focus on a single lender or a single market.
Moreover, most of the previous work adopts reduced form approaches and focuses on credit access as their
main outcome. Instead, we exploits administrative data from a full market as an empirical application, and
develop a framework for the equilibrium analysis of interest rate regulation that allows for welfare and
counterfactual analysis. Moreover, we emphasize the role of two pervasive attributes of credit markets,
which are imperfect competition and borrower risk heterogeneity. Our empirical application is also studied
by Hurtado (2015), SBIF (2017b) Schmukler et al. (2019) and Madeira (2019), all of which adopt reduced
form approaches to analyze the e↵ects of the policy change on credit access.

Second, this paper contributes to a recent literature on imperfect competition in selection markets. This
literature emphasizes that the e↵ects of policies on selection markets depend on the degree of competition
(Veiga and Weyl, 2016; Mahoney and Weyl, 2017). We relate to this literature by empirically studying the
relationship between the e↵ects of interest rate regulation and market structure. Recent research develops
empirical models that allow for adverse selection, imperfect competition, and product di↵erentiation (Einav
et al., 2012, 2013; Crawford et al., 2018; Kawai et al., 2018; Allen et al., 2019; Agarwal et al., 2020; Benetton,
2020). In our model, we allow for adverse selection along the extensive margin of consumer credit and
embed imperfect competition in bank cost heterogeneity. We then use this model to study equilibrium
e↵ects of interest rate regulation on prices, quantities, loan performance and welfare.

Finally, this paper also contributes to other branches of the literature in household finance. First, we

6For example, several states in the U.S. have a single interest rate cap on consumer loans, and there is a federal interest rate cap at
36% for payday loans. In Europe, many countries have impose caps at a mark-up over the average interest rate, including Germany
and Italy. Other countries, such as Belgium and France, have more sophisticated designs that allow the cap to vary by a few loan type
and size brackets. In the case of the Chilean market, the design imposes di↵erentiated interest rate caps for a small number of loan-size
brackets. See Maimbo and Henrı́quez (2014) for further examples of interest rate regulation in credit markets across countries.
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contribute to a recent literature that studies the e↵ects of regulation on other margins of contract pricing
in credit markets, also exploiting administrative data (Agarwal et al., 2015; Benetton, 2020; Nelson, 2020).
We focus on a key aspect of contract design: interest rates. Second, we also contribute to a literature that
focuses on the welfare implications of access to expensive credit, which finds mixed e↵ects (Melzer 2011;
Morse 2011; Bhutta et al. 2015; Gathergood et al. 2018; Skiba and Tobacman 2018, among others). While
most papers in this literature focus on payday lending, we study a segment of the market in which interest
rates are lower and risk composition is safer than what common in payday lending. For our setting, we
measure the welfare e↵ects of a common class of regulation that a↵ects credit access.

The remainder of the paper is organized as follows. In Section 2, we describe the setting and data.
In Section 3, we provide evidence for the market-level e↵ects of interest rate regulation. In Section 4, we
develop an equilibrium model of supply and demand of consumer loans, and in Section 5 we estimate it.
In Section 6, we use the estimated model to measure welfare e↵ects and in Section 7 we use it to study
outcomes under counterfactual competitive environments and policy designs. Finally, Section 8 concludes.

2 The Chilean Credit Market

Our empirical application focuses on the Chilean market for unsecured consumer loans. Consumer loan
contracts can be characterized by their interest rate, term and amount. Banks require no collateral on these
loans.7 Every year, more than 1.1 million contracts are signed, adding up to more than 7 billion U.S. dollars.
While the consumer loan market is large, it is not the only source of consumer credit in this market. The two
main alternative sources of consumer credit are credit cards and credit lines (SBIF, 2017b), both of which
have increased its market penetration throughout the period we study.8 These products are covered by the
same interest rate regulation described in Section 2.1 below. Payday loans, a relevant source of expensive
credit in other countries, are not widely available in Chile. Moreover, informal lending is a relatively small
segment of the market, and only 7% of households hold some form of informal debt (EFH, 2018).9

The market is concentrated, as the combined market share of the top-3 and top-5 banks is 56% and
76%, respectively. We focus on the 15 banks that o↵er consumer loans in the market, which covers 92% of
consumer loan contracts (SBIF, 2017b).10 The remaining 8% of market share consists of credit unions that
o↵er loans paid through employers, a somewhat di↵erent product that we do not consider in our analysis.

Regarding risk assessment by banks, there are no market-wide risk scores such as FICO scores in the U.S.
Instead, there are three sources of information that banks may use for risk assessment: (i) comprehensive

7These contracts impose prepayment penalties. Borrowers may prepay part or all of the loan balance as long as the amount paid
is higher than 25% of it. Upon prepayment, the borrower must pay a penalty of one month of interest on the prepaid balance.

8Figure A.2 displays the evolution of household debt in credit cards and credit lines. Both products increased their penetration
through our sample period in terms of number of consumers and amount of debt, although without a noticeable pattern around
the policy change. Moreover, average credit card and credit line balances across consumers—which according to industry sources
combine both transactional and borrowing uses in similar shares—are less than a fourth of the average consumer loan in the market.
This suggests these products are used more often to finance smaller expenses than consumer loans.

9This statistic covers several sources of informal credit, including family and friends, informal lenders, pawn shops, among others.
Figure A.3 shows that the share of households with informal debt remained between 2% and 10% since 2007, with no noticeable pattern
around the policy change. In fact, it remained almost constant between 2014 and 2017.

10For comparison, this market structure is more concentrated than that in the U.S, where the average number of banks in a local
market is around 45 (Aguirregabiria et al., 2020), but similar to those in Canada and the U.K, where 8 and 6 banks respectively dominate
most of the credit the market (see Allen et al. 2019 and Benetton 2020, respectively).
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information on consumer covariates and credit history across all banks, that the regulator collects and
provides to banks; (ii) information banks may collect directly from loan applicants; and (iii) risk scoring
services provided by private firms. We have access to the first of these sources, which provides substantial
information on borrower risk. This is emphasized by Foley et al. (2019) in their study of the role of
information for bank lending using this same data. We use this data to estimate risk scores in Section 2.2.3.

Consumer debt is very common in Chile. The 2014 Survey of Household Finance (Encuesta Financiera de
Hogares, EFH), describes the relevance of consumer loans for households around the policy change (EFH,
2014). As much as 63% of households have some form of consumer debt and 15.4% have consumer loans.
Among households with consumer debt, the average debt to income ratio is around 5 and every month
households allocate 20.5% of income to debt repayment (SBIF, 2017a).11

2.1 Interest Rate Regulation

Interest rate regulation in the Chilean credit market has been in place in di↵erent forms since 1929.12 We
focus on a policy change enacted by Law 20,715, which aimed at further protecting low-income borrowers
and providing access to credit at lower interest rates (SBIF, 2017b). This law was approved on December,
13th, 2013 and followed long-standing Law 18,010, which was in place since 1981 and subsequently modified
in 1999. These laws cover virtually all credit market operations with a term of 90 days or more. The main
policy tool determined by these laws is a set of interest rates caps that vary depending on loan size. These
caps are called Conventional Maximal Rate (TMC, Tasa Máxima Convencional). The policy change changed
both the definition of loan size brackets for interest rate caps and the formulas for their calculation. Interest
rate caps are measured in terms of annualized interest rates. Loan size brackets are defined in UF (Unidades
de Fomento), an inflation adjusted monetary unit commonly used in Chile.13

Both before and after the policy change, interest rate caps can be summarized by a simple linear function
of a lagged reference rate. The interest rate cap for loan-size bracket ` at period t is:

◆̄`t =  `◆̃`t�1 + ↵`t (1)

such that caps ◆̄`t are set as a combination of proportional and constant mark-ups over a reference rate ◆̃`t�1.
Before the policy change, only two loan size brackets were considered by the regulation, namely $0-$8,000
and $8,000-$200,000. For both brackets, the regulation considered  ` = 1.5 and ↵`t = 0. The reference rate
◆̃`t�1 was calculated as a weighted average of interest rates for loans of size ` during the previous month.14

Figure 1 displays the evolution of interest rate caps and shows that before the reform, interest rate caps were
beyond 50 p.p and 25 p.p for loans in the $0-$8,000 and $8,000-$200,000 size brackets respectively.

The reform we study made four changes to the previous regulation. First, it split the $0-$8,000 size

11In terms of utilization of loans, the share of households having consumer loans for di↵erent self-reported objectives varies as
follows: 54% for household durables, 30% for clothing, 22% for debt consolidation, 11% for vehicles, 9% for medical treatment, 9% for
home improvement and 5% for vacations (EFH, 2014).

12For more detail on the history of interest rate regulation in Chile, see Hurtado (2015), and SBIF (2017b).
13According to the Central Bank of Chile, one UF was equivalent to 39.48 U.S. dollars on December 31st, 2016. Relevant policy

thresholds are set at 50UF and 200UF. For reference, 50UF is equivalent to $1,970 and 200UF is equivalent to $7,880. We refer to these
two thresholds as $2,000 and $8,000 respectively for expositional simplicity. All analyses are conducted without such approximation.

14Throughout the paper, we ignore banks’ potential incentives to adjust interest rates to a↵ect the reference rate ◆̃`t�1.
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Figure 1: Evolution of interest rate caps
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Notes: These figure displays the evolution of the level of interest rate caps for di↵erent loan size brackets. The first dashed black line
indicates the implementation of Law 20,715, after which interest rate caps for all loans under $8,000 were reduced, in December 2013.
The second dashed line indicates the date in which the policy was fully implemented, in December 2015.

bracket into two, namely $0-$2,000 and $2,000-$8,000.15 Second, it set  0�8000 = 1 while  >8000 = 1.5
remained unchanged. Third, it set constant mark-ups over the reference rate of ↵0�2000,t = 21 p.p and
↵2000�8000,t = 14 p.p. Fourth, the reference interest rate was set to be a weighted average of interest rates
in the $8,000-$200,000 bracket for all size brackets. Therefore, only regulation for loans under $8,000 was
directly a↵ected by the policy change. Moreover, the main qualitative e↵ect of the policy was to move from
a regulation based on proportional mark-ups to one based on constant mark-ups for those two size brackets.

Had the policy been fully enacted by December 2013, interest rate caps would have fallen at once by 16.9
p.p and 23.9 p.p for loans in the $0-$2,000 and $2,000-$8,000 brackets respectively (SBIF, 2017b). Instead,
the policy was staggered to avoid such sharp decrease. This transition was structured by an immediate fall
of 6 p.p and 8 p.p respectively followed by quarterly decreases of 2 p.p for ↵`t. Under such schedule, the
policy was fully in place by December 2015. Figure 1 displays the evolution of interest rate caps around the
reform. The reduction in caps for the $0-$2,000 and $2,000-$8,000 size brackets is stark, and the di↵erence
between them is of 7 p.p. However, the cap on larger loans remained roughly constant over the period of
study. We exploit these features as identifying variation to study the e↵ects of this regulation below.

15This aspect relates to considerations of risky borrowers being potentially excluded from the credit market by this regulation.
Exclusion was indeed part of the discussion around the policy approval by the Chilean Congress. Allowing for a less strict regulation
for the smaller loan size bracket aimed at reducing such concern.
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2.2 Data

We use administrative data collected by the market regulator, the Financial Markets Commission (Comisión
para el Mercado Financiero, CMF).16 The data cover the period between January 2013 and December 2015,
which includes the roll-out of the policy change. Our population of interest is that of potential borrowers. We
define this population as all consumers with some relationship with the consumer credit market, defined as
having used any bank product, from checking accounts to mortgages. This set covered 2.5 million consumers
in January 2013, as much as 25% of the working-age population in the country. We observe demographics,
income and credit history for each potential borrower. We exploit two main administrative datasets: one
that contains every loan contract signed and one that provides a large sample of loan applications.

We complement administrative data with a household survey that we designed and administered. We
exploit this data to provide complementary evidence for our model assumptions and to aid the interpretation
of the estimates of consumer welfare e↵ects we obtain from our model. In particular, we collect data from
1,003 consumers who applied for loans at least twice between 2013 and 2015, and were rejected by at least
one bank in that period. The objective of this sampling strategy was to target a population of risky borrowers
that were likely to be a↵ected by the policy change we study and that were familiar with the market. The
survey collects information about financial literacy, familiarity with credit market, search and application
behavior in the credit market, and the evolution of household finance over the period of interest.

2.2.1 Loan Contracts Dataset

The first dataset is a registry of all consumer loans in the market during our sample period.17 This data
have several features. First, borrower and bank identifiers are available for each contract, along with key
contract attributes including interest rate, amount, and term. Second, the data track loan the performance,
which allows us to observe loan defaults and their timing. Third, the data provide borrower attributes
including age, gender, income, and county of residence. Fourth, the data collect the full credit history of
each borrower in the system, including amount of consumer and mortgage debt held and amount of debt
in 90-day default. Importantly, this is the same data that the regulator provides to banks for borrower risk
assessment, and cover the relationships between each borrower and all banks in the market. In the absence
of market-wide risk scores in the market, we exploit this information to construct risk scores for our analysis
in Section 2.2.3. The fact that banks employ this same information when assessing borrower risk reinforces
our approach. We measure all monetary variables in U.S. dollars and all interest rates are annualized.

2.2.2 Applications Dataset

The second dataset covers a large sample of consumer loan applications for the period of study. While the
loan contracts dataset covers the entire market, the coverage of the applications dataset is only partial.18 We

16In June 2019, CMF absorbed the regulator of banks during the period of study, which was the Superintendence of Banks and
Financial Institutions (Superintendencia de Bancos e Instituciones Financieras, SBIF).

17We focus on loan originations. While renegotiation is available in the market, very few borrowers renegotiate their contracts. The
share of renegotiations is 6% and does not change across our sample period.

18Banks’ reporting practices for this dataset were not as rigorous as those for the contracts dataset, as this was a new requirement
for them. In particular, three banks did not report this data to CMF.
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link the applications and contracts datasets using borrower identifiers, and we are able to match application
events for 64.5% of loan contracts in the data. Given we observe all loan contracts in the contracts dataset,
the implication of this partial coverage is that we are unable to observe some rejected applications. For
each application in the dataset, we observe the identity of the bank and the borrower, the application date,
the loan size and term for which the borrower applies, and the outcome of the application. Whenever the
application is approved by the bank, we also observe the interest rate.

We organize this data by constructing application events, and develop all our analysis using this defi-
nition of applications. We construct application clusters of a given borrower across—potentially—multiple
banks in a short period of time. Concretely, we define an application event as a set of applications by a
borrower such that no pair of applications are more than 30 days apart. We then merge these application
events with loan contracts using borrower and bank identifiers.

2.2.3 Measuring Credit Default Risk

We exploit the availability of data on loan performance, consumer covariates, and credit history to estimate
credit default risk. In particular, we estimate a logit model of default using data for the period before the
policy. The model we estimate uses an indicator for loan default over the term of a loan as dependent
variable, and a rich vector of borrower covariates xi determined before signing the contract as independent
variables. This is a standard risk scoring model (Ohlson, 1980). The set of features in xi is similar to that
employed by Liberman et al. (2019) for estimating borrower risk for the Chilean consumer credit market.

Table A.1 displays estimates of di↵erent specifications of this model.19 The results point in the expected
directions: borrowers with higher income and lower leverage default less frequently. Regarding credit
history, borrowers with more consumer debt, without previous consumer loans, and with more consumer
debt under default are more likely to default; while borrowers with more mortgage debt and whose
mortgage debt is not in default are less likely to default. In terms of demographics, both older and female
borrowers are less likely to default. The model predicts 69% of loan defaults correctly out of sample. We
construct risk scores as the fitted probabilities from this model, such that borrowers with higher risk scores
are riskier. For the rest of the paper, we refer to the income risk model as that in column (1) of Table A.1 and
to the history risk model as that in column (5) of Table A.1. Our risk scores display positive correlations
with rejections, interest rates and realized default.20

2.3 Descriptive Statistics

The contracts dataset contains more than 3.3 million loans for 2013-2015. Table 1 displays summary statistics
for it. Average annualized interest rates are around 23 p.p, but more than 10% of the loans have rates higher
than 35 p.p, which is partly what motivated the implementation of the regulation we study.21 The average

19For the rest of the paper, we use results from a model that splits all covariates in twenty bins and includes dummies for such bins
as regressors. This more flexible model accommodates potential non-linearities in the relationship between default and covariates.

20Figure A.4 displays relationships between market outcomes and our measures of predicted risk. Figures A.4-a and A.4-b display
negative relationship between predicted risk and approvals, while Figures A.4-c and A.4-d display positive relationships between
interest rates and predicted risk. Finally, Figures A.4-e and A.4-f display positive relationships between realized and predicted default.

21Most of the price dispersion is cross-sectional. While there is variation in the funding cost of banks through time, only 1.2% of the
variation in interest rates can be explained by monthly dummies. See Figure A.5 for the evolution of bank funding cost through our
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loan in the sample is about $6,700 and 33 months long, and has a monthly payment of $266, with substantial
variation in these attributes.22 Regarding the distribution of loan size across size brackets defined by the
regulation in place, the share of loan contracts in the year before the policy change was 30.8%, 41.5% and
27.7% respectively for loans in the $0-$2,000, $2,000-$8,000 and $8,000-$200,000 brackets. In terms of loan
performance, 5% of borrowers default on payments during the first year of the loan and 11% through the
loan term. The average predicted default risk is 0.11, and most of the borrowers are under 0.2.

There is substantial heterogeneity among borrowers. The average borrower has an annual income of
$18,685 and is almost 44 years old. Moreover, 40% of borrowers are female. Most of loan contracts in our
data are signed by consumers that had previously dealt with banks in the consumer credit market, and 76%
of them are signed with a bank that the borrower has previously used for banking. In terms of credit history,
the average consumer holds $7,022 in consumer loans and $12,447 in mortgage debt. The median borrower
in the contracts dataset takes out only one consumer loan throughout our sample period, although there is
a group of borrowers that take several loans and the average borrower takes 1.8 loans. Finally, borrowers in
the system hold relationships with multiple banks, and the average borrower is a customer of three banks.

Our applications dataset collects almost 3.7 million application events, and every month we observe 2%
of potential borrowers in the market applying for a loan. Both loan amount and term are slightly larger on
average in the applications dataset than those in the contracts dataset. In terms of outcomes, as much as
90% of application events end with an approval, whereas 10% of application events end with a rejection.

Additionally, there is substantial heterogeneity in market structure across local markets. We define
local markets geographically as the 54 provinces in the country to provide a description of the competitive
environment. The average market has 8 banks and 43 branches, although there is wide dispersion in both
across markets. Most markets are dominated by a few banks. In particular, in the average market the top
three banks hold 66% of market share in terms of loan contracts, and the top five banks hold 83% of it.

2.4 Descriptive Facts about the Chilean Consumer Credit Market

In this section, we present descriptive facts of the Chilean consumer credit market. We focus on the
relationship between relevant outcomes and behaviors and two important borrower attributes, namely
borrower risk score and previous relationships with banks. We focus on the period before the policy change
for this descriptive analysis. We exploit these facts to interpret our findings for the e↵ects of interest rate
regulation in Section 3, and to motivate the model we develop in Section 4.

First, we focus on the correlates of loan application behavior. Column (1) in Table 2 displays results
from a regression of an indicator for application on individual risk score and county-month fixed e↵ects.
The results show that the likelihood of application increases with borrower risk score, suggesting that
observably riskier borrowers are more likely to select into the market. Additionally, they also show that
potential applicants with previous experience in the market are also more likely to apply for loans.

Second, we study the drivers of banks’ approval decisions. Column (2) in Table 2 displays results from

period of study. On the other hand, there is substantial heterogeneity across banks in interest rates: bank and month dummies jointly
explain as much as 25.4% of the variation.

22Monthly payments are calculated using the formula p = L◆(1+◆)T

(1+◆)T�1 , where L is loan amount, ◆ is the interest rate, and T is loan term.
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Table 1: Summary statistics

Variable N Mean SD p10 p50 p90

A - Loan attributes

Interest rate 3,362,384 23.17 10.16 10.99 21.24 38.40
Amount 3,362,384 6,705.25 7,007.14 952.14 4,350.17 16,241.59
Term 3,362,384 33.02 16.19 12.17 36.17 50.87
Monthly payment 3,362,384 266.37 323.77 65.95 189.52 522.21

B - Loan performance

Default during loan first year 3,362,384 0.05 0.21 0.00 0.00 0.00
Default during loan term 3,362,384 0.11 0.31 0.00 0.00 1.00
Amount of charge-o↵ 3,362,384 291.71 1,793.79 0.00 0.00 0.00
Predicted default probability - Income 3,362,384 0.11 0.06 0.04 0.11 0.18
Predicted default probability - History 3,358,842 0.11 0.10 0.02 0.09 0.24

C - Borrower attributes

Annual income 3,362,384 18,684.65 17,059.19 5,639.61 13,081.43 37,215.05
Age 3,358,842 43.80 13.30 28.00 42.00 63.00
Female 3,362,384 0.40 0.49 0.00 0.00 1.00
Consumer debt 3,362,384 7,021.96 10,514.91 70.72 3,149.40 18,285.16
Consumer debt to income ratio 3,362,384 4.58 5.29 0.07 2.92 10.97
Consumer debt under default 3,362,384 41.00 592.30 0.00 0.00 0.00
Mortgage debt 3,362,384 12,447.09 31,309.96 0.00 0.00 48,179.93
Mortgage debt to income ratio 3,362,384 5.87 13.59 0.00 0.00 24.20
Mortgage debt under default 3,362,384 11.67 664.78 0.00 0.00 0.00
Previously related to bank 3,362,384 0.76 0.43 0.00 1.00 1.00
Previously related to any bank 3,362,384 0.94 0.24 1.00 1.00 1.00

D - Borrowers through the dataset

Number of loans 1,909,393 1.76 1.22 1.00 1.00 3.00
Amount in loans 1,909,393 11,807.75 14,451.15 1,518.89 6,878.77 28,224.96
Number of banks with loan contracts 1,909,393 1.21 0.48 1.00 1.00 2.00
Previously related banks 1,909,393 3.04 1.55 1.00 3.00 5.00

E - Application events

Loan amount 3,014,213 7,099.37 7,252.63 1,036.93 4,827.14 16,960.44
Loan term 2,706,289 34.52 15.60 12.63 36.50 53.87
Approved application 3,014,322 0.83 0.38 0.00 1.00 1.00
Rejected application 3,014,322 0.17 0.38 0.00 0.00 1.00

F - Local Market Structure

Number of banks 1,944 8.00 4.03 2.00 8.00 13.00
Number of branches 1,944 43.11 133.06 1.00 19.00 58.00
Top-1 market share 1,944 0.31 0.13 0.22 0.27 0.46
Top-3 market share 1,944 0.66 0.13 0.52 0.62 0.84
Top-5 market share 1,944 0.83 0.09 0.72 0.81 0.96
HHI 1,944 1,959.38 945.64 1,327.35 1,643.30 2,877.59

Notes: This table displays summary statistics for our datasets. All monetary variables are expressed in U.S. dollars for June 2016.
Credit history variables are computed as average over the year previous to each loan.

regressions of an indicator for application approval on borrower covariates. Estimates from this regression
show that banks are less likely to approve applications from borrowers with higher predicted default risk,
which is also documented by Figure A.4-a. Moreover, they also show that banks are more likely to approve
applicants with which they hold a previous relationship.
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Third, we show that previous relationships a↵ect bank choice. Figure A.15-a shows there is substantial
variation in the number of bank-borrower previous relationships, and few contracts are signed by borrowers
new to the system. Figure A.15-b shows that the likelihood of signing a loan contract with a previously
related bank is high, and that it increases with the number of previous relationships and decreases with
borrower risk. This pattern may relate to the fact that applications from previously related borrowers are
approved more often, perhaps because relationships make applications less costly for borrowers and banks.

Additionally, we study the determinants of interest rates. Banks engage in risk pricing and o↵er higher
loan prices to observably riskier borrowers. Column (3) in Table 2 displays results of regressions of interest
rate margins over banks’ funding cost on borrower and contract covariates. Interest rates are increasing
in borrower default risk, as also documented by Figure A.4-b. Additionally, even after conditioning on
contract attributes, borrower default risk, and other covariates, we find that previous relationships a↵ect
prices: borrowers with a previous relationship with a bank receive lower loan prices on average.

Moreover, there is substantial price dispersion. As much as 26% of the variation in interest rate margins
remains unexplained after accounting for interacted month, bank, location, loan size, term and borrower
risk fixed e↵ects, as displayed in Figure A.16. The observation of substantial price dispersion even within
narrow segments of the market is consistent with evidence from U.S. credit markets (Woodward and Hall,
2012; Stango and Zinman, 2016). The standard deviation of residualized interest rate margins remains high
at 3.9 p.p, around a third of its unconditional standard deviation.23 One potential source of price dispersion
within observably similar contracts is discretion of banks’ loan o�cers and bargaining over prices.

Finally, we show that riskier borrowers are more likely to default. Column (4) in Table 2 shows the
results from a regression of an indicator of loan default on borrower and contract covariates. Estimates
from this regression show that observably riskier borrowers are more likely to default on loan payments,
conditional on contract amount and term.

3 The E↵ects of Interest Rate Regulation

In this section, we study the e↵ects of interest rate regulation on market outcomes. As described in Section
2.1, this policy strongly decreased interest rate caps on loans, di↵erentially so across loan size. Using
di↵erent approaches, we provide evidence for price, quantity, and risk composition e↵ects. Throughout this
section, we emphasize heterogeneity across borrower risk. In particular, we split the sample according to
the median predicted default risk before the reform and estimate e↵ects for low- and high-risk borrowers.

3.1 Evidence from the Evolution of Interest Rates

The policy change we study reduced interest rate caps between December 2013 and December 2015 for
loans smaller than $8,000. As a first piece of evidence, we visually inspect the evolution of interest rates.
The left column of Figure 2 displays the evolution of the distribution of interest rates for loans of $0-$2,000,

23Evidence from our survey complements this fact by showing consumers are aware of this price dispersion. Figure A.17-a shows
that consumers in the market perceive substantial price dispersion conditional on loan terms. In particular, the average perceived
range of monthly payments in the market in our survey is 26%.
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Table 2: Borrower risk, behavior and outcomes

(1) (2) (3) (4)

1(Application) 1(Approval) log(Interest rate) 1(Default)

Risk score 0.0003*** -0.011*** 0.037*** 0.035***
(0.0000) (0.000) (0.000) (0.000)

log(Loan size) 0.050*** -0.361*** -0.007***
(0.000) (0.000) (0.000)

log(Loan term) -0.098*** 0.173*** 0.071***
(0.000) ) (0.001) (0.000)

Related to bank 0.099*** -0.008*** -0.042***
(0.000) (0.001) (0.000)

Related to any bank 0.0144*** -0.042*** 0.019*** 0.022***
(0.0001) (0.001) (0.001) (0.001)

Mean of dep. var. 0.02 0.82 19.92 0.08
County-Month FE Y N N N
Bank-County-Month FE N Y Y Y
Observations 10,696,213 845,046 611,273 611,275
R-squared 0.002 0.138 0.609 0.080
Sample Population Applications Contracts Contracts

Notes: This table displays regressions of relevant behaviors and outcomes on borrower risk scores, contract covariates, previous
relationships and fixed e↵ects, for the period between January 2013 and November 2013, before the policy change. Column (1)
displays results from a regression of an indicator for loan application on loan and borrower covariates. The sample includes a random
sample of 10% of potential borrowers in the market. Column (2) does so for an indicator for approval conditional on application, for
a sample of all applications in the market. Column (3) does so using interest rates as outcomes, for a sample of all loan contracts for
which we observe applications and are approved. Finally, column (4) does so using an indicator for loan default as an outcome, using
the same sample an in column (3). Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

$2,000-$8,000 and $8,000-$20,000, along with the evolution of the interest rate cap for each of those groups,
for the period around the policy change. There are two relevant aspects to these figures. First, interest
rate caps were mostly not binding within the treated size brackets.24 Second, interest rate caps became
increasingly binding for these groups after December 2013. On the other hand, the extent to which interest
rates for loans larger than $8,000 were binding did not change noticeably over the period of study.

To further document the price e↵ects of interest rates caps, we compare the distribution of interest rates
before and after the policy change. The right column of Figure 2 shows the distribution of interest rates
for the month before the policy change with that for the same month exactly two years after, when the
policy was fully in place.25 The policy displaced a substantial share of the density downwards for treated
loan-size brackets, inducing bunching of interest rates at the interest rate caps. As much as 42% and 23%
of loans of $0-$2,000 and of $2,000-$8,000 were exposed to the policy, respectively. In contrast, only 8% of
loans of $8,000-$20,000 were exposed to it, and only marginally so. One interpretation for this response is
as suggestive evidence of imperfect competition in this market. Had there been perfect competition, banks
would have not o↵ered exposed loans after the policy was in place, as those loans would be unprofitable.

24Previous research has shown that interest rate caps may play the role of focal points for collusion in credit markets (Knittel and
Stango, 2003). The fact that caps for loans smaller than $8,000 were not binding before the policy change suggests this regulation was
not playing such role in this setting, at least for that period.

25The period we utilize for this exercise covers the second half of November and the first half of December of both 2013 and 2015.
The pattern we find remains the same when focusing on longer time periods.
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However, this interpretation is not conclusive, as the pool of applicants might have also changed between
the two periods we analyze in response to the policy change. Overall, these patterns suggest that banks had
market power, which allowed them to charge interest rates above expected costs.

Exposure also varies across borrower risk. As much as 49% and 31% of high-risk borrowers signing loan
contracts for loans of $0-$2,000 and $2,000-$8,000 were exposed to the policy, compared to only 26% and
11% for low-risk borrowers. These patterns suggest that exposure to interest rate regulation was increasing
in borrower risk, which is as expected in the presence of risk pricing. 26

This evidence suggests that as interest rate caps were strengthened, the distribution of interest rates
responded by bunching below the interest rate cap, and that riskier borrowers were more a↵ected by the
policy. This is not surprising and implies that the regulation was enforced. The magnitude of the e↵ects is
large and we aim at understanding its implications for other outcomes in the remainder of the paper.

Figure 2: Evolution of the distribution of interest rates
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Notes: Panels (a), (b) and (c) display the evolution of the distribution of interest rates by loan size. Each box displays the 25th, 50th and
75th percentiles of such distribution. Spikes display the 5th and 95th percentiles. Black dots indicate the mean of it. In each plot, the
blue line displays the current interest rate cap relevant for the loan size interval. Panels (d), (e) and (f) display frequency histograms of
interest rates for December 2013 (blue) and December 2015 (white). The blue dashed line indicates the level of the interest rate cap for
each size bracket before the reform was implemented, while the black dashed line does so for the month when the reform was fully in
place. Exposure to the policy is calculated as the share of loans that were signed before the policy was implemented at interest rates
higher than the interest rate cap once the policy was fully in place.

26See Figure A.6 for exposure rates by borrower risk within each policy size bracket.
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3.2 E↵ects on Market Outcomes

The policy change provides two useful sources of variation to estimate the e↵ects of interest rate regulation.
First, it provides variation across time. Before December 2013, regulation was not binding for loans in
$0-$8,000, but it became increasingly binding as the reform was phased in. Second, it provides variation
across loan size. Regulation became more binding for loans of $0-$2,000 than for loans of $2,000-$8,000, and
for loans of $2,000-$8,000 than for those of $8,000-$20,000, which remained essentially untreated. We exploit
these two sources of variation. For our analysis, we aggregate the data to measure market-level e↵ects. In
particular, we construct bins for loan size and term indexed by k, and aggregate the data at that level.27

3.2.1 Evolution of Policy E↵ects

We start by studying the evolution of outcomes of interest around the policy change. We estimate di↵erences-
in-di↵erences models that decompose e↵ects though time. The goal is to provide graphical evidence for the
e↵ects of the policy change, while also addressing concerns related to trends in the outcomes leading to the
policy change that could be correlated with the policy itself. We start by estimating the equation:

ykrt =
X

⌧

Dk�r⌧ + ↵kr + �rt + "krt (2)

where ykrt is the outcome of interest for product bin k and risk group r in month t; Dk indicates whether
loans in k are smaller than $8,000 and thus a↵ected by the policy change; ↵kr are fixed e↵ects that control
for unobservable shocks specific to a loan size, term and risk group, but are constant through time; and �rt

are fixed e↵ects that control for unobservable shocks specific to a month and risk group but are constant
across loan size and term. The coe�cients of interest are �r⌧, which measure the di↵erence in the outcome
of interest between loans a↵ected by the policy change and the comparison group for borrowers of risk r, ⌧
months after the policy change.28

Figure 3 displays results from equation (2) for low- and high-risk borrowers. Figure 3-a shows that the
average interest rate in the market decreased after the policy change. Figure 3-b shows that the e↵ect is
concentrated on the upper part of the distribution of interest rates, as the e↵ect on the 90th percentile of
interest rates is stronger and becomes apparent earlier after the policy change than that on the average.
Moreover, Figure 3-c shows that the number of loan applications by high-risk borrowers decreases, whereas
Figure 3-d shows that the number of loans in the market also decreased, and substantially more so than
applications. Figure 3-e shows that the average risk score in the market decreased, such that the borrower
pool became safer. Finally, Figure 3-f shows that a measure of expected mark-up also decreases after the
policy change, although less than interest rates, given the decrease in default risk.29

27Concretely, we define loan size bins in intervals of 50 UF ($2,000) and employ a clustering algorithm to classify loan term in 8 bins,
which adds up to 80 loan-type bins, indexed by k. We then compute averages or aggregate levels of the outcomes of interest for each
bin and month. To study heterogeneous e↵ects, we implement the same procedure but separately for low- and high-risk borrowers.

28We control for seasonal patterns specific to loan size for quantity outcomes by removing month-of-the-year fixed e↵ects from the
time series of each product type bin k, before estimating equation (2).

29We compute expected mark-up as mkrt =
1

Nkrt

P
i2Ikrt

[◆i(1 � di) � ft], where mkrt is the average mark-up for loans in bin k for
borrowers of risk r; ◆i is the interest rate charged to borrower i; di is the predicted default probability of such borrower; ft is the funding
rate faced by banks; and Ikrt is the set of borrowers of risk r taking loans k in month t. This is a proxy of average mark-up in the market
that does not account for other components of cost than risk and funding. We develop more comprehensive measures of mark-ups
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These results share two patterns across outcomes. First, estimates display flat trends leading to the
policy change and a steady decrease after it, which suggests that loans of $8,000-$20,000 evolve similarly to
loans that were directly treated, reinforcing the extent to which the former serves as a comparison group for
the latter. We further exploit that in a more extensive regression analysis below. Second, estimated e↵ects
are larger for high-risk borrowers than for low-risk borrowers, which suggests that the former were more
a↵ected, consistent with their higher exposure discussed above. These results readily suggest that both
prices and quantities decreased under stronger interest rate regulation, which is consistent with the policy
having e↵ects both in terms of consumer protection and credit access.

Figure 3: Di↵erences-in-di↵erences e↵ects through time
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Notes: Each figure displays results from estimating equation (2) for a di↵erent outcome. Within each plot, dots indicate estimated
e↵ects for a given month while dashed lines indicate standard errors. E↵ects for low- (high-) risk borrowers are displayed in blue
(red). All regressions are weighted by the number of loans in the product-risk bin before the policy was implemented.

3.2.2 Regression Analysis

In this section, we exploit more granular variation in interest rate caps to estimate its e↵ects on market
outcomes. We define the following treatment intensity variable to exploit time variation in regulation
within each size bracket, and to ease the interpretation of the results:

�◆̄`,t ⌘ (◆̄`,0 � ◆̄`,t) � (◆̄>8000,0 � ◆̄>8000,t) (3)

using our model in the second part of the paper.
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for each of the treated size brackets ` 2 {$0-$2,000, $2,000-$8,000}. The first term in equation (3) is the
change in the interest rate cap for loan-size bracket l between current month t and baseline month t = 0 at
December 2013. The second term in equation (3) is the change in the interest rate cap for the comparison
group, i.e. loans larger than $8,000. Subtracting the second term removes variation in economic conditions
that influences interest rate caps, and thus isolates the policy variation that we exploit. Figure A.7 displays
the evolution of these treatment intensity variables.

Using these variables, we estimate the following specification:

ykrt =
X

`

�`(k),r�
◆̄
`(k),t + �kr + �krm(t) + �rt + "krt (4)

where ykrt is the outcome of interest for product bin k for borrower of risk r for month t; �kr is a set of
fixed e↵ects that controls for unobservable shocks specific to a loan size and term and borrower risk bin,
but constant through time; �krm(t) is a set of fixed e↵ects that controls for unobservable shocks specific to a
product type, borrower risk bin and month-of-the-year m(t); and similarly �rt is a set of fixed e↵ects that
controls for unobservable shocks specific to a borrower risk bin and month but constant across loan size
and term. The coe�cients of interest are �0�2000,r and �2000�8000,r. Given how the treatment variable �◆̄`,t
is constructed, these coe�cients measure the e↵ect of reducing interest caps by 1 p.p. on the outcome of
interest for each policy size bracket respectively. We then compute full e↵ects by scaling up these estimates
by the full change in interest caps. All regressions are weighted by the number of loans in each product bin
before the policy was implemented. Finally, standard errors are clustered at the product bin level to allow
for potential correlation in errors within bins across time.

We study three sets of outcomes. First, we study e↵ects on interest rates, focusing on maximum and
average rates. Second, we focus on quantity, including number of applications, number of loans and credit
volume. Third, we focus on risk selection, loan performance and expected profitability by estimating e↵ects
on borrower risk scores and on income, on 90-day loan default in the first year, and on expected mark-ups.
In each case, we estimate regressions across all borrowers and separately for low- and high-risk borrowers.

E↵ects on Interest Rates. Stronger regulation reduced interest rates, consistent with evidence in Section
3.1. Table 3 displays estimates of equation (4) for maximum and average interest rates. We find pass-through
of interest rate caps to maximum interest rates was high. E↵ects from a 1 p.p decrease in interest rate caps
range from 0.96 p.p for low-risk borrowers to 1 p.p for high-risk borrowers for loans of $0-$2,000; and from
0.66 p.p for low-risk borrowers to 0.8 p.p for high-risk borrowers for loans of $2,000-$8,000. Full e↵ects are
large and close to the total change in the interest rate cap, particularly for riskier borrowers. These results
verify that the policy was enforced, and that it was more binding for smaller loans and riskier borrowers.

Average interest rates decreased as a result of stronger regulation, as displayed in Table 3-B. We estimate
that reducing interest rate caps by 1 p.p decreases average interest rates by 0.23 p.p and 0.07 for loans of
$0-$2,000 and $2,000-$8,000, respectively. These e↵ects are heterogeneous across borrower risk. The e↵ects
on low-risk borrowers are smaller at 0.13 p.p and 0.03 p.p, while those on high-risk borrowers are much
larger at 0.26 p.p and 0.11 p.p respectively. The full e↵ects on average interest rates were 3.8 p.p and 1.7 p.p
for loans of $0-$2,000 and $2,000-$8,000.30

30These estimates measure e↵ects on the average interest rate, regardless of whether loans were exposed to the policy. The e↵ect on
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Table 3: E↵ects on interest rates

(1) (2) (3) (4) (5) (6)

Panel A: Maximum interest rate Panel B: Average interest rate

All Low-risk High-risk All Low-risk High-risk

Loans in $0-$2000

Marginal e↵ect (�) -1.001*** -0.961*** -0.996*** -0.231*** -0.126*** -0.262***
(0.010) (0.024) (0.012) (0.032) (0.021) (0.041)

Full e↵ect (� ⇥ �◆̄) -16.369*** -15.720*** -16.298*** -3.771*** -2.060*** -4.286***
(0.157) (0.390) (0.200) (0.526) (0.345) (0.666)

Baseline mean 55.145 54.675 55.384 33.023 28.630 35.256

Loans in $2000-$8000

Marginal e↵ect (�) -0.785*** -0.660*** -0.803*** -0.073*** -0.033** -0.107***
(0.030) (0.042) (0.032) (0.020) (0.013) (0.025)

Full e↵ect (� ⇥ �◆̄) -18.307*** -15.405*** -18.744*** -1.714*** -0.776** -2.496***
(0.701) (0.972) (0.745) (0.478) (0.295) (0.590)

Baseline mean 50.401 48.920 51.634 24.912 21.426 27.813

Observations 2,880 2,880 2,829 2,880 2,880 2,829
R-squared 0.986 0.976 0.984 0.984 0.985 0.975
Product bin FE Y Y Y Y Y Y
Product bin-month of year FE Y Y Y Y Y Y
Month FE Y Y Y Y Y Y

Notes: This table displays results from estimating equation (4). For each outcome, the regression is estimated across borrower risk
bins and separately by borrower risk bin. All regressions include risk bin-product bin fixed e↵ects and risk bin-month fixed e↵ects.
Marginal e↵ects measure the e↵ect of reducing interest rate caps by 1 p.p. Full e↵ects are calculated as the product of the marginal
e↵ect of the policy and the magnitude of the policy change once fully implemented for each policy loan-size bracket. All regressions
are weighted by the number of loans in the product bin-risk bin before the policy was implemented. Clustered standard errors at the
product bin-risk bin level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

E↵ects on Quantity Outcomes. Interest rate regulation may a↵ect borrower application behavior. On
the one hand, it weakly reduces interest rates upon approval and thus induces marginal borrowers to take
loans. On the other hand, banks may be less willing to approve applications if they are constrained in
terms of pricing, which may deter borrower applications if applying is costly. The latter should be more
relevant for observably riskier borrowers. Table 4-A displays estimates of equation (4) for the number of
applications. We find no statistically significant e↵ects on average, nor for low-risk borrowers. However,
we find suggestive evidence that risky borrowers apply less often for loans under stronger regulation. In
particular, a 1 p.p decrease in interest rate caps reduced applications by 1% and 0.4% for loans of $0-$2,000
and $2,000-$8,000, although the latter is not statistically significant. These estimates imply that the full
policy decreased applications by risky borrowers by 15% and 9% for loans in each size bracket.

How did stronger interest rate regulation a↵ect equilibrium quantities? Tables 4-B and 4-C display
estimates of equation (4) for number of loans and credit volume. We find that reducing interest rate caps
by 1 p.p reduced the number of loans by 2% and 0.5% respectively for loans of $0-$2,000 and $2,000-

loans not exposed to the policy should be close to zero, implying that e↵ects on exposed loans should be larger. In absence of quantity
e↵ects, we would expect a perfect pass-through of changes in interest rate caps to the average interest rate of exposed loans. In that
case, the ratio between our estimates and shares of exposed loans per group in Figure A.6 would equal one. However, such ratio is
0.55 p.p and 0.32 p.p for loans of $0-$2,000 and $2,000-$8,000, which readily suggests the policy had quantity e↵ects.
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$8,000. Again, we find substantial heterogeneity across borrower risk. For low-risk borrowers, we estimate
decreases of 0.8% and 0.2% for loans of $0-$2,000 and $2,000-$8,000; whereas for high-risk borrowers,
estimates are almost three times larger, at 2.5% and 0.7% respectively. Results are quantitatively similar
for credit volume. Full e↵ects of the policy change are large. The number of loans decreased by 27.6%
and 11.9% for loans of $0-$2,000 and $2,000-$8,000. E↵ects are particularly large for high-risk borrowers, at
33.9% and 15.8% respectively. The fact that the e↵ects on the number of loans and credit volume are much
larger than those on applications implies that a large share of the quantity reduction comes from rejections.

E↵ects on Risk Selection, Loan Performance and Profitability. How do changes in applications and
approvals a↵ect the borrower pool? Table 5-A displays results from estimating equation (4) for ex-ante
borrower risk measures. The policy change improved the borrower risk pool. A reduction of 1 p.p in the
interest rate cap decreases average borrower predicted default rate by between 0.07 p.p and 0.04 p.p for
loans of $0-$2,000 and by around 0.02 for loans of $2,000-$8,000, depending on the measure of predicted
risk. The full policy decreased borrower predicted default risk by between 1.14 p.p and 0.7 p.p for loans
of $0-$2,000, and by between 0.49 and 0.35 p.p for loans of $2,000-$8,000. Relatedly, we find that average
borrower income increases with stronger regulation.

We now turn to estimate e↵ects on loan performance. E↵ects on interest rates and screening could a↵ect
loan performance. On the one hand, lower interest rates may increase loan repayment by reducing moral
hazard (Holmstrom and Tirole, 1997; Adams et al., 2009). On the other hand, a better borrower pool—due
to stronger risk selection—may also lead to improvements in loan performance. Results in Table 5-B show
that loan performance did in fact improve as a result of the policy. Reducing interest rate caps by 1 p.p
decreased the share of loans under 90-day default in their first year by 0.09 p.p and 0.04 p.p respectively for
loans of $0-$2,000 and $2,000-$8,000. This e↵ect is higher among high-risk borrowers than among low-risk
borrowers. The full policy was able to reduce the average share of loans under 90-day default in their first
year by 1.52 p.p and 0.88 p.p, equivalent to 22.5% and 14.6% of their baseline levels.

Finally, we study e↵ects on banks’ expected mark-ups of signed contracts. These estimates combine
e↵ects on interest rates with e↵ects on the composition of the borrower risk pool. We find that expected
mark-ups decreased under stronger interest rate regulation, as displayed in Table 5-C. These e↵ects are
smaller than those on interest rates, which is driven by the fact the composition of the borrower pool is safer
and, therefore, banks’ expected costs decrease on average. Overall, these results suggest that interest rate
regulation indeed constrains banks’ exercise of market power.

3.2.3 Robustness Exercises

The analysis we develop exploits policy variation across loan size and time to estimate the e↵ects of
interest rate regulation on market outcomes. The main concern regarding our empirical strategy is that the
policy change a↵ected relative regulation across loan size, which might induce substitution across loan size
brackets. In principle, given regulation becomes stronger for loans of $0-$8,000, we might expect consumers
to substitute towards that group, which would imply our quantity e↵ects are attenuated. However, baseline
variation in interest rate caps limits such incentives, as the interest rate for loans larger than of $8,000 is
lower than that for loans of $0-$8,000 throughout the period of study, as shown in Figure 1. On the other
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hand, banks may attempt to o↵er multiple loans of smaller sizes below $8,000 rather than a single one of size
larger than $8,000 in order to charge higher interest rates. However, we find no evidence of such behavior
in the data, as more than 98% of borrowers take only one loan in months in which they borrow, and that
share remains unchanged throughout the period of study, as displayed by Figure A.8.

We develop several robustness checks to assess the assumptions underlying this strategy. We summarize
the main results from these exercises here, and leave an extended discussion for Appendix A. We showed in
Section 3.2.1 that trends leading to the policy change are similar across groups. In a similar vein, we study
whether placebo policies shifted along loan-size space relative to the actual policy change could generate
e↵ects similar to our estimates. Evidence on e↵ects of placebo policies would be indicative of substitution
concerns. Appendix A.1 shows that e↵ects from such placebo policies are generally smaller and close to
zero. Second, we study whether the distribution of loan size and term changes around the policy change
for loans larger than $8,000, and Appendix A.2 shows we find no evidence of such pattern. Third, we study
whether the distribution of loan application amount changes around the policy thresholds, which could
reflect substitution across size brackets by borrowers. Appendix A.3 shows there are no such patterns.
Fourth, we study whether alternative definitions of the comparison group a↵ect our results, and show in
Appendix A.4 the latter remain similar across a range of comparison groups. Overall, this evidence suggests
that our main results are robust to concerns about substitution across loan size brackets. Finally, we study
heterogeneity in estimated e↵ects across banks to verify whether our results are driven by any particular
bank. In Appendix A.5, we show that e↵ects for most banks display the same patterns of our results.

3.3 Discussion

In this section, we provided evidence for equilibrium e↵ects of interest rate regulation on market outcomes.
Average interest rates decreased and the number of loan contracts decreased substantially as a result of
the policy change. E↵ects are particularly large for risky borrowers, who were more exposed to the policy
change, as they were charged higher interest rates before the policy change due to risk pricing. These results
are consistent with recent research that also finds quantity e↵ects from this regulation such as Benmelech and
Moskowitz (2010). Additionally, we find improvements in the borrower pool risk and loan performance,
which is in contrast to Rigbi (2013), who finds no e↵ect on loan performance.

Overall, our estimates imply that 151,027 loan contracts per year were deterred by stronger regulation,
equivalent to 19% of the number of loans signed during the year before the policy change and $361.6 million
in consumer loans.31 Our estimates of price e↵ects imply that interest rates decrease on average by 9%,
which translates into an average decrease in monthly payments across loans of $3.26. The present value
of reduced monthly payments during the year before the policy change is $31.7 million.32 These results
provide a picture of the magnitude of aggregate e↵ects, but do not allow to assess welfare e↵ects.

While this analysis is informative of the e↵ect of interest rate regulation on equilibrium outcomes,

31This aggregate e↵ect is obtained by calculating the share of the credit volume originated during the year before the policy change
that would be deterred by the policy for each treated policy size bracket according to estimates across risk bins in columns (1) and (4)
of Table 4. We report the total across both policy loan-size brackets.

32This amount is calculated by computing counterfactual monthly payments using an interest rate adjusted downwards by average
price e↵ects in column (4) of Table 3. Then, we compute the di↵erence between those monthly payments and actual monthly payments.
We compute the present value of that di↵erence using a discount rate of 5% and the term of each loan contract. Finally, we aggregate
across loan contracts actually signed during the year before the policy change was implemented.
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several questions remain unanswered. First, the welfare implications of the combination of policy e↵ects
we estimate are unclear. In order to develop a welfare analysis, we require knowledge about consumers’
willingness to pay and banks’ costs. Second, as we emphasized at the beginning of the paper, market
power may have a role in determining the e↵ects. However, it is hard to assess this argument using
observational data given the endogeneity of market structure. Third, we also emphasized that interest rate
regulation is remarkably unsophisticated in most markets. Nevertheless, this analysis does not allow us to
draw conclusions on how alternative designs would a↵ect market outcomes. We develop and estimate an
equilibrium model for the consumer credit market in the next sections to address these aspects.

4 An Equilibrium Model of Applications, Pricing and Repayment

We develop an equilibrium model of applications, pricing and repayment in the consumer credit market,
which we then estimate. Several modeling choices aim at moving from a theoretical model to an empirical
one that can be estimated using the data available for our setting. We discuss these choices in Section 4.2.

4.1 Model

4.1.1 Setup

There are N consumers, denoted by i. There are J banks, denoted by j 2 J , where J is the set of banks in
the market. The model is static. Consumers choose whether to apply for loans of a given amount and term
(Li,Ti), determined in a previous stage that we do not model. For a given (Li,Ti), contracts are homogeneous
and only di↵er by their monthly payments, which vary across banks due to cost heterogeneity. Therefore,
consumers shop across banks for the lowest monthly payment. The price and bank signing a contract with
a consumer are determined as the outcome of an English auction, as in Allen et al. (2019). Figure A.18
summarizes the structure and timing of the model.

Borrowers. Consumers are endowed with observable characteristics xi and unobservable characteristics
"i, such that (xi, "i) summarizes the consumer type. The vector xi collects all public information, including
risk scores, borrower income, and borrower credit history, whereas "i = ("Ai, "Si) are potentially correlated
application and repayment shocks that follow a joint distribution F" and are borrower private information.

Borrowers decide whether to shop for loans. If they shop for loans, they incur an application cost (zi)
that depends on cost shifters zi, draw a choice set of banks Ji and shop across them. If they do not to shop
for loans, they obtain their outside option. Let the indirect utility from a contract and the outside option be:

uCi = vC(xi,Li,Ti) � pi

uOi = vOi

where vC(xi,Li,Ti) is the indirect utility of a contract, which depends on borrower and loan attributes; pi is
the monthly payment o↵ered to borrower i; and vOi is the indirect utility of the outside option. Borrowers
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choose to apply for loans by comparing the expected value of both options, given by:

uAi = PCi

Z
uCi fp|C(p)dp

|            {z            }
Value of approval

+(1 � PCi) uOi

|{z}
Value of rejection

�(zi) + "Ai

uNAi = uOi

where PCi is the probability that the application is approved by some bank in the market, and where the
borrower integrates the value of a loan contract over the density of loan prices they face conditional on
approval, we denote by fp|C(p). Both PCi and fp|C(p) are equilibrium objects which borrowers know. Finally,
"Ai is a shock to the utility that borrowers obtain from applying for a loan relative to not applying.

Given this structure, a borrower decides to apply for a loan whenever its expected utility is higher than
that of remaining out of the credit market. The application probability is:

PAi = Pr
 
PCi

Z
(uCi � uOi) fp|C(p)dp � (zi) + "Ai � 0

!
(5)

from where it is clear that application decisions are driven by the approval probability, the expected gains
from a loan contract relative to the outside option, the density of loan prices conditional on approval, an
application cost that borrowers face, and a shock to the utility of application. Let ai indicate that borrower i
applies for a loan and defineA as the set of loan applicants. We set the utility of the outside option to uOi =

0 for the remainder of the paper, such that uCi is the utility of a loan contract relative to that outside option.

Conditional on applying for loans, the borrower solves a discrete choice problem to choose which bank
to sign a loan contract with, which implies that utility from a loan contract is:

uCi = max
j2Ji

vC(xi,Li,Ti) � pij () pi = min
j2Ji

pi j

such that bank choice is driven by monthly payment, given there is no further product di↵erentiation across
banks in the choice set. As discussed below, all di↵erentiation is concentrated in banks’ costs.

Loan Repayment. After signing a loan contract, repayment is realized. Let si 2 [0, 1] be the share of
payments made by borrower i relative to the total number of monthly payments in the contract:

si = s(xi,Li,Ti, "Si) (6)

which is a function of borrower characteristics and non-price contract terms. Moreover, repayment is in-
creasing in the repayment shock "Si. There is adverse (advantageous) selection if application and repayment
display a negative (positive) correlation through unobservables to banks ("Ai, "Si).

Banks. We model competition among banks to attract borrowers as an English auction. Banks are het-
erogeneous in the cost of serving borrowers. There are three components of cost: (i) funding cost fi; (ii)
bank-borrower match-value !i j, which is an i.i.d. shock from a distribution G! that is unobserved to borro-
wers and may make it less costly for a bank to serve some borrowers than others; and (iii) repayment risk.
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We combine the first two components in mij = fi � !i j. In terms of repayment risk, banks observe xi and
application choices ai, which they employ to estimate repayment risk when pricing contracts.

Bank profits depend on a risky stream of payments and a stream of monthly bank costs. Let '(Ti) ⌘
1
r (1� exp(�rTi)) be a present value operator that discounts a stream of payments for Ti months at a discount
rate r; and '(Si) ⌘ 1

r (1 � exp(�rSi)) be a present value operator that discounts a stream of payments for
Si = siTi months, where Si is repayment length by borrower i. The expected profit from a loan at price pij is:

E"[⇡i j] = E"['(Si)]pij � '(Ti)( fi � !i j)

where repayment risk and funding cost depend only on borrower-specific attributes, while match-value !i j

depends on bank-borrower attributes. Therefore, !i j introduces cost heterogeneity across banks that can
be thought of as the match-value of a contract. For instance, !i j could capture bank-borrower relationships
and bank convenience in local markets, among other features. Conditional on xi, banks with higher !i j face
a lower cost of signing a loan contract with borrower i and can therefore o↵er such contract at a lower price.

A bank o↵ers a contract if E"[⇡i j] � 0, and otherwise rejects the borrower. Expected profits are decreasing
in borrower repayment risk at a given price, and thus observably riskier applicants are less likely to be
approved. Borrowers’ application choices and banks’ approval decisions are related. Given banks observe
xi and know F", they make inference about borrower unobservable repayment shock "Si from application
choices. Banks incorporate that information in their approval and pricing choices.33

Regulation. Interest rate regulation takes the form of an interest rate cap, which induces caps on monthly
payments. In particular, banks are not allowed to charge monthly payments higher than p̄i.

4.1.2 Equilibrium

Equilibrium in this model is characterized by the pool of applicants, and loan approvals and prices. In
absence of interest rate regulation, the outcome of an English auction in this setting is that the lowest cost
bank wins the auction with a bid bi(1) such that the second lowest cost bank is indi↵erent between getting
the loan contract or not at that price.34 The solution to:

E"[⇡i(2)] = E"['(Si)]bi(1) � '(Ti)mi(2) = 0

is thus the equilibrium unconstrained price:

pu
i =

'(Ti)
E"['(Si)]

( fi � !i(2)) (7)

33In particular, banks compute E"[⇡i j] = E"[⇡i j|ai = 1, xi]. This implies that, conditional on xi, application choices reveal information
about "Ai. Given banks know F", a signal about "Ai is informative about repayment risk "Si.

34As usual in auction models, the notation x(m) indicates the mth order statistic of x.
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which is increasing in repayment risk and funding cost, and decreasing in match-value of the closest
competitor.35 This price yields equilibrium expected profits E"[⇡i(1)] = '(Ti)(mi(2)�mi(1)) = '(Ti)(!i(1)�!i(2)),
from where it becomes clear that the source of banks’ market power in this model is given by cost advantages.

Under interest rate regulation, there are three potential outcomes for an applicant. If not binding, then
the bank o↵ers the contract at the unconstrained price in equation (7). If regulation is binding, however,
the unconstrained price is higher than the price cap, p̄ < pu

i . In this case, the lowest cost bank o↵ers the
contract at price pi = p̄ as long as E"[⇡i(1)] = p̄ � '(Ti)

E"['(Si)]
mi(1) � 0. Finally, if the cost of the lowest cost bank is

high enough as to make lending at the cap unprofitable, E"[⇡i(1)] = p̄ � '(Ti)
E"['(Si)]

mi(1) < 0, all banks reject the
borrower. Therefore, equilibrium prices under interest rate regulation are:

p⇤i =

8>>>>>><>>>>>>:

pu
i if pu

i  p̄

p̄ if '(Ti)
E"['(Si)]

mi(1)  p̄ < pu
i

· if p̄ < '(Ti)
E"['(Si)]

mi(1)

(9)

The distribution of equilibrium prices determines application decisions by borrowers, which in turn
determines the equilibrium set of applicants, A⇤. In this equilibrium, (i) borrowers optimally make ap-
plication choices given both the application approval probability and the distribution of prices they face
in the market, and their application costs, while (ii) banks optimally make price o↵ers in a competitive
environment given both their costs and the pool of loan applicants.

4.1.3 E↵ects of Interest Rate Regulation

Application Behavior. What are the implications on the demand side? Stronger regulation a↵ects bor-
rower application behavior by (i) reducing the approval probability, and by (ii) weakly reducing prices
conditional on approval. These incentives jointly determine the e↵ect of regulation on application behavior:

duAi

dp̄i
=
@PCi

@p̄i

Z
uCi fp|C(p)dp

|                   {z                   }
Credit access (�0)

+PCi
@
@p̄

Z
uCi fp|C(p)dp

|                     {z                     }
Consumer protection (0)

(10)

which is ambiguous and depends on which incentive dominates. If the approval probability decreases
sharply in response to stronger regulation but expected prices conditional on approval do not respond as
strongly, then borrowers will likely apply for loans less often. If instead the e↵ects on approval probability
are small relative to those on expected prices, borrowers will likely apply for loans more often.

35This expression of the unconstrained equilibrium price can be rewritten as:

pu
i =

'(Ti)
E"['(Si)]
|     {z     }

Risk adjustment

( fi � !i(1)

|    {z    }
Mg. Cost

+!i(1) � !i(2)

|       {z       }
Mark-up

) (8)

where it is clear that unconstrained loan prices are comprised by risk-adjusted cost and a mark-up determined by the cost advantage
of the bank signing the contract relative to its closest competitor.
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Banks’ Lending. We consider how interest rate regulation a↵ects pricing and approval incentives for
banks. The e↵ect of stronger interest rate regulation on banks’ expected profits depends on whether it is
binding. For loan applicants who were already in the market, profits decrease under stronger regulation
whenever it is binding, and are una↵ected whenever it is not binding. There are two possible scenarios for
the former set of applicants, as banks may (i) choose to sign those contracts as long as they yield non-negative
profits; or instead (ii) choose to reject them if they yield negative profits at the lower interest rate cap. Given
borrower expected profitability is decreasing in observable risk at a given price, the probability that a bank
decides to reject an application under stronger interest rate regulation is increasing in observable risk.

Heterogeneity across Consumers. Interest rate regulation may potentially a↵ect borrowers in four ways.
First, consumers who remain in the market under stronger regulation and are o↵ered contracts at a lower
price are protected and increase their consumer surplus. That is, the policy is a transfer from banks to
borrowers in the amount of the change in the interest rate cap. Second, consumers who become excluded
from the market either by being discouraged from applying for loans or by having their applications
rejected under stronger regulation. Third, consumers who enter the market because of stronger regulation
are included. These are consumers that experience an improvement in their expected loan prices due to
stronger interest rate regulation without a strong enough decrease in their approval probability, such that
regulation induces them to enter the market and apply for loans. Finally, consumers for whom stronger
regulation does not change their approval probability nor their expected loan prices are una↵ected.

Welfare E↵ects. The e↵ects of stronger regulation on expected consumer surplus are ambiguous and
determined by the same forces as the e↵ects on application behavior in equation (10). The e↵ect on expected
consumer surplus will have the same sign as that on application behavior. From an ex-post perspective,
e↵ects combine increases in consumer surplus for protected and included borrowers, with decreases in
consumer surplus for excluded borrowers, and decreases in bank profits. The overall e↵ect is ambiguous.36

Market power and selection are relevant for welfare e↵ects. First, note that in a setting without market
power, no borrower is protected by the policy, as all marginal borrowers become unprofitable for banks
under stronger interest rate regulation. Second, if there is selection into the market on observable risk and
willingness to pay for loans is correlated with risk, then the direction of selection will matter for welfare
implications, given (observably) riskier borrowers are more likely to be excluded.

Loan Performance. If stronger interest rate regulation improves the borrower pool risk through rejecting
marginally (observably) riskier borrowers, then the aggregate default rate in the market decreases under
stronger regulation. In this model, where prices do not directly a↵ect repayment, the e↵ect of interest rate
regulation on aggregate loan performance is thus purely compositional.

36Previous research on the welfare e↵ects of price caps predicts mostly adverse e↵ects on consumer surplus for perfectly competitive
markets (e.g., Glaeser and Luttmer 2003; Bulow and Klemperer 2012). In contrast, our model predicts ambiguous e↵ects on consumer
surplus, because we study an imperfectly competitive market.
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4.2 Model Discussion

The model provides a framework to study regulation in consumer credit markets. It accommodates many
features common to these markets, such as price dispersion, risk pricing, the role of relationships for
approvals and pricing, among others. However, it also has limitations that we discuss.

Static Demand. We model borrower application choices as a static problem. Theoretical models of demand
for credit often involve intertemporal optimization problems where the trajectory of interest rates determines
optimal borrowing and saving. However, that class of model only yields closed form solution in restricted
cases, which often fail to accommodate heterogeneity in loan contracts (Attanasio et al., 2008). Instead,
we focus on the static problem where a borrower chooses whether to finance credit needs by applying for
loans or not. Previous empirical research of loan demand also adopts this static approach (e.g., Alessie et al.
2005; Attanasio et al. 2008; Einav et al. 2012). This assumption might not be appropriate for large loans
such as mortgages, for which consumers often shop over long periods and for which evidence shows that
consumers react dynamically to market conditions (Mian and Sufi, 2009). However, it is likely appropriate
for markets for smaller loans, such as consumer loans in our setting. In fact, evidence from our survey
suggests that borrowers spend a median of only 7 days searching for consumer loans, as displayed in Figure
A.17-b. Moreover, as much as 66% of the respondents say that they search credit “quickly” in response to
financing needs. These patterns suggest that focusing on static choices is meaningful in our context.

Exogenous Loan Amount and Term. We assume that loan amount and term are determined in a previous
stage not in the model. This is in line with modeling loan demand as a response to shocks, but imposes a
constraint on consumer behavior. The appeal of this assumption implies is that the application equation
becomes a binary choice. Moreover, the fact that we find no e↵ects of the policy change on the distribution
of loan size in our analysis in Appendix A.2, suggests that not modeling this substitution dimension might
be a reasonable assumption for our purpose and setting. Finally, the extent to which loan size and term
signal borrower cost should be captured by including (Li,Ti) in our repayment equation.

Bank Competition as English Auction. We model equilibrium interest rates as the result of an English
auction, where banks compete for borrowersby o↵ering lower interest rates. The appeal of this approach is
that it provides a tractable model that accommodates price dispersion and imperfect competition. Moreover,
it avoids the need to specify the prices of all alternatives in consumers’ choice sets, which are unobserved
to us.37 This approach has been recently used for modeling markets with bargained prices (Allen et al.,
2014, 2019; Salz, 2020), and is isomorphic to modeling the market as a standard Bertrand game where firms
produce homogeneous goods with heterogeneous costs (Beckert et al., 2018). Under this framework, the
source of bank market power in our model is cost heterogeneity, which translates into interest rates being
set at a mark-up over expected costs, somewhat similar to the interpretation of market power in Petersen
and Rajan (1995). Additionally, survey evidence in Figure A.17-c shows that for a given application 89%

37An alternative approach to study would be to model the game between borrowers and banks as a Bertrand-Nash game with
posted prices and to predict the prices that competing banks would o↵er to each borrower using information from signed contracts
(e.g., Crawford et al. 2018). Modeling the game between borrowers and banks as an English auction avoids that prediction step.
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of borrowers considered more than two banks, and the median borrower considered three banks. This
evidence suggests that borrowers indeed interact with several banks in their shopping process.

Search Frictions. We do not model other sources of market power such as search frictions, which have been
the focus of recent research on credit markets (Woodward and Hall, 2012; Allen et al., 2019; Agarwal et al.,
2020; Galenianos and Gavazza, 2020). A first implication of this assumption is that we disregard potential
e↵ects of interest rate regulation on search e↵ort. Price caps reduce price dispersion and thus decrease
search e↵ort, which may lead to unintended e↵ects such as increases in equilibrium prices (Fershtman and
Fishman, 1994; Armstrong et al., 2009). Our model does not account for such channel. A second implication
is that our estimates of the model might understate the amount of bank market power.

Moral Hazard. Loan price pij does not enter into the repayment equation, which implies the model rules
out moral hazard in the form suggested by Holmstrom and Tirole (1997). We depart in this aspect from
recent work on credit markets, such as Adams et al. (2009). While restrictive, this assumption substantially
simplifies the analysis of bank pricing. Moreover, recent experimental evidence in Castellanos et al. (2018)
suggests moral hazard might not be a first order concern in consumer credit markets.

5 Econometric Model

The model is summarized by equations (5), (6), and (9) for applications, repayment, and pricing. The
structural objects of interest on the demand side are the parameters in the indirect utility function of
consumers, uCi(xi,Li,Ti, pi); the parameters in the application cost, (zi); the parameters in the repayment
equation, s(xi,Li,Ti, "Si); and the joint distribution of application and repayment shocks, F". On the supply
side, we are interested in the distribution of banks’ costs, G!.

We estimate using three sets of observables in our data. First, we observe borrower covariates xi, appli-
cation shifters zi, funding cost fi, relationships with banks rij, and application choices ai for all borrowers.
Second, we observe loan amount and term for each applicant, (Li,Ti). Finally, we observe loan monthly
payment and repayment for each approved applicant, (pi, si). In this section, we specify the model and state
relevant statistical assumptions, and then develop an identification discussion before moving to estimation.

5.1 Model Specification

Application and Repayment. We specify the net indirect utility of a contract as a linear function of
borrower attributes xi, loan amount, term, and prices; and the application cost as a linear function of shifters
zi. In particular, we specify the application probability in equation (5) as:

PAi = Pr
✓
PCi

Z
(x0i�X + �LLi + �TTi � �pp) fp|C(p)dp � z0i + "Ai � 0

◆
(11)

where xi is a vector of borrower covariates that includes the borrower risk score, income, debt to income
ratio, default to debt ratio, gender, and age along with market and month dummies. Additionally, zi is a
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vector of application shifters that includes the total number of banks’ branches in the local market where
the borrower is located, and the number of related banks of the borrower in the previous year. We discuss
the role of these application shifters for identification below.

In terms of loan repayment, we adopt the same specification as Einav et al. (2012) for the repayment
share. In particular, we specify the repayment share in equation (6) as a function of borrower covariates
and contract terms:

si = min{exp(x0i↵X + ↵LLi + ↵TTi + "Si), 1} (12)

which has the advantages that: (i) it is bounded in the unit interval, and that (ii) it accommodates the
possibility of a mass point at full repayment, something we do observe in the data. The vector xi in this
specification is the same as that in the application equation above.

Moreover, we specify the joint distribution of application and repayment shocks F" as a bivariate normal:

0
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1
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0
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0
0
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⇢�A�S �2
S

1
CCCCA (13)

where ⇢ determines the extent of adverse or advantageous selection in the market. In particular, ⇢ < 0
implies adverse selection, as riskier borrowers are more likely to apply for loans; whereas ⇢ > 0 implies
advantageous selection, as then safer borrowers are more likely to apply for loans. Moreover, �2

A and �2
S are

respectively the variance of application and repayment shocks, and we normalize �2
A to 1. While restrictive,

assuming a normal distribution has the advantage of providing a closed form relationship between the
conditional and unconditional distributions of shocks, something that related previous work also exploits
(e.g., Einav et al. 2012; Crawford et al. 2018). Under this specification, the demand side of the model takes
the form of a standard selection model with a normality distributional assumption (Heckman, 1979).

Banks’ Costs. We specify the cost function of banks as mij = fi�Li!i j such the bank-borrower idiosyncratic
component is measured per loan unit. For the match-value component of cost, we assume that it follows an
i.i.d. extreme value distribution,!i j ⇠ T1EV(�i j, �!). We parametrize the location parameter as �i j = ⌧ j+�rij,
where ⌧ j is a bank-specific intercept, and rij is an indicator for a previous relationship between borrower i
and bank j. Bank fixed e↵ects ⌧ j allow for banks to hold cost di↵erences that are constant across borrowers.
Allowing for cost to depend on previous relationships is motivated by the di↵erences in approvals and
interest rates between previously related and non-related borrowers documented in Table 2. Therefore, the
parameter � captures the potential incumbency advantage that banks previously related to a loan applicant
hold relative to non-related banks.38 Finally, we denote the idiosyncratic component of !i j as "!i j, which
captures variation in cost at the borrower-bank level, which could be driven by heterogeneity in banks’
services in local markets or relationships between borrowers and local branch o�cers.39

This specification of banks’ costs is consistent with several of the facts in Section 2.4. In particular,
this specification allows for: (i) expected default cost to vary across borrowers according to borrower

38The advantage of assuming an extreme value distribution for the match-value component of cost is that it provides closed
form expressions for distributions of order statistics of !i j, which are useful for estimation as discussed below. We summarize these
properties in Appendix B.4. Proofs for these results are available in Froeb et al. (1998).

39As an example of the cost heterogeneity captured by "!i j, Drexler and Schoar (2014) use data from a large Chilean bank to show
that loan o�cer turnover has sizable e↵ects on loan approval and borrower default behavior.
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observables; (ii) bank costs for a given borrower to vary across banks; and (iii) bank costs to depend on
previous relationships with borrowers, thus introducing the potential for incumbency advantages.

5.2 Identification

We discuss how variation in the data identifies the model and describe our identification assumptions.
We assume that borrower covariates, loan amount and term, and application cost shifters (xi,Li,Ti, zi) are
exogenous. The main identification assumption is conditional independence between the idiosyncratic
component of cost shocks !i j, and application and repayment shocks ("Ai, "Si). Formally, this is:

"!i j ?? ("Ai, "Si)|(xi,Li,Ti) (14)

which implies that the idiosyncratic component of banks’ costs is unrelated to unobservable determinants of
application and repayment behavior, once borrower observables are accounted for. The economic implica-
tion of the assumption is that banks do not have any informational advantage relative to the econometrician
in terms of the determinants of borrower application and repayment behavior, that a↵ects banks’ costs and,
therefore, pricing. While restrictive, this assumption relies on the fact that our detailed dataset is the same
dataset that the regulator provides to banks for pricing purposes. Note that this assumption does not imply
that banks’ costs are invariant to borrower attributes and application behavior. In fact, banks’ consider
observable risk for pricing and also infer unobservable risk from applications. Under this assumption, we
can treat identification and estimation of the demand and supply sides of the model separately.

Applications and Repayment. The demand side of the model has the structure of standard selection
models, where application is the selection equation and repayment is the outcome equation, and where the
correlation between the unobservable components of them has the interpretation of adverse or advantageous
selection. Parametric and non-parametric identification of this model is established in Heckman (1979)
and Das et al. (2003), respectively. The latter emphasizes the importance of exclusion restrictions for
identification. In that line, we exploit two application cost shifters in zi as exclusion restrictions. First, we
include the number of branches in the local market as a measure of local bank density, which should reduce
application cost. This shifter is in line with papers that exploit distance as a shifter of school applications
(e.g., Walters 2018). Second, we include the number of previously related banks as a measure of previous
experience dealing with banks, which should make the application process easier to navigate and decrease
application cost. Both of these variables arguably shift application choices, but they are are unlikely to
directly a↵ect the utility that borrowers obtain from loans or their repayment behavior.

Given the model specification and our identification assumption, the intuition for how variation in the
data identifies the demand side of the model is as follows. Application responses to variation in (xi,Li,Ti, pi)
identify � in the application equation. Moreover, repayment responses to variation in (xi,Li,Ti) identify ↵
in the repayment equation. Regarding the joint distribution of application and repayment shocks F", the
intuition is that consumers observed applying for loans when the model predicts they should not, are likely
to have a high "Ai. The conditional correlation between those shocks and observed repayment identifies ⇢.
In particular, if those borrowers are observed to repay less, then ⇢ < 0 and there is adverse selection.
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A concern is the potential endogeneity of loan prices. Prices combine policy variation from changes
in interest rate regulation with variation induced by bank pricing. Under the identification assumption in
equation (14), (xi,Li,Ti) is all the information that enters both banks’ pricing and consumers’ application
choices. Therefore, application responses to price variation conditional on such vector identify price sen-
sitivity. However, if the assumption fails and banks observe drivers of applications that are unobservable
to the econometrician and exploit them for pricing, then identification of price sensitivity fails. We use
coe�cient stability and control function approaches to assess this assumption, and provide support to it.

Banks’ Costs. The identification of banks’ costs follows from standard arguments in the auctions literature.
Assuming independence in cost shocks !i j across banks and borrowers, the supply side of our model
corresponds to an independent private values auction. As established by Athey and Haile (2002), the
distribution of values in asymmetric independent private values auctions is non-parametrically identified
from transaction prices and the identity of the auction winner. In our setting, we observe prices and the
identity of the bank for all contracts in the market, and therefore the distribution of banks’ costs is identified.

Figure A.19 provides a diagram that connects data to supply side primitives in our model. For uncon-
strained approvals, observed prices are a function of the cost of the second lowest bank. For constrained
approvals, observed prices are those implied by the interest rate cap and are bounded from below by the
chosen bank cost and from above by the unconstrained price. For rejections, prices implied by the interest
rate cap are bounded from above by the cost of the lowest cost bank. Thus, we learn about the cost function
of banks by combining our model with data on bank choices, loan prices and application outcomes.

We relate this argument to our specification of banks’ costs. Conditional on funding cost fi, identifica-
tion of banks’ costs relies on variation in contract prices, bank choices, and application outcomes. First,
identification of constant cost di↵erences across banks ⌧ j rely on di↵erences in prices across chosen banks.
Second, identification of incumbency advantage � relies on variation in prices within chosen banks across
applicants with and without a previous relationship with the bank. Finally, any remaining variation in loan
prices within banks and bank-borrower relationships identifies the scale of idiosyncratic cost shocks, �!.

5.3 Estimation

Estimation proceeds in three steps. First, we estimate the parameters of the application equation using
data from the pool of potential applicants. Second, we estimate the repayment equation using data on
loan performance for signed contracts. Third, we use estimates from the second step to compute fitted
repayment risk and then proceed to estimate banks’ cost by exploiting the auction structure of the supply
side of the model. All three equations are estimated by maximum likelihood.

Applications and Repayment. The joint estimation of the application and repayment equations in (11) and
(12) proceeds in three steps. The two first steps are related to estimation of components of the application
equation in equation (11) that are not observed for every consumer in the sample, and that we then use as
inputs in estimation of the key parameters in that equation.

The first step deals with the fact that loan terms (Li,Ti) are not observed for non-applicants. We estimate
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the conditional distribution of loan amount and term using data from applicants and then draw from that
distribution for non-applicants. In order to deal with concerns related to selection into application, we
implement a control function approach in this step, similar to Attanasio et al. (2008) and based on Das et al.
(2003). In the first stage, we estimate a flexible probit model for applications on a rich vector of borrower
covariates, and application shifters in zi. In the second stage, we compute fitted propensity scores using
estimates from the first stage and add that propensity score as a control function in a regressions of loan
amount on the same set of borrower covariates. Finally, we estimate an ordered logit model for loan term
monthly bins on the same set of borrower covariates and loan amount. We use estimates from that second
stage to draw loan amount and term for non-applicants in the sample. As expected, predicted loan amount
di↵ers for applicants and non-applicants: loan amount for applicants is $1,000 larger on average, equivalent
to 0.14 standard deviations. For further detail on this procedure, see Appendix B.1.

In the second step, we deal with the fact that the approval probability PC and the density of loan prices
conditional on approval fp|C enter the application equation and are not directly observed in data for each
borrower. First, we estimate PC using a probit model for application approval on a vector of borrower
covariates, previous relationship variables, as well as application amount and term from the first step. We
compute fitted approval probabilities for each consumer in the sample and use them as inputs in the third
step below. Second, we estimate fp|C using a kernel density estimator after conditioning on the same vector
of variables. We use draws from this estimated conditional density in the third step of estimation. We let
both PC and fp|C vary across time, to capture the e↵ects that variation of interest rate caps over time have on
them. The strategy of estimating these elements in a previous stage and use them as inputs for the last step
is similar to that in Kawai et al. (2018). We provide more detail about this procedure in Appendix (B.1).

In the third step, we estimate the parameters in the application and repayment equation by maximum
likelihood using inputs from the first and second steps above.40 We exploit the joint normality of ("Ai, "Si) in
equation (13) to derive the likelihood function, which provides closed form expressions for the distribution
of repayment shocks "Si conditional on application shocks "Ai. For a detailed derivation of the likelihood
function, see Appendix B.2.

Banks’ Costs. We exploit the structure of the auction model and the distributional assumption imposed
on !i j to estimate the distribution of banks’ costs by maximum likelihood. We start by computing fitted
repayment risk E"['(Si)] using estimates from the application and repayment equations and 100 Halton
draws for ("Ai, "Si).41 Given that input, we work separately on the likelihood for each of the potential
application outcomes in equation (9), for every potential consideration set Ji. We then integrate the
likelihood of each outcome over the applicant consideration set. For the derivation of the likelihood
function, see Appendix B.3.42

40We use 100 Halton draws from the estimated density of prices conditional on approval to compute the expected indirect utility
from signing a loan contract. Train (2009) argues that Halton draws have better coverage properties than pseudo-random draws,
which in practice implies that 100 Halton draws provide a similar level of e�ciency than simulation with 1,000 pseudo-random draws.

41We employ a annual discount rate of r = 5% for all banks in the market for both estimation and counterfactuals.
42We describe useful properties of distributions of order statistics of the T1EV distribution in Appendix B.4. The relevance of such

properties is that they allow for obtaining closed form expressions for the likelihood of each of the potential outcomes of the model in
terms of observables, which greatly simplifies estimation.
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Estimating Dataset. We estimate the model using a sample of potential applicants for 2013 and 2014,
which are the years before and after the policy change. This sample includes 316,384 potential applicants,
of which 49,883 apply for loans. Given application events are rare at a monthly frequency, we collapse the
data at the yearly level by including data for the application month for consumers who apply within a year,
and data for a random month in the year for consumers that do not apply within a year. We define the set
of banks that consumers shop as the 9 largest banks in the market, which account for 98% of market share.
All consumers in the estimating dataset are located in markets in which all 9 banks o↵er consumer loans.

We allow for observable heterogeneity on two sets of parameters. First, we let the price sensitivity
coe�cient di↵er across low- and high-risk borrowers. Second, we allow for the coe�cients in banks’ costs
to di↵er by loan term, so as to allow for loans of di↵erent terms to have di↵erent monthly costs for banks.

5.4 Results

Application Behavior. Table 6-A displays our estimates for the application equation.43 Borrowers are more
likely to apply for loans when facing a higher approval probability, and increasing the approval probability
by 5 p.p increases the probability of application by 5 p.p. Riskier borrowers are more likely to apply and, in
particular, a 5 p.p increase in borrower predicted default probability increases the application probability
by 1.75 p.p. Moreover, female and older consumers are less likely to apply. Loan amount increases the
probability of application, and a loan amount $5,000 larger increases the probability of application 1.1 p.p.
Finally, borrowers are price sensitive and higher expected prices reduce the application probability. High-
risk borrowers are less price-sensitive than low-risk borrowers, for instance a $200 increase in expected
monthly payment decreases the application probability of the former by 1.5 p.p, and of the latter by 2.4 p.p.

As discussed in Section 5.2, a concern for our strategy is the potential for unobservables that drive both
application decisions by borrowers and pricing decision by banks, which would influence our estimates of
price sensitivity, �p. We address this concern by implementing two robustness exercises. First, we assess
the stability of �̂p when estimated using a cumulative set of covariates in the application equation, in line
with Altonji et al. (2005). Figure A.21 shows that �̂p from specifications that do not include borrower risk
scores and other borrower covariates di↵er remarkably from those that include such variables. Moreover,
the results show that adding additional borrower covariates after accounting for risk score has only minor
e↵ects on �̂p. Second, we employ a control function approach to provide additional evidence for the
robustness of �̂p. We follow Petrin and Train (2010) and implement a two-step procedure. In the first step,
we regress monthly payments on covariates in xi and a cost shifter of prices. We use funding cost as a
shifter, where the funding rate provides variation across time, and heterogeneity in loan amount and term
across consumers provides individual level variation. In the second step, we include the residuals from
the first stage as an additional covariate in xi, with the objective of controlling for unobservable drivers of
prices. The last estimates in Figure A.21 are the result from this approach, and show that our estimates �̂p

do not change substantially.44 While not conclusive, these results suggest that the set of covariates in xi for

43We report standard errors based on the inverse of the hessian of the log-likelihood functions we maximize. This procedure does
not account for the fact that estimation proceeds in steps. Therefore, our standard errors are possibly incorrect and likely overestimate
the precision of our estimates. Bootstrapped standard errors are work in progress. While we are likely underestimating standard
errors, the fact that most of our estimates are statistically significant at very high confidence levels suggests our conclusions are unlikely
to change after adjusting standard errors.

44Our estimate for the coe�cient on the control function is -18.21 with standard error 0.93, thus statistically significant. This
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estimation might be able to deal with the concern about unobservable drivers of applications and pricing.

Estimates of application costs point in the expected directions. Both the number of branches in the local
market and consumers’ previous experience with banks reduce application costs, as expected. In particular,
having 100 more branches in a local market increases application probability by 0.9 p.p, whereas holding a
previous relationship with an additional bank increases the application probability by 2.9 p.p.

Loan Repayment Behavior. Estimates for the loan repayment equation are displayed in column (3) of
Table 6-A. As expected, riskier borrowers repay less on their loan contracts. In fact, a 5 p.p increase in
borrower risk score decreases repayment share by by 0.6 p.p. Moreover, female and older borrowers
display better repayment behavior. In terms of loan terms, borrowers taking larger loans tend to repay less,
while borrowers taking longer term loans display the opposite behavior. Finally, our estimate of �S implies
there is substantial unobservable borrower risk.

Adverse Selection. We find no compelling evidence of adverse or advantageous selection, conditional on
borrower risk scores. Our point estimate for ⇢ is close to 0 and is not statistically significant. However, our
estimate is not precise and thus we cannot rule out that some degree of adverse selection in the market.
This result implies that although there is substantial unobservable repayment risk �S, that risk does not
drive application behavior, conditional on (xi,Li,Ti). This result does not imply there is no selection on
observables. In fact, our results show that riskier borrowers are more likely to apply for loans and are less
likely to repay them. However, that is accounted for in xi and is therefore not reflected in our estimate for ⇢.

We address the role of observables in determining our selection estimate. Figure A.22 shows estimates
of ⇢ using di↵erent sets of borrower covariates in xi in both the application and repayment equations. Not
accounting for observables yields estimates that would provide strong evidence of adverse selection (⇢̂ < 0).
However, once we include borrower risk scores and income, point estimates of ⇢ remain close to 0, in line
with our preferred specification. These result suggest that observables in our data—which are the same
provided by the regulator to banks for risk assessment—account for most of risk selection into the market.

Banks’ Costs. Table 6-B displays estimates of banks’ costs, which reveal substantial heterogeneity in banks
costs. To interpret these estimates, we describe how they relate to the monthly payments associated with a
loan of $2,000, that have median and standard deviation (�p) of $118.62 and $69.90, respectively. Estimates of
bank-specific components of !i j imply sizable cost di↵erences across banks: on average, the cost di↵erence
between the most and least e�cient banks for a given loan is of $25.99 per month, equivalent to 0.37�p.
Moreover, we estimate that having a previous relationship with a bank provides an incumbency advantage
to the bank. In particular, having a previous relationship reduces the monthly cost of providing a $2,000
loan by $32.74 per month, around 0.46�p. Finally, our estimates show that the standard deviation of bank-
borrower idiosyncratic shocks is large: a 1 s.d increase in this shock decreases cost by $19.17 per month,
equivalent to 0.27�p. This suggests that unobserved variation in costs across banks is a relevant determinant
of residual price dispersion. There is heterogeneity in estimates across cost bins, although without a clear

suggests that including it indeed controls for such potential unobservables. However, the fact that estimates �̂p remain similar to those
without the control function suggests that the relative importance of those unobservables relative to observables in (xi,Li,Ti) is minor.
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Table 6: Model estimates

(1) (2) (3) (4)

Panel A - Demand side Application Repayment

Estimate S.E. Estimate S.E.

Drivers of application (�) and repayment (↵)

Constant 3.500*** (0.076) 0.049 (0.126)
Risk score 1.390*** (0.053) -2.008*** (0.098)
Female -0.124*** (0.006) 0.026** (0.010)
Age 2 [33,55) -0.032*** (0.006) 0.031*** (0.010)
Age 2 [55,+) -0.309*** (0.009) 0.079*** (0.016)
log(Annual income) 0.016*** (0.005) 0.110*** (0.011)
Debt to income ratio 0.442*** (0.040) 0.024 (0.065)
Default to debt ratio -0.838*** (0.039) -0.006 (0.019)
Loan term 0.045*** (0.003) -0.082*** (0.005)
Loan amount 0.009*** (0.001) 0.003*** (0.001)
Monthly payment, low-risk 0.479*** (0.016)
Monthly payment, high-risk 0.304*** (0.017)

Application cost ()

Constant 4.607*** (0.099)
Number of branches -0.000*** (0.000)
Previously related banks -0.196*** (0.003)

Application and repayment shocks

Standard deviation (�A, �S) 1.000 — 0.525*** (0.008)
Correlation (⇢) -0.010 (0.046)

Month FEs Y Y
Market FEs Y Y

Panel B - Banks’ costs Short term Long term

Estimate S.E. Estimate S.E.

Range of bank fixed e↵ects (⌧) [-0.038***,-0.024***] [-0.038***,-0.025***]
Previously related to bank (�) 0.016*** (0.000) 0.016*** (0.000)
Bank-borrower shock (�!) 0.009*** (0.000) 0.010*** (0.000)

Notes: Panel A displays estimates from the demand side of the model. Columns (1) and (2) display estimates and standard errors for
parameters in the application equation. Columns (3) and (4) display estimates and standard errors for parameters in the repayment
equation. The specifications of both the application and repayment equations include month and market fixed e↵ects. Panel B displays
estimates from the supply side of the model. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

pattern associated with loan term. This suggests that after accounting for funding cost the cost per dollar
of loan does not correlate strongly with loan term.

It is useful to understand how these estimates relate to the data. First, estimates of bank cost fixed
e↵ects ⌧ j align with observed market shares, as displayed by Figure A.20-a. The model rationalizes high
market shares as cost advantages, captured by higher fixed e↵ects in !i j. Second, market shares and the
share of previously related borrowers are positively correlated, as displayed by Figure A.20-b. The model
rationalizes this correlation as that banks hold an incumbency advantage when serving previously related
borrowers relative to rivals without those relationships. This explains our positive estimate for �.
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5.5 Model Fit

We examine model fit by using the estimated parameters to simulate equilibrium outcomes and compare
simulated to observed outcomes. We run this simulation and all simulations in the next section on the
estimating dataset. In particular, we proceed as follows:

1. Draw shocks for applications, repayment and cost. Specifically, (i) draw application and loan repay-
ment shocks for each borrower in the sample from the estimated joint distribution, {"Ai, "Si}; and (ii)
draw a cost shock for each bank-borrower in the sample, !i j.

2. Draw shocks for integration steps. Specifically, (i) draw a vector of N! bank-borrower cost shocks for
integration of prices by borrowers, {!(s)

i j }
s=N!

s=1, j2J ; and (ii) draw a vector of NS loan repayment shocks

per borrower for integration of repayment risk by banks, {"(s)
Si }

s=NS
s=1 .

3. Simulate optimal prices and approval decisions for each of the N! vectors of cost shocks for a given
interest rate regulation p̄i, which are required for simulating application decisions. This step requires
solving a fixed point problem, because banks take the expectation of repayment risk conditional on
application into account, and application in turn depends on expected approval probability and prices.
We proceed by: (i) computing simulated unconditional repayment risk as a starting point, (ii) comput-
ing simulated application decisions, (iii) computing expected approval probability PCi and monthly
payments conditional on approval {p(s)

i }
s=N!

s=1 given simulated repayment risk, (iv) computing simulated
conditional repayment risk, and (v) repeating (ii)-(iv) until convergence of simulated monthly pay-
ments. The outputs of this step are simulated approval probability PCi, monthly payments {p(s)

i }
s=N!

s=1 ,
and expected repayment risk E"['(Si)].

4. Simulate application decisions for each borrower ai, by computing application probabilities using
simulated approval probabilities and monthly payments from Step 3 along with draws for application
shocks from Step 1.i.

5. Simulate approval and pricing decisions by banks (Li, pi), using draws for cost shocks from Step 1.ii
and simulated repayment risk from Step 3.

6. Simulate repayment outcomes for borrowers si, using estimates for the repayment equation along
with repayment draws in Step 1.i.

Figure 4-a shows that simulated application outcomes are close to observed outcomes, although the
model overpredicts constrained approvals and underpredicts unconstrained approvals relative to the data.
This suggests applicants may face frictions in their choice sets formation that our model does not account
for. Figure 4-b shows that predicted market shares track observed market shares closely. Moreover, Figure
4-c shows that the model fits the distribution of loan prices well, with a correlation between predicted and
observed prices of 0.95. Finally, Figure 4-d shows that the estimated model provides a good fit of the density
of loan repayment share.

Finally, Figure A.23 shows estimated expected profit margins, which are 29.6% on average, and display
substantial dispersion. We use the simulated model under actual regulation to decompose prices into three
components: cost, risk, and market power. This decomposition follows a rearranged version of equation
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Figure 4: Model fit
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Notes: This figure displays results for model fit. Simulations are implemented as detailed in Section 5.4. Panel (a) displays observed
and predicted shares of approved, constrained and rejected applications. Panel (b) displays observed and predicted bank market
shares. Panel (c) displays the observed and predicted distribution of loan monthly payments. Panel (d) displays the observed and
predicted distribution of loan repayment.

(8). Our results show that, on average, funding and banks’ costs jointly account for 71.2% of loan prices.
Risk accounts for 9.8% of the spread between loan monthly payment and cost, while market power accounts
for the remaining 90.2%. Our estimates thus imply that banks hold substantial market power in this setting.

6 Equilibrium E↵ects of Interest Rate Regulation

6.1 E↵ects on Market Outcomes

We simulate equilibrium outcomes for di↵erent regulation levels, corresponding to the level at the moment of
the policy change, and those 1 and 2 years after the policy change, which is November 2013, November 2014
and November 2015. We then compare simulated e↵ects to estimated e↵ects to assess model predictions.

Results from these simulations are mostly in line with the evidence presented in Section 3 and are
summarized in Table 7. The model predicts that stronger interest rate regulation decreases the number
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of loans by 23.7%, which combines a decrease in applications and an increase in rejections by banks. As
highlighted in Section 4.1, the e↵ect of interest rate regulation on application choices depends upon its
relative e↵ects on decreased approval probability and decreased expected loan prices. In this case, we find
a decrease in applications that in turn implies that the former e↵ects dominates the latter. Moreover, loan
monthly payments on loans approved under stronger regulation decrease by $2.59 and the mark-up on such
loans decreases by 2 p.p, reflecting that stronger interest rate regulation is in fact protecting consumers who
remain in the market. These simulated e↵ects are in line with our analysis in Section 3, where we estimated
a 19% decrease in the number of loans and a $3.26 decrease in loan monthly payments.

Table 7: Simulated e↵ects of interest rate regulation

(1) (2) (3)

Baseline Mid e↵ect Full e↵ect
Outcome Nov/2013 Nov/2014 Nov/2015

Apply for loans (p.p) 19.92 -2.20 -4.11
Unconstrained|Apply (p.p) 90.07 -9.50 -17.35
Constrained|Apply (p.p) 7.58 7.74 13.57
Rejected|Apply (p.p) 2.34 1.75 3.78
Number of loans (%) - -12.69 -23.73
Monthly payment ($) 251.73 -5.29 3.98
Monthly payment on approved under full policy ($) 258.30 -2.00 -2.59
Mark-up (p.p) 29.11 0.73 2.00
Mark-up on approved under full policy (p.p) 31.80 -0.37 -0.67
Default probability (p.p) 7.26 -0.10 -0.27
Consumer surplus ($) - -44.20 -82.47
Monthly profit ($) 73.46 -0.19 6.13
Monthly profit on approved under full policy ($) 82.15 -1.97 -2.55
Average monthly profit ($) 13.26 -1.77 -2.40
Average welfare ($) - -46.15 -84.84

Notes: This table displays results for simulated policy e↵ects of moving from the baseline interest rate regulation in November 2013
to interest rate regulation in November 2014 and November 2015, when the policy change was fully in place. Mid and full e↵ects are
measured relative to baseline levels. Column (1) displays simulated equilibrium outcomes for regulation at November 2013. Column
(2) displays simulated changes in equilibrium outcomes under regulation present in November 2014 and baseline regulation, while
column (3) does the same for regulation by the end of the policy change in November 2015 and baseline regulation.

6.2 Welfare Analysis

We exploit our estimated model to estimate the welfare e↵ects of interest rate regulation. In particular, we
adopt a revealed preferences approach and exploit observed application choices along with our estimates of
willingness to pay to estimate changes in expected consumer surplus; whereas we exploit observed prices
and our estimates of banks’ costs to estimate changes in banks’ profits.45

45All our calculations related to changes in bank profits focus on variable profits from loan contracts. Therefore, any changes in
fixed costs or screening costs associated with stronger interest rate regulation are not accounted for.
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Expected consumer surplus for consumer i under an interest rate cap p̄i is given by:

E[CSi(p̄i)] =
1
�̂p

Z
max{PCi(p̄i)

Z
uL(xi,Li,Ti, p; �̂) fp|C(p; p̄i)dp � z0i + "A, 0} f"A ("A)d"A

where interest rate regulation enters through both the approval probability and the density of prices condi-
tional on approval. We use our model to construct all components on the right hand side of this expression,
and calculate the e↵ect of a change in interest rate regulation from p̄0

i to p̄1
i on expected consumer surplus as

�E[CSi] = E[CSi(p̄1
i )]�E[CSi(p̄0

i )]. This change in expected consumer surplus is measured from an expected
utility perspective, and thus reflects how credit market conditions change for potential applicants in terms
of approval probability and expected prices, regardless of whether ex-post those applicants are approved
and sign contracts at lower prices or are rejected.

We find that expected consumer surplus decreases by an average and median of $82.47 and $40.24 per
month respectively, which is equivalent to 3.5% and 1.7% of average monthly income. There is substantial
heterogeneity in estimated e↵ects on expected consumer surplus, as displayed in Figure 5-a. Moreover,
the distribution of estimated e↵ects on expected consumer surplus is skewed: 66% of potential borrowers
display changes in expected consumer surplus smaller than average, and less than 29% of them display
decreases in expected consumer surplus of more than $100 per month. On the other hand, bank monthly
profits decrease by $2.41 per potential borrower in the market under stronger interest rate regulation, which
adds up to 18% of total profits in the market. The combination of decreases in consumer surplus and profits
implies that average welfare per consumer in the market decreases.

Interest rate regulation has heterogeneous e↵ects across consumers. Overall, we find that adverse e↵ects
dominate positive e↵ects. In fact, our simulation implies that expected consumer surplus decreases for
82.3% of consumers, remains unchanged for 1.5%, and increases for 16.2% However, the average loss for the
former is $100.01, whereas the average gain for the latter is only $0.32. Therefore, the e↵ect of a decreased
approval probability dominates that of a decreased expected monthly payment in terms expected surplus.
These e↵ects are positively correlated, as displayed in Figure 5-b, where the lack of borrowers in the upper-
left area explains the small share of borrowers that benefits from stronger regulation. Few borrowers receive
large decreases in expected prices without large decreases in approval probability.

Risky borrowers are the most a↵ected by interest rate regulation in terms of expected consumer surplus,
as displayed in Figure 5-c. The average decrease in expected consumer surplus for low- and high-risk
borrowers is $38.70 and $130.29 per month respectively. This pattern of heterogeneity is driven by three
forces: risky borrowers were charged higher prices at baseline and therefore more exposed to stronger
regulation; display a stronger preference for loans; and are less sensitive to expected monthly payments.

We decompose changes in borrower expected consumer surplus to further quantify the trade-o↵ between
credit access and consumer protection, as follows:

�E[CSi] = (E[CSi(P1
Ci, p

1
i )] � E[CSi(P0

Ci, p
1
i )])

|                                    {z                                    }
Credit access

� (E[CSi(P0
Ci, p

1
i )] � E[CSi(P0

Ci, p
0
i )])

|                                    {z                                    }
Consumer protection

where the first term isolates the e↵ect of lower approval probabilities, and the second term isolates the e↵ect
of lower prices, such that the overall e↵ect combines these two e↵ects. We estimate that the average e↵ects
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Figure 5: Heterogeneity in welfare e↵ects of interest rate regulation
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Notes: These figures display heterogeneity in e↵ects of interest rate regulation across borrowers. All figures compare outcomes under
full regulation by November 2015 with outcomes under baseline regulation by November 2013. Panel (a) displays the correlation
between e↵ects o expected approval probability and expected loan monthly payment. Panel (b) displays changes in consumer surplus
across borrowers. Panel (c) displays the average, and 25th and 75th percentiles of changes in consumer surplus across borrower risk.

of decreased credit access and increased consumer protection on expected consumer surplus are -$82.63 and
$0.85, respectively. This pattern reflects that the value borrowers place on expected reduced credit access
under stronger regulation is substantially higher that value they place on the expected price decrease they
would obtain in the market.

Finally, we study the welfare e↵ects of a range of interest rate caps. Figure 6-a shows that stronger interest
rate regulation beyond that in December 2015 would only further reduce expected consumer surplus. In
particular, setting interest rate caps for loans in $0-$8,000 would decrease expected consumer surplus by
almost $150. On the other hand, there would not be gains in terms of expected consumer surplus from
setting interest rate caps higher than those in December 2013, when regulation was essentially not binding,
which implies that any small benefits from increased approval probabilities would be compensated by
increased expected prices. Figure 6-b shows that the share of consumers that benefit from changes in
interest rate regulation is larger for moderate decreases in interest rate caps relative to those in December
2013, but remain below 20% otherwise. However, average gains in expected consumer surplus remain small
across the range of regulations we study, which is consistent with the gains from the consumer protection
component of interest rate regulation being low relative to the losses due to decreased credit access.

6.3 Survey Evidence for the E↵ects of Reduced Credit Access

In Section 3.2.2, we estimated that stronger interest rate regulation decreased the number of loans. Moreover,
in the previous section we adopted a revealed preferences approach to estimate that stronger interest rate
regulation decreased the average consumer surplus in the market. In this section, we exploit our survey
to provide suggestive evidence about potential channels for how reduced credit access could decrease
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Figure 6: Welfare e↵ects of interest rate regulation
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Notes: These figures display welfare e↵ects of interest rate regulation across borrowers. Both figures compare outcomes for a range
of regulation scenarios relative to that in November 2013. Panel (a) displays the change in average expected consumer surplus and
average profit per consumer. Panel (b) displays average changes in expected consumer surplus for consumers that increase and
decrease their expected consumer surplus relative to baseline, along with the share of consumers that experience experience consumer
surplus gains, losses or none of them. Solid lines indicate averages and dotted lines indicate the 25th and 75th percentiles.

consumer surplus in our setting.46

We study how the e↵ects of economic hardships for household vary depending on whether they deal
with them using bank credit. In particular, we exploit information on whether households experienced
economic hardships during the last five years, how they dealt with them, and how it a↵ected consumption
and financial outcomes for them.47 We compare outcomes of households that did not experience any shocks
with those that experienced shocks and financed them by either (i) obtaining bank credit, (ii) liquidating
savings or assets, or (iii) using some other source, including informal sources of credit or increased labor
supply. We estimate the following specification:

yi = ↵ + �ccrediti + �ssavingsi + �ootheri + x0i� + "i (15)

where yi is the outcome of interest, xi is a vector of control variables that includes household income,
vulnerability and age of survey respondent, as well as loan approval probability, estimated using adminis-
trative data. The coe�cients of interest are �c, �s and �o, which measure the di↵erence between outcomes
for households that experienced no negative shock relative to those that experienced a negative shock and
financed it with either credit, savings or other, respectively.

First, we study whether credit access in the event of shocks is associated with household consumption.
In particular, we collect information on whether households cut expenditure on relevant items (e.g., trans-

46We provide some summary statistics for our household survey in Table A.3. The sample of survey respondents is riskier and of
lower income than the average borrower in the market. Households are quite experienced in the credit market and most of them hold
checking accounts, credit cards and have held consumer loans.

47We define economic hardship in the survey as a sustained period of time over which household expenses were higher than its
income. In practice, 58.6% of survey participants answered they were under such situation over the previous five years. The questions
related to how this shock was dealt are expressively linked to the shock itself, rather than general questions about credit access.
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portation, education, health, travel, among others) due to economic hardships experienced over the last five
years. Figure 7-a shows that households that experienced these shocks did cut expenses in several items,
but that those e↵ects are smaller for households that obtained bank credit upon those shocks. In particular,
households that dealt with shocks using bank credit cut expenses for an average of 7.5 p.p less items than
households that dealt with economic hardships using other means. These results suggests that reduced
credit access might harm consumption smoothing, similar to findings in Morse (2011).

Additionally, we study whether credit access in the event of shocks a↵ects the ability of households to
repay their financial commitments. In particular, we focus on whether households stopped paying bills (e.g.,
health bills, rent, mortgage payments, credit card and consumer loans payments, among others). Figure 7-b
shows that households that obtained credit access upon economic hardships do not display any di↵erential
behavior relative to households that did not experience economic hardships. However, households that did
not access credit are significantly more likely to have unpaid bills than the latter. In particular, households
that dealt with economic hardships using bank credit are 36 p.p less likely to have any unpaid bill than
those that dealt with economic hardships using other means. This suggests that credit access might provide
liquidity to avoid financial distress episodes associated with debt repayment, as in Zinman (2010).

These results provide suggestive evidence that credit access serves as a means for consumption smooth-
ing and alleviation of financial distress upon economic hardships, although we do not claim that our
estimates describe a causal relationship between them. We interpret this evidence as complementary to
our estimates of e↵ects on consumer surplus. These results are in contrast with research finding adverse
e↵ects of access to payday loans on financial distress (e.g., Melzer 2011; Gathergood et al. 2018; Skiba and
Tobacman 2018). This contrast might be driven by the fact that interest rates in the market we study are
substantially lower than those charged on payday loans—which are often the setting for those studies—,
and therefore access to this type of credit is less likely to lead to financial distress, as in Morse (2011).

7 Counterfactual Analysis of Interest Rate Regulation

7.1 The Interaction between Market Power and Interest Rate Regulation

The usual motivation for implementing interest rate regulation is to limit usurious behavior, which we
define as limiting the exercise of market power by banks. In Section 6.1, we showed that stronger interest
rate regulation indeed reduced average bank profit margins while simultaneously increasing rejections and
reducing the number of loans and overall welfare in the market. In this section, we study how those results
vary under alternative competitive environments.

We study the role of the competitive environment by sequentially merging banks in the market, starting
from the baseline market structure with 9 banks until all banks are consolidated into a monopoly.48 For
each such market structures, we simulate equilibrium outcomes for interest rate regulation at November
2013 and November 2015, compute the e↵ects of the policy change, and analyze how those e↵ects change
across market structures.

48In order to isolate the e↵ect of the number of banks in the market—and to make the ordering of mergers inconsequential for our
results—, we remove part of the cost heterogeneity across banks: we set bank fixed e↵ects ⌧ j and incumbency advantages �rij to the
average across banks.
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Figure 7: Survey evidence for e↵ects of reduced credit access on household outcomes

Non-durables

Personal care

Health

Education

Home services

Transportation

Average

-.1 -.05 0 .05 .1 .15 .2 .25
Effect of liquidity shock

on expenditure reduction

Bank credit Savings Other

(a) Credit access and household expenses

Other bill

Consumer loan

Credit card

Utility bills

Rent

Mortgage

Car loan

Student loan

Health bills

Any bill

-.2 -.1 0 .1 .2 .3 .4
Effect of liquidity shock
on non-payment of bills

Bank credit Savings Other

(b) Credit access and unpaid bills

Notes: This figure displays results from estimating equation (15) for outcomes related to household consumption and financial distress
on indicators for whether a household su↵ered economic hardships and dealt with the using bank credit (blue), liquidating savings or
assets (gray), or in some other way (red). Panel (a) display results reductions in household expenditure. Panel (b) display results for
unpaid bills. Markers indicate coe�cients. Lines indicate 95% confidence intervals.

Market power plays a relevant role in determining the equilibrium e↵ects of interest rate regulation. The
main results from this analysis are displayed in Figure 8, which shows the e↵ect of market concentration
on equilibrium outcomes for a given interest rate regulation level.49 We find that as the number of banks
decreases and the credit market becomes more concentrated, the e↵ect of stronger interest rate regulation
on expected consumer surplus decreases. This result suggests that when banks have more market power
and therefore can charge higher prices conditional on borrower cost, interest rate regulation might be able
to play a role in constraining the exercise of such market power by banks, shifting rents from banks to
borrowers. However, our results show that even under a market structure with a monopoly in the market,
both expected consumer surplus and bank profits decrease under stronger interest rate regulation, such that
there would not be any e�ciency grounds for such a change in interest rate regulation in this market.

In competitive credit markets where banks do not have substantial market power, the trade-o↵ between
exclusion and protection becomes less appealing, as profit margins are already low. In such settings, interest
rate caps will mainly have credit access rather than consumer protection e↵ects. In contrast, welfare losses
introduced by interest rate caps will be lower in less competitive environments. In fact, considering that our

49For reference, we display equilibrium outcomes for relevant variables under baseline interest rate regulation in Figure A.24 As
expected, quantities decrease as the market becomes more concentrated.
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theoretical predictions regarding e↵ects of interest rate regulation on applications and expected consumer
surplus are ambiguous, it might be the case that interest rate regulation can deliver welfare increases in
other settings, and that may be more likely whenever banks hold substantial market power.

Figure 8: The e↵ects of interest rate regulation under di↵erent market structures
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Notes: This figure display the e↵ects of interest rate regulation on average consumer surplus (blue) and average profits (red) under
di↵erent market structures, as measured by the left y-axis. We start with the baseline market structure of 9 banks, and sequentially
merge banks until a scenario in which the market is served by a monopoly, as indicated by the x-axis. Each line displays the e↵ect of
the full policy on the outcome, for each market structure. Additionally, gray bars display the share of applicants under each market
structure, as measured by the right y-axis.

7.2 Risk-Based Interest Rate Caps

Despite the trade-o↵ between consumer protection and credit access, innovation in the design of interest
rate regulation has been scant. We argue that the cause of such a trade-o↵ is partly in the mismatch between
unsophisticated regulation in the form of constant interest rate caps and sophisticated risk pricing by banks.
Risk-based interest rate regulation intends to account for borrower risk heterogeneity and risk pricing.

We consider a counterfactual design that sets interest rate caps di↵erently according to borrowers’
attributes. Perfect risk-based interest rate regulation would involve setting interest caps at the cost of
each borrower for the most e�cient bank. Such regulation would yield e�cient market outcomes by fully
constraining the exercise of market power by banks. In particular, average welfare would be $164 higher
than under the regulation in place in November 2015, which would stem from the average monthly payment
being 17% lower and the number of loans in the market being 65% higher. However, this policy design
is hardly feasible, as it would require perfect knowledge of cost by the regulator. Instead, we work on a
feasible version of risk-based interest rate regulation, with the broad structure of the current design.

Using the notation of equation (1), interest rate caps can be written as ◆̄`t = ◆̄r(◆̃`t�1; ,↵`t), i.e. as a function
of a reference interest rate, a parameter that operates as a multiplier on that rate ( ) and a parameter that

46



operates as a mark-up (↵`t). We consider a case in which instead ◆̄r`t = ◆̄(◆̃`t�1, xi`t; ,↵`t,�). If xi`t is some
measure of risk and @◆̄r

@xi`t
> 0, then this design sets a higher interest rate cap to observably riskier borrowers.

We adopt a simple linear example of it and measure its performance relative to the design currently in place.
In particular, let:

◆̄r`t = ◆̄`t + f (xi`t), f (xi`t) = �
xi`t � x̄`t

x̄`t
be the risk-based interest rate cap for borrower i with risk score xi`t, where x̄`t is the average risk score and
� controls the incidence of risk in interest rate caps. Note that the average level of regulation in the market
is the same as under the baseline design for each loan-size bracket p, given E[ f (xi`t)] = 0, but the interest
rate cap is higher (lower) for riskier (safer) borrowers.

Risk-based interest rate caps recover part of the losses in credit access and welfare imposed by constant
interest rate caps. We set November 2015 as the reference level of regulation, once the policy change is
fully in place. We simulate outcomes for a range of values for � between 0 and 14. Figure 9-a shows that
there is a range of values of � for which risk-based interest rate caps increase the number of loans in the
market relative to constant interest rate caps. Figure 9-b shows a similar pattern for expected consumer
surplus and welfare. At its best specification, risk-based interest rate caps increase the number of loans and
average expected consumer surplus in the market by almost 2% and $22 respectively, while average profits
per consumer remain constant.50

From a welfare perspective, these results suggest that risk-based interest rate caps may manage the
trade-o↵ between consumer protection and credit access better than constant interest rate caps. This result
stems from the fact that banks implement risk pricing. In absence of risk pricing, adverse e↵ects of risk-
based caps on safe borrowers may actually be larger than under constant caps. The case we analyze here is,
of course, an example. Other variants of risk-based interest rate regulation could further improve market
outcomes relative to designs that do not account for risk.

8 Conclusion

Interest rate regulation is widespread in consumer credit markets and has been utilized for a long time, but
there is disagreement about its e↵ects. Moreover, its design often lacks sophistication, which may lead to
unintended consequences. In this paper, we provide evidence of the e↵ects of interest rate caps on market
outcomes and welfare, using the Chilean credit market as a setting. We find that the trade-o↵ between
consumer protection and credit access exists, but that adverse e↵ects on credit access dominate consumer
protection e↵ects. Thus, while the objective of interest rate regulation is often to protect borrowers from
bank market power, we find it ends up mostly harming borrowers’ access to credit.

50To further illustrate the e↵ects of risk-based interest rate caps, we study patterns of heterogeneity across borrower risk it induces.
We compare the case of � = 4 with the baseline case of � = 0. Figure 9-c shows that it a↵ects application outcomes by increasing
approval rates for risky borrowers, while slightly decreasing approval rates for safe borrowers. On the other hand, Figure 9-d shows
that average monthly payments increase (decrease) for risky (safe) borrowers as they face relatively weaker (stronger) interest rate
regulation. How this heterogeneity across borrower risk aggregates depends on the joint distribution of borrower demand, risk and
cost. The fact that our estimates imply that risky borrowers value loans more than safe borrowers explains that the relative benefits
from risk-based interest rates are stronger in terms of expected consumer surplus than in terms of loans: as interest rate caps become
more aggressive, the benefits in terms of limiting losses in credit access diminish, but the fact that the policy increases the share of
risky borrowers in the market implies that it still increases average expected consumer surplus.
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Figure 9: Risk-based interest rate caps
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Notes: These figures display simulated market outcomes under di↵erent levels of risk-based interest rate regulation, as characterized
by the parameter �. Baseline outcomes for � = 0 correspond to simulated equilibrium outcomes for November 2015 under the baseline
regulation design. See Section 7.2 for details. Panel (a) displays changes in number of loans relative to the baseline level, while
Panel (b) displays changes in consumer surplus. Panel (c) displays a local polynomial fit of application outcomes over borrower risk,
along with a histogram of borrower risk in the background. Panel (d) displays a local polynomial fit of loan monthly payments over
borrower risk, along with a histogram of borrower risk in the background. Solid lines provide results for approved loans under each
regulation, whereas dashed lines provide results for the common set of approved loans under both regulation regimes.

We develop and estimate a model of demand and supply for consumer loans, which we exploit in a
variety of ways. First, we use it to estimate welfare e↵ects of interest rate regulation and find that welfare
mostly decreased in our setting. Second, we use the model to show that the adverse e↵ects of interest
rate regulation are smaller in more concentrated markets as the consumer protection motive becomes more
relevant, but that welfare decreases even under a monopoly. Finally, we explore how equilibrium outcomes
di↵er under risk-based interest rate caps, and find that such design reduces adverse e↵ects of interest rate
regulation and recovers at least part of the losses in terms of credit access and consumer welfare, without
increasing bank profits. This result suggests that this design may perform better in terms of providing
consumer protection without harming credit access.

Our welfare analysis follows a revealed preferences approach, and does not account for any behavioral
biases that might take place in consumer credit markets (Zinman, 2015; Beshears et al., 2018). In our
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approach, we exploit consumer application and repayment behavior to estimate our model and estimate
welfare e↵ects. We acknowledge that such behavioral biases might a↵ect our conclusions regarding the
welfare implications of interest rate regulation, and consider it a relevant line for future research. However,
evidence from our survey suggests that households that access bank credit upon economic hardships display
a higher degree of consumption smoothing and a lower degree of financial distress. This complementary
evidence provides support to our findings that does not rely on revealed preferences.

Our analysis shows how a combination of a theoretical framework and data can inform the design of
regulation for consumer credit markets, by identifying relevant economic forces at work, and by measuring
its implications and their relationship to relevant features of credit markets. Importantly, while our findings
show mostly adverse e↵ects of interest rate regulation in our setting, the theoretical predictions of our model
regarding its welfare e↵ects are ambiguous. This implies that interest rate regulation might improve market
outcomes in other settings with di↵erent underlying market and demand structures. However, the fact that
most of the related literature points towards adverse or non-existent e↵ects of interest rate regulation on
market outcomes suggests such a setting might be uncommon.
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A Robustness Exercises and Additional Results

The empirical strategy developed in Section 3.2.2 exploits policy variation across time and loan-size brackets
to measure the e↵ect of interest rate caps on credit market outcomes. The main concern with this strategy
is the potential for equilibrium e↵ects on loans larger than $8,000, which are not directly treated by the
policy change, but might be a↵ected through some form of substitution along that margin. In this section,
we implement di↵erent robustness exercises that provide support to our empirical strategy. Moreover, we
include some additional results.

A.1 E↵ects of Placebo Policies

Our approach in Section 3.2.2 relies on a comparison across treated and untreated loan-size brackets. One
should not expect to find the same estimated e↵ects across di↵erent comparison groups within untreated
loan size brackets. We study whether that is the case, by estimating equation (4) for placebo policies.
Concretely, we use the same definition for the policy and the same policy intensity variables as in Section
3.2.2 to estimate e↵ects of interest rate regulation on di↵erent parts of the loan size distribution. In practice,
we proceed by replacing the dependent variable ykrt to yk+�,rt, where � defines the placebo policy. We start
by policy size brackets defined as being $8,000 higher than actual ones, and then sequentially increase them
by $2,000 to generate a range of placebo policies.

Figure A.9 displays the results from this exercise for price and quantity outcomes. Each figure displays
our main estimates from Table 3 and Table 4, along with estimates for a range of placebo policies. Figures
A.9-a and A.9-b display results for maximum and average interest rates, and the results are stark: estimates
from placebo policies are remarkably di↵erent from our estimates and close to zero. Figures A.9-c and A.9-d
display results for quantity outcomes, for which placebo estimates are noisier but o↵er a similar pattern:
most of point estimates are close to zero and not statistically di↵erent to zero. These results provide evidence
against particular patterns of substitution from untreated loan size brackets to treated loan size brackets.

A.2 E↵ects on Distribution of Application Loan Size and Term

An additional robustness exercise we implement is to study the evolution of the distribution of application
amount and term. If there substitution across policy size brackets, that should reflected in a change in
the distribution of application loan amount. Figure A.10-a shows the evolution of relevant statistics of
the distribution of application loan amount separately for loans smaller than $8,000 and loans larger than
$8,000. We find no evidence of changes in this distribution around the date of the policy change we study.
Moreover, the same is true for application loan term, as displayed by Figure A.10-b.

A.3 E↵ects around Policy Thresholds for Loan Size

The approach proposed in Section 3.2.2 exploits loans larger than $8,000 as a control group for evaluating
the e↵ect of the policy. One concern regarding that is that, in response to the change in relative interest rate
regulation between loans under and above that threshold, there could be equilibrium e↵ects a↵ecting loans
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larger than $8,000 despite them not being directly treated by the reform we study. For example, one could
argue that, before the reform, borrowers could have sought to get loans right above the $8,000 threshold to
benefit from lower interest rate caps on loans in that loan-size bracket than on loans of amounts marginally
below such threshold. That incentive would be reduced by the policy, given interest rate caps for both
groups were brought closer by it. In such case, we should observe bunching at that threshold from above
before the policy, and a decrease in such behavior after it. That in turn would imply that our results in
Section 3.2.2 would underestimate the e↵ects of the reform. On the other hand, banks may have opposite
incentives to induce borrowers to take marginally smaller loans on the left side of the policy threshold or to
take multiple small loan instead of a large one, for which we already provided evidence against in Figure
A.8. This incentive would also decrease under stronger regulation.

In order to address this concern about substitution around the threshold, we study the distribution of the
number of loans around relevant policy thresholds. Figure A.11 displays the number of loan originations at
loan sizes around relevant policy thresholds, before and after the policy. As displayed by Figure A.11-a, The
relationship between the density of loan size below the $2,000 threshold is remarkably noisy—this pattern
is driven by mass points in the loan size distribution that are observed at certain round number for loan
size—, which makes it di�cult to conclude anything. However, above the $2,000 threshold, there is no
noticeable change in such density before and after the policy. A similar comparison is displayed by Figure
A.11-b for the $8,000 policy threshold. While the distribution of the number of loans shows more mass
around the policy threshold after the policy, that behavior is similar on both sides of threshold.1

In a more systematic attempt to address this concern, we repeat the analysis in Section 3.2.2 dropping
loans around the $8,000 policy threshold. Table A.2 displays results from estimating equation (4) excluding
loans of size between $6,000 and $10,000 from the sample. Estimates are quantitatively similar to those
obtained with the full sample in Section 3.2.2, which is reassuring in terms of our empirical strategy. Finally,
Figure A.12 repeats this exercise for price and quantity outcomes for a variety of comparison groups which
di↵er in their lower bound, and provides evidence in the same direction: estimates for the e↵ects of the
policy do not change substantially when excluding loans close to the policy threshold from the comparison
group.

A.4 Alternative Comparison Groups

Our analysis in Section 3.2.2 exploits loans between $8,000 and $20,000 as a comparison group for those
directly a↵ected by the policy change. In this subsection, we assess how would our estimates change under
alternative definitions of compares groups. In particular, we estimate the same specification as in (4) but
for variety of comparison groups, starting with loans between $8,000 and $10,000, and then increasing
sequential by $2,000 until a group covering loans between $8,000 and $30,000.

Results from this exercise are displayed in Figure A.13, and show results for price and quantity outcomes.
Each figure displays our main estimates from Table 3 and Table 4, along with estimates for a range of

1Figures A.11-c and A.11-d complement this analysis by showing that average interest rates shift downwards after the policy,
but that there is no discontinuity in average interest rates around policy thresholds. We should mention that when looking at high
enough percentiles in the distribution of loan interest, discontinuities at the policy thresholds become evident, which is consistent with
bunching at the interest rate cap displayed in Figure 2.
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alternative comparison groups. Overall, the main conclusions of our main analysis are una↵ected, as
point estimates do not change substantially across comparison groups. On the other hand, there are some
e�ciency gains from using larger comparison groups, which reflects in tighter standard errors.

A.5 Heterogeneity across Banks

We have focused so far on the e↵ects of interest rate regulation at the market level. In this subsection, we
provide results for heterogeneity in e↵ects across banks. Figure A.14 provides results for marginal e↵ects
of interest rate regulation on both number of lines and prices for each of the 8 largest banks in the market.
While there heterogeneity in magnitudes, our estimates suggest that the stronger interest rate regulation
a↵ects most banks in the same direction, by inducing them to sign less loan contracts and to do so at lower
interest rates. This is consistent with our estimates for average e↵ects and with the interpretation we give
to them.

Interestingly, there is 1 bank that displays a di↵erent behavior, by reducing average interest but simul-
taneously increasing credit volume as a result of stronger interest rate regulation. Those estimates suggest
that either borrowers substituted towards that bank which perhaps had a more lenient screening process or
that the bank changed its screening process as a result of the policy change.

B Estimation Details

B.1 Preliminary Steps in Estimation of Application Equation

We discuss joint estimation of the application and repayment equations in (11) and (12) in Section 5.3.
Estimation proceeds in three steps, of which the first two are related to estimation of components of the
application equation in equation (11) that are not observed for every consumer in the sample, and that we
then use as inputs in estimation of the key parameters in that equation by maximum likelihood. We provide
further detail about those steps in this section.

In the first step, we estimate the conditional distribution of loan amount and term (Li,Ti) using data
from applicants and then draw from that distribution for non-applicants. In the first stage, we estimate a
probit model for applications on a rich vector of borrower covariates xi that includes the level and change of
consumer and mortgage debt and default, income, consumer and mortgage debt to income ratio, age and
gender; and application shifters zi that include the total number of branches across banks in the consumer
local market and the lagged number of related banks:

P(ai = 1) = �(x0
i
�a + z

0
i
�a)

which we estimate this model on data for the period before the policy change in December 2013.

In the second step, we estimate a regression of loan amount on the same vector of borrower covariates,
and include fitted propensity scores P̂(xi, zi) as a control function to account for selection into application.
This procedure is based on Das et al. (2003) and also used by Attanasio et al. (2008) for studying loan
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demand. In particular, we estimate:

ln(Li) = x
0
i
�L + �(P̂(xi, zi)) + ✏i

where � is the control function.

In the third step, we estimate an ordered logit model for loan term monthly bins on borrower covariates
and loan size:

P(Ti = j) = P(↵ j�1 < x
0
i
�T + �TLi  ↵ j)

= ⇤(↵ j � (x0
i
�T + �TLi)) �⇤(↵ j � (x0

i
�T + �TLi))

where ↵ j�1 and ↵ j are the cuto↵s that define loan term monthly bin j. The advantage of using an ordered
logit model in this step is that it accommodates the fact that the empirical distribution of loan term features
noticeable spikes at multiples of semesters. Using estimates from these regressions, we first take draws of
loan amount for consumers that did not apply for loans L̃i, conditional on xi; and then take draws of loan
term for consumers that did not apply for loans T̃i, conditional on xi and Li.

In the second step, we estimate the approval probability PC and the density of loan prices conditional on
approval fp|C. We estimate PC using a probit model for an indicator of application approval on a vector of
borrower covariates, previous relationship variables, as well as application amount and term from the first
step and month fixed and market e↵ects:

P(Ci = 1) = �(x0
i
⌘ + ⇣t + ⌧m)

which we estimate separately for low- and high-risk borrower to allow for flexibility. We include time and
market fixed e↵ects in order to accommodate the possibility that approval probabilities change over time
and across markets due to the policy change. We compute expected approval probabilities P̂Ci as the fitted
values from this equation for each consumer in the sample. Then, we estimate the density of loan monthly
payments conditional on approval fp|C, using a kernel density estimator after conditioning on the same
vector of variables. We then take draws from this estimated conditional density for estimation of borrower
preferences by maximum likelihood below.

B.2 Likelihood Function for Application and Repayment

The parameters of interest in the application equation are those in vCi, �p and i, whereas the parameters
of interest in the repayment equation are ↵S. Moreover, we are interested in the parameters in the joint
distribution of application and repayment shocks, namely ⇢ and �S. Recall that �A is normalized to 1.

We start by the likelihoods of application choices. Given the normality assumption we impose on "Ai,
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the probabilities that a potential borrower chooses to apply and not to apply are:

Pai=1 = Pr
 
PCi

Z
(x0

i
�X + �LLi + �TTi � �pp) fp|C(p)dp � z

0
i
 + "Ai > 0

!

= �

 
PCi

Z
(x0

i
�X + �LLi + �TTi � �pp) fp|C(p)dp � z

0
i


!

Pai=0 = Pr
 
PCi

Z
(x0

i
�X + �LLi + �TTi � �pp) fp|C(p)dp � z

0
i
 + "Ai < 0

!

= �

 
�PCi

Z
(x0

i
�X + �LLi + �TTi � �pp) fp|C(p)dp + z

0
i


!

where � is the standard normal cdf. We approximate the integral through simulation by taking N
S

A
= 100

Halton draws from the estimated conditional density of loan monthly payments conditional on approval,
which is:

Z
(x0

i
�X + �LLi + �TTi � �pp) fp|C(p)dp ⇡

PN
S

A

s=1(x0
i
�X + �LLi + �TTi � �pp

(s)
i

)1{L(s)
i
= 1}

PN
S

A

s=1 1{L(s)
i
= 1}

where L
(s)
i

is an indicator for whether a loan application by borrower i in simulation draw s was approved.

We now derive the likelihoods of repayment outcomes. The likelihood of observing a given repayment
behavior can be written in terms of the distribution of "Si conditional on application, for which we exploit
the properties of conditional normal distributions. There are three cases of interest, one in which borrower
i fully repays, one in which borrower i partially repays, and one in which borrower i does not repay at all.
The probabilities for these three cases are:

PS=0|ai=1 = Pr(exp(x0
i
↵S + "Si)  �|ai = 1)

=

Z 1

�PCi

R
(x0

i
�X+�LLi+�TTi��pp) fp|C(p)dp+z

0
i

�

 ln(�) � x
0
i
↵S � µS|Ai

�S|A

!
f"A

("A)d"A

PS=si |ai=1 = Pr(exp(x0
i
↵S + "Si) = si|ai = 1)

=

Z 1

�PCi

R
(x0

i
�X+�LLi+�TTi��pp) fp|C(p)dp+z

0
i


1
�S|A
�

 ln(si) � x
0
i
↵S � µS|Ai

�S|A

!
f"A

("A)d"A

PS=1|ai=1 = Pr(exp(x0
i
↵S + "Si) � 1|ai = 1)

=

Z 1

�PCi

R
(x0

i
�X+�LLi+�TTi��pp) fp|C(p)dp+z

0
i

�

 
x
0
i
↵S + µS|Ai

�S|A

!
f"A

("A)d"A

where � = 1
Ti

⇡ 0 is the repayment share achieved after the first payment on the contract, and � is the
standard normal pdf. Given the joint normality assumption of ("Ai, "Si), the conditional distribution of "S is
given by:

"S|"A ⇠ N

✓⇢�S

�A

"A, �2
S
(1 � ⇢2)

◆

which we use for computing the integral in each likelihood by simulation. In particular, we take 100 Halton
draws "(s)

Ai
from its truncated marginal distribution, and then compute the conditional mean of "Si for each

draw, µ(s)
S|Ai
=
⇢�S

�A

"(s)
Ai

.

The likelihood of an observation varies across five observed combinations of application and repayment
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events, which we indicate using I
1
i

through I
5
i
. The log likelihood of the data is:

logLD =
1
N

X

i

I1i log Pai=0 + I2i log Pai=1 + I3i[log Pai=1 + log PS=0|ai=1]

+I4i[log Pai=1 + log PS=si |ai=1] + I5i[log Pai=1 + log PS=1|ai=1]

where I1i indicates non-applicates, I2i indicates rejected applicants, I3i indicates applicants that do not repay
at all, I4i indicates applicants that only partially repay, and finally I5i indicates applicants that fully repay.
This log likelihood can can be written as:

logLD =
1
N

X

i

I1i log Pai=0 + (I2i + I3i + I4i + I5i) log Pai=1

+I3i


log

Z 1

�PCi

R
(x0

i
�X+�LLi+�TTi��pp) fp|C(p)dp+z

0
i


F"D |"A
(ln(�) � x

0
i
↵S|"A) f"A

("A)d"A

�

+I4i


log

Z 1

�PCi

R
(x0

i
�X+�LLi+�TTi��pp) fp|C(p)dp+z

0
i


f"D |"A
(ln(si) � x

0
i
↵S|"A) f"A

("A)d"A

�

+I5i


log

Z 1

�PCi

R
(x0

i
�X+�LLi+�TTi��pp) fp|C(p)dp+z

0
i


F"D |"A
(x0

i
↵S|"A) f"A

("A)d"A

�

We maximize this log-likelihood to estimate the parameters of interest in the application and repayment
equations.

B.3 Likelihood Function for Banks’ Costs

The parameters of interest on the supply side are {⌧,�, �!}. The likelihood function for prices and loan
application outcomes can be obtained using results for the distributions of order statistics of the T1EV
distribution assumed for !i j, as detailed in Appendix B.4. We work separately on the corresponding
likelihood for each of the three potential outcomes generated by the model and stated in equation (9). In
terms of notation, we employ uppercase letters for random variables and lowercase variables for data.

Likelihood for Unconstrained Loans. When regulation is not binding, loan price is the optimal uncon-
strained price for the lowest cost bank. The likelihood of a contract in such situation, signed at price pi  p̄i

with bank bi is:

P(Pi = pi,Pi < p̄,Bi = bi|Ji) = P(Pu

i
= pi,Pu

i
< p̄i,Bi = bi|Ji)

=

0
BBBBBB@gi(1)

0
BBBBBB@

fi � E"['(Si)]
'(Ti)

pi

li
|Ji\ j

1
CCCCCCA

+ (⇢ibi
(Ji) � 1)gi(1)

0
BBBBBB@

fi � E"['(Si)]
'(Ti)

pi

li
|Ji

1
CCCCCCA

1
CCCCCCA 1(Pi < p̄)

where gi(1)(!) is the density of the first order statistic of match-value and ⇢ibi
(Ji) is the choice probability of

the bank chosen by borrower i.
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Likelihood for Constrained Loans. When regulation is binding and a loan is approved, loan price equals
the price cap and the lowest cost bank makes profits from the loan. In such a scenario, loan price is less
than the optimal unconstrained price but higher than the cost of the lowest cost bank. The likelihood of a
contract in such situation, signed at price pi = p̄i with bank bi is:

P(Pi = p̄i,Bi = bi|Ji) = P

 
P

u

i
> p̄,

'(Ti)
E"['(Si)]

( fi � li!i(1))  p̄i,Bi = bi|Ji

!

=

0
BBBBBB@Gi(1)

0
BBBBBB@

fi � E"['(Si)]
'(Ti)

p̄i

li
|Ji\ j

1
CCCCCCA + (⇢ibi

(Ji) � 1)Gi(1)

0
BBBBBB@

fi � E"['(Si)]
'(Ti)

p̄i

li
|Ji

1
CCCCCCA

1
CCCCCCA

⇥
0
BBBBBB@1 � Gi(1)

0
BBBBBB@

fi � E"['(Si)]
'(Ti)

p̄i

li
|Bi = bi,Ji

1
CCCCCCA

1
CCCCCCA

where Gi(1)(!) is the distribution of the first order statistic of match-value.

Likelihood for Rejected Loans. When a loan is rejected, the lowest cost bank does not make any profit out
of it. Therefore, the cost of such bank is higher than the price cap on the loan. The likelihood of a contract
in such situation is:

P(Pi = ·,Bi = ·|Ji, ri) = P

 
'(Ti)

E"['(Si)]
( fi � li!i(1)) > p̄i|Ji

!

= Gi(1)

0
BBBBBB@

fi � E"['(Si)]
'(Ti)

p̄i

li
|Ji

1
CCCCCCA

Likelihood Function. The likelihood of the data combines the individual likelihoods for these three cases.
Let I

u

i
, I

c

i
and I

r

i
indicate that the outcome for application by i was an unconstrained approved loan, a

constrained approved loan or a rejected application respectively. The full log-likelihood function for the
data is:

logLS =
X

i2A
I

u

i
log P(Pi = pi,Pi < p̄,Bi = bi|Ji, xi)

+I
c

i
log P(Pi = p̄,Bi = bi|Ji, xi) + I

r

i
log P(Pi = ·,Bi = ·|Ji, xi)

We estimate the parameters related to banks’ costs by maximizing this log-likelihood function.

B.4 Useful Properties of T1EV Distribution

In this Appendix, we summarize useful properties of the T1EV distribution, which we use in the derivation
of the likelihood function. Proofs for these results are available in Froeb et al. (1998). First, it can be shown
using the properties of extreme value distributions, that the cdf of the highest utility across banks for a
borrower is given by:

G(1)(!;Ji) = G(!; (!i,max, �!),Ji)
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where:

!i,max = �! log
X

j2J
exp

 
�i j

�!

!

is the location parameter in the distribution.

Moreover, the probability that j is the bank with the lowest cost for i among those in Ji is given by the
usual logit formula:

⇢i j ⌘ P(uij = max
k2Ji

uik;Ji) =
exp

⇣ �i j

�!

⌘

P
k2J exp

⇣
�ik

�!

⌘

Finally, we can also derive an analytical expression for the distribution of the second order statistic of !i j in
terms of that of the first order statistic. Conditional on j being the choice of borrower i, such distribution
would be:

G(2)(!|uij = max
k2Ji

uik;Ji) =
1
⇢i j

G(1)(!;Ji\ j) +
⇢i j � 1
⇢i j

G(1)(!;Ji)

which by integrating over j to recover the unconditional distribution of the second order statistic yields:

G(2)(!;Ji) =
X

j2Ji

⇢i jG(2)(!|uij = max
k2J

uik;Ji)

=
X

j2Ji

G(1)(!;Ji\ j) + G(1)(!;Ji)(1 � |Ji|)
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Figure A.1: Evolution of household debt as a share of GDP across time and countries
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Notes: This figure displays the evolution of household debt as a share of GDP for a sample of countries. Authors’ calculation based
on based on data from the Global Debt Database by the International Monetary Fund (Mbaye et al., 2018). The length of each series is
determined by the availability of data for each country. There is substantial cross sectional variation. For 2016, household debt as a
share of GDP ranges from 0.6% for Afghanistan to 126.3% for Switzerland, with an average of 39.7%.
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Figure A.2: Evolution of credit card and credit line debt
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Notes: This figure displays the evolution of the the markets for credit cards and credit lines in the Chilean market using administrative
data from CMF. Panels (a) and (b) display the number of consumers and cards/lines (blue) as well as the number of cards/lines per
consumer in the market (black). Panels (c) and (d) display the total amount of credit card/line debt in the market (blue) and per
consumer in the market (black). The vertical gray line indicates the policy change.
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Figure A.3: Evolution of informal debt penetration
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Notes: This figure displays the evolution of the share of households in the Chilean market that hold some kind of informal debt, as
measured by the nationally representative Survey of Consumer Finance (EFH, 2018). This statistic covers several sources of informal
credit, including family and friends, informal lenders, pawn shops, among others. Data is only available for selected years displayed
in the x-axis, which are the ones in which the survey has been implemented. The blue line measures the overall share, whereas gray
lines measure shares by terciles of household income. The vertical gray line indicates the policy change.
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Figure A.4: Predicted and realized default
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Notes: This figure displays binned scatterplot of predicted loan default probability as constructed using the model described in Section
2.2 and realized outcomes. The left column displays results using borrower income and loan to income ratios as main predictors of
default, while the right columns adds a long vector of credit history covariates. Panels (a) and (b) display the relationship between
predicted default and loan application approval; Panels (c) and (d) display the relationship between predicted default and interest
rate; while Panels (e) and (f) display the relationship between predicted default and realized default,. Each dot measures average
realized default for loans in each of 100 quantiles of predicted default. The blue line is a quadratic fit of the relationship between both
variables.
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Figure A.5: Evolution of the funding cost of banks
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Notes: This figure displays the evolution of the funding cost of banks. This funding cost is calculated as a weighted average of banks
deposit rates.
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Figure A.6: Exposure to interest rate regulation by loan size and borrower risk
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Notes: This figure displays a measure of exposure to interest rate regulation across loan size and borrower risk. Exposure to the policy
is calculated as the share of loans that were signed before the policy was implemented in December 2013, at interest rates higher than
the interest rate cap once the policy was fully in place in December 2015.
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Figure A.7: Treatment intensity variable
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Notes: This figure displays the evolution of the treatment intensity variable defined in Section 3.2.2. This variable is defined as
�◆̄`,t ⌘ (◆̄`,0 � ◆̄`,t)� (◆̄>8000,0 � ◆̄>8000,t) and measures the decrease in the interest rate cap for a treated loan-size bracket net of the decrease
in the interest rate cap for the untreated loan-size bracket of loans in $0-$8,000.
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Figure A.8: Number of loans per borrower and month, conditional on borrower
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Notes: This figure displays the evolution of the share of borrowers taking only one loan in a month in which they borrow. The gray
vertical line indicates the policy change.
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Figure A.9: Di↵erences-in-di↵erences e↵ects of placebo policies
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Notes: This figure displays the contrast between our estimates from Table 3 and Table 4 (blue and red) with estimates for a range of
placebo policies (black and gray). In each figure, the left panel displays results for loans of $0-$2,000 and the left panel displays results
for loans of $2,000-$8,000. Placebo policies are constructed by using the same policy intensity variables to estimate e↵ects of interest
rate regulation on di↵erent parts of the loan size distribution. The first placebo policy adds $8,000 to the actual policy definition,
and subsequent placebo policies subsequently add $2,000. Each dot indicates the estimated coe�cient, while spikes indicate 95%
confidence intervals clustered at the risk bin-product bin level. All regressions are weighted by the number of loans in the product
type bin-risk bin before the policy was implemented.
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Figure A.10: Evolution of distribution of application loan amount and term
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Notes: This figure displays the evolution of the distribution of application loan amount and term separately for loans of $0-$8,000
and loans of $8,000-$20,000. In particular, each panel displays the average and the 25th and 75th percentiles of each variable for each
month.
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Figure A.11: Distribution of loan size around policy thresholds
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(a) Loan size around $2,000 threshold, before and after
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(b) Loan size around $8,000 threshold, before and after
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(c) Rates around $2,000 threshold, before and after
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(d) Rates around $8,000 threshold, before and after

Notes: This figure displays shares of loans and average interest rates by loan size around policy size thresholds at 50UF ($2,000) and
200UF ($8,000). The data is binned in bins of 1UF ($40). For each bin, dots indicate the share of loans originated and average interest
rates. Shares are computed across the $0-$20,000 interval. Gray dots indicate loan originations in the semester before the policy was
implemented, between January 2013 and November 2013. Blue dots indicate loan originations in the last semester before the policy
was fully in place, between January 2016 and November 2016. Gray and blue lines are local polynomial fits of the relationship between
number of loans and loan size in Panels (a) and (b) and between interest rates and loan size in Panels (c) and (d), allowed to di↵er at
both sides of the relevant policy threshold.
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Figure A.12: Di↵erences-in-di↵erences e↵ects under alternative comparison groups
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Notes: This figure displays the contrast between our estimates from Table 3 and Table 4 (blue and red) with estimates for a range of
alternative comparison groups (black and gray). In each figure, the left panel displays results for loans of $0-$2,000 and the left panel
displays results for loans of $2,000-$8,000. Alternative comparison groups are constructed by shifting the lower bound in the definition
of the comparison group, so as to vary the inclusion criterion in terms of the distance to the cuto↵ set by the policy at $8,000. The first
comparison group sets such upper bound at $8,000 as in our baseline results, and subsequent alternative comparison groups include
loans $2,000 larger in size. Each dot indicates the estimated coe�cient, while spikes indicate 95% confidence intervals clustered at the
risk bin-product bin level. All regressions are weighted by the number of loans in the product type bin-risk bin before the policy was
implemented.
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Figure A.13: Di↵erences-in-di↵erences e↵ects under alternative comparison group size
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Notes: This figure displays the contrast between our estimates from Table 3 and Table 4 (blue and red) with estimates for a range of
alternative comparison groups (black and gray). In each figure, the left panel displays results for loans of $0-$2,000 and the left panel
displays results for loans of $2,000-$8,000. Alternative comparison groups are constructed by shifting the upper bound in the definition
of the comparison group, so as to vary the inclusion criterion in terms of the distance to the cuto↵ set by the policy at $8,000. The
first comparison group sets such upper bound at $10,000, and subsequent alternative comparison groups include loans $2,000 larger
in size. Each dot indicates the estimated coe�cient, while spikes indicate 95% confidence intervals clustered at the risk bin-product
bin level. All regressions are weighted by the number of loans in the product type bin-risk bin before the policy was implemented.
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Figure A.14: Heterogeneity in e↵ects across banks

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

M
ar

gi
na

l e
ffe

ct
 o

n 
nu

m
be

r o
f l

oa
ns

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4
Marginal effect on interest rate

(a) Loans of $0-$2,000
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(b) Loans of $2,000-$8,000

Notes: These figures display marginal e↵ects of interest rate regulation on both number of loans and prices across banks. In each
panel, circles indicate estimates for e↵ect on prices on the x-axis and on number of loans on the y-axis the size of the circle is given
by the market share of the bank; and spikes indicate standard errors clustered at the risk bin-product bin level. All regressions are
weighted by the number of loans in the product type bin-risk bin before the policy was implemented. Solid lines indicate marginal
e↵ects estimated across banks, as displayed in Table 3 and Table 4.

Figure A.15: Relationship between borrowers and banks
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Notes: Panel (a) describes the share of previously related banks for each borrower in the dataset. Panel (b) describes the share of loan
contracts signed with a previously related bank for each tercile of borrower risk and each number of previously related banks.
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Figure A.16: Price dispersion in consumer loan contracts
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Notes: This figure displays interest rate margins. The red line displays the density of raw interest rate margins in the data. Each
additional density displays margins residualized by a increasingly richer sets of covariates, from month FEs to month-bank-size-term-
risk FEs.
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Figure A.17: Survey evidence supporting modeling choices
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Notes: These figures display survey results related to modeling choices. Panel (a) shows a histogram of the number of banks that
borrowers reported to consider during the shopping process for loans. Panel (b) shows a histogram of the length of the search process
measured in days between beginning of their search to the end of it, regardless of the approval or rejection of their applications. Panel
(c) shows a histogram of perceived price dispersion in the market, as measured by the ratio of the range between the lowest and the
highest monthly payment in the market to the highest monthly payment in the market, pH�pL

pH
.
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Figure A.18: Timing of the model
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Notes: This figure displays the timing and structure of the model. Exogenous observables characterizing the consumer are covariates
xi, loan amount and term (Li,Ti), and application cost shifters zi. Consumer unobservables are ("Ai, "Si), whereas bank unobservables
are cost shocks !i j. Finally, endogenous variables are application choices ai, approval and pricing choices pi, and repayment si.
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Figure A.19: Intuition for identification of bank cost
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Notes: This figure provides an illustration of how observed outcomes inform the identification of bank cost. The blue line combines
observed application outcomes with observed prices, while the gray lines represent the first order statistic of cost and optimal price
for the bank with the lowest cost in the market.
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Figure A.20: Relationship between cost estimates and data
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Notes: Panel (a) in this figure displays observed market shares and estimates for bank fixed e↵ects ⌧ j in !i j. Panel (b) in this figure
displays the correlation between observed shares of previously related borrowers and observed bank market shares.
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Figure A.21: Price sensitivity estimates under di↵erent specifications
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Notes: This figure displays estimates for the coe�cient on expected monthly payment in the application equation (�p) under di↵erent
specifications. In particular, we estimate that equation using an increasingly rich set of borrower covariates to assess the role of
unobservables related to both applications and bank pricing in terms of driving our estimates of price sensitivity, in line with Altonji
et al. (2005). The last estimates include a control function as an additional covariate in estimation, following Petrin and Train (2010). The
figure displays estimates for low-risk (blue) and high-risk (red) borrowers. Dots indicate estimates of �p. Lines indicate 95% confidence
intervals.The first specification we consider includes a constant, and subsequent specifications add more covariates sequentially. Our
preferred specification for the analysis in the paper is that with the full vector of covariates.

30



Figure A.22: Selection estimate under di↵erent specifications
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Notes: This figure displays estimates for the coe�cient measuring the correlation between shocks to application and repayment (⇢)
under di↵erent specifications. In particular, we estimate the application and repayment equations using an increasingly rich set of
borrower covariates for both of them to assess the extent to which available observables are able to capture patterns of risk selection
into the market. Dots indicate estimates of ⇢. Lines indicate 95% confidence intervals. The first specification we consider includes a
constant, and subsequent specifications add more covariates sequentially. Our preferred specification for the analysis in the paper is
that with the full vector of covariates.
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Figure A.23: Simulated bank profit margins
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Notes: This figure displays results for the distribution of the predicted Lerner index using model estimates.
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Figure A.24: The e↵ects of interest rate regulation under di↵erent market structures: baseline outcomes
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Notes: This figure display baseline outcomes under baseline interest rate regulation under di↵erent market structures. We start with
the baseline market structure of 9 banks, and sequentially merge banks until a scenario in which the market is served by a monopoly.
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Table A.1: Determinants of loan performance

(1) (2) (3) (4) (5)

1{Default}

log(Income) -0.421*** -0.376*** -0.501*** -0.498*** -0.498***
(0.004) (0.005) (0.005) (0.005) (0.005)

Consumer debt to income ratio 0.013*** -0.020*** 0.054*** 0.054*** 0.054***
(0.004) (0.006) (0.006) (0.006) (0.006)

Mortgage debt to income ratio -0.217*** 0.136*** 0.101*** 0.104*** 0.104***
(0.005) (0.010) (0.010) (0.010) (0.010)

log(Consumer debt) 0.108*** 0.111*** 0.109*** 0.108***
(0.011) (0.011) (0.011) (0.011)

No consumer debt 1.059*** 0.934*** 0.747*** 0.746***
(0.029) (0.029) (0.031) (0.031)

No consumer debt �90-day default -0.531*** -0.414*** -0.414*** -0.415***
(0.017) (0.017) (0.017) (0.017)

No consumer debt �90-day default -0.458*** -0.467*** -0.468*** -0.468***
(0.008) (0.008) (0.008) (0.008)

Consumer �90-day default to debt ratio 0.591*** 0.630*** 0.618*** 0.619***
(0.035) (0.036) (0.036) (0.036)

Consumer <90-day default to debt ratio 0.425*** 0.554*** 0.519*** 0.518***
(0.093) (0.094) (0.094) (0.094)

log(Mortgage debt) -0.746*** -0.794*** -0.821*** -0.822***
(0.040) (0.041) (0.041) (0.041)

No mortgage debt -0.663*** -0.838*** -0.911*** -0.912***
(0.077) (0.080) (0.080) (0.080)

No mortgage debt �90-day default -0.308*** -0.339*** -0.360*** -0.360***
(0.049) (0.050) (0.050) (0.050)

No mortgage debt <90-day default -0.626*** -0.620*** -0.625*** -0.625***
(0.025) (0.025) (0.025) (0.025)

Mortgage �90-day default to debt ratio 0.052 0.178 0.195 0.195
(0.136) (0.136) (0.136) (0.136)

Mortgage <90-day default to debt ratio -2.557*** -2.063*** -2.116*** -2.117***
(0.400) (0.376) (0.376) (0.376)

Change in consumer debt 0.226*** 0.201*** 0.201*** 0.201***
(0.005) (0.005) (0.005) (0.005)

Change in consumer debt �90d default 0.010*** 0.006* 0.006* 0.006*
(0.004) (0.004) (0.004) (0.004)

Change in mortgage debt -0.011*** -0.012*** -0.012*** -0.012***
(0.003) (0.003) (0.003) (0.003)

Change in mortgage debt �90d default 0.042*** 0.027*** 0.025*** 0.025***
(0.006) (0.007) (0.007) (0.007)

Age -0.411*** -0.407*** -0.407***
(0.003) (0.003) (0.003)

Female -0.308*** -0.310*** -0.309***
(0.007) (0.007) (0.007)

Previously related to any bank -0.283*** -0.283***
(0.016) (0.016)

Local unemployment rate 0.015**
(0.007)

Constant -1.907*** 0.113 0.234*** 0.599*** 0.603***
(0.024) (0.078) (0.080) (0.082) (0.082)

Observations 916,934 916,934 916,436 916,436 916,436
Pseudo R-squared 0.034 0.054 0.079 0.080 0.080
Market FE Y Y Y Y Y

Notes: All columns display results from logit regressions of individual loan default outcomes on borrower covariates. All covariates are
standardized. Credit history variables are computed as average over the year previous to each loan. Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1.
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Table A.3: Summary statistics for household survey

Variable N Mean SD p10 p50 p90

A - Experience in credit market

Debit account 1,003 0.84 0.36 0.00 1.00 1.00
Checking account 1,003 0.89 0.31 0.00 1.00 1.00
Debit card 1,003 0.97 0.17 1.00 1.00 1.00
Credit card 1,003 0.98 0.15 1.00 1.00 1.00
Credit line 1,003 0.88 0.32 0.00 1.00 1.00
Consumer loan 1,003 0.98 0.14 1.00 1.00 1.00
Car loan 1,003 0.35 0.48 0.00 0.00 1.00
Mortgage 1,003 0.50 0.50 0.00 0.00 1.00
College loan 1,003 0.34 3.15 0.00 0.00 1.00

B - Shopping behavior

Number of considered banks 963 2.99 1.65 1.00 3.00 5.00
Number of applications 963 1.35 0.80 1.00 1.00 2.00
Duration of search period in days 963 15.15 28.65 1.00 7.00 30.00
O✏ine shopping 963 0.81 0.39 0.00 1.00 1.00
Perceived range of prices (%) 994 25.70 12.64 10.53 24.81 41.18

C - Economic hardships

Experienced economic hardship 1,003 0.59 0.49 0.00 1.00 1.00
Financed economic hardship with formal credit 1,003 0.55 0.50 0.00 1.00 1.00
Financed economic hardship with savings/assets 1,003 0.27 0.44 0.00 0.00 1.00
Financed economic hardship with other 1,003 0.35 0.48 0.00 0.00 1.00
Stopped paying consumer loan 1,003 0.28 0.45 0.00 0.00 1.00
Stopped paying credit card 1,003 0.43 0.50 0.00 0.00 1.00
Stopped paying utility bills 1,003 0.11 0.31 0.00 0.00 1.00
Stopped paying rent 1,003 0.02 0.14 0.00 0.00 0.00
Stopped paying mortgage 1,003 0.06 0.24 0.00 0.00 0.00
Stopped paying car loan 1,003 0.07 0.25 0.00 0.00 0.00
Stopped paying student loan 1,003 0.06 0.23 0.00 0.00 0.00
Stopped paying health bills 1,003 0.07 0.25 0.00 0.00 0.00
Stopped paying other bills 1,003 0.13 0.34 0.00 0.00 1.00
Cut expenditure on non-durables 1,003 0.87 0.34 0.00 1.00 1.00
Cut expenditure on personal care 1,003 0.37 0.48 0.00 0.00 1.00
Cut expenditure on health 1,003 0.18 0.38 0.00 0.00 1.00
Cut expenditure on education 1,003 0.12 0.32 0.00 0.00 1.00
Cut expenditure on home services 1,003 0.36 0.48 0.00 0.00 1.00
Cut expenditure on transportation 1,003 0.15 0.35 0.00 0.00 1.00

D - Borrower attributes

Age 1,003 42.18 8.80 32.00 41.00 55.00
Female 1,003 0.39 0.49 0.00 0.00 1.00
Approval probability 981 0.59 0.07 0.49 0.60 0.67
Annual income 981 17,557.88 7,803.02 7,772.14 16,853.41 28,616.13
Financial literacy score (1-3) 1,003 1.75 0.81 1.00 2.00 3.00

Notes: This table displays summary statistics for our household survey.
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