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ABSTRACT

I examine the asset pricing implications of technological innovations that allow capital to displace

labor: automation. I develop a theory in which firms with high share of displaceable labor are neg-

atively exposed to such technology shocks. In the model, firms optimally adopt technology to gain

competitive advantage in the product market. Although automation increases an individual firm’s

competitive advantage, in equilibrium competition erodes profits and decreases firm value. Empiri-

cally, I develop a firm-level measure of displaceable labor share, based on detailed job classifications

from the O*NET database, and find that firms with high displaceable labor share have negative

exposure to technology shocks. A long-short portfolio sorted on this new measure is highly corre-

lated with existing macroeconomic measures of technology shocks. Firms with negative exposure to

these technology shocks earn a 4% per year return premium. The premium is positively predicted

by decreases in the cost of capital goods. At the firm level, I confirm that a large negative exposure

to technology shocks predicts lower employment and profitability following technology shocks, and

these effects are amplified by higher within-industry competition.
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Technological advances over the last four decades have led to adoption of many new technologies.1

An important subset of these innovations, including for example robots and software, focus on

automation that displaces human labor in favor of machine capital (see, e.g, Acemoglu and Restrepo

(2017) and Autor, Levy, and Murnane (2003)). The massive adoption of such technologies by

businesses, the associated large-scale displacement of routine-task labor, and the resulting society-

wide impacts have been termed ‘’The Second Machine Age” (Brynjolfsson and McAfee, 2014).

The importance of this wave of automation for the economy naturally raises the question of how

automation has affected, and continues to affect, asset prices.

In this paper, I study whether firms’ share of displaceable labor that can be automated by

capital affects firms’ value and their exposure to technology shocks. The amount of routine tasks

which can be automated varies across occupations and thereby across industries.2 I find that

firms with high share of displaceable labor have more negative exposure to technology shocks that

facilitate automation. I demonstrate that a long-short portfolio of firms sorted on their share of

displaceable labor replicates the dynamics of price changes in capital goods, thus creating a strong

connection between a macroeconomic variable and the dynamics of stock returns. I further show

that firms with a negative exposure to technology shocks earn an average return premium of 4%

per year. The premium varies over time, being high in periods of strong technological progress, and

is positively predicted by decreases in prices of capital goods. These properties of the premium are

consistent with a compensation for households’ time-varying job displacement risk.

To understand these findings, I develop a general equilibrium model of optimal technology

adoption with heterogeneous firms that compete in product markets, and heterogeneous households

that experience uninsurable idiosyncratic labor income shocks. In the model, all firms within a given

industry have the same opportunity to adopt a technology. I show that a technology shock that

facilitates automation decreases profits and market value of firms that can replace labor by capital.

Although additional economic mechanism such as market entry, operating leverage or inability of

firms to adopt new technology can deliver a similar result, this model points out that only a realistic

assumption of product market competition is necessary to obtain this result. The model further

highlights that the price of technology shocks depends on households’ idiosyncratic labor income

when some of the households are replaced by capital.

In the model, a technology shock embodied in capital allows firms to use cheaper capital-

based, instead of labor-based, production. Automation, which creates an optimal displacement

of labor by capital, leads to a lower production cost but entails technology adoption cost. In

a competitive environment, a firm’s profit depends on its product price relative to the product

prices of its competitors. As all firms in a given industry have the same share of displaceable

labor, a symmetric Nash equilibrium of optimal automation exists. Because automation lowers a

firm’s product price relative to its competitors and increases its revenues, upon the occurrence of

a technology shock each firm in the industry has an incentive to automate despite the technology

1See, e.g., Jovanovic and Rousseau (2005).
2See Autor and Dorn (2013). This paper provides similar results.
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adoption cost. These benefits deteriorate as the number of automated firms in the industry increases

and lower product prices become the industry-wide standard. As a consequence, automation does

not provide an advantage but is rather a costly necessity to stay competitive. I show that in

equilibrium, technology shocks lead to lower firms’ profits. Firms with a displaceable labor share

have negative exposure to such technology shocks.

An appealing feature of the model is its flexibility to generate both positive and negative

price of technology shocks. The sign of the price of risk depends on the dispersion of individual

workers’ future labor productivity. Technology shocks create risk for households. The adoption of

capital-based production reallocates workers from old to new occupations. Although on average

all workers will be more productive in their new occupations, individual workers experience either

increase or decrease in their productivity. This labor productivity shocks are purely idiosyncratic

and realized only once the worker moves to the new occupation. Since the occurrence of these

idiosyncratic shocks is triggered by the aggregate technology shocks and markets are incomplete,

the idiosyncratic risk affects the premium of the aggregate technology shock. If the dispersion of the

individual labor productivity shocks is low, households do not fear technology shocks that facilitate

automation and the technology shocks generate good states for households. If the dispersion of

individual workers’ productivity increases, households dislike technology shocks as some of them

may lose parts of their labor income. This result highlights the importance of imperfect risk sharing

as described in Constantinides and Duffie (1996) and its relationship to technological progress as

described in Kogan, Papanikolaou, and Stoffman (2017), and Gârleanu and Panageas (2017).

Empirically, I measure a firm’s share of displaceable labor by a ratio of labor that can be

easily substituted by capital and the firm’s current capital stock. To construct this measure, I

classify employees’ occupations by the routine intensity of their tasks using a comprehensive set of

occupational characteristics from the O*NET database and merge the occupational level data with

firm data for employment and capital stock from Compustat.3 I find that the share of displaceable

labor is predominantly an industry-level characteristic. The variation between industries explains

70% of the total cross-sectional variation in the share of displaceable labor.

I use changes in quality-adjusted relative prices of capital goods as an empirical measure of tech-

nology shocks.4 The theoretical foundation of this measure has been shown in previous literature

(e.g., Cummins and Violante (2002); Hornstein and Krusell (1996)) and is based on the idea that

improvements in the production of capital goods such as machines and software are reflected in

lower prices of these goods adjusted for changes in quality. I empirically verify this assumption us-

ing data from the NBER-CES Manufacturing Industries database and the Input-Output Accounts

from the U.S. Bureau of Economic Analysis (BEA).5 Decreases in quality-adjusted prices of capital

3O*NET database is currently the primary source of occupational information in the U.S. It provides a compre-
hensive and updated set of occupational characteristics such as required skills and abilities or importance of various
activities and tasks. O*NET database is administered by the U.S. Department of Labor/Employment and Training
Administration through the O*NET Resource Center. The predecessor of the O*NET database is the Dictionary of
Occupational Titles whose data are incorporated in the first releases of the O*NET database.

4See Greenwood, Hercowitz, and Krusell (1997, 2000); Fisher (2006).
5NBER-CES Manufacturing Industries database from Becker, Gray, and Marvakov (2013) provides data on pro-
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goods are indeed associated with improvements in industries producing capital goods.

I first show that portfolios of firms sorted on their share of displaceable labor have large differ-

ences in their exposure to technology shocks. Firms with the highest share of displaceable labor

have strongly negative exposure to technology shocks. The magnitude of the exposure decreases

monotonically across the portfolios toward firms with low share of displaceable labor. A long-short

portfolio based on this measure successfully approximates the time-series of technology shocks with

a correlation of 0.6 and a strong overlap in all periods of large technology shocks. This result is

present among both manufacturing and non-manufacturing firms. I show that the differences in

the risk exposure to technology shocks are also not driven by firms’ differential exposure to other

risk factors.

Second, I investigate whether firms’ risk exposure to technology shocks earns a return premium

in the cross section of stocks. I first show that technology shocks measured by the changes in

quality adjusted relative prices of capital are a state variable indicating the risk of labor income for

households. Assets that co-move with this state variable are expected to earn a premium. I find

that firms with strongly negative exposure earn a return premium of 4% per year. The average

returns monotonically decrease across portfolios toward firms with weak risk exposure. Firms’ size

or growth opportunities might be related to firms’ share of displaceable labor and correlate with

the stock returns in the cross section. I first show that the Capital Asset Pricing Model (CAPM)

and the size (SMB) and value (HML) factors do not explain the return premium. I next show that

standard cross-sectional return predictors do not explain the return premium in firm-level panel

regressions. I use conditional double sorts and show that the premium is also not driven by these

return predictors in a non-linear way.

Third, I investigate the time variation and predictability of the return premium. If the estimated

return premium is associated with labor income risk, it will follow a similar pattern over time.

The labor income risk is high in states of high technology shocks when the prices of capital goods

decrease. I find that the return premium is predictable by the changes in the prices of capital goods.

Periods of positive technology shocks, which decrease the prices of capital goods, are associated

with high return premium. In a companion paper (Knesl, 2018), I show that decreases in the prices

of capital goods increase households’ labor income risk and job displacement risk as cheaper and

more productive capital substitutes for human labor. This evidence further rationalizes the return

premium as a compensation of labor income risk.

Last, I examine whether firms with different exposure to technology shocks differ also in their

behavior upon the occurrence of technology shock. Firm’s differential behavior and financial per-

formance following technology shocks provide a valuable indication for the underlying economic

mechanism. I find that when the relative prices of capital goods decrease, firms with strongly

negative exposure decrease employment and increase capital more than firms with weak exposure.

These firms also experience large decrease in sales, return on capital and return on equity. This ev-

ductivity and other variables at a detailed industry level. The Input-Output Accounts from the BEA provide MAKE
and USE tables that allow to categorize industries into industries producing capital and consumption goods.

4



idence directly supports the conjecture that firms’ risk exposure to technology shocks reflects firms’

financial underperformance associated with changes in production technology following a technol-

ogy shock. I document that these effects are stronger for firms in highly competitive industries, a

finding that underlines the importance of product market competition.

In this paper, I contribute to two streams of literature. First, a recent literature has focused

on the implications of technology shocks embodied in capital for firms’ growth opportunities (e.g.,

Papanikolaou (2011); Kogan and Papanikolaou (2014); Kogan et al. (2017)), the pricing of cross-

sectional return anomalies (e.g., Kogan and Papanikolaou (2013); Garlappi and Song (2016)), and

the relationship with market power (Garlappi and Song, 2017). While the general focus of these

studies is on technological advances that increase the productivity of capital with limited effects

on labor, I examine technology shocks where capital replaces labor. I show that these technology

shocks are important for firms’ adoption of labor-replacing technologies and drive households’ job

displacement risk.6 A useful benefit of my approach is the construction of a zero-cost portfolio

based on firms’ displaceable labor share that highly correlates with a macroeconomic measure of

technology shocks.

Second, I contribute to literature on the asset pricing when markets are incomplete, specifically

by the inability to insure households’ job displacement and labor income risk. The asset pricing

implications of uninsurable idiosyncratic labor income or consumption risk on asset prices have

been addressed in several earlier studies (e.g., Constantinides and Duffie (1996); Constantinides

and Ghosh (2017); Schmidt (2016)). Recent papers examine the effects of technological growth in

the presence of imperfect risk sharing (e.g., Gârleanu, Kogan, and Panageas (2012); Gârleanu and

Panageas (2017)). Using overlapping generations models, these papers show that although innova-

tions can especially benefit new generations of agents, innovations have an important displacement

effect if the benefits and risk cannot be shared within or across generations of agents. I adopt this

attractive feature of technological innovation creating displacement risk, but I directly model job

displacement as arising from capital displacing human workers in their occupations. Empirically, I

show that the time-varying and predictable return premium of technology shocks that facilitate au-

tomation is consistent with time-varying job displacement risk that is driven by automation. This

finding underlines the importance of state-dependent displacement risk as the singular element in

this stream of literature.

A particular aspect of my paper, the riskiness of firms with displaceable labor, has been studied

in a recent paper by Zhang (2018). He suggests that routine labor lowers firms riskiness by provid-

ing a real option hedge. In his empirical analysis, firms with a higher routine labor share relative

to industry average have lower expected returns. I arrive at a different conclusion that is supported

both by my theory and empirical evidence. The theoretical difference arises due to three main fac-

tors. First, differently from Zhang’s partial equilibrium setting that focuses exclusively on a single

firm’s riskiness, I develop a general equilibrium model to examine how the process of automation

6An important aspect of my model is technology adoption, which has been studied in different settings in e.g.,
Pástor and Veronesi (2009), Atkeson and Kehoe (2007), Greenwood and Jovanovic (1999), and Hobijn and Jovanovic
(2001).
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is priced on capital markets by creating risk for both firms and households. This highlights the

link between automation and job displacement risk that is important to understand the pricing of

automation on capital markets and the time-series properties of the return premium. Second, my

model includes product market competition, whose relevance is supported empirically but not con-

sidered in Zhang’s model. Third, I explicitly show that firms’ decision to displace labor by capital

is directly related to prices of capital goods. I support all these features by empirical evidence. To

reconcile the empirical differences between our papers, one has to consider that I use firms’ share

of displaceable labor relative to capital, a variable that varies primarily between industries, while

Zhang examines a firm’s deviation in routine labor share from an industry average.7 To the best my

knowledge, I am the first to show how the automation process is priced on capital markets by affect-

ing both firms and households. The key part of this is to document the strong co-movement between

changes in prices of capital goods and returns of stocks sorted by the share of displaceable labor.

This paper relates to several other streams of literature. Many of these papers study the

relationship between asset prices and different aspects of labor. Wage rigidities and operating

leverage have been addressed in Chen, Kacperczyk, and Ortiz-Molina (2011), and Favilukis and

Lin (2015, 2016). Organization capital stemming from the key talent and labor mobility have been

studied in Eisfeldt and Papanikolaou (2013) and Donangelo (2014), respectively. Labor market

frictions are examined in Belo, Lin, and Bazdresch (2014); Belo, Li, Lin, and Zhao (2017), and

Kuehn, Simutin, and Wang (2017). Other studies examine industry competition (e.g., Hou and

Robinson (2006); Loualiche et al. (2014); Corhay (2017); Bustamante and Donangelo (2017), and

Corhay, Kung, and Schmid (2017)) and offshoring (e.g., Bretscher (2017)). The potential of capital

to substitute some types of labor and complement others is at the center of many economic models

that study the effects of technological change (e.g., Acemoglu and Autor (2011); Acemoglu and

Restrepo (2018)) and more broadly (e.g., Zeira (1998); Krusell, Ohanian, Ŕıos-Rull, and Violante

(2000)).

The rest of the paper is organized as follows. In the next section, I develop a general equilibrium

model of an optimal technology adoption that highlights how automation affects stock prices.

Section II provides the data sources, construction and validity of the measures of displaceable labor

share and technology shocks. I examine the exposure to technology shocks of firms with different

share of displaceable labor in section III. I describe the zero-cost portfolio that approximates the

empirical measure of technology shocks in this section. Section IV documents the cross-sectional

return premium and examines its properties including time-series predictability. This section also

shows that firms’ exposure to technology shocks is associated with differential investment and

employment policies. I conclude in section V.

7The percentage of the between-industry variation in the firms’ share of displaceable labor depends on the partic-
ular industrial classification. I show in table I that 71.7% of variation in this variable is due to the between-industry
variation when industries are defined at SIC 3-digit and NAICS 4-digit level.

6



I. The Model

I develop a two-period general equilibrium model that provides a clear picture of how technology

shocks affect asset prices through stimulating labor displacement and technology adoption. The

model consists of two sectors with firms competing in monopolistic fashion and households supplying

sector specific labor. Technology shocks decrease the price of capital and motivate firms to automate

by adopting capital-based production. The model shows firms’ optimal decision to adopt the

capital-based production and its effects on the composition and risk exposure of firms within a

given sector as well as the effect on the income of households supplying labor to the sector.

A. Firms, Technology, and Automation

The economy exists for two periods. The production side of the economy consists of two sectors

s ∈ {1, 2}. Sector s = 1 initially consists of labor-based firms and sector s = 2 of capital-based

firms. Firms in sector s = 1 have an opportunity to automate by adopting capital-based production

upon the occurrence of a technology shock in the second period as described in more detail in below.

Within each sector s, there are N firms that produce firm-specific differentiated goods Yf,s,t at

time t and compete in monopolistic fashion. The number of firms is large enough so that each firm

can abstract from the consequences of its choices for the sector level aggregates. Firms produce

their goods using either a labor-based, Y l
f,s,t = Lf,s,t, or a capital-based linear production function,

Y k
f,s,t = Kf,s,t. A firm with capital-based production buys sector-specific capital Kf,s,t at price P Is,t.

I assume that firm’s capital is active and fully depreciates in the period of investment. The cash

flow of a capital-based firm is

CF kf,s,t = P kf,s,tY
k
f,s,t − P Is,tKf,s,t, (1)

where P kf,s,t denotes the price of firm-specific good produced in a capital-based production. A firm

with labor-based production hires sector-specific labor Lf,s,t at sector-specific wage Ws,t. Labor-

based firms have an option to automate by adopting capital-based production and paying automa-

tion cost κ. Firms will optimally do so when the price of capital investment P Is,t becomes low

enough. The cash flow of a firm with labor-based production is

CF lf,s,t = P lf,s,tY
l
f,s,t −Ws,tLf,s,t if not automated

CF kf,s,t = P kf,s,tY
k
f,s,t − P Is,tKf,s,t − κ if automated,

(2)

where P lf,s,t and P kf,s,t are the prices of the firm-specific good.

Sector-specific capital, Ks,t, is produced completely competitively in a linear production function

with an aggregate technology level At and sector-specific labor Lks,t that is employed in producing

capital:

Ks,t = AtL
k
s,t. (3)

I further assume that installation of capital is subject to decreasing returns to scale at the total
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amount of sector-specific capital as described in equation 4. The assumption of strictly decreasing

returns to scale 0 < α < 1 is important for the existence of a mixed-strategy equilibrium described

below, but not for the final implications for stock returns.8

Is,t = Kα
s,t where Is,t =

N∑
f=1

Kf,s,t (4)

Hence capital production and installation imply that individual firms face the following price of

capital:

P Is,t =
1

At
Ws,tI

1−α
α

s,t

1

α
. (5)

Equation 5 shows that an increase in technology At decreases the effective price of capital invest-

ment. This effect is partially offset by higher sector-level investment if α < 1. The technology

At and the total amount of sector-specific investment determine the marginal cost of capital-based

production relative to the marginal cost of labor-based production. Automation becomes favor-

able when the marginal cost of capital-based production decreases relative to the marginal cost of

labor-based production.

In the first period, sector s = 1 consists of firms that use labor-based production and have

the option to automate. Sector s = 2 consists entirely of firms that already use capital-based

production. The level of technology At is subject to a technology shock that is realized at the

beginning of the second period. A technology shock increases the level of technology At. Specifically,

I assume an initial level of technology ALow that can increase to AHigh with probability pH as

described in 6.

A1 = ALow, A2 =

ALow, with probability 1− pH
AHigh, with probability pH

(6)

A technology shock ALow → AHigh decreases the price of capital investment P Is,2 in both sectors

s = 1, 2. The assumption of constant or decreasing prices of capital investment is supported by

the empirical evidence as the quality adjusted relative prices of capital goods experienced a secular

decrease over the last four decades (see, Fisher (2006); Cummins and Violante (2002)).9

The firm-specific goods are combined to sector-specific goods using a constant elasticity of

substitution (CES) function:

Ys,t =

 2∑
f=1

Y
ν−1
ν

f,s,t

 ν
ν−1

, (7)

where ν is the elasticity of substitution between the firm-specific goods. I assume ν > 1 which

8The assumption of decreasing returns to scale for installation of capital at the sector level implies that individual
firms do not internalize the effect of their capital investment on the marginal cost of capital investment. It further
implies that the amount of capital used in a sector is always equal or greater than the sum of capital investments of
individual firms. This assumption is equivalent to adjustment or installation cost of capital at the sector level.

9I document an average decrease in quality adjusted relative prices of capital goods of 4 percent per year since
1960 (see, table IA.10)

8



implies that the firm-specific goods are imperfect substitutes to each other. The prices of the

sector-specific goods can be expressed as

Ps,t =

 N∑
f=1

P 1−ν
f,s,t

 1
1−ν

. (8)

The sector goods are combined to an aggregate final consumption good using a CES function with

a different elasticity of substitution, ρ10

YC,t =

(
2∑
s=1

Y
ρ−1
ρ

s,t

) ρ
ρ−1

. (9)

I choose the aggregate consumption goods as a numeraire by setting its price PC,t ≡ 1, and assume

that ν−1
ν > ρ−1

ρ . This assumption implies that firm-specific goods within a given sector are closer

substitutes than sector-specific goods. For example, individual products in food industry substitute

each other more readily than all food products substitute products of a different industry such as

paper mills.

Firms within each sector compete in a monopolistic fashion. Given the production type, firms

maximize dividends by setting the price of their goods:

Dl
f,s,t = maxP lf,s,t

{P lf,s,tY l
f,s,t −Ws,tLf,s,t} where Y l

f,s,t =

(
P lf,s,t
Ps,t

)−ν
Ys,t (10)

Dk
f,s,t = maxPkf,s,t

{P kf,s,tKf,s,t − P Is,tKf,s,t} where Y k
f,s,t =

(
P kf,s,t
Ps,t

)−ν
Ys,t, (11)

where Y l
f,s,t and Y k

f,s,t are the demand functions for the firms’ goods. The first order conditions

of firms’ optimization in 10 and 11 imply that firms charge constant mark-ups over the marginal

production cost:

P lf,s,t =
ν

1− ν
Ws,t and P kf,s,t =

ν

1− ν
P Is,t. (12)

Upon the realization of the technology shocks at the beginning of t = 2, firms in the labor-based

sector s = 1 decide whether to automate the production. Automation changes the labor-based

production to capital-based production by incurring automation cost κ:

Df,1,2 = max{Dl
f,1,2, D

k
f,1,2 − κ} (13)

Automation changes the firm composition as well as the use of labor within the sector within the

sector s = 1. δ =
∑N
f=1 1{Automate=Y es}f

N denotes the percentage of firms in sector s = 1 that decide

to automate. Automation shifts labor from the direct production of firms’ goods to the production

10An equivalent aggregation can be achieved when the sector-specific goods are consumed directly by households
with CES preferences and elasticity of substitution ρ.
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of the sector-specific capital. Ll1,2 =
∑N

f=1 Lf,1,21{Automate = No}f is sector 1′s labor that is

employed directly in labor-based firms. Lk1,2 = 1
A2

(∑N
f=1Kf,1,21{Automate = Y es}f

) 1
α

is sector

1′s labor that is employed in the production of the sector-specific capital. The total amount of

labor in sector s = 1 is L1,2 = Ll1,2 + Lk1,2.

B. Households

There is a large number, Nh, of ex-ante identical households. Each household consists of two

spouses, each of which supplies labor effort to a different sector. Households derive utility from

consumption ch,t and disutility from labor effort Hh,1,t and Hh,2,t according to a utility function in

the spirit of Greenwood, Hercowitz, and Huffman (1988):

U (ch, Hh,1, Hh,2) = E


2∑
τ=t

βτ−t

(
ch,τ − χ

H1+θ
h,1,τ

1+θ − χ
H1+θ
h,2,τ

1+θ

)1−γ

1− γ

 , (14)

where β is households’ subjective discount factor, χ governs the disutility of labor effort, γ is the

coefficient of risk aversion, and 1
θ is the Frisch elasticity of labor supply.

Now I introduce an idiosyncratic labor productivity risk. The labor effort Hh,s,t transforms to

Lh,s,t = Hh,s,t effective hours of labor unless the spouse shifts from working directly in a labor-

based firm to working in the production of sector-specific capital. If the spouse has to move to the

production of sector-specific capital, the labor effort transforms to Lh,1,2 = (1 + ε̃h)Hh,1,2 effective

hours of labor. ε̃h is the spouses’ idiosyncratic random variable that determines their labor pro-

ductivity when they move to the new job. It is important to mention that the job movements are

purely intra-sectoral. When firms in sector s = 1 automate by adopting capital-based production, a

corresponding number of spouses will be displaced from these firms and employed in the production

of sector-specific capital within the same sector s = 1. The spouses cannot observe their idiosyn-

cratic labor productivity ε̃h until they are employed in the new job. I specify the distribution of

the idiosyncratic labor productivity by:

ε̃h =

−ε with probability pε

+ε with probability 1− pε
where ε > 0. (15)

It is important to emphasize that markets are incomplete in the sense that households cannot trade

an asset that would insure them against the realization of the idiosyncratic labor productivity. This

setup is analogous to Constantinides and Duffie (1996).

To maximize their utility, each household solves following problem:

max
ch,t,Hh,1,t,Hh,2,t

U (ch,t, Hh,1,t, Hh,2,t) s.t. ch,t = Dh,t + Lh,1,tW1,t + Lh,2,tW2,t, (16)
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where Dh,t = 1
Nh

(∑N
f=1Df,1,t +

∑N
f=1Df,2,t

)
is the households capital income. The specific form

of the utility function 14 ensures that households do not take the wealth effect of the idiosyncratic

labor productivity shock ε̃h into account when they decide the optimal labor supply. The first order

condition determines the optimal labor effort as:

Hh,s,t =

(
Ws,t

χ

) 1
θ

s ∈ {1, 2}. (17)

The total supply of labor to sector s at time t is Ls,t =
∑Nh

h=1 Lh,s,t. The symmetry of the distri-

bution of ε̃h ensures that the labor effort of spouses working in capital production in sector s = 1

at t = 2 is transformed to effective hours on average in the same way as the labor effort of spouses

working directly in labor-based firms in the same sector, E[Lh,1,2] = E[(1 + ε̃h)Hh,1,2] = Hh,1,2.

The utility optimization gives a household-specific stochastic discount factor of the form:

Λh = β

ch,2 − χH1+θ
h,1,2

1+θ − χ
H1+θ
h,2,2

1+θ

ch,1 − χ
H1+θ
h,1,1

1+θ − χ
H1+θ
h,2,1

1+θ

−γ , (18)

Since all households are identical ex ante, the stochastic discount factors are identical across all

households. Each single household prices assets in the same way. At the same time, aggregate

consumption and labor efforts are not sufficient statistics for pricing firms as they omit the id-

iosyncratic component of households consumption due to the realization of the idiosyncratic labor

productivity shock.

C. Valuation

The value of firms in labor-based sector s = 1 at t = 1 is given by:

V l
f,s,1 = Dl

f,s,1 + E [ΛhDf,s,2] , (19)

The value of firms in the capital-based sector s = 2 is defined equivalently as:

V k
f,s,1 = Dk

f,s,1 + E
[
ΛhD

k
f,s,2

]
. (20)

The expectation operator in the valuation equations 19 and 20 is defined from household h′s

perspective over both aggregate and idiosyncratic states. The realization of all states and the

corresponding probabilities are depicted in figure 1. It is important to note that the stochastic

discount factor Λh takes a different value in each possible realization including the realization

of idiosyncratic labor productivity risk ε̃h. Hence the households’ idiosyncratic risk affects the

valuation of assets. The idiosyncratic risk is relevant only when AHigh is realized. The importance

of the idiosyncratic risk is then given by the percentage of firms that automate δ∗. Hence the

idiosyncratic risk is state dependent as in Constantinides and Ghosh (2017).
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Figure 1. Households’ Possible States.

D. Equilibria

The equilibrium is defined by the solution of the households’ optimization problem 16, firms’

optimization 10, 11, and 13 and market clearing conditions on all markets. The market clearing

conditions for product markets at the level of firms and sectors as well as for capital and labor

markets are stated in appendix A.

In the second period, t = 2, there is a further condition for a Nash-type equilibrium for the

equilibrium percentage δ∗ of firms that automate within sector s = 1. Each firm must prefer its

choice of the production type given the choices of the remaining firms in the sector. There is a

unique equilibrium of one of the following three types.

Equilibrium 1. None of the firms in the sector prefers capital-based production, δ∗ = 0. The

sector remains homogeneous with labor-based firms only. In this equilibrium, inequality 21 a holds.

The left-hand side shows the payoff when the firm switches to capital-based production. This payoff

consists of dividends and an automation cost. The right-hand side is the dividend of a firm that

keeps labor-based production. If the price of capital is high enough, no firm will have an incentive

to automate as it leads to lower sales and requires automation cost κ.11

11This reasoning abstracts from the effects on the sector level variables.
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a. νP kf,1,2

(
P kf,1,2
P1,2 (δ∗)

)−ν
Y1,2 (δ∗)− κ ≤ νP lf,1,2

(
P lf,1,2
P1,2 (δ∗)

)−ν
Y1,2 (δ∗) , δ∗ = 0

b. νP kf,1,2

(
P kf,1,2
P1,2 (δ∗)

)−ν
Y1,2 (δ∗)− κ = P lf,1,2

(
P lf,1,2
P1,2 (δ∗)

)−ν
Y1,2 (δ∗) , 0 < δ∗ < 1

c. νP kf,1,2

(
P kf,1,2
P1,2 (δ∗)

)−ν
Y1,2 (δ∗)− κ ≥ νP lf,1,2

(
P lf,1,2
P1,2 (δ∗)

)−ν
Y1,2 (δ∗) , δ∗ = 1,

where

d. P1,2 (δ∗) =
(
P kf,1,2

1−ν
δ∗N + P lf,1,2

1−ν
(1− δ∗)N

) 1
1−ν

e. Y1,2 (δ∗) =

(
Y k
f,1,2

ν−1
ν δ∗N + Y l

f,1,2

ν−1
ν (1− δ∗)N

) ν
ν−1

(21)

This equilibrium is shown in the first column (no shock) in figure 2. Panel A shows the market-

clearing prices of goods produced by each type of firm, labor-based and automated, as a function

of the percentage of firms that automate δ. The blue line depicts the prices of goods produced

by labor-based firms and the red line depicts the equivalent function for automated firms. I select

the model parameters so that the lines intersect at δ = 0 if the technology A2 remains constant

at ALow. The goods prices of automated firms are predominantly increasing in δ. The increase

reflects the decreasing returns to scale of the capital installation function 4.

[Place Figure 2 about here]

Panel B shows the corresponding demands for the goods of each firm type as functions of δ. The

demand for goods of labor-based firms is above the demand for goods of automated firms for δ > 0

as the prices of labor-based firms’ goods are lower in this region. This follows from the demand

functions in equations 10 and 11.

Panel C shows the dividends of each type of firm as functions of δ. The dividends of labor-based

firms are above the dividends before automation cost of automated firms for δ > 0. This follows

from the price elasticity of the demand functions for firm-specific goods −ν < −1. The dividends

of automated firms are even smaller when the automation cost κ is taken into account. Hence the

equilibrium percentage of automated firms in sector s = 1 is δ∗ = 0.

Equilibrium 2. A percentage 0 < δ∗ < 1 of firms in the sector automates and pays automation

cost. This equilibrium can be thought of as a mixed-strategy equilibrium where firms choose an

optimal probability δ∗ to automate and probability 1 − δ∗ to keep the labor-based production.

The equilibrium is defined by the equality 21 b. The left-hand side shows the payoff of a firm

that automates. The right-hand side is the dividend of a firm that keeps labor-based production.

Abstracting from the effects at the sector level, the equality holds when the gain from higher sales

due to lower goods prices

(
Pkf,1,2
P1,2(δ∗)

)−ν
exactly counterweights the automation cost κ. Firms that
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adopt capital-based production extract higher rents at the cost of firms that keep labor-based

production.

The middle column of figure 2 shows this type of equilibria. I assume an incremental improve-

ment in the technology level AHigh. In panel A, the prices of goods from automated firms shift

downward and intersect the price function of the labor-based firms. Panel B shows that the changes

in prices lead to a higher demand for goods of automated firms relative to labor-based firms if the

percentage of automated firms is low enough. Panel C shows the equilibrium percentage of firms δ∗

in sector s = 1 that optimally automate production. In the region δ < δ∗, labor-based firms have

an incentive to automate as they will benefit from higher demand. In the region δ∗ < δ < δ̂, firms

do not want to automate as the slightly higher demand for their products does not compensate the

automation cost κ. In the region δ∗ < δ, the demand for goods of automated firms is already below

the demand for goods of labor-based firms. Firms are indifferent between keeping the labor-based

production and automation only at δ∗.

Equilibrium 3. All firms in the sector automate, δ∗ = 1. The sector is homogeneous with

capital-based firms only, and inequality 21 c holds. This equilibrium arises when the price of capital

P I1,2 is low enough. In this case, a firm will experience dramatically lower sales when it keeps the

labor-based production given all other firms have automated. Hence all firms optimally adopt the

capital-based production despite the automation cost to avoid more severe punishment through

lower sales. Abstracting from the effects at the industry level, all firms keep the same rent but pay

the automation cost κ.

This equilibrium is shown in the right-hand side column in figure 2. I assume a large increase

in the technology level AHigh. In this case the prices of goods of automated firms are always

below the prices of labor-based firms. This is reflected in the demand function of the automated

firms that is always above the demand function of the labor-based firms. If the improvement in

the technology level A2 is large enough, the net dividend of automated firms will be above the

dividend of labor-based firms regardless of the percentage of automated firms in the sector. The

equilibrium percentage of automated firms is δ∗ = 1. Even in this case the net dividend can be

below the original level. All firms in the sector optimally decide to automate even if automation

leads to a lower net dividend. Firms which had stuck with the labor-based production would have

experienced much lower revenues that is more penalizing than the automation cost κ. This situation

highlights that adopting a relatively cheaper production technology can become a pure necessity

to stay competitive and the automation benefits are passed to the final consumers in the form of

lower product prices.

Panel A in figure 3 presents the relationship between the magnitude of the technology shock

AHigh, conditional on the occurrence of this state, and the equilibrium percentage of automated

firms δ∗. This relationship is strictly positive. A higher level of technology AHigh decreases the

prices of capital investment P I1,2 and makes capital-based production more favorable despite a higher

amount of invested capital I1,2. I select the model parameters such that the first type of equilibria,

δ∗ = 0, exists when A2 = ALow < 0.85. The second type of equilibria, 0 < δ∗ < 1 emerges when
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A2 = AHigh and 0.85 < AHigh < 1.06. The third type of equilibria, δ∗ = 1 establishes if the

technological change is large enough, A2 = AHigh > 1.06.

E. Implications for Firms Risk Exposure and the Dynamics of Stock Returns

In this section I show that a positive technology shock that facilitates automation can lead to an

adverse outcome for firms in a sector that is undergoing at least partial automation. The adverse

effect of such a shock is equally present among all firms within the sector regardless of whether the

particular firm automates or not.

Panel B of figure 3 shows the equilibrium dividends of firms in sector s = 1 as a function of the

magnitude of the technology shock AHigh, conditional on realization of this state. In equilibrium,

the dividends are identical for all firms in the sector regardless of whether the particular firm

automates or not. An increase in the technology shock leads to a lower dividend of every firm

in this sector. This relationship is weak for low levels of AHigh but becomes stronger for higher

values of the technology. This reflects the convex relationship between the equilibrium percentage

of automated firms δ∗ and AHigh shown in panel A.12

A larger technology shock leads to a higher percentage of firms that automate δ∗ and charge

lower product prices. This decreases the price of the sector-aggregate good P1,2 (δ∗) as shown

in formula 21 d. Since firm’s relative revenues depend on the price of its good relative to the

sector-aggregate good
(

Pf,1,2
P1,2(δ∗)

)−ν
with ν > 1, it becomes more prohibitive to keep the labor-based

production that produces goods at higher relative prices. At the same time, the rents of automated

firms decrease as the prices of their goods and the price of the sector-aggregate good come closer

to each other. Automation becomes a costly necessity to stay competitive.13

[Place Figure 3 about here]

Panel C shows the effect of technology shocks on dividends of firms in sector s = 2. This

relationship is strictly positive. Since this sector already consists of firms with capital-based pro-

duction, firms do not undergo the costly process of automation. Hence firms in sector s = 2 benefit

directly from lower prices of capital investment P I2,2 brought by a higher level of technology.

In this model, the effect of technology shock on dividends translates directly to firms’ risk

exposure to the shock. I plot the risk exposure of firms in each sector as functions of AHigh in panel

A of figure 4. Firms in sector s = 1 have negative exposure to technology shocks. The magnitude

of the exposure is low for low values of AHigh but increases dramatically. Hence a technology shock

decreases the firm value of firms in this sector. These firms experience negative return on the

impact of technology shock. Firms in sector s = 2, which consists entirely of capital-based firms,

have positive exposure and experience positive stock return upon the occurrence of technology

shock.
12I plot the firms’ dividends as a function of the equilibrium percentage of automated firms δ∗ in online appendix

figure IA.1. This relationship becomes generally linear.
13This statement abstracts from inter-sectoral demand shifts. The inter-sectoral demand shifts are considerably

smaller as the sector-level goods are weaker substitutes.
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[Place Figure 4 about here]

The results in this section show that competition forces firms to undergo costly automation

process although its benefits are passed through to the final consumers. Firms with labor that can

be automated by capital then exhibit negative risk exposure to technology progress that facilitates

such automation.

F. Implications for Stock Return Premium

In this section, I show that the differences in firms’ exposure to technology shocks are associ-

ated with differences in expected stock returns as the risk of technology shocks is priced by the

households.

First, I emphasize that the model is able to general both negative and positive premium for the

risk of technology shock that facilitate automation. The sign of the premium is determined by the

dispersion of the idiosyncratic labor productivity shock ε the households face upon the occurrence

of technology shock and the associated possible job movement. Figure 5 shows the relationship

between the dispersion of the idiosyncratic labor productivity ε and the risk premium of an asset

E
[
RI
]
− Rf that has β = 1 exposure to the technology shock A2. Households require a positive

premium for this asset if the idiosyncratic labor productivity risk ε is low. In this case, the higher

average labor productivity of spouses working in the capital production due to AHigh dominates

the idiosyncratic labor productivity risk. As ε increases the idiosyncratic labor productivity risk

dominates and the return premium becomes negative. In this case, households dislike the occurrence

of technology shock as they may experience a severe decrease in their labor income. The same asset

becomes valuable as it outperforms upon the occurrence of the technology shock.

[Place Figure 5 about here]

For the following analysis, I assume the case of negative premium. This assumption will align

with the empirical evidence in later sections. The relativity of the return premium described in

figure 5, however, highlights that the implications of technology shock for expected stock return de-

pend on the particular economic environment, in this case the households’ ability to stay productive

in new occupations.

Panel B in figure 4 shows the expected stock returns of firms in each sector as functions of the

magnitude of the technology improvement AHigh. Firms in sector s = 1 earn higher expected return

than firms in sector s = 2. This follows directly from the firms’ exposure and the assumption of

negative risk premium. Firms in sector s = 1 have a negative exposure (see panel A) to a negatively

priced risk which results in high expected returns. The positive exposure of firms in sector s = 2

to the same risk leads to lower expected returns.

The difference in the expected returns between firms in sector s = 1 and s = 2 increases with

the magnitude of AHigh as shown in panel C. This follows from the changes in the exposure of firms

in sector s = 1 as shown in panel A. The exposure of firms in sector s = 1 becomes more negative
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as AHigh increases, while the exposure of firms in sector s = 2 remains almost constant. The

increasing differences in the exposure of firms in each sector lead to similarly increasing differences

in expected return.

II. Data

A. Measuring Firms’ Share of Displaceable Labor, The Automation Potential

The main input in my analysis is a measure of firms’ share of displaceable labor, the Automation

Potential (AP). I use the occupational characteristics from the O*Net database, the composition of

labor force from Occupational Employment Statistics (OES) and the relative importance of labor

and capital to calculate the AP measure at the firm level. The AP measures the relative importance

of labor that can be easily replaced by capital.

I measure firm j′s AP at time t as:

APj,t = ln

(
Lroutinej,t

Kj,t

)
(22)

The numerator of the AP formula, Lroutinej,t measures the number of employees in routine inten-

sive occupations, i.e. labor that can potentially be substituted by capital. To assess the relative

importance of routine labor in the production process, I divide the labor by firms’ capital.14 I

carefully examine a range of alternative specifications of the AP formula and discuss them in detail

below.

I measure the potential of replacing human workers by capital in each occupation by the Routine

Task Intensity measure (RTI). This measure was originally developed by Autor and Dorn (2013)

and measures the importance of routine, abstract and manual tasks in each occupation. High RTI

scores indicate high importance of routine tasks in a given occupation. Routine tasks are defined

as tasks that can be accomplished by following a precise set of rules and potentially be executed

by machines programmed to follow this set of rules.15 Low RTI scores indicate low importance of

routine tasks and high importance of abstract and manual tasks, which cannot easily be performed

by machines.

The original measure was calculated for 330 occupations based on data from the Dictionary

of Occupational Titles (DOT) 1977. I develop a new and more detailed version of the RTI mea-

sure based on occupational characteristics from the majority of the O*NET database releases. I

describe the structure and the data collection procedure of the O*NET database in appendix B.

14The term production process is used widely in this context. It refers not only to physical production but also to
all operations of a given firm including firms in service sectors that do not necessarily produce physical products.

15Autor et al. (2003) developed the original underlying data for the RTI measure and define the routine tasks as
follows: ‘In our usage, a task is “routine” if it can be accomplished by machines following explicit programmed rules.
Many manual tasks that workers used to perform, such as monitoring the temperature of a steel finishing line or moving
a windshield into place on an assembly line, fit this description. Because these tasks require methodical repetition
of an unwavering procedure, they can be exhaustively specified with programmed instructions and performed by
machines.’
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This approach significantly improves the RTI measure in several dimensions. First, I use multiple

releases of the O*NET database, which allows the new RTI measure to capture the changes in the

occupational characteristics within occupations over time. Technological progress and automation

are likely to change the nature of some occupations over time. Autor et al. (2003) show that

occupations that increased the use of computers significantly reduced the input of routine tasks

and became more nonroutine.16 This evidence stresses the importance to account for changes in

occupational characteristics over time. Second, I calculate the RTI measure for a larger number

and more detailed occupations. Depending on the release of the O*NET database, I calculate

the RTI measure for 654-731 occupations.17 Third, I use larger set of underlying occupational

characteristics (30 instead of 5) to measure the importance of routine, abstract and manual task

inputs. The wide range of the characteristics provides a robust measurement of the importance of

each type of tasks. It allows for changes in task inputs within occupations to be easily detected

over time as some occupations may change only one characteristic while keeping others constant.

This approach also addresses a possible bias in selecting suitable characteristics to measure the

importance of tasks inputs.18

To calculate the RTI measure, I select 30 occupational descriptors and group them into descrip-

tors measuring abstract, routine and manual tasks. I report the full list of the descriptors including

the corresponding scales of measurement in online appendix table IA.3. I calculate the routine,

abstract and manual task inputs for each occupation by averaging the scores of the corresponding

descriptors as follows

T jocc,t =
1

Nj

∑
i∈Nj

Descriptorocc,t,i

j ∈ {Routine, Manual, Abstract}, (23)

where T jocc,t is the input of task j in occupation occ at time t and Nj is the set of descriptors for

j′s task input. Using the task inputs, I calculate the RTI for each occupation as

RTIocc,t = ln
(
TRocc,t

)
− ln

(
TMocc,t

)
− ln

(
TAocc,t

)
(24)

Occupations with a high RTI score predominantly consist of routine tasks and hence have high

potential to be automated by machines. Occupations with a low RTI score require strong input

of abstract or manual tasks, such as critical thinking, active learning, negotiation or operating

vehicles and hence cannot easily be automated. I report the summary statistics of the RTI scores

16I find supportive evidence for changes in the RTI measure within occupations in online appendix figure IA.3.
17I report the exact number of occupations in each O*NET release for which I calculate the RTI measure in table

IA.2
18Acemoglu and Autor (2011) also construct RTI measure based on the O*NET database version 14.0. The

approach and the selection of the underlying descriptors is similar and my RTI measure strongly correlates with the
RTI measure in this paper. The main distinction is that I utilize the updates of the O*NET database as well as the
original data from the Dictionary of Occupational Titles included in the first releases of the O*NET database. This
allows me to account for the changes within occupations over time and avoid carrying over possible measurement
errors to other years.
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and the underlying task inputs at the level of occupations in online appendix table IA.4. To provide

examples of the most routine and non-routine occupations, I list representative routine and non-

routine occupations in online appendix table IA.5. These occupations are selected to represent the

typical occupations with low and high RTI scores.19 It is important to note that the routine task

intensity is not the same dimension as labor skill dimension. Routine occupations are generally

concentrated in the middle skill-level occupations with average labor income (see e.g. Autor and

Dorn (2013)).20

The AP measure can vary between industries, as well as across firms within the same industry.

The majority of the variation, however, is at the between industry level. Table I reports the

summary statistics and variance decomposition of the AP measure into within and between industry

variation. Panel A shows that there is a considerable variation in the share of displaceable labor

measured by the AP measure at the firm level across firms in all industries and the results in panel

B show that similar variation is present also when firm level observations are aggregated at the

industry level, i.e. variation between industries. Panel C then shows formally that the majority of

the variation in the AP measure is due to between industry variation, as it accounts for about 70%

of the total variance. This result indicates that the automation potential measured by the ratio of

routine labor to capital is a predominantly industry-specific characteristic.21 I list the industries

with the lowest and highest automation potential, as defined by the AP measure in online appendix

table IA.7. I establish the validity and robustness and discuss potential shortcomings of the new

RTI measure in appendix C.

[Place Table I about here]

I next establish the relationship between the AP measure and two other potential measures.

First, I use the total number of all employees instead of the total capital in the denominator of the

AP measure, i.e. Routine intensityj,t = ln

(
Lroutinej,t

Ltotalj,t

)
. Second, I use the number of all employees

instead of employees in routine occupations in the numerator. This measure is in essence a firm’s

labor intensity, i.e. Labor intensity = ln

(
Ltotalj,t

Kj,t

)
. These two measures are positively correlated

with each other. Online appendix figure IA.2 shows that the correlation is strong except for

the 1990s when the sample was inflated by a large number of new dot-com firms that lacked

typical production facilities. The strong relationship between these two measures has re-established

again since 2005.22 Due to this strong relationship, both measures sort firms and industries cross-

sectionally in a very comparable way in most of the years examined.

19Since the RTI score changes for each occupation over time, I select representative routine and non-routine
occupations with high and low RTI score, respectively, in multiple years. Full lists and detailed descriptions of the
most routine and nonroutine occupations in O*NET 98, O*NET 5.1 and O*NET 20.1 are in online appendix.

20Another interesting fact shown in Abis (2017) is the ongoing pervasion of computing technology and algorithmic
trading relative to discretionary human-based trading in fund management industry.

21Although the majority of the variation in AP is at the industry level, there are still firms within the same industry
that differ from the industry peers. The within industry variation in share of routine labor relative to industry peers
has been studied by Zhang (2018).

22The pattern is robust to the use of RTI measures based on each O*NET or DOT data.
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I also examine the importance of different types of capital in the denominator of the AP measure.

Specifically, I use only equipment or equipment and intellectual products and property instead of a

firm’s total capital to address a potential concern that the total capital of some firms is dominated

by structures. I also account for the changes in the composition of equipment over time on the basis

of the real stock of 64 different types of equipment.23 This addresses the potential concern that

some industries significantly increased the real stock of equipment, such as ICT equipment, whose

nominal prices decreased over time and hence the increase in real stock would not be reflected in

firm’s total nominal capital. None of these variations are essential for the subsequent analysis. The

results in the following sections are robust to the use of these alternative AP measures and results

based on alternative specifications of AP measure are available upon request.

B. Financial Data

I focus on common stocks of firms listed on NYSE, NASDAQ, and AMEX from 1970 to 2015

and use monthly data from the Center for Research in Security Prices (CRSP). To calculate the

AP measure, I require the firms to have underlying data for the number of employees and total

net capital in the Standard and Poor’s Compustat database. I exclude financials SIC 6000-6799,

utilities SIC 4900-4999, and public sector companies SIC≥9000. Hou, Xue, and Zhang (2017) find

that the a large number of previously documented cross-sectional return anomalies are strongly

driven by micro-cap stocks and these anomalies are hardly replicable when the sample excludes

micro-cap stocks. To address this concern, I exclude small and illiquid stocks as well as stocks

with short history from my sample. I describe the applied filters in detail in appendix D. None

of these filters are essential for the documented results. The final sample contains a total of 8,150

unique firms. I also redo my analysis on the basis of S&P 500 stocks and find quantitatively and

qualitatively very similar results. The results based on the constituents of S&P 500 are presented

in online appendix.

C. Measuring Technology Shocks Embodied in Capital

I measure the technology shocks embodied in capital by the changes in quality adjusted relative

prices of investment goods. The formal theoretical validity of this measure has been derived in

previous literature, e.g. Greenwood et al. (1997); Cummins and Violante (2002); Hornstein and

Krusell (1996) (see appendix E for a parsimonious theoretical foundation based on these papers).24

The intuition behind the theoretical foundation of this measure is that investment-specific technol-

ogy shocks allow for production of new capital goods, such as machines, software or equipment,

at lower cost or higher quality. Hence the changes in the quality adjusted prices of capital goods

relative to aggregate prices are informative about the technological progress. I construct the mea-

23I use the BEA classification for the different types of equipment.
24Various versions of these measure has been successfully used in previous studies focusing on the effects of the

investment-specific technology shock on economic growth, e.g. Greenwood et al. (1997) and business cycle, e.g.
Greenwood et al. (2000); Fisher (2006)
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sure of technology shocks embodied in capital (I-shock measure) by subtracting the log changes in

the quality-adjusted prices of capital goods from the log changes in the aggregate price level. An

increase in the I-shock measure indicates a positive technology shock and is associated with higher

quality and/or lower prices of capital goods.

The underlying price indexes are from the U.S. Bureau of Economic Analysis (BEA). I measure

the aggregate price level by the price index of the personal consumption expenditures for nondurable

goods. The quality-adjusted prices of capital goods are based on the price index for private fixed

investment in nonresidential equipment. This price index is a combination of price indexes of 25

different types of equipment. I use annual frequency for both time-series and calculate the I-shock

measure from 1970 to 2015.

Since the I-shock measure is based on quality adjusted prices of capital goods, it is important

to account for the changes in quality of goods in the underlying price indexes. The increase in the

horsepower of cars and increases in the processing power and memory of computers over recent

decades are prominent examples of large quality changes of goods. Ideally, quality-adjusted price

indexes take the changes of quality into account and express the price per efficiency unit. Several

earlier papers, e.g. Griliches (1961); Gordon (1990), point out the lack of an appropriate quality

adjustment of the NIPA price indexes of equipment. The BEA has addressed the problem of quality

adjustment over the last three decades and developed price indexes that account for quality changes

using various techniques such as hedonic regressions.25 The price indexes of fast improving types of

equipment such as computers and peripherals have used hedonic-based quality adjustments since

the 1980s. I further account for possible quality changes by using the quality adjustment from

Cummins and Violante (2002). This adjustment accounts for the measured quality difference in

the underlying components of the price index of capital goods from Gordon (1990) until 1983 and

extrapolates the adjustment to recent years.

Consistent with previous literature, e.g. Fisher (2006), I document a positive mean of the I-shock

measure, indicating a secular trend of decreasing prices and increasing quality of capital goods. I

provide a full set of summary statistics of the I-shock measure in online appendix table IA.10.

The I-shock measure correlates strongly with the TFP shock of industries producing the capital

goods. The correlation with TFP shock of industries producing consumption goods is practically

zero. This result is in line with the theoretical foundation of this measure. The correlation with

the aggregate TFP shock is negligible. This reflects the fact that industries producing the capital

goods comprise a relatively small part of the U.S. economy. The I-shock measure has a positive

correlation with the GDP growth. This is consistent with previous papers showing that prices of

capital goods are an important driver of economic growth, Fisher (2006); Greenwood et al. (2000).

The dashed blue line in figure 6 plots the normalized time-series of the I-shock measure from

1970 to 2015.26 The most prominent and pervasive technology shock during this period was from

25Wasshausen, Moulton, et al. (2006) provide a brief overview of the use of hedonic methods by the BEA to measure
real GDP; Fox and McCully (2016) provide detailed information about the price indexes for all types of equipment
and discusses the quality adjustments employed by BEA.

26The solid red line is a factor mimicking portfolio that is describe in sections III.
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1997 to 2001. During these years, the normalized I-shock measure recorded a cumulative increase

of 5.71 standard deviations. This increase was driven mainly by a large drop in the quality-adjusted

prices of information processing equipment. The prices of this equipment decreased by 40 percent,

while the prices of personal expenditures for nondurables increased by 8 percent. Since information

processing equipment accounted for one third of total private investment, the aggregate price index

of capital goods decreased by 15 percent. The massive drop in the prices of information process-

ing equipment can be tracked back to a significant productivity growth (TFP shock) in a single

manufacturing industry. The electronic computer manufacturing industry recorded an increase in

productivity of 216 percent. The remaining manufacturing industries, including consumption goods

producers, experienced only moderate productivity growth of 5.33 percent.27

I link all other major shocks in the I-shock measure to the differential productivity growth of

a small number of capital goods producing industries in online appendix table IA.12.28 I show in

online appendix table IA.12 that the whole time-series of the I-shock measure can be approximated

by differential productivity growth of capital producing industries. This evidence provides validity

to the theoretical foundation of the I-shock measure as an appropriate measure of technology shocks

embodied in capital goods.

D. I-shock as an Income State Variable

I show in a companion paper Knesl (2018) that technology shocks embodied in capital, measured

by the changes in relative prices of capital goods, are an important source of job displacement and

labor income risk. Lower prices and higher quality of capital goods allow substituting capital for

labor in occupations that have the potential to be automated. Hence, technology shocks embodied

in capital are an important state variable indicating the risk in labor income of households. This

result is broadly in line with other papers investigating the impact of innovation and technological

progress on labor income, e.g. Kogan et al. (2017). I provide a concise illustration of this result

below. I refer the reader to the papers mentioned above for detailed results.

Panel A of table II reports the results of regressing contemporaneous and future changes in

personal income, private fixed investment in equipment and employment on the I-shock measure

and aggregate productivity shock. Specifically, I estimate the regression of this form

1

K + 1

K∑
k=0

yt+k − yt+k−1 = α+ γIshock × Ishockt + γTFP × TFPt + εt+k, (25)

where yt is the log level of nominal personal income, private fixed investment, or total nonfarm

employees.29 Ishockt is the I-shock measure representing the change from t−1 to t. The TFPt is the

27The calculations are based on the data from the NBER-CES Manufacturing Industries database Bartlesman and
Gray (1996) and the Input-Output Accounts data from the U.S. Bureau of Economic Analysis

28See also Greenwood and Yorukoglu (1997) for a detailed discussion of the positive technology shock in 1974.
29I use nominal personal income to avoid a potential mechanical effect of deflating as the I-shock measure contains

changes in prices of consumption goods in its numerator. The estimation results based on nominal personal income
represent lower bound.
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change in the aggregate productivity over the same time period. I estimate the regression at annual

frequency from 1970 to 2015 for time horizons K = 0, 1, and 2. The results are robust to controlling

for lagged dependent variable and alternative specifications. The first three columns show that a

positive technology shock embodied in capital (I-shock) is associated with an immediate increase

in investment in equipment that fades away in the subsequent years. The estimates in columns

(4)-(6) indicate that the I-shock leads to a significantly lower employment in the first and second

year after the shock. The last three columns then show that a positive I-shock is also associated

with lower personal income growth.

[Place Table II about here]

Looking only at the aggregate average income growth can hide potentially important effect of

technology shocks on individual personal income growth. To examine the effect of the I-shock

on higher moments of cross-sectional distribution of individual income, I estimate the regression

equation 25 with changes in the first three central moments of the cross-sectional distribution of

individual income growth as the dependent variable using the data from Guvenen, Ozkan, and Song

(2014).30 Panel B of table II presents the estimates. The first three columns verify that the I-shock

has a negative effect on the average income growth as documented in panel A. Columns (4)-(6)

show the standard deviation increases only slightly following a positive I-shock. The last three

columns show that a decrease in prices of capital goods, a positive technology shock, has the most

negative effect on the skewness of individual income growth. A positive technology shock embodied

in capital significantly increases the left skewness of the income growth distribution. Individuals

are more likely to experience large drops in personal income in years following a positive I-shock.

This result is in line with Knesl (2018) in showing that a positive I-shock increases the prob-

ability of losing job. Large negative idiosyncratic shocks to income growth such as job loss are

then pronounced in higher moments of income growth distribution as shown above. This sup-

port the assumption of the state dependent idiosyncratic labor productivity risk in the theoretical

model presented earlier. Higher moments of the cross-sectional distribution of individual income

growth play a central role in pricing assets in incomplete markets when agents face uninsurable

income risk. Constantinides and Duffie (1996) derive a theoretical model of incomplete markets

with heterogeneous agents and uninsurable idiosyncratic income risk where the second moment

of the cross-sectional distribution of individual labor income enters the stochastic discount factor.

Constantinides and Ghosh (2017) show that the third central moment of individual income growth

drives asset prices and risk-free rate.31 Schmidt (2016) provides evidence that the idiosyncratic tail

risk of income growth is state-dependent and predicts stock returns, and further shows that a model

with state-dependent, time-varying idiosyncratic disaster risk and incomplete markets matches the

30Estimating the regression equation (25) with levels of the central moments as dependent variables provides similar
results. The results are similar when I control for lagged dependent variable.

31The theoretical model in Constantinides and Ghosh (2017) assumes that households consumption equals house-
holds labor plus dividend income, where the labor income is subject to uninsurable idiosyncratic shock. The model
is estimated using individual consumption data from the Consumer Expenditure Survey
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key asset pricing moments.

III. Technology Shocks and Displaceable Labor

A. Co-movement

I sort stocks into five portfolios based on their share of displaceable labor (AP) to examine

the time-series and cross-sectional properties of stock returns associated with firms’ automation

potential. I report the summary statistics of firm characteristics in each portfolio in online appendix

table IA.15. The first portfolio consists of stocks with the highest AP. These firms also have high

average labor intensity and a high percentage of employees in routine occupations. The average AP

measure then decreases from -2.9 in the first portfolio to -5.9 in the fifth portfolio. The portfolios

are rebalanced annually at the end of June and portfolio returns are value-weighted unless stated

otherwise.

[Place Figure 6 about here]

Figure 6 plots the I-shock measure and the annual stock return difference between firms with

low and high displaceable labor share, i.e. long-short portfolio with a long position in the bottom

quintile of firms ranked by the AP measure and a short-position in the top quintile, the KML

portfolio. These two time-series co-move very strongly and overlap in all spikes. The correlation

coefficient is 0.60. This strong co-movement is a robust feature of the data and it is present across

various samples of firms. It holds when I exclude firms producing capital goods from the sample

and it is present independently among both, manufacturing and non-manufacturing firms. The

co-movement is also not driven by firms’ operating leverage or size (see figure IA.4 and table

IA.22 in the online appendix for the long-short portfolio consisting of firms in these samples as

well as portfolios controlling for operating leverage and size). This results indicates a very strong

connection between macroeconomic variable measuring changes in capital goods prices and the

dynamics of stock returns.

I first examine whether the co-movement of the KML portfolio with the I-shock measure is

driven by ranking individual firms relative to industry peers or by ranking whole industries across

the economy. Table III reports the correlation coefficients between the I-shock measure and the

long-short portfolios based on the within- and between-industry variation in displaceable labor

share, AP. The correlation is strong, 0.53-0.59, for long-short portfolios based on ranking whole

industries. It is weak for long-short portfolios of firms ranked relative to industry peers. This is

in agreement with the dominance of the between-industry variation in the AP measure discussed

above (see panel C in table I). Both pieces of evidence underline the role of displaceable labor share

as an industry characteristic.

[Place Table III about here]
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I next examine how the exposure to technology shocks varies across the five portfolios. Panel

A of table IV reports the results from regressing annual portfolio returns on a constant and the I-

shock measure. The first portfolio, consisting of stocks with the highest share of displaceable labor,

has the strongest and most negative exposure to technology shocks. The estimated coefficients

are negative for all five portfolios. They increase monotonically across all portfolios from -3.4 for

the first portfolio to -1.0 for the fifth portfolio. The estimated coefficients are economically large

and statistically significant for the first four portfolios. This result indicates that the strong co-

movement of the KML portfolio with the I-shock measure is generated by stocks with high share

of displaceable labor. These stocks react negatively to technology shocks. The KML portfolio, i.e.

Low-High AP, then exhibits positive and significant exposure to technology shocks of 2.3.

[Place Table IV about here]

Panel B in table IV repeats the analysis controlling for the aggregate market return. The first

portfolio has still the strongest and most negative exposure to technology shocks. The pattern

of the estimated coefficients remains monotonic across the portfolios. A notable difference is that

all coefficients of the I-shock measure are shifted up so that the fifth portfolio has a positive and

significant exposure. The coefficients of the I-shock measure across the first three portfolios remain

negative and statistically and economically significant. The KML portfolio has a positive and

significant exposure to technology shocks of same magnitude, 2.4. The major part of this exposure,

1.6, comes again from the short position in the first portfolio consisting of firms with high share of

displaceable labor.

Regressions in panel C control additionally for the size (SMB) and value (HML) factors as

defined by Fama and French (1993). The results are very similar. The estimated coefficients of

the I-shock measure increase monotonically across the portfolios from -1.4 for the first portfolio to

0.56 for the fifth portfolio. These results show that standard factors cannot explain the differential

exposure to technology shocks across portfolios containing firms with low and high displaceable

labor share. I show in online appendix table IA.14 that the results are also not driven by the

profitability and investment factors of Fama and French (2015), the return difference between

capital goods and consumption goods producers (IMC) of Papanikolaou (2011) and aggregate

economic growth.

The findings in this section document that technology shocks embodied in capital have a strong

and negative impact on firms with high share of displaceable labor. These firms are generally

labor-intensive with relatively low capital but high use of labor that can be easily automated.

Firms with low displaceable labor share usually have high capital or not easily replaceable labor

and weak exposure to technology shocks. The results on firms’ exposure presented in this section

are consistent with the predictions of the theoretical model.
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B. Firms’ Exposure to Technology Shocks

The previous section shows that the stock return differences between firms with low and high

displaceable labor share, the KML portfolio, strongly correlate with the time-series of technology

shocks, the I-shock measure. Hence, the KML portfolio is a reasonable, stock return-based measure

capturing the time-series variation of technology shocks. I use the KML portfolio to estimate firms’

exposure to technology shocks directly from the stock returns. Specifically, for each firm I estimate

the exposure to technology shock, βKML
i , from a rolling regression:

ri,t = αi + βKML
i rKML,t + εi,t, (26)

where ri,t denotes firm i′s monthly excess return and rKML,t is the monthly return on the KML

portfolio. I estimate this regression for every stock in the sample each year at the end of June using

monthly returns over the last 60 months.32 This method allows the βKML
i vary over time. The

results reported below are robust to including market excess return and the size, and value factors

of Fama and French (1993) as control variables in regression equation 26.33

Technology shocks are a significant source of labor income and job displacement risk. The I-

shock measure is a state variable indicating the labor income and job displacement risk, especially

the risk of large adverse idiosyncratic events such as job loss that are pronounced in the higher

moments of income growth distribution. The βKML
i measures stock’s exposure to the labor income

risk directly from the covariances of the returns with the state variable. Hence, sorting stocks on the

βKML
i is conceptually different from sorting stocks on the share of displaceable labor, AP. Although

these two variables are related and correlate strongly, βKML
i captures stock i′s co-movement with a

state variable that is highly relevant for investors marginal utility. The differences between sorting

on characteristics and sorting on covariances has been discussed in number of previous studies, e.g.

Daniel and Titman (1997).

I next examine the properties of the portfolios sorted by the βKML. Each year at the end

of June, I sort stocks into five portfolios by their βKML and hold the stocks in a given portfolio

from July of year t to June of year t+1. Panel A of table V reports the post-ranking exposure

to the I-shock measure across the portfolios. The exposure is estimated from regressing each

portfolio’s annual value-weighted return on a constant and the I-shock measure. The first portfolio

consisting of stocks with low βKML has strongly negative and significant exposure to the I-shock

measure. The coefficients are then increasing, absolute values are decreasing, across the portfolios

almost monotonically. The sole exception is the second portfolio, which has slightly more negative

exposure to the I-shock than portfolio one. This result shows that βKML successfully estimates

firms’ exposure to the underlying state variable, the I-shock measure. Firms’ exposure to the KML

portfolio predicts the exposure to the I-shock measure at horizon of at least one year. Panel B

shows additional properties of stocks within each portfolio. The fifth portfolio contains stocks with

32I require the stock to have at least 30 observations in the last 60 months.
33The results are also robust when the KML portfolio is orthogonalized to the factors of Fama and French (1993).
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relatively low share of displaceable labor compared to stocks in portfolio one. This is consistent

with low displaceable labor-share firms having weaker exposure to technology shocks.34 The book-

to-market ratio and market betas are slightly decreasing across the portfolios, while firm size is

somewhat increasing. Other characteristics are flat across the portfolios or do not exhibit a clear

pattern.

[Place Table V about here]

IV. Exposure to Technology Shocks and Return Premium

In this section, I investigate whether a stock’s expected return is related to the exposure of its

returns to technology shocks, βKML. I estimate the stock return premium using the cross section

of stocks. Then I examine the time variation and predictability of the premium. Finally, I show

that stocks exposure implies differential employment and investment behavior consistent with the

mechanism in the model.

A. Return Premium

To examine whether differences in stocks’ exposure to technology shocks are associated with

differences in their average returns, I sort stocks into five portfolios according to their βKML as

described in the previous section. For each portfolio, I calculate a time-series of monthly portfolio

returns as value-weighted average returns (unless stated otherwise) across all stocks in the portfolio

in a given month. The sample period is from 1975 to 2015.35

[Place Table VI about here]

Panel A of table VI reports the average annualized portfolio excess returns. The first portfolio

has the highest average excess return, 12.45%. This portfolio consists of stocks with the most

negative βKML. The average excess returns decrease monotonically across the portfolios. The

long-short, High-Low βKML, portfolio earns a negative premium of -6.85% per year. This premium

is statistically and economically significant.

The results are very similar for equally-weighted portfolio returns, reported in panel B. The

average excess returns decrease monotonically across the portfolios, although the return differences

are smaller. This results in a somewhat smaller return premium of the High-Low βKML portfolio,

-4.29% per year. The return premium is still statistically and economically significant.

I next examine whether the return differences can be explained by different exposures to ag-

gregate market risk. Panel C reports the results of regressing the portfolio monthly returns on a

constant and the market excess return. The estimated intercepts, alphas, exhibit similar pattern

34I show the time-series of the contemporaneous correlation between the share of displaceable labor AP and the
βKML at firm and industry level in appendix figure IA.5.

35The first five years 1970-1975 are used to estimate the βKML for portfolios formed in June 1975.
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as average excess returns. The first portfolio has the highest alpha of 2.97% per year. The alphas

decrease monotonically across portfolios. The High-Low βKML earns a significant and negative al-

pha of -5.39%. Although the estimated coefficients of the market returns decrease somewhat across

the portfolio, the differences in exposure to aggregate market risk cannot explain the differences in

average returns.

Panel D reports estimates of regressions that include also the size (SMB) and value (HML)

factors of Fama and French (1993) to control for potential exposure to these factors. The estimated

alphas are slightly smaller in their magnitude when compared to panel C, but the overall result is

similar. The alphas decrease across the portfolios almost monotonically. The only exception is the

second portfolio, whose alpha marginally exceeds the alpha of the first portfolio. The alpha of the

High-Low βKML portfolio is -3.6% and is significant at the 10% level. Although the coefficients

of the SMB factor also decrease across the portfolios, the differences in the exposure SMB factor

do not explain the return premium. The pattern in the SMB coefficients is consistent with the

evidence in table V indicating increasing stock size across the portfolios.

I repeat this analysis for the constituents of the S&P500 index, which are the largest and most

liquid stocks in the U.S. stock market. The results are very similar. They indicate a return premium

for High-Low βKML portfolio between -7.16% and -4.75% (see table IA.16 in the online appendix).

Hence, the results do not depend on the presence of small and illiquid stocks.36

I next use panel regressions with firms’ annual stock returns to differentiate the return premium

for stocks’ exposure to technology shocks, βKML, from well-known cross-sectional return predictors.

Specifically, I run panel regressions at the firm level:

Ri,t+1 = α+ γβKML
i

× βKML
i,t +

∑
n

γn ×Xi,n,t−1 + Y eart + εi,t+1, (27)

where Ri,t+1 is firm i′s annual stock return from July of year t to June of year t + 1, βKML
i,t is

a firm’s exposure to technology shock at the end of June of year t, Xi,n,t−1 are firm-level control

variables at the end of year t− 1, and Y eart is year fixed effect.37

Table VII presents the results of estimating the panel regression 27. The specification in column

(1) includes only a constant and βKML. The estimated coefficient is negative and strongly signif-

icant. The coefficient implies an average return differential of -8.71% per year between firms with

high and low βKML.38 Including the year fixed effect, column (2), leads to a lower coefficient that

36The results are also very similar when the stocks are sorted into portfolios based on βKML that is estimated
from multivariate rolling regressions including the size (SMB) and value (HML) factors of Fama and French (1993)
as control variables (see table IA.17 in the appendix).

37The control variables Xi,n,t−1 that are based on data from firms’ financial statements, i.e. book-to-market ratio,
cashflow, financial leverage, price-to-cost margin, profitability, and size, are calculated from financial statements for
fiscal year ending in year t − 1. This allows a lag of 6-18 months for the information to become publicly available.
Market betat−1 is estimated over the last 60 months ending in June of year t. Turnover is calculated over the calendar
year t− 1.

38I calculate the average return differential by multiplying the estimated coefficient of βKML, -3.829, with the
average difference in βKML between the 95th and 5th percentile, 2.275. The average difference in βKML is calculated
as time-series average of contemporaneous differences in βKML between the 95th and 5percentile. The implied return
premium for the average difference in βKML between the 75th and 25th percentile is -4.826%.
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implies a return premium of -3.64%. Columns (3)-(10) show results for regressions that include

βKML, year fixed effect and one of the control variables Xi,n,t. Each of these control variables has

only a negligible impact on the estimated coefficient of βKML. The coefficients are negative and

significant across the specifications with different control variables. The implied return difference

between firms with high and low βKML ranges from -3.29% to -4.62% per year. The regression

in the last column controls jointly for all variables Xi,n,t and the year fixed effect. The estimated

coefficient of βKML remains negative and statistically significant. The slightly higher magnitude

implies an annual return premium of -4.8%.

[Place Table VII about here]

The estimated coefficients of βKML imply a similar return premium for firms’ exposure to

technology shocks as the portfolio analysis described above. I show in online appendix table IA.18

that the estimation results are similar for the constituents of the S&P500. The coefficient of βKML

is also robust to controlling for additional firm- and industry-level variables (see appendix tables

IA.23 and IA.24).

The panel regressions assume a strictly linear relationship between stock returns and the cross-

sectional return predictors. To control for a potentially non-linear relationship, I use conditional

double sorts. Specifically, in the first step I sort stocks into three baskets based on the value of the

control variable. In the second step, I sorts the stocks within each of these baskets again into three

additional baskets according to the βKML. This creates a total of 9 baskets. I then create three

portfolios by pooling all stocks in the βKML-based baskets with the same rank. This procedure

creates portfolios sorted on βKML that are relatively independent of the return predictors used in

the first step.39

Table VIII reports the average value-weighted portfolio returns. I first report the average

portfolio returns for unconditional sorting on βKML, column (1). The average return differential

based on unconditional sorting into three portfolios is -6.6% per year. Column (2) shows results

for βKML-sorted portfolios conditional on the book-to-market ratio. The portfolio with the low

βKML stocks has the highest average return of 10.83% per year. The average return decreases

monotonically across the remaining two portfolios. The conditional High-Low βKML portfolio

earns a statistically and economically significant return premium of -5.23% per year. This return

premium is relatively independent of the differences in firms’ book-to-market ratio. Columns (3)-

(9) show that conditioning the portfolio sorts on other cross-sectional return predictors provides

very similar results. The average portfolio returns decrease across the portfolios. The premium

for the High-Low βKML portfolio ranges between -4.21% and -5.43% per year and is statistically

significant and economically large. Results based on the constituents of S&P500 are very similar

(see appendix table IA.19). The return premium is also robust to conditioning on other firm- and

industry-level variables (see appendix table IA.25 and IA.26). For a comparison, the last column

39In an alternative approach, I first calculate time-series of value-weighted portfolio returns for each of the nine
conditionally-sorted portfolios. I then create three portfolios by calculating a simple average across the βKML-sorted
portfolios with the same rank. The results based on this approach are very similar.
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shows the premium for the book-to-market ratio conditional on firms’ size. The conditional value

premium is 2.15% but not statistically significant.

The portfolio return analysis, panel regressions and conditional double sorts imply similar return

premium for firms’ exposure to technology shocks. The latter two methods show that the return

premium is not driven by linear or non-linear relationship with well-known cross-sectional return

predictors.

[Place Table VIII about here]

B. Time Variation and Predictability of the Return Premium

In this section, I examine whether the return premium varies over time and is predictable. As

mentioned above, technology shocks are an important source of labor income and job displacement

risk and the I-shock measure predicts higher moments of individual income growth distribution.

Hence the I-shock measure can be considered a state variable for households’ marginal utility. This

evidence gives rise to the consideration that a return premium of an asset with a strong exposure

to the technology shock is predictable by this state variable.

I use the I-shock measure to forecast the return premium of the Low-High βKML portfolio. I

focus on the Low-High βKML instead of High-Low βKML portfolio to facilitate the interpretation

of the return premium. This portfolio has negative exposure to technology shocks and earns a

positive return premium (see table VI). Specifically, I run forecasting regressions of the cumulative

log return premium for the Low-High βKML portfolio,
∑y

s=1 r
βKML

t+s , over y years, on the I-shock

measure Ishockt:

y∑
s=1

rβ
KML

t+s = a(y) + b(y)Ishockt + e
(y)
t+y. (28)

Panel A of table IX reports the estimation results of the forecasting regression for the one-

to five-year cumulative log return premium of the Low-High βKML portfolio. The estimated co-

efficients have the expected positive sign; a decrease in relative prices of capital goods - positive

technology shock increases the return premium. The estimated coefficients are marginally statisti-

cally significant for return horizons of two, three and four years. The magnitude of the coefficient

is economically important. For example, a positive technology shock of one standard deviation

increases the expected two-year return by 2.4%. Panel B shows the results of the forecasting re-

gressions that include additional forecasting variables. The estimated coefficient of the I-shock have

similar magnitude and remain statistically significant for the same return horizons.

[Place Table IX about here]

Figure 7 plots the I-shock measure and the subsequent realized three-years cumulative log return

premium of the Low-High βKML portfolio. The return premium varies over time together with the
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I-shock measure. Both time-series overlap relatively closely. Periods of substantial decreases in the

relative prices of capital goods predict a high return premium for the Low-High βKML portfolio.

[Place Figure 7 about here]

As discussed above, labor income and job displacement risk are high in states of large positive

technology shocks. This evidence suggests that the time-varying return premium can be compen-

sation for this type of risk. Households will seek a return premium for assets that have negative

exposure to states of high labor income risk. The time variation of the return premium between

the states of high and low technology shocks supports this explanation.

C. Firms’ Responses to Technological Shocks

The evidence in earlier sections shows large differences in firms’ risk exposure to technology

shocks. In this section, I investigate whether firms with different exposure to technology shocks

differ also in their employment, investment, sales and financial performance when the relative prices

of capital goods decrease. Costly employment and capital adjustments, and changes in firms’ sales

following technology shocks can affect firms’ financial performance and contribute to firms’ risk

exposure. To explore this mechanism, I estimate panel regressions in the form:

∆yi,t+s = b0 Ishockt + b1 I
βKML

i,t + b2 Ishockt × Iβ
KML

i,t (29)

+controlsi,t + TFPt + Trendt + ei,t+s,

where ∆yi,t+s is the firm i′s percentage change in employment, capital, capital-labor ratio, sales,

percentage points change in return on capital, or return on equity between years t and t + 3,

Ishockt is the I-shock measure in year t, Iβ
KML

i,t is an index between 0 and 9 indicating the decile of

cross-sectionally ranked firms’ exposure to technology shock, βKML
i,t , and Ishockt × Iβ

KML

i,t is their

interaction term. Controlsi,t is a set of firm-specific control variables consisting of firms’ capital

Ki,t, age Agei,t, market capitalization Sizei,t, firm fixed effects, and a lagged dependent variable

at one-year horizon t − 1 to t. The regressions include TFP shock TFPt and deterministic trend

Trendt as aggregate control variables.

Panel A of table X reports the results of estimating regression equation (29) for changes in em-

ployment, capital and capital-labor ratio. The first column shows that a positive technology shock

on average decreases firms’ employment. The coefficient of the I-shock measure is negative, statis-

tically significant and economically large. The effect of the technology shock differs significantly

across firms with different βKML
i,t . The positive coefficient of the interaction term Ishockt× Iβ

KML

i,t

indicates that the effect is stronger for firms with negative exposure to technology shocks. In the

next two columns, I split the sample in halves based on firms βKML and estimate the panel regres-

sion (29) without the interaction term. Firms in the first half have strongly negative exposure to

technology shocks, while firms in the second half have only mild exposure that is much closer to
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zero (see table V). The results show that firms with strongly negative exposure decrease employ-

ment following a positive technology shock. At the same time, employment is on average constant

in firms with mild exposure over the same time horizon. The following three columns show that

technology shocks increase firms’ capital. The effect is approximately equal for firms with strongly

negative and mild exposure. This result is consistent with evidence discussed above (see table II)

and indicates that lower quality-adjusted relative prices of capital goods lead to higher investment.

The last three columns show that technology shocks increase firms’ capital-labor ratio. The effect

is again stronger for firms with strongly negative exposure.

[Place Table X about here]

As described earlier, firms with strongly negative exposure to technology shocks are generally

firms with very high share of displaceable labor (see table V). The results indicate that these

firms indeed adjust, potentially automate, their production processes by decreasing the number of

employees and investing in capital when a technology shock occurs.

Panel B reports the results of the percentage changes in sales and percentage point changes in

return on capital and return on equity. The first column shows that a technology shock has negative

impact on firms’ sales. The estimated coefficient is statistically and economically significant. The

following two columns show that the effect is stronger for firms with strongly negative exposure.

The estimated coefficient of the I-shock measure is more than twice as large for firms with strong

exposure compared to firms with mild exposure. The next three columns show that lower relative

prices of capital goods decrease firms’ return on capital. This effect is again larger for firms with

strong risk exposure. The estimates in the last three columns indicate also negative and strongly

differential effect of technology shock on the return on equity. Firms with strongly negative exposure

experience decreases in return on equity almost twice as large as firms with mild exposure. The

estimated coefficients are statistically significant and economically large.

I repeat the analysis for different time horizons. I report the results for a time horizon of three

years in appendix table IA.27. The results are qualitatively very similar. The estimated coefficients

are generally larger as they refer to changes compounded over three years. These results indicate

that the differential effects of technology shocks between firms with strong and mild risk exposure

are not driven by potential lead-lag differences in firms’ responses.

The theoretical model presented earlier highlights the importance of competition for the eco-

nomic mechanism how technology shocks affect firm value through costly technology adoption.

Hence, one can easily develop an intuition that the effects of technology shocks will be larger in

highly competitive industries. I next investigate whether the effects of the technology shocks differ

between firms in highly competitive and less competitive industries. To test this conjecture, I split

the sample into two halves by the degree of competition and estimate the panel regression (29)

without the interaction term for firms with strong and mild exposure within each half separately. I

measure the degree of industry competition by the Herfindahl-Hirschman index of sales at the level

of SIC 3 digit industries.
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Panel A of table XI reports the results for percentage changes in employment and capital. The

estimated coefficients have the same sign as discussed earlier. A positive technology shock decreases

firms’ employment and increases capital. For firms with strongly negative exposure, these effects

are stronger in highly competitive industries. For firms with mild exposure, the effect on capital is

stronger in highly competitive industries, but the effect on employment is weaker.

[Place Table XI about here]

Panel B reports the results for percentage changes in capital-labor ratio and sales. The estimated

coefficients of the I-shock measure have uniformly higher magnitude in highly competitive industries

for both firms with strong and mild exposure. Firms with strongly negative exposure increase their

capital-labor ratio upon the occurrence of a technology shock more if they are in highly competitive

industries. These firms experience also more severe decrease in sales in comparison to firms in less

competitive industries. This pattern holds equally for firms with mild exposure.

In panel C, I report the results for percentage point changes in return on capital and return on

equity. The effects of the technology shocks on these two variables are generally more pronounced

in highly competitive industries. Firms experience a stronger decrease in the return on capital as

well as in the return on equity if they are in more competitive industries.

The findings in this section document that firms with differential exposure to technology shocks

have different employment and capital adjustment in years following a decrease in prices of capital

goods, while financial performance is also affected. Firms with strongly negative exposure have

generally high share of displaceable labor and tend to increase their capital-labor ratio after tech-

nology shocks. During this process they experience lower sales, return on capital and return on

equity. This evidence indicates that the risk exposure to technology shocks reflects firms’ financial

underperformance after the shocks. Industry competition generally increases the observed effects.

V. Conclusion

The potential of capital to substitute some types of labor and complement others plays a central

role in economic models that study the effects of technological change. I find that firms’ potential to

automate the production process is also an important determinant of firms’ exposure to technology

shocks. Technology shocks embodied in capital are an important driver of stock returns with a

differential impact over the cross section of stocks.

I show theoretically that the firms’ share of displaceable labor that can be automated by cap-

ital can increase firms’ riskiness in a competitive environment. Firms in industries with high

displaceable labor share have negative exposure to technology shocks that facilitate automation.

Automation becomes a costly necessity for firms to stay competitive as competition eliminates its

benefits for firms and passes them to the consumers in form of lower product prices. This result is

strongly supported by empirical evidence.
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I show empirically that firms with high share of displaceable labor have very strong and negative

exposure to technology shocks. I document that a macroeconomic measure of technology shocks

based on prices of capital goods can be successfully approximated by stock returns of a zero-cost

portfolio based on firms’ share of displaceable labor and this portfolios has captured all major

technology shocks over the last four decades. I further show that firms exposure to technology

shocks that facilitate automation earn a robust and time-varying return premium that can be

empirically and theoretically rationalized as a compensation for households’ job displacement and

labor income risk. The exposure to technology shocks is associated with firms’ adjustment of

the capital-labor ratio and underperformance after a decrease in relative prices of capital goods

consistent with the model prediction.

My model abstracts from other interesting economic aspects such as market entry, differential

ability to adopt new technology or operating leverage, which are certainly relevant in some real

world scenarios and worth exploring both empirically and theoretically. Future research can also

focus on a multiperiod fully dynamic setting of my model with endogenous arrival of technology

shocks. Such model can deliver richer implications for asset prices as well as implications for

differential growth between heterogeneous industries.
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Appendix A. Equilibrium and Market Clearing Conditions

The CES aggregator technology at the sector implies optimal demand functions for the firm-

specific goods of the form:

Yf,s,t =

(
P lf,s,t
Ps,t

)−ν
Ys,t and Yf,s,t =

(
P kf,s,t
Ps,t

)−ν
Ys,t for s = 1, 2 and t = 1, 2 (A1)

The CES aggregator technology at the aggregate level implies optimal demand function for the

sector-specific goods of the form:

Ys,t =

(
Ps,t
PA,t

)−ρ
YA,t (A2)

Market clearing condition for the aggregate good is defined as

Nh∑
h=1

ch,t = YA,t (A3)

Market clearing on the labor markets is defined as:

Ll1,1 =

Nh∑
h=1

Lh,1,1

Ll1,2 + Lk1,2 =

Nh∑
h=1

Lh,1,2

Lk1,t =

Nh∑
h=1

Lh,2,t for t = 1, 2

(A4)

where the Lls,t is labor used directly in goods production in sector s and Lks,t is labor used in

production of capital in sector s. The market clearing on the investment capital market is:

N∑
f=1

Kf,1,21{Automated = Y es}f,1,2 = Kα
1,t

N∑
f=1

Kf,2,t = Kα
2,t for t = 1, 2.

(A5)

Appendix B. The O*NET Database

The O*NET database provides a comprehensive set of characteristics describing occupations in

a number of dimensions such as workers’ abilities, skills, knowledge and experience, work values,

work styles, work activities, etc. The O*NET collects the underlying data in a two-stage design.

First, O*NET selects a statistically random sample of businesses that are expected to employ

targeted occupations. Second, it selects a random sample of workers in the targeted occupations
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within those businesses and collects the data by surveying the job incumbents using questionnaires.

Additional variables such as variables describing skills and abilities are developed from the workers’

responses by occupational analysts. O*NET continuously updates the occupational characteristics

by ongoing surveys and provides updated occupational characteristics in new database releases

quarterly/semi-annually starting from 2003. This procedure allows to track the changes in occu-

pational characteristics. The first releases of the O*NET database before 2003, however, are based

on the data from Dictionary of Occupational Titles (DOT), which is a predecessor of O*NET. The

underlying data in DOT refers to years 1991 (revised 4th edition) and 1977 (4th edition). The

number of occupations in the O*NET database releases varies between 812 and 1122 occupations

depending on the occupational classification used in each database release. The occupations are

currently classified by the 2010 O*NET - Standard Occupational Classification (O*NET SOC) that

is a refined classification based on 2010 Standard Occupational Classification (SOC). 40

Appendix C. Validity and Robustness of the RTI Measure

The construction of the RTI measure involves some degree of subjectivity in selecting the un-

derlying descriptors as well as in the aggregation of the task inputs into one number expressing the

routine task intensity. To address the potential concerns stemming from the freedom of selecting

the underlying descriptors, I constructed alternative RTI measures from subsets and extended sets

of descriptors and found that alternative measures identify routine and non-routine occupations in a

very similar way. An aggregation of the underlying task inputs without logarithmic transformation

as in formula 24 also generates very comparable RTI measure. I also compare my RTI measure with

the original RTI measure from Autor and Dorn (2013). When matched to the common occupa-

tional classification, the measures have strong positive correlations across the occupations. Routine

intensive occupations identified by each of these measures overlap and the overlap is also strong for

non-routine occupations. The fact that these measures are constructed from different data sources

and using different occupational characteristics but still succeed to identify the occupational routine

task intensity in a very similar way increases the validity of these measures. Despite these validity

and robustness checks, the use of the RTI measure still requires caution. First the underlying data

can still be subject to some measurement errors and the selected descriptors may not necessarily

describe all dimensions of routine intensity or automation potential of a given occupation. Second

the RTI measure is defined only up to the occupational level and hence omits any variation in the

routine task intensity across workers in the same occupation or of the same occupation across differ-

ent firms. Given these concerns, the RTI measure has to be considered as an imprecise measure of

the routine tasks and automation potential.41 Second, the given specification of the RTI measure is

still time- and technology-dependent. Although, I use multiple data sources that update the occu-

40The previous releases of the O*NET database are based on previous versions of O*NET-SOC, namely 2000, 2006,
and 2009. The first release of the O*NET database in 1998 uses O*NET 98 OU classification that is based on the
Occupational Employment Statistics classification (OES classification).

41David (2013) discusses the challenges of measuring task inputs in more detail.
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pational characteristics over time, the choice of the underlying descriptors reflects the current and

past state of the technology. For instance, ’Operating vehicles, mechanized devices, or equipment’

is used as a descriptor of non-routine manual task input. Using this measure, occupations such as

bus, truck, and taxi drivers or commercial pilots are ranked as non-routine which reflects the state

of the technology in most of the 20th century. The advances in technology, however, change the

character of these occupations towards more routine intensive and potentially automatable. For

example, various version of autopilots are widely used in commercial airplanes and their capabilities

to assist during different phases of the flight have been constantly increasing. Similarly, a number

of tasks involved in driving a car or truck, such as manually changing the gears or navigation, have

been automated or significantly facilitated. Currently a number of companies both within and

outside of car manufacturing are developing and testing systems for autonomous/automated vehi-

cles. Given the ongoing changes in the available technology, this descriptor, ’Operating vehicles,

mechanized devices, or equipment’, may be re-classified to measure routine manual input in near

future.

I match the RTI measured at the occupational level to firm-level observations by the OES

conducted by Bureau of Labor Statistics. OES provides detailed tables of occupational composition

of the labor force at a detailed industry level starting from 1988. The industries are classified at

SIC 3-digit or NAICS 4-digit level across the whole U.S. economy. The number of industries

ranges between 290 and 378.42 I extrapolate the occupational composition from the first OES

releases to the years before 1988 to extend my sample to 1970. To translate the RTI measure

from occupational level to industry level, I calculate for each industry the percentage of employees

employed in routine intensive occupations. I define routine intensive occupations as occupations

above the top employment-weighted tercile of occupations ranked by RTI score in a given year.43

I report the exact match of the underlying OES file and the corresponding release of the O*NET

database in the online appendix table IA.21. I transform the RTI from industry to firm level by

imposing the percentage of employees in routine occupations in a given industry to all firms in that

industry. Since the main focus of this paper is on the between-industry variation, the omission of

the intra-industry variation in the RTI is not a limitation. Moreover, I will show in the subsequent

text that there is a strong relationship between labor-intensity and routine task intensity.

To validate the AP measure, I examine whether it can predict future automation. Automation,

generally, refers to the substitution of machines or equipment for human workers in performing

specific tasks. This can be reflected in various adjustments such as higher use of machines, reduction

of employment and/or changes in the use of technology by specific occupations. Table IA.8 in

online appendix shows that industry’s share of routine labor predicts the use of information and

communication equipment (ICT) per worker over the following two decades. This relationship is

especially strong for manufacturing industries and is robust to other factors such as offshorability

and import penetration. I next examine whether the RTI also predicts the use of technology within

42I report the exact number of industries in each OES release in online appendix, table IA.20
43The results in the subsequent sections are very similar if I use different thresholds such as 70-th percentile or

80-th percentile.
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occupations. For each occupation, I calculate a technology-use index measuring the use of various

forms of technology such as computers and electronics and the importance of technology-relevant

skills such as programming or controlling machines. I report the full set of the underlying variables

in online appendix table IA.6. Table IA.9 in online appendix shows that occupational routine task

intensity predicts the use of technology at occupational level. Occupations with relatively higher

RTI score experienced relatively higher increase in the technology-use index in the following years.

These two results indicate that the AP measure and its component, the RTI measure, indeed predict

automation at industry and occupational level, respectively.44

Appendix D. Filtering the Stock Return Data

The sample consists of common stocks listed at the NYSE, NASDAQ, and AMEX. I exclude

financials SIC 6000-6799, utilities SIC 4900-4999, and public sector companies SIC≥9000. To avoid

the results to be driven by small and micro-cap firms, I exclude the bottom 20% of firms ranked

by market capitalization. I also exclude the bottom 10% of firms ranked by the share price. The

results are similar when firms with share price below 2 dollars are excluded. I further exclude

firms in the bottom 5% by trading volume. Results are similar when more restrictive percentiles

are applied. I further exclude firms with less than 500 employees or total net property, plant and

equipment less than 5 millions. Estimation of firm’s betas requires the firm to have monthly data

over at least last 30 months. The sample of S&P500 firms consists of the continuously updated

index constituents constituents. I also exclude financials and utilities.

Appendix E. Measuring the Technology Shocks Embodied in

Capital, Details

I formally derive the validity of the I-shock measure in a simple two-sector model from Cummins

and Violante (2002). Final goods producers competitively produce final goods xt at price pct . The

final goods can be either consumed or used as an input for production of capital goods. The

capital goods sector can produce it efficiency units from xt units of consumption goods according

to production function it = qt xt. qt captures the level of technology in the capital goods sector.

Prices in the capital goods sector are set competitively so that pitit = pctxt. Combining this result

with the production function leads to pit/p
c
t = 1/qt and hence ∆qt = ∆pct − ∆pit. Accordingly,

the changes in the prices of capital goods relative to consumption goods measure the investment

specific technology shock qt. Based on this model, I construct the measures of the technology shock

by subtracting the annual log changes in the quality-adjusted prices of capital goods from the log

44Other studies also provide supportive evidence. For instance, a companion paper Knesl (2018) shows that
manufacturing industries with high share of routine labor substitute equipment capital for human workers following
technology shocks. Autor and Dorn (2013) document a differential reduction of employment of routine occupations
in commuting zone with originally high share of routine labor. Spitz-Oener (2006) documents a differential increase
in requirements for complex skills in rapidly computerizing occupations.
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changes in prices of consumption goods. Accordingly, an increase in the I-shock measure indicates

a positive technology shock embodied in capital.

The prices of the capital goods are from the price index of private fixed investment in nonresiden-

tial equipment provided by the U.S. Bureau of Economic Analysis. This price index is a composite

of price indexes of 25 different types of equipment that are broadly categorized as information

processing equipment, industrial equipment, transportation equipment, and other equipment. I

measure the aggregate prices by the BEA’s price index of personal consumption expenditures for

nondurable goods. The sampling frequency of both time series is annual. I use the data from 1970

to 2015. To account for possible bias due to lack of quality adjustment in the price indexes of

capital goods, I use the underlying data from Cummins and Violante (2002) and extrapolate the

quality adjustment until 2015. The data in Cummins and Violante (2002) directly accounts for the

quality changes in the 24 types of equipment that comprise the aggregate price index of capital

goods. The quality adjustment is based on the original data from Gordon (1990). To construct

the I-shock measure, I subtract the log change in the quality-adjusted prices of capital goods from

the log change in prices of nondurable consumption goods. I also calculate an alternative measure

without using the quality adjustment from Cummins and Violante (2002). This measure relies

completely on the quality adjustment in the underlying price indexes from BEA. The results in

this paper are very similar when I use the alternative measure. The time-series variation of both

measures is very similar. The major difference between the quality-adjusted and the alternative

measure is the long-term average. The average is higher for the quality-adjusted measure as it

reflects the improvements in quality of the capital goods over time.
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Figure 2. Three Types of Sector Equilibria. This figure plots the relationship between the
prices of goods (panel A), demand for goods (panel B), and dividends (panel C) of labor-based
and automated firms and the percentage of automated firms δ within the sector. Plots in the first
column show a state of no shock. The parameter z2 is chosen so that the good prices of each type
of firm are same when no firm automates (δ∗ = 0). Plots in the middle column show a situation
with an incremental technology shock when a percentage of firms (0 < δ∗ < 1) automates. Plots
on the right-hand side show a situation of large disruptive technology shocks when all firms in the
sector automate despite automation cost κ, (δ∗ = 1). The black horizontal line depicts the original
dividend level. The model parameters are: ρ = 0.6, ν = 0.95, χ = 1, θ = 2, N = 1000, Nh = 100,
ALow = 0.85, AHigh = 0.95, 1.05, β = 0.85, γ = 21, ε = 0.39, pH = 0.15, pε = 0.5, and κ = 8×10−5.
Demand fo firms’ goods and firms’ dividends are scaled by a factor 100.

45



Figure 3. Technological Shocks, Equilibrium Automation, and Profits. This figure plots
the equilibrium relationship between the magnitude of the technology shock At and percentage of
firms that automate within the sector 1 (panel A), the dividends of firms in sector 1 (panel B)
and the dividends of firms in sector 2 (panel C). Model parameters are stated in the description of
figure 2. Dividends are scaled by a factor 100.

Figure 4. Firms’ Exposure to Technological Shock and Expected Returns. This figure
plots the relationship between the magnitude of the technology shocks and firms’ exposure (panel
A), the relationship between the magnitude of the technology shock and expected stock returns
(panel B), and the differences in expected stock returns between firms in sector 1 and sector 2
(panel C). Model parameters are stated in the description of figure 2.
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Figure 5. Idiosyncratic Labor Productivity ε and the Risk Premium for Technological
Shocks. This figure plots the risk premium for technology shocks E

[
RI
]
− Rf as a function of

the idiosyncratic labor productivity risk ε. RI is a return on an asset that has β = 1 to technology
shock A2. The magnitude of the technology shock AHigh is chosen so that all firms in sector s = 1
automate (δ∗). Model parameters are stated in the description of figure 2.
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Figure 6. Technological Shocks (I-shock) and Low AP minus High AP Firms. This
figure plots the I-shock measure (dashed blue line) and the annual return of the zero-cost (KML)
portfolio (solid red line). The zero-cost portfolio has a long position in firms with low share of
displaceable labor , i.e. the bottom quintile of firms ranked by the AP measure, and a short
position in firms with high share of displaceable labor, i.e. the top quintile. The portfolio returns
within the short and long position of the KML portfolio are value weighted. The KML portfolio in
this figure consists of stocks from S&P500 except for financial and utilities firms. Both time-series
are plotted at annual frequency and are normalized to mean zero and standard deviation of one.
The sample period is from 1970 to 2015.
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Figure 7. The I-shock Measure and Following 3-Year Cumulative Return of the Low-
High βKML Portfolio. This figure plots the I-shock measure (dashed blue line) and the subsequent
realized three-year cumulative log return of the zero-cost Low-High βKML portfolio (solid red line).
The zero-cost portfolio has a long position in stocks with low βKML and short position in stocks
with high βKML. The portfolio returns within the short and long position are value-weighted.
The portfolio is rebalanced annually at the end of June. Both time-series are plotted at annual
frequency and are normalized to mean zero and standard deviation of one. The sample period is
from 1970 to 2015.
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Table I
Summary Statistics and Variance Decomposition of the AP measure

This table reports the summary statistics of the AP measure and its main components, ln
(
K
L

)
and Lroutine

Ltotal
. (-)AP denotes ln

(
K

Lroutine

)
to avoid negative numbers and facilitate readability. The

reported results are time-series averages of cross-sectional statistics. Panel A shows the summary
statistics at the firm level and panel B at the industry level. Panel C reports the variance decom-
position of the 1/AP measure and its components into within and between industry variance. The

number in panel C denote the percentage of total variance. By construction, Lroutine

Ltotal
has 100%

variance at industry level. Industries are defined at SIC 1987 3-digit and NAICS 2002 4-digit level.
Mean Median St. dev. Min Max

Panel A. Summary statistics at the firm level
(-)AP 4.379 4.186 1.274 -1.689 9.442

ln
(
K
L

)
3.363 3.221 1.156 -2.428 8.142

Panel B. Summary statistics at the industry level
(-)AP 4.452 4.229 1.204 1.191 8.682

ln
(
K
L

)
3.413 3.248 1.064 0.306 7.172

Lroutine

Ltotal
0.407 0.407 0.187 0.043 0.814

Panel C. Decomposition of variance into within and between
industry components

(-)AP ln
(
K
L

)
Lroutine

Ltotal

Within industries 28.33 34.87 0
Between industries 71.67 65.13 100
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Table II
Technological Shocks and Investment, Employment, and Income Growth

This table reports the results of regressing contemporaneous and future changes in investment,
employment and income, panel A, and change in moments of income growth distribution, panel B,
on the I-shock measure and TFP shock. The regression is of the form 1

K+1

∑K
k=0 yt+k − yt+k−1 =

α + γIshock × Ishockt + γTFP × TFPt + εt+k, for time horizons K = 0, 1, and 2. Ishockt is the
I-shock measure representing the change in quality-adjusted relative prices of capital goods between
t − 1 and t. TFPt is the change in aggregate productivity between t − 1 and t. The regressions
are estimated at annual frequency. The time period in panel A is from 1970 to 2015 and in panel
B from 1978 to 2010. *** Significant at the 1 percent level. ** Significant at the 5 percent level. *
Significant at the 10 percent level. Source: Income, investment and employment: U.S. Bureau of
Economic Analysis; Moments of income growth distribution: Guvenen et al. (2014).
Panel A. Impact of technological shock on income, investment and employment

Investment Employment Personal income

t t+1 t+2 t t+1 t+2 t t+1 t+2
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Constant -0.026 0.038 0.065*** 0.005 0.026*** 0.026*** 0.06*** 0.122*** 0.094***
(0.024) (0.028) (0.019) (0.006) (0.009) (0.006) (0.01) (0.018) (0.014)

Ishock 1.296*** 0.516 -0.201 0.081 -0.184* -0.272*** -0.204* -0.472** -0.453***
(0.348) (0.474) (0.298) (0.063) (0.103) (0.077) (0.113) (0.202) (0.139)

TFP 2.383*** 4.775*** 2.457*** 0.662*** 1.156*** 0.748*** 0.289 0.223 0.183
(0.802) (1.42) (0.732) (0.194) (0.339) (0.194) (0.425) (0.719) (0.469)

R2 41.05 29.2 20.47 26.3 25.36 36.16 7.95 10.12 18.61

Panel B. Impact of technological shock on distribution of income growth
Mean Standard deviation Skewness

t t+1 t+2 t t+1 t+2 t t+1 t+2

Constant 0.024** 0.042*** 0.018** -0.008** -0.015*** -0.009** 0.168* 0.279*** 0.119**
(0.011) (0.009) (0.008) (0.004) (0.005) (0.005) (0.087) (0.088) (0.052)

Ishock -0.524** -0.785*** -0.319* 0.116 0.253** 0.156 -4.814** -6.545*** -2.839**
(0.254) (0.167) (0.163) (0.104) (0.115) (0.102) (1.932) (1.575) (1.055)

TFP 0.117 -0.487 -0.378* 0.012 -0.094 -0.069 6.594** 2.247 0.461
(0.393) (0.361) (0.21) (0.165) (0.152) (0.103) (2.473) (2.594) (1.565)

R2 17.33 36.2 26.11 6.4 15.82 15.98 37.66 33.51 22.31
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Table III
Correlation between the I-shock Measure and the Long-Short (KML)

Portfolios Based on the between- and within-industry Automation Potential

This table reports the correlation coefficients between the I-shock measure and the long-short
portfolio (KML) constructed by the AP measure based on within or between industry variations.
The long-short portfolios in the ’Between’ row are constructed by ranking industries by the industry-
level average share of displaceable labor, AP. The long position consists of industries in the bottom
quintile ranked by the AP measure and the short position of industries in the top quintile. The
long-short portfolios in the ’Within’ row are constructed by ranking individual firms by firms’
deviation from the industry average share of displaceable labor. The long position consists of firms
in the bottom quintile ranked deviation from industry’s average AP and the short position of firms
in the top quintile. Industries are defined at SIC 4-digit level in column 1, SIC 3-digit level in
column 2, NAICS 6-digit level in column 3, and NAICS 5-digit level in column 4.

(1) (2) (3) (4)

SIC 4 SIC 3 NAICS 6 NAICS 5
Between industries 0.586 0.583 0.545 0.529
Within industries 0.266 0.235 0.24 0.312
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Table IV
Exposure of Portfolio Returns to Technological Shocks (I-shocks)

This table reports the results from regressing portfolio annual excess returns on a constant, the
I-shock measure and return factors. Regressions in panel A include a constant and the I-shock
measure. The aggregate market return (CRSP value-weighted index) is added to the regressions
in panel B, and the size (SMB) and value (HML) factors of Fama and French (1993) are added
to the regressions in panel C. Stocks are assigned to one of five portfolios based on the share of
displaceable labor, AP. Portfolios are rebalanced annually at the end of June. Portfolio returns are
value-weighted. The sample period is from 1970 to 2015. Newey and West (1987) standard errors
are in parentheses. *** Significant at the 1 percent level. ** Significant at the 5 percent level. *
Significant at the 10 percent level.

High AP 2 3 4 Low AP
Low-High AP

KML

Panel A. Exposure to I-shock measure
Ishock -3.381*** -2.714*** -2.443*** -1.957** -1.04 2.341***

(0.952) (0.685) (0.811) (0.809) (0.808) (0.466)

R2 29.19% 28.21% 20.53% 15.31% 4.43% 30.15%

Panel B. Exposure to I-shock measure and aggregate market
Ishock -1.646*** -1.197*** -0.691*** -0.264 0.725*** 2.37***

(0.396) (0.338) (0.246) (0.226) (0.258) (0.453)

Market 0.955*** 0.835*** 0.965*** 0.932*** 0.971*** 0.016
(0.091) (0.069) (0.036) (0.036) (0.058) (0.119)

R2 81.79% 88.47% 92.74% 93.67% 91.63% 30.18%

Panel C. Exposure to I-shock measure, aggregate market,
and factors of Fama and French (1993)
Ishock -1.365*** -1.068*** -0.751*** -0.386* 0.564** 1.929***

(0.228) (0.264) (0.249) (0.21) (0.252) (0.314)

Market 0.94*** 0.861*** 0.934*** 0.905*** 0.959*** 0.02
(0.047) (0.041) (0.035) (0.03) (0.036) (0.059)

SMB 0.526*** 0.117 0.014 -0.102** -0.22*** -0.746***
(0.098) (0.074) (0.085) (0.046) (0.059) (0.142)

HML 0.033 0.109 -0.102 -0.109 -0.079 -0.112
(0.137) (0.118) (0.073) (0.065) (0.082) (0.152)

R2 89.96% 89.62% 93.08% 94.7% 94.31% 66.84%
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Table V
Properties of Portfolios Sorted on βKML

This table reports the results from regressing portfolio annual excess returns on a constant and
the I-shock measure in panel A and time-series averages of additional characteristics across the
stocks within each portfolio in panel B. Stocks are assigned to one of five to portfolios based on
their exposure to the KML portfolio, βKML

i . Portfolios are rebalanced annually at the end of June.
Portfolio returns are value-weighted. Newey and West (1987) standard errors are in parentheses.

(-)AP is the negative of firm’s displaceable labor share measured by (−1) × ln
(
Lroutine

K

)
, BM is

the book-to-market ratio, βmarket is the regression coefficient of market excess return from rolling
time-series regressions of firm excess return onto market excess return and a constant, CF denotes
cash flow, Lev denotes financial leverage, PCM denotes the price-to-cost margin, Profitability is the
ratio of sales minus cost of goods sold, interest expenses, and selling, general, and administrative
expenses to book equity, Size is the natural logarithm of the market capitalization in thousands,
and Turnover is the fraction of shares traded to the total shares outstanding. The sample period
is from 1975 to 2015. *** Significant at the 1 percent level. ** Significant at the 5 percent level. *
Significant at the 10 percent level.

Low βKML 2 3 4 High βKML

Panel A. Exposure to I-shock, postranking betas
Ishock -2.319** -2.495*** -1.744*** -1.701*** -1.18

(1.109) (0.888) (0.606) (0.582) (0.754)
R2 14.22% 25.4% 13.05% 12.72% 6.32%

Panel B. Additional properties
(-)AP 4.047 4.068 4.099 4.187 4.623
BM 0.677 0.664 0.668 0.655 0.619
βmarket 1.431 1.166 1.077 1.052 1.180
CF 0.089 0.095 0.096 0.094 0.092
Lev 0.330 0.322 0.314 0.316 0.310
PCM 0.310 0.321 0.317 0.319 0.331
Profitability 0.249 0.256 0.255 0.247 0.230
Size 5.576 5.909 6.063 6.119 6.240
Turnover 0.109 0.086 0.080 0.081 0.101

54



Table VI
Mean Portfolio Returns and Alphas of Portfolios Sorted on βKML

This table reports the time-series averages of value-weighted portfolio excess returns in panel A,
equally-weighted portfolio excess returns in panel B, results of regressing monthly value-weighted
portfolio excess returns on a constant and market excess return in panel C and results of regressing
monthly value-weighted portfolio returns on a constant, market excess return, and the size (SMB)
and value (HML) factors of Fama and French (1993) in panel D. Newey and West (1987) standard
errors are reported in parentheses. Stocks are assigned to one of five portfolios based on their
exposure to the KML portfolio, βKML, is estimated from rolling regressions of stock’s monthly
excess return on a constant and monthly return of the KML portfolio over the last 60 months.
Portfolios are rebalanced annually at the end of June. The average excess returns and standard
errors in panel A and B are annualized averages of monthly excess returns. The alpha estimates
and their standard errors in panel C and D are annualized. The sample period is from 1975 to
2015. *** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at
the 10 percent level.

Low βKML 2 3 4 High βKML High-Low
βKML

Panel A. Value-weighted portfolio excess return
Excess return 12.45*** 11.54*** 10.03*** 7.45*** 5.6** -6.85***

(3.2) (2.76) (2.66) (2.65) (2.65) (2.14)

Panel B. Equally-weighted portfolio excess return
Excess return 12.95*** 12.57*** 11.1*** 10.45*** 8.66*** -4.29**

(3.48) (3.16) (2.96) (2.94) (3.24) (1.7)

Panel C. CAPM
Alpha 2.966* 2.985** 2.028** -0.79 -2.423** -5.389**

(1.745) (1.419) (0.96) (0.817) (1.188) (2.475)
Market 1.16*** 1.047*** 0.979*** 1.009*** 0.981*** -0.179*

(0.06) (0.044) (0.036) (0.017) (0.054) (0.104)
R2 78.48% 85.02% 86.28% 90.22% 80.17% 3.56%

Panel D. Three-factor model of Fama and French (1993)
Alpha 2.263 2.304** 1.737* -0.42 -1.385 -3.648*

(1.584) (1.015) (0.968) (0.791) (0.942) (1.989)
Market 1.11*** 1.036*** 0.989*** 1.014*** 0.974*** -0.137

(0.054) (0.035) (0.034) (0.015) (0.046) (0.084)
SMB 0.312*** 0.144*** -0.001 -0.075** -0.106** -0.419***

(0.108) (0.04) (0.041) (0.031) (0.046) (0.123)
HML -0.001 0.068 0.056 -0.038 -0.152** -0.151

(0.116) (0.075) (0.052) (0.039) (0.074) (0.168)
R2 80.82% 85.79% 86.39% 90.46% 81.27% 12.35%
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Table VII
Panel Regressions of Annual Stock Returns on βKML and Firm Characteristics

This table reports the results of regressing annual stock returns on a constant, βKML, other stocks
characteristics and year fixed effect as indicated. Standard errors are clustered at the firm level
and reported in parentheses. βKML is estimated from rolling regressions of stock’s monthly excess
return on a constant and monthly return of the KML portfolio over the last 60 months. BM is the
book-to-market equity ratio, βmarket is the regression coefficient of market excess return from rolling
time-series regression of firm excess return onto market excess return and a constant, CF denotes
cash flow, Lev denotes financial leverage, PCM denotes the price-to-cost margin, Profitability is the
ratio of sales minus cost of goods sold, interest expenses, and selling, general, and administrative
expenses to book equity, Size is the natural logarithm of the market capitalization in thousands,
and Turnover is the fraction of shares traded to the total shares outstanding. The sample period
is from 1975 to 2015. *** Significant at the 1 percent level. ** Significant at the 5 percent level. *
Significant at the 10 percent level.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

βKML -3.829∗∗∗ -1.599∗∗∗ -1.531∗∗∗ -2.032∗∗∗ -1.544∗∗∗ -1.690∗∗∗ -1.653∗∗∗ -1.444∗∗∗ -1.902∗∗∗ -1.558∗∗∗ -2.106∗∗∗

(0.249) (0.296) (0.307) (0.297) (0.292) (0.297) (0.297) (0.324) (0.299) (0.295) (0.333)
BM 1.207∗∗∗ 2.005∗∗∗

(0.314) (0.393)
Beta -4.728∗∗∗ -2.649∗∗∗

(0.331) (0.399)
CF 18.39∗∗∗ 11.01∗∗

(3.563) (4.736)
Lev -4.471∗∗∗ -4.495∗∗∗

(0.881) (1.032)
PCM 3.279∗∗∗ 4.033∗∗∗

(1.099) (1.244)
Profitability 0.397∗∗ 0.360∗∗

(0.162) (0.148)
Size 0.799∗∗∗ 0.909∗∗∗

(0.118) (0.139)
Turnover -29.38∗∗∗ -23.80∗∗∗

(2.320) (2.576)

Year fixed effect No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
N 57959 57959 54810 57959 57906 57769 57958 49348 57959 57959 49234
R2 0.00528 0.154 0.154 0.158 0.156 0.155 0.154 0.157 0.155 0.159 0.166
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Table VIII
Mean Portfolio Returns for Conditionally Double-Sorted Portfolios

This table reports the average excess returns for conditionally double-sorted portfolios. In the first
step, I sort stocks into three baskets based on the control variable indicated in each column. In
the second step, I sort stocks within each of these three baskets into three additional baskets based
on βKML resulting in nine portfolios in total. I then create three portfolios by pooling the stocks
in the βKML-based baskets with the same rank. I report the annualized average value-weighted
returns for portfolios with conditionally low-, medium-, and high-βKML stocks as well as for the
High-Low βKML portfolio. Newey and West (1987) standard errors are in parentheses. βKML

is estimated from rolling regressions of stock’s monthly excess return on a constant and monthly
return of the KML portfolio over the last 60 months. BM is the book-to-market equity ratio,
βmarket is the regression coefficient of market excess return from rolling time-series regression of
firm excess return onto market excess return and a constant, CF denotes cash flow, Lev denotes
financial leverage, PCM denotes the price-to-cost margin, Profitability is the ratio of sales minus
cost of goods sold, interest expenses, and selling, general, and administrative expenses to book
equity, Size is the natural logarithm of the market capitalization in thousands, and Turnover is the
fraction of shares traded to the total shares outstanding. The first column shows average excess
return for unconditional sorting based on βKML. The last column reports average excess return
for sorting on BM conditional on Size. The sample period is from 1975 to 2015. *** Significant at
the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

Uncond BM βmarket CF Lev PCM Profitability Size Turnover
BM
cond
Size

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Low βKML 12.72 10.83 10.53 10.68 10.41 11.02 10.78 9.64 10.24 6.2
2 9.56 7.42 7.26 7.99 8.38 7.84 8.43 7.7 8.39 7.33
High βKML 6.12 5.6 5.94 5.44 5.42 5.66 5.35 5.43 5.53 8.35
High-Low βKML -6.6*** -5.23*** -4.59*** -5.24*** -5.0*** -5.36*** -5.43*** -4.21*** -4.7*** 2.15

(1.83) (1.51) (1.55) (1.64) (1.55) (1.64) (1.61) (1.59) (1.56) (1.81)
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Table IX
Long-Horizon Predictability of the Return Premium

This table reports the results of forecasting regressions of the y-year cumulative annual log return
premium of the Low-High βKML portfolio on the I-shock measure in panel A. Panel B shows the
results of forecasting regressions that include also the aggregate economic growth (GDP), a proxy
for the consumption-wealth ratio (cay) of Lettau and Ludvigson (2001), and the price-earnings
ratio (CAPE P/E10) of Campbell and Shiller (1988). The horizon of the cumulative log return
is indicated in columns. Low-High βKML portfolio consists of a long position in stocks with low
βKML and a short position in stocks with high βKML. The portfolio is rebalanced annually at the
end of June. The portfolio returns are value-weighted. Newey and West (1987) standard errors are
reported in parentheses and Hansen and Hodrick (1980) standard errors in brackets. The sample
period is from 1970 to 2015. *** Significant at the 1 percent level. ** Significant at the 5 percent
level. * Significant at the 10 percent level. Source: The data for aggregate economic growth:
U.S. Bureau of Economic Analysis; the proxy for the consumption-wealth ratio: Martin Lettau’s
website; the price-earnings ratio: Robert Shiller’s website.

1-1 1-2 1-3 1-4 1-5

Panel A. Predicting the Low-High βKML portfolio returns by I-shock
Constant 0.05 0.056 0.119 0.216 0.319

(0.041) (0.084) (0.104) (0.11)* (0.116)***
[0.041] [0.091] [0.113] [0.117]* [0.107]***

Ishock 0.722 2.413 2.731 2.474 2.058
(0.738) (1.334)* (1.599)* (1.574) (1.6)
[0.586] [1.199]* [1.526]* [1.374]* [1.232]

R2 2.5% 13.9% 13.42% 8.54% 5.35%

Panel B. Predicting the Low-High βKML portfolio returns by I-shock and
additional predictors

Constant 0.12 0.132 0.128 0.172 0.247
(0.062)* (0.114) (0.152) (0.171) (0.191)
[0.063]* [0.132] [0.175] [0.182] [0.189]

Ishock 1.327 3.062 2.822 2.151 1.544
(0.924) (1.5)** (1.615)* (1.501) (1.45)
[0.834] [1.307]** [1.289]** [0.769]*** [0.98]

GDP -2.453 -1.584 -0.068 2.022 2.95
(1.257)* (1.5) (1.528) (1.897) (1.72)*
[1.302]* [1.455] [1.332] [1.223] [1.379]**

cay 0.647 0.594 -0.384 -1.955 -3.365
(1.141) (2.013) (2.281) (2.056) (2.035)
[1.18] [2.007] [1.874] [1.254] [1.569]**

CAPE P/E10 -0.001 -0.003 0 0 0.001
(0.003) (0.004) (0.006) (0.007) (0.007)
[0.002] [0.004] [0.007] [0.007] [0.008]

R2 14.88% 17.9% 13.56% 12.26% 13.84%
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Table X
Firms’ One-Year Response to Technological Shocks

This table reports the results of regressing firm-level percentage changes in employment, capital and
capital-labor ratio in panel A, and sales, percentage point changes in return on capital and return
on equity in Panel B, between years t and t+ 1 on the I-shock measure in year t, Ishockt, firm i′s

exposure to technology shock in year t measured by the deciles’ index, Iβ
KML

i,t , of cross-sectionally

ranked βKML
i,t , and their interaction term, Ishockt×Iβ

KML

i,t . The regressions include aggregate TFP
shock, TFPt, and deterministic trend, Trendt, as aggregate control variables and firm i′s capital,
Ki,t, age, Agei,t, market capitalization, Sizei,t, lagged dependent variable for one-year horizon
t − 1 to t, and firm fixed effects as firm-specific control variables. Columns βKML ≤ median and
βKML > median show results of the regressions without the interaction term estimated for firms
with below and above median βKML, respectively. Standard errors are clustered at SIC 4 digit
industry level and reported in parentheses. The sample period is from 1975 to 2015. *** Significant
at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

Panel A. Changes in employment, capital and capital-labor ratio
Employment Capital Capital-labor ratio

Full
sample

βKML ≤
median

βKML >
median

Full
sample

βKML ≤
median

βKML >
median

Full
sample

βKML ≤
median

βKML >
median

Ishockt -0.830∗∗∗ -0.560∗∗∗ 0.008 1.038∗∗∗ 1.138∗∗∗ 1.100∗∗∗ 2.047∗∗∗ 1.837∗∗∗ 1.174∗∗∗

(0.185) (0.146) (0.106) (0.135) (0.103) (0.110) (0.170) (0.141) (0.130)

Iβ
KML

i,t -0.039 0.080 0.032 -0.080∗ -0.011 -0.130 -0.063 -0.204∗∗ -0.209∗∗

(0.043) (0.102) (0.092) (0.043) (0.092) (0.106) (0.039) (0.094) (0.101)

Ishockt × Iβ
KML

i,t 0.102∗∗∗ 0.002 -0.110∗∗∗

(0.031) (0.027) (0.029)
TFPt 1.229∗∗∗ 1.442∗∗∗ 1.070∗∗∗ 0.392∗∗∗ 0.652∗∗∗ 0.009 -1.160∗∗∗ -1.155∗∗∗ -1.307∗∗∗

(0.097) (0.146) (0.131) (0.082) (0.112) (0.107) (0.097) (0.130) (0.151)
Ki,t -4.999∗∗∗ -5.087∗∗∗ -5.299∗∗∗ -4.927∗∗∗ -4.993∗∗∗ -5.370∗∗∗ 0.446∗∗ 0.598∗∗ 0.086

(0.223) (0.342) (0.333) (0.218) (0.324) (0.352) (0.224) (0.297) (0.347)
Agei,t 0.025 -0.141 0.168 0.107 0.281∗ 0.065 0.029 0.258∗∗ -0.118

(0.085) (0.137) (0.190) (0.071) (0.148) (0.220) (0.065) (0.110) (0.104)
Sizei,t 0.028∗∗∗ 0.049 0.023∗∗ 0.035∗∗∗ 0.064 0.031∗∗∗ 0.016∗∗∗ 0.021 0.016∗∗∗

(0.010) (0.033) (0.010) (0.010) (0.039) (0.010) (0.005) (0.015) (0.006)
Trend 0.078 0.199 -0.006 -0.164∗∗ -0.374∗∗ -0.079 -0.287∗∗∗ -0.519∗∗∗ -0.122

(0.086) (0.137) (0.193) (0.074) (0.145) (0.225) (0.067) (0.108) (0.111)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
N 44109 22515 21607 44109 22515 21607 44109 22515 21607
R2 0.234 0.309 0.285 0.311 0.397 0.337 0.147 0.217 0.211

Panel B. Changes in sales, return on capital, and return on equity
Sales Return on capital Return on equity

Full
sample

βKML ≤
median

βKML >
median

Full
sample

βKML ≤
median

βKML >
median

Full
sample

βKML ≤
median

βKML >
median

Ishockt -1.420∗∗∗ -1.364∗∗∗ -0.591∗∗∗ -0.872∗∗∗ -0.786∗∗∗ -0.515∗∗∗ -1.767∗∗∗ -1.509∗∗∗ -0.816∗∗∗

(0.275) (0.237) (0.179) (0.086) (0.071) (0.109) (0.194) (0.157) (0.202)

Iβ
KML

i,t -0.131∗∗ 0.083 -0.210 -0.004 0.024 -0.003 0.005 0.102 -0.037

(0.051) (0.104) (0.148) (0.017) (0.035) (0.051) (0.036) (0.090) (0.097)

Ishockt × Iβ
KML

i,t 0.073 0.046∗∗∗ 0.128∗∗∗

(0.047) (0.016) (0.035)
TFPt 2.084∗∗∗ 2.182∗∗∗ 1.862∗∗∗ 0.466∗∗∗ 0.437∗∗∗ 0.447∗∗∗ 0.783∗∗∗ 0.761∗∗∗ 0.681∗∗∗

(0.171) (0.204) (0.202) (0.059) (0.058) (0.102) (0.114) (0.136) (0.182)
Ki,t -4.426∗∗∗ -4.310∗∗∗ -4.684∗∗∗ -1.659∗∗∗ -1.815∗∗∗ -1.781∗∗∗ -2.796∗∗∗ -2.944∗∗∗ -3.058∗∗∗

(0.236) (0.339) (0.407) (0.091) (0.133) (0.139) (0.208) (0.312) (0.338)
Agei,t 0.002 -0.100 0.103 0.026 0.028 0.010 0.058 0.025 0.131

(0.077) (0.151) (0.149) (0.028) (0.044) (0.026) (0.069) (0.114) (0.118)
Sizei,t 0.019∗ 0.049 0.015 -0.009∗∗∗ -0.004 -0.011∗∗∗ -0.016∗∗∗ -0.023 -0.019∗∗∗

(0.011) (0.034) (0.011) (0.003) (0.005) (0.004) (0.006) (0.018) (0.007)
Trend -0.031 0.037 -0.114 0.100∗∗∗ 0.120∗∗∗ 0.116∗∗∗ 0.145∗∗ 0.205∗ 0.086

(0.076) (0.151) (0.151) (0.029) (0.044) (0.029) (0.071) (0.115) (0.122)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
N 44109 22515 21607 44044 22476 21581 40760 20714 20057
R2 0.237 0.342 0.257 0.168 0.252 0.215 0.183 0.258 0.242
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Table XI
Firms’ Three-Years Response to Technological Shocks, Highly Competitive

versus Less Competitive Industries

This table reports the results of regressing firm-level percentage changes in employment and capital
in panel A, capital-labor ratio and sales in panel B, and percentage point changes in return on
capital and return on equity in Panel C, between years t and t + 3 on the I-shock measure in
year t, Ishockt, and firm i′s exposure to technology shock in year t measured by the deciles index,

Iβ
KML

i,t , of cross-sectionally ranked βKML
i,t . The regressions include aggregate TFP shock, TFPt,

and deterministic trend, Trendt, as aggregate control variables and firm i′s capital, Ki,t, age, Agei,t,
market capitalization, Sizei,t, lagged dependent variable for one-year horizon t − 1 to t, and firm
fixed effects as firm-specific control variables. The regressions are estimated for firms with below
and above median βKML in industries with high and low competition as indicated. Industries with
high and low competition are industries with above and below average Herfindahl-Hirschman index
of sales at the SIC 3 digit industry level. Standard errors are clustered at SIC 4 digit industry
level and reported in parentheses. The sample period is from 1975 to 2015. *** Significant at the
1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

Panel A. Changes in employment and capital
Employment Capital

High competition Low competition High competition Low competition

βKML ≤
median

βKML >
median

βKML ≤
median

βKML >
median

βKML ≤
median

βKML >
median

βKML ≤
median

βKML >
median

Ishockt -2.810∗∗∗ -1.730∗∗∗ -2.595∗∗∗ -2.196∗∗∗ 0.983∗∗ 1.281∗∗∗ 0.841∗∗∗ 0.538∗

(0.454) (0.383) (0.333) (0.297) (0.398) (0.380) (0.315) (0.283)

Iβ
KML

i,t -0.409 0.203 0.202 0.183 -0.590∗ -0.018 0.184 -0.239

(0.346) (0.261) (0.318) (0.327) (0.329) (0.397) (0.305) (0.337)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
N 8139 9785 11672 9647 8135 9782 11667 9646
R2 0.593 0.544 0.547 0.548 0.648 0.557 0.600 0.551

Panel B. Changes in capital-labor ratio and sales
Capital-labor ratio Sales

High competition Low competition High competition Low competition

βKML ≤
median

βKML >
median

βKML ≤
median

βKML >
median

βKML ≤
median

βKML >
median

βKML ≤
median

βKML >
median

Ishockt 4.210∗∗∗ 3.398∗∗∗ 3.693∗∗∗ 2.711∗∗∗ -3.410∗∗∗ -2.800∗∗∗ -3.039∗∗∗ -2.743∗∗∗

(0.557) (0.360) (0.327) (0.349) (0.642) (0.565) (0.428) (0.365)

Iβ
KML

i,t -0.175 -0.241 -0.161 -0.531∗ -0.531 -0.558 -0.192 -0.283

(0.344) (0.338) (0.296) (0.319) (0.414) (0.534) (0.333) (0.374)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
N 8135 9782 11667 9646 8138 9782 11671 9644
R2 0.463 0.446 0.422 0.433 0.586 0.488 0.548 0.542

Panel C. Changes in return on capital and return on equity
Return on capital Return on equity

High competition Low competition High competition Low competition

βKML ≤
median

βKML >
median

βKML ≤
median

βKML >
median

βKML ≤
median

βKML >
median

βKML ≤
median

βKML >
median

Ishockt -1.289∗∗∗ -1.016∗∗∗ -0.932∗∗∗ -0.541∗∗∗ -2.431∗∗∗ -1.911∗∗∗ -1.842∗∗∗ -0.797∗∗∗

(0.141) (0.249) (0.102) (0.093) (0.319) (0.448) (0.265) (0.226)

Iβ
KML

i,t -0.233∗∗ 0.052 -0.058 0.043 -0.330 0.130 -0.005 -0.134

(0.112) (0.134) (0.080) (0.110) (0.273) (0.275) (0.215) (0.264)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
N 8136 9777 11650 9634 7373 8865 10417 8731
R2 0.436 0.384 0.369 0.405 0.447 0.414 0.368 0.445
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