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Abstract

We develop a model of financial crises with both a financial amplification mecha-
nism, via frictional intermediation, and a role for sentiment, via time-varying beliefs
about an illiquidity state. We confront the model with data on credit spreads, equity
prices, credit, and output across the financial crisis cycle. In particular, we ask the
model to match data on the frothy pre-crisis behavior of asset markets and credit,
the sharp transition to a crisis where asset values fall, disintermediation occurs and
output falls, and the post-crisis period characterized by a slow recovery in output.
Our model with the frictional intermediation mechanism and fluctuations in beliefs
provides a parsimonious account of the entire crisis cycle. The model with only the
frictional intermediation mechanism misses the frothy pre-crisis behavior; fluctuations
in beliefs resolve this problem. On the other hand, modeling the belief variation via
either a Bayesian or diagnostic model match the broad patterns, with each missing
some targets to different extents. We also show that a lean-against-the-wind policy
has a quantitatively similar impact in both versions of the belief model, indicating
that policy need not “get into the minds” of investors and condition on the true belief
process.
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1 Introduction

Financial crises have a common character. There is a pre-crisis period that is marked by a

runup in credit, leverage, low risk spreads, and an expansion in output. Credit and asset

valuations appear frothy before a crisis. The transition to the crisis is sharp. There are losses

to the financial sector, defaults and bank-runs, a jump in risk spreads, and contraction in

credit and output. The aftermath of the crisis is a gradual recovery in credit, output, and fall

in risk spreads. These patterns emerge from a large and growing body of research examining

financial crises episodes across countries and time, dating back to the 19th century. See

Bordo et al. (2001), Borio and Lowe (2002), Claessens, Kose and Terrones (2010), Reinhart

and Rogoff (2009a), Schularick and Taylor (2012), Jordà, Schularick and Taylor (2011),

Laeven and Valencia (2013), Jordà, Schularick and Taylor (2013), Baron and Xiong (2017),

Krishnamurthy and Muir (2020), and Baron, Verner and Xiong (2021). This empirical

research describes and quantifies these common patterns.

Theoretical research on crises has fallen into two categories. The first emphasizes frictions

in financial intermediation that drive an amplification mechanism. The key idea is that the

fragility of the financial sector, measured typically as high leverage or low levels of equity

capital-to-assets, is an endogenous state variable. An unexpected large-loss event hitting the

economy in a state where the financial sector is fragile sets in motion mechanisms whereby

the shock is amplified, there is disintermediation, a rise in risk spreads and contraction in

output. Recovery takes time, tracking a gradual re-intermediation. The amplification model

speaks directly to the transition to crisis and the aftermath of the crisis. See work by Gertler

and Kiyotaki (2010), He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), He

and Krishnamurthy (2019), and Li (2019).

The second line of research emphasizes the role of information and beliefs, and harkens

back to Kindelberger (1978). There are two key ideas in this research. First, agents ex-

perience a period of prosperity and come to believe that risks are low. Second, the crisis

is a informational event – a “Minsky (1992) moment” – where risk is re-assessed leading

to swings in asset prices, credit, and macroeconomic outcomes. In the work of Gorton and

Ordonez (2014) and Dang, Gorton and Holmström (2020), the shift in beliefs occurs because

financial sector information is hidden, by design, during prosperous periods, and a crisis is

the event when negative information comes to light and agents reassess risks. The shift

from no-information to information is at the heart of their narrative of crises. The work

of Bordalo, Gennaioli and Shleifer (2018) has instead argued that a sharp shift in beliefs

in a crisis reflects a change from over-optimistic to over-pessimistic beliefs. Extrapolative

expectations are at the heart of their narrative of the belief shift in a crisis.

This paper builds a model that integrates both of these elements, frictional financial

intermediation and time-variation in beliefs, into a quantitative macro-finance model. Our
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objective is to understand the extent to which these mechanisms can account qualitatively

and quantitatively for the macro crisis patterns, and to clarify which elements of these

mechanisms are essential. Our model has a financial intermediary sector subject to capital

constraints and financed in part by demandable debt. There are two sources of shocks,

a Brownian shock to the return on capital and an illiquidity shock where the market for

capital assets temporarily freezes up, and debtors refuse to roll over their debts, as in a

bank run. In this latter state, sales of capital assets by banks incur a liquidation cost,

or alternatively, loans against capital are charged an illiquidity premium. The economy

transits through booms and busts driven by the Brownian shock and its impact on the

dynamics of real capital and the equity capital of the financial sector. Crises are events

where both the financial sector equity capital is low and the illiquidity shock occurs. In this

case, there are runs on banks leading to disintermediation, declines in asset values, and a

reduction in output. The illiquidity shock captures a financial panic, such as occurred in

both fall 2008 and spring 2020, with differences in macroeconomic outcomes driven in part

by differences in financial sector fragility. We also note that our illiquidity shock impacts the

economy indirectly via a financial amplification mechanism and not directly via its impact

on productivity and output. This approach to modeling leads to endogenous crises in which

the financial sector is the key factor. The modeling is motivated by our objective to shed

light on financial crises such as the 2008 global financial crisis and not on rare consumption

disasters such as the 2020 COVID recession. The financial frictions model of our paper is

a variant of Li (2019). It draws on ingredients from the recent macro-finance literature on

financial crises and intermediation frictions, and particularly He and Krishnamurthy (2013);

Brunnermeier and Sannikov (2014); Gertler and Kiyotaki (2015).

Agents in the economy make decisions based on their beliefs about the likelihood of the

illiquidity shock. The illiquidity shock is a Poisson event, the intensity of which follows a

hidden two-state Markov process. Agents infer the state and hence the likelihood of the

illiquidity shock based on history. A string of no-shock realizations leads them to believe

that shocks are unlikely (i.e., the true state is the low-intensity state). A shock occurrence

leads them to think that shocks are more likely (i.e., the true state is the high-intensity

state). After an extended period with no shocks, banks downplay liquidity risk and increase

leverage. The shock triggers a “Minsky moment:” agents’ beliefs regarding liquidity risk

rises and is then amplified and propagated to the macroeconomy depending on the leverage

of the financial sector.

We consider two flavors of the learning mechanism, a Bayesian updating process closest

to Moreira and Savov (2017) and non-rational updating process, along the lines of Bordalo,

Gennaioli and Shleifer (2018), where beliefs over-react to current news.1

1The diagnostic updating process is motivated by the work of Bordalo, Gennaioli and Shleifer (2018),
and is also related to the models of Greenwood, Hanson and Jin (2019) and Maxted (2019). Bordalo,
Gennaioli and Shleifer (2018), Bordalo et al. (2019b), and Bordalo et al. (2020) examine data on survey
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We report four principal results:

1. The model with financial frictions and a time-varying belief process matches the main

features of the pre-crisis, crisis, and aftermath.

2. A model with only financial frictions generates the amplification needed to match crisis

and post-crisis patterns but fails to match the pre-crisis froth evidence. That is, both

a financial frictions mechanism and a mechanism involving fluctuations in beliefs are

needed to match the crisis cycle evidence.

3. While belief fluctuations are essential, whether one needs a Bayesian belief process or the

non-rational diagnostic process to fit the crisis patterns is more murky. The diagnostic

belief model, calibrated to the evidence from Bordalo, Gennaioli and Shleifer (2018),

matches the crisis patterns qualitatively. But so does the Bayesian belief model. These

two learning variants each fit different dimensions of the data better (and worse), with

the diagnostic model’s principal success over the Bayesian model being that the model’s

pre-crisis froth is quantitatively closer to the data.

4. The impulse responses of both the Bayesian and diagnostic model, conditional on a state

chosen to match the same measured credit spread and bank leverage, are quantitatively

similar. That is, for many policy experiments, distinguishing between agents’ true learn-

ing mechanism is not necessary.

The model has two key state variables: one governing the wealth-share of bankers and

the other describing agents’ beliefs over the intensity of the illiquidity shock. The wealth-

share variable, coupled with financial frictions, governs a financial amplification mechanism

studied in prior work. We show that this amplification mechanism helps the model match

data on the crisis and its aftermath. In particular, the financial amplification mechanism of

the model generates a sharp drop in asset prices, credit, and output. The mean drop in our

model is in line with the data, but more telling, the skewness of these variables and their

comovement also aligh with data counterparts. That is, a key feature of financial crises is

non-linearity, reflected in a skewed distribution of output declines. The model’s amplification

mechanism generates skew in line with that of the data. The model also generates a slow

recovery due to the persistence mechanism of financial frictions models.

While the financial frictions wealth-share mechanism is the key to understanding the

model’s match of the crisis and aftermath, the belief state variable is needed for the model

to match the pre-crisis patterns. If an illiquidity shock has not occurred for some time,

forecasts of financial and economic variables. They show that these forecasts are hard to square with rational
expectations and instead propose a model of diagnostic expectations that matches these data. We use their
model and parameterization of diagnostic expectations to study crises. Their survey evidence concerns
data that largely varies at business cycle frequencies. We assess how this model of behavior can extend to
explaining rare financial crises.
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agent beliefs drift towards the low likelihood state. Bankers choose to increase leverage as

they are less concerned about liquidity risk. Risk and credit spreads fall and credit grows.

From this state, if an illiquidity shock arrives, beliefs jump towards the high likelihood state

and banker wealth falls and they endogenously choose less leverage given the heightened

liquidity risk. Both forces lead to financial amplification of the shock and persistence as in

a crisis. The belief mechanism helps explain why spreads are low and credit is high before

the crisis. More surprisingly, low spreads and high credit help predict a crisis. The reason is

that bankers act more risk-tolerant in the pre-crisis period when liquidity risk is low – they

drive down spreads/risk premia and increase credit. They also increase leverage, taking

liquidity risk, and effectively shift GDP outcomes into tail states. It may be surprising

that we find that there are times when crises are more likely and yet risk prices are low

and bankers take more leverage. Our model ties these observations together by generating

bankers’ willingness to take on illiquidity risk in the pre-crisis period, driven by the beliefs

state variable.

We probe this model in two dimensions. First, we find that if the belief intensity is held

constant (i.e., no learning mechanism, but illiquidity shocks still occur), the model fails to

match the pre-crisis patterns. In such a model, only the banker wealth-share is a state

variable. The fragility of the economy to a crisis is measured by the banker wealth-share

state variable. When this is low, a negative shock triggers a crisis. Thus a crisis is more

likely when banker wealth is low (and leverage is high). However, this means that forward-

looking asset prices will account for the increased fragility as the wealth share state variable

falls. As a result, the model implies that credit spreads will rise, and bank credit will fall

in the period before a crisis, contrary to the data. On the other hand, we find that this

static-belief model is able to match the data for the crisis and its aftermath, clarifying that

the financial amplification mechanism drives these patterns. We also show that this model

generates a negative relation between bank credit and equity market excess returns (risk

premia), as documented by Baron and Xiong (2017). This occurs in our model because

variation in the wealth-share drives variation in bankers’ risk tolerance that generates the

required comovement between credit and risk premia. It is worth emphasizing that this

result arises in a model with no variation in beliefs.

Second, we compare the Bayesian and diagnostic learning mechanisms. There are differ-

ences in the magnitude of the crisis and post-crisis match: the diagnostic model generates

too much comovement, relative to data, between bank credit and crisis, for example. But

the principal difference is in the amount of pre-crisis froth of these models. The key force

in matching the pre-crisis evidence is the sensitivity of the bankers’ endogenous leverage

decision to the true (not perceived) illiquidity state. This sensitivity has the required sign

(negative) in both learning mechanisms, but the sensitivity is higher under diagnostic be-

liefs. In our calibrated models, the Bayesian mechanism gets about half-way to matching

the data quantitatively, while the diagnostic mechanism brings the froth in the model gets
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even closer to the data.

Putting this together, our analysis indicates that a financial amplification mechanism

plus a belief mechanism provides a parsimonious account of the main crisis facts. The

static belief model fails to match the pre-crisis froth in the data. However, our analysis also

indicates that the qualitative patterns of the data do not clearly distinguish the two belief

models we consider. Within the bounds of how much one can push the quantitative fit of

our parsimonious equilibrium model, both models fit the moments we consider.

Lastly, we ask the question, does it matter for policy purposes whether we are living

in a world with diagnostic beliefs or one with Bayesian beliefs? It is well understood that

in models with financial frictions, leverage restrictions can improve welfare by alleviating a

pecuniary externality. See Bianchi (2011) for example. Our model fits within this framework.

When agents have distorted beliefs, leverage policies can also improved welfare under a

paternalistic welfare criterion. See Dávila and Walther (2020). Thus in our model, it is

interesting to study a leverage restriction and ask how the nature of beliefs affects policy

assessment.

We consider an unexpected policy that transfers wealth from households to bankers so

that the banker wealth share increases by 10% during a pre-crisis boom period. The policy

captures the impact of increasing bank equity (or equivalently, reducing bank leverage) to

lean-against-the-wind, along the lines of Gertler, Kiyotaki and Prestipino (2020). Under each

version of the model, we pick an initial condition in terms of credit spreads and bank leverage

and map these into the state variables in each model (they map to different values of the state

variable across the models). We then simulate the path of the economy with and without

the recapitalization policy. We calculate the difference in quantities and prices between the

with- and without-recapitalization and repeat this across both models. Our main finding

is that these impulse response differences are quite similar across both models. The policy

raises the mean path of output and credit, and the conditional response of these variables to

an illiquidity shock, but these responses are quantitatively similar across both models. The

two keys to this similarity result are that (1) both models are calibrated to common data

but are not forced to having a common parameterization, and (2) both models are tied to

the same initial condition in terms of observables. In particular, the diagnostic model does

not just take the Bayesian model parameters and add a new diagnostic parameter. In this

case, which is not economically meaningful, the impulse responses are no longer similar.

The main contribution of this paper is to bridge the recent theoretical work on non-linear

macro-finance models (He and Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014;

Di Tella, 2017) with the empirical literature on financial crises cited earlier. The models in

this theoretical literature feature non-linearities and are solved using global methods. Thus

these models are well-suited to characterize the non-linear dynamics in financial crises. But

the work thus far is either purely theoretical or aims to match a single crisis-event (e.g.,
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the 2007-2009 financial crisis in He and Krishnamurthy (2019) and Gertler, Kiyotaki and

Prestipino (2020)). The empirical crisis literature on the other hand has largely documented

systematic patterns in the data rather than assess this data from the standpoint of models.

Our paper bridges this gap.2

This paper’s objective of matching the boom-bust of the crisis cycle is closest to that

of a few other papers that precede ours.3 Boissay, Collard and Smets (2016) develop a

dynamic model of banking crises that generates the pattern in line with the data that

credit booms precede credit market collapse and crises. The key idea in the model is that

banks’ absorption capacity is reduced during a boom, with the economy potentially hitting a

cliff where the credit market collapses. Thus, the probability of a financial crisis rises in the

boom. Relative to their analysis, we aim to match the asset market fact that risk premia and

credit spreads are low during the boom, which we reconcile with the learning mechanism

of our model. Greenwood, Hanson and Jin (2019) and Maxted (2019) construct models

of the boom-bust crisis cycle with a role for beliefs. Greenwood, Hanson and Jin (2019)

present a model where lenders extend credit based on beliefs over the default probabilities

of borrowers. There is a feedback between realized default and beliefs regarding default

probabilities, similar to the model of this paper, that creates a persistence and amplification

mechanism. Like us, their paper aims to match facts on credit growth, credit spreads, and

risk premia. But their model is not a full macroeconomic model, and thus does not speak

to other macroeconomic data such as output and the conditional distribution of output

growth. Their model also does not have an intermediary sector, so it cannot assess the role

of intermediary frictions relative to beliefs. Finally, lenders are risk-neutral in their model,

so that without diagnostic expectations, risk premia are zero. As a result, their model does

not give the Bayesian belief process a chance of explaining the data. Maxted (2019)’s macro-

finance model is closer to ours. There is an intermediation sector that is central to crisis

dynamics. The paper also considers a full macroeconomic setting, and can thus speak to

more macro data. One key point of difference relative to our model is that Maxted (2019)’s

diagnostic belief modeling extrapolates the mean growth of capital productivity, whereas

in our model, beliefs over a tail illiquidity shock are distorted.4 Thus in Maxted (2019),

2Another contribution of our paper to the non-linear macro finance work is the model. A major dis-
advantage of the current models is that they are computationally challenging, and current models restrict
attention to one or two-state variables following a Brownian diffusion process. In this paper, we present and
solve a model with two state variables and endogenous jumps. Our methodology helps broaden the scope of
the literature to encompass richer dynamics with sudden and large disruptions, which are plausibly central
to financial crises.

3There are other recent macro-finance papers, not explicitly about the boom-bust cycle, but that aim to
match crisis facts. Gertler, Kiyotaki and Prestipino (2020) introduces bank runs into a macro-intermediation
model. Beliefs, modeled via a sunspot, play a role in driving crisis dynamics. The objective of their paper
is to study the 2007-2009 financial crisis rather than disentangling mechanisms underlying the crisis cycle
facts. Camous and Van der Ghote (2021) builds on Maxted (2019) and considers diagnostic expectations
and financial frictions in a multi-sector model. The model can generate a build-up of instability and a
safety trap with low growth. Gopalakrishna (2020) introduces state-dependent bank exit into a quantitative
continuous-time macro-finance model and generates a slow recovery in line with empirical evidence.

4Ma, Paligorova and Peydro (2021) presents survey evidence that assessments by banks over the downside
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optimism occurs after a period of growth in productivity which can sow the seeds of the

crisis, while in our mechanism optimism occurs after a quiet period of no illiquidity shocks,

leading endogenously to increased risk-taking. There is evidence that productivity booms

are good booms that do not lead to crises (Gorton and Ordonez, 2020), and certainly the

period before the 2008 financial crisis was marked by a slow-down in productivity growth

(Fernald, 2015).5

Finally, this paper also contributes to a larger literature on beliefs and learning in macroe-

conomics models. Closest to our paper is Kaplan, Mitman and Violante (2020) who dissect

the U.S. housing boom-bust cycle around the 2008 crisis to evaluate the role of beliefs

and financial constraints in driving the cycle. They conclude that a shift in beliefs during

the boom are essential to matching the cycle. Note that we consider banking crises and

not housing crises, and broaden our scope to include patterns across many crisis episodes.

Van Nieuwerburgh and Veldkamp (2006) show that asymmetry in learning about produc-

tivity can generate asymmetries in business cycles. Simsek (2013) explores the interaction

of beliefs and credit, building a model where beliefs over upside versus downside payoffs

have an asymmetric impact on asset valuations, total credit and fragility of the economy.

Simsek (2013) studies the role of belief heterogeneity, which is absent in our model with

homogeneous beliefs. Motivated by the slow recovery from the 2008 recession, there is re-

search tying learning to slow recoveries. In Fajgelbaum, Schaal and Taschereau-Dumouchel

(2017), information flows slowly in times of low activity and uncertainty remains high, dis-

couraging investment. Liu, Wang and Yang (2020) show that the uncertainty and learning

about banks’ peers can lead to a slow recovery. In Kozlowski, Veldkamp and Venkateswaran

(2020), agents learn about the parameters of the economic shock process, and a large neg-

ative shock realization as in a deep recession alters agents’ estimates of these parameters,

leading to a persistent impact of the shock on economic growth. Bordalo et al. (2019a) in-

troduce diagnostic beliefs into a relatively standard real business cycle model. Their model

helps to understand the role of diagnostic beliefs in driving business cycles.

The rest of this paper is as follows. In Section 2, we review general patterns of the crisis

cycle in the data. In Section 3, we set up a model that combines financial intermediation

frictions and beliefs regarding an illiquidity shock. In Section 4, we solve and explain how

we calibrate the the model(s). In Section 5, we evaluate the model, explaining its fit and

the role of beliefs. In Section 6, we consider how the Bayesian and diagnostic models may

inform policy. We then conclude in Section 7. An appendix follows.

tail, more than the mean of economic forecasts, explain bank lending decisions.
5Farboodi and Kondor (2020) present a model of time-varying sentiment that generates a credit cycle

that is qualitatively in line with the facts. Sentiment evolves in a Bayesian manner in their model. Thus,
like us, they show that the basic facts of the credit cycle can be generated within a Bayesian model. The
objective of the paper is different than ours, as their model is not suited to a quantification exercise and
does not have an intermediary sector.
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2 The Crisis Cycle

This section reviews broad patterns of the crisis cycle, drawn from the empirical literature

on crises. Along the way, we list (numbered below) specific quantitative estimates from the

literature which guide our modeling exercise.

What is a financial crisis? Jordà, Schularick and Taylor (2011) state:

In line with the previous studies, we define financial crises as events dur-

ing which a country’s banking sector experiences bank runs, sharp increases in

default rates accompanied by large losses of capital that result in public inter-

vention, bankruptcy, or forced merger of financial institutions.

We focus on events, as per the quotation, as financial crises. These events are banking crises

and do not necessarily include currency crises or sovereign debt crises, which are other crises

of interest, unless such events coincide with a banking crisis. Jordà, Schularick and Taylor

(2011)’s dating of banking crises is closely related to the approach of Bordo et al. (2001),

Reinhart and Rogoff (2009a), and Laeven and Valencia (2013). Bordo and Meissner (2016)

discuss the approaches that researchers have taken to crisis-dating as well the drawbacks of

different approaches.

1. We target an unconditional frequency of financial crises of 4%. In an article written

for the Annual Review of Economics, Taylor (2015) reports the historical frequency of

financial crises to be 6%. This data point is obtained from a sample of countries in both

developing and advanced stages, and covers the period after 1860. The Handbook of

Macroeconomics chapter by Bordo and Meissner (2016) reports numbers in the range

of 2 to 4% across the studies by Bordo et al. (2001) and Reinhart and Rogoff (2009a).

Another evidence comes from Jordà, Schularick and Taylor (2013), which shows that the

average frequency of crises is 3.6% using data from multiple countries.

Figure 1 plots the mean path of credit spread, credit, and GDP across a sample of 41

international financial crises identified by Jordà, Schularick and Taylor (2013). The figure is

drawn from Krishnamurthy and Muir (2020), which includes data on credit spreads relative

to other studies of crises. Date 0 on the figure corresponds to the date of a financial crisis.

The top-left panel plots the path of the mean across-country credit spread, relative to the

mean spread for country-i, from 5-years before the crisis to 5-years after the crisis. The units

here are that 0.4 means that spreads are 0.4σs larger than the country’s time-series average

spread, while -0.2 means that spreads are 0.2σs below the country’s time-series average. The

data is annual from 14 countries spanning a period from 1879 to 2013.

We see that spreads run below their average value in the years before the crisis. They

rise in the crisis, going as high as 0.4σs over their mean value in the year after the crisis
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Figure 1: Mean path of credit spread, bank credit, and GDP across a sample of 41 financial
crises identified in Jordà, Schularick and Taylor (2013). Units for spread path are 0.4 means
that spreads are 0.4σs above their average for a given country. Units for credit path are that
5 indicates that credit/GDP is 5% above the trend for a given country. Units for GDP path
are that −8 means that GDP is 8% below trend for a given country. Source: Krishnamurthy
and Muir (2020)

date, before returning over the next 5 years to the mean value. The half-life of the credit

spread recovery is 2.5 years in this figure.

The top-right panel plots the path of the quantity of bank credit divided by GDP. The

credit variable is expressed as the average across-country percentage change in the quantity

of credit/GDP from 5-years before the crisis to a given year, after demeaning by the sample

growth rate in credit for country-i. The value of 5 for time 0 means that credit/GDP is 5%

above the country trend. We see that credit grows faster than average in the years leading

up to the crisis at time zero. After this point, credit reverses so that by time +5 the variable

is back near the country average.

The bottom-left panel plots GDP, again as an average percentage change from 5-years

before the crisis, after demeaning by the sample growth rate in GDP for country-i. GDP

grows slightly faster than average in the years preceding the crisis. GDP falls below trend

in the crisis and remains low up to 5 years after the crisis.

Transition to crisis: A crisis is characterized by a sharp jump in credit spreads, a reversal

in the quantity of credit and a decline in GDP. From the data underlying Figure 1:

2. Credit spreads rise by 0.7σs of their mean value at the crisis.

3. GDP declines by 9.1%. Reinhart and Rogoff (2009b) report a peak-to-trough decline in

GDP across a larger sample of crises of 9.3%. Jordà, Schularick and Taylor (2013) report

a 5-year decline in GDP from the date of crisis of around 8%. Cerra and Saxena (2008)

report output losses from banking crises of 7.5% with these losses persisting out to 10

years. We will use the 9.1% number in our quantitative exercise.

The rise in credit spreads in the year of the crisis is mirrored in other asset prices.

Reinhart and Rogoff (2009a) report that equity prices decline by an average of 55.9% during

banking crises. Muir (2017) shows that the price-dividend ratio on the stock market falls in
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Figure 2: Panel A presents a histogram of 3-year GDP growth from the start of a crisis, as
dated by Jordà, Schularick and Taylor (2013). Panel B presents a scatter plot of the spike
in spreads in the year of the crisis against 3-year GDP growth after the crisis..

a crisis, and the excess return on stocks rises during the crisis, indicated a generalized rise

in asset market risk premia.

Aftermath and severity of crisis:

4. The half-life of the recovery of the credit spread to its mean value is 2.5 years.

5. There is variation in the severity of the crisis. Figure 2, Panel A presents data on the

variation in the severity of the crisis, as measured by 3-year GDP growth following a

crisis. The figure reflects significant variation in crisis severity.

6. The variation in the severity of the crisis is correlated with the increase in spreads mea-

sured at the transition into the crisis, as illustrated in Figure 2, Panel B. Krishnamurthy

and Muir (2020) report a coefficient of −7.46 (s.e. 1.46) from a regression of 3-year GDP

growth following a crisis on the increase in credit spreads from the year before the crisis

to the year of a crisis.

Pre-crisis period: In the pre-crisis period, credit markets appear frothy, reflecting low

credit spreads and high credit growth. In particular,

7. Conditioning on a crisis at year t, and looking at the 5 years prior to the crisis, Krishna-

murthy and Muir (2020) show that credit spreads are 0.34σs below their country mean

(where this country mean is defined to exclude the crisis and 5 years after the crisis).
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8. Conditioning on a crisis at year t, credit/GDP in the 5 years before the crisis is 5%

above country mean. The relation between a lending boom and subsequent crisis is well

documented in the literature. See Gourinchas et al. (2001), Schularick and Taylor (2012),

and Baron and Xiong (2017).

Predicting Crises: There is also evidence that periods of frothy conditions predict and

not just precede crises. There are two quantitative estimates that we will aim to match.6

9. Schularick and Taylor (2012) find that a one-standard deviation increase in credit growth

over the preceding 5 years (= 0.07 in their sample) translates to an increased probability

of a financial crisis of 2.8% over the next year.

10. Conditioning on an episode where credit spreads are below their median value 5 years

in a row, Krishnamurthy and Muir (2020) estimate that the conditional probability of a

crisis rises by 16% over the next 5 years.

11. Baron and Xiong (2017) find that a one-standard deviation increase in credit growth over

the preceding 3-years increases the probability of bank equity crash (defined as decline

in bank equity by over 30%) by 5.4%.

3 A Model of Financial Crises with Amplification and

Sentiment

In this section, we present a model of financial crises that incorporates both a financial

amplification mechanism and a role for sentiment. We fix a probability space (Ω,F ,P) and

assume all stochastic processes are adapted to this space and satisfy the usual conditions.

The economy evolves in continuous time. It is populated by a continuum of a unit mass of

two classes of agents, households, and bankers. For clarity, aggregate variables are in capital

letters, and individual variables are in lower case letters. The basic setup is a variant of Li

(2019), which is drawn from Brunnermeier and Sannikov (2014) and Kiyotaki and Moore

(1997).

3.1 Agents and Assets

Households maximize expected value of the discounted log utility,∫ ∞
0

e−ρt log(cht )dt (1)

6Greenwood et al. (2020) present further evidence in line with froth predicting crises. In post-war cross-
country data, they document that periods of high credit growth coupled with periods of high returns in the
stock market substantially increase the likelihood of a financial crisis.
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and bankers optimize expected value of the same form of discounted log utility,∫ ∞
0

e−ρt log(cbt)dt (2)

The expectation could be either Bayesian or diagnostic, as we will specify later.

Output is produced by capital. We will simplify by assuming that the capital is held

directly by either banks or households. In a richer and more realistic model, the capital will

be held and operated by firms that receive loans from banks or households, along the lines

of Holmstrom and Tirole (1997). We simplify by collapsing firms into banks, and assuming

the banks own the capital.

We assume that credit flowing through banks allows the economy to achieve higher

output and returns to capital. Intermediation is a socially valuable service, and for example,

disintermediation in a crisis reduces output. We capture this feature by assuming that

banker-operated capital has productivity Ā, which is higher than the household-operated

capital productivity of A.

The dynamic evolution of productive capital owned by agent j ∈ {banker, household} is

dkj,t
kj,t

= µKt dt− δdt+ σKdBt (3)

where the rate of new capital installation µKt is endogenously determined through invest-

ment, δ is the exogenous depreciation rate, and σK is exogenous capital growth volatility.

Denote the price of productive capital as pt (i.e., “q” in the standard Q-theory). Invest-

ment undertaken by an owner, either banker or household, of productive capital is chosen

to solve:

max
µKt

ptµ
K
t − φ(µKt ),

where φ(·) is an investment adjustment cost:

φ(µK) = µK +
χ

2
(µK − δ)2. (4)

That is, we assume quadratic costs to investment, leading to the q-theory of investment

pt = φ′(µKt ) ⇒ µKt = δ +
pt − 1

χ
. (5)

The dynamics of capital price pt is denoted as

dpt
pt−

= µptdt+ σpt dBt − κpt−dNt, (6)

where µpt , σ
p
t , and κpt− are all endogenously determined. The “minus” notation (i.e. pt−)
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reflects a pre-jump asset price, as will be made clear.

3.2 Financing, Liquidity Risk, and Bank Runs

The Brownian shock dBt in equation (3) reflects business cycle fluctuations in the effective

productivity of capital. We introduce a second shock that we call a “financial illiquidity”

shock. We model this as a Poisson shock dNt that triggers illiquidity and bank runs, and a

possible financial crisis if the endogenously chosen bank leverage is sufficiently high.

Since banker held capital is more productive than household held capital, there is room

for an intermediation relationship whereby households provide some funds to bankers to

invest in capital. We assume that the only form of financing is short-term (instantaneous)

debt at the [endogenous] interest rate rdt . Bankers cannot raise equity, long-term debt, or

other forms of financing. When we refer to bank equity, we mean the net-worth of bankers,

wbt . That is, the financing side of the model is one of inside equity and outside short-term

debt. These model simplifications do sweep aside important issues, but we nevertheless go

down this path because we aim to build a simple quantitative amplification mechanism and

see how well it matches data, rather than explore the micro-foundations of intermediary

models.

We assume that in the event of an illiquidity shock, all short-term debt holders run to

their own bank and withdraw financing in a coordinated fashion. Raising resources to cover

this withdrawal is temporarily costly. That is, asset markets are temporarily illiquid in the

illiquidity event. We assume that a cost of α is incurred when capital is liquidated to meet

the funding withdrawal during the illiquidity shock. We can think of this cost as liquidation

cost or, alternatively, the cost can be mapped into a premium on raising emergency financing

from other banks or other households in the economy against the capital. In this latter case,

we need to step outside the modeling and interpret the illiquidity event lasting longer than

dt. Then, α is proportional to the spread over the riskless rate that the bank pays to obtain

funds over the illiquidity episode (if the event lasts dt then a financing spread maps into a

cost of order dt). Finally, we assume that the cost is not dissipated but is paid to households

proportional to their wealth. This assumption is not essential to the analysis but ensures

that the illiquidity shock has no direct impact on output.

The illiquidity shock captures a financial panic, such as occurred in both fall 2008 and

spring 2020, with differences in macroeconomic outcomes driven by differences in financial

sector fragility. We also note that our illiquidity shock impacts the economy indirectly via

a financial amplification mechanism and not directly via its impact on productivity and

output as would arise in a rare consumption disasters model. Our approach to modeling

leads to endogenous crises in which the financial sector is the key factor.
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Note that we do not model a Diamond and Dybvig (1983) bank-run game. We simply

assume that the shock leads all debtors to pull their funding. It is possible to model the

game in detail following Li (2019) whose model is the basis for this paper. However, we

learn from that study that the model’s positive implications are almost the same with and

without the deeper model of the bank-run game.

3.3 Beliefs and Crises

The intensity of the illiquidity shock process dNt follows a two state continuous-time Markov

process, λ̃t ∈ {λL, λH}. This intensity changes from λL to λH at rate λL→H , and changes

from λH to λL at rate λH→L. Agents, neither bankers nor households, observe λ̃t. Instead

agents infer λ̃t from observing the history of Nt, i.e., via realizations of the shock process.

We denote the Bayesian expectation as λt = Et[λ̃t]. Using Bayes rule,

Lemma 1 (Bayesian Belief Process).

dλt =

(
(λL − λt−)λH→L + (λH − λt−)λL→H

−(λt− − λL)(λH − λt−)

)
dt+

(λt− − λL)(λH − λt−)

λt−
dNt (7)

Therefore, if illiquidity occurs, the expected intensity λt jumps up. As time goes by,

without further illiquidity shocks, the expected intensity λt gradually falls.7

3.4 Diagnostic Expectations

We also consider a version of our model where agents overweight recent observations moti-

vated by the diagnostic belief model of (Bordalo, Gennaioli and Shleifer, 2018). We adapt

their model to our continuous time dynamic equilibrium environment.

Denote the Bayesian belief for the probability of λ̃t = λH as πt, and the diagnostic belief

for the probability of λ̃t = λH as πθt . Then we define the diagnostic beliefs as

πθt = πt ·
(

πt
Et−t0 [πt]

)θ
1

Zt
(8)

1− πθt = (1− πt) ·
(

1− πt
Et−t0 [1− πt]

)θ
1

Zt
(9)

7In theory, when λt → λL, the drift of dλt can be positive. The reason is that the underlying intensity
process λ̃t switches between λL and λH and the average is between the two values, so when λt is close to
λL the dynamics of λ̃t dominates the information effect and dλt is positive. However, states with positive
dλt are transient, i.e., λt never get back to those states once it drifts outside. In the long run, those states
are reached with zero probability and do not matter quantitatively.
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where Zt is a normalization to ensure that (8) and (9) add up to 1. We call the lag t0 as the

“look-back period,” which is one in the discrete time model of Bordalo, Gennaioli and Shleifer

(2018). In our case, the diagnostic beliefs of the process are simply distorted Bayesian

beliefs with the benchmark from t0 time ago. The process πθt features both overreaction and

underreaction, depending on the gap between current πt and past πt−t0 .

Denote the diagnostic belief for the expected intensity of illiquidity shocks as

λθt = Eθ
t [λ̃t] :

∆
= πθt λH + (1− πθt )λL

where Eθ is the expectation with respect to the probability distribution under the diagnostic

belief. Then we have the following result:

Lemma 2 (Diagnostic Belief Process). The diagnostic belief λθt = Eθ
t [λ̃t] is

λθt = λL + (λt − λL)
(λH − λt) + (λt − λL)

(
λTt −λL
λH−λTt

/ λt−λL
λH−λt

)
θ
(λH − λt) + (λt − λL)

(10)

where λTt = Et−T [λ̃t] is the expected value of λ̃t under the Bayesian expectation.

In Figure 3, we plot the evolution dynamics of the Bayesian and diagnostic belief pro-

cesses, where the diagnostic belief process is described by (10). We note that when θ = 0,

λθt = λt so that the diagnostic belief is the same as the Bayesian belief. When θ is above

0, the pre-illiquidity shock belief is lower than the Bayesian belief, and then jumps to a

higher level after an illiquidity shock. Right after an illiquidity shock, there is over pes-

simism. However, after one year, the perceived frequency of the illiquidity shock is below

the Bayesian belief so that diagnostic agents are overly optimistic.

Under the diagnostic belief, we assume that all agents are unaware of their belief bias

(i.e., they think λθt as if it is λt) and apply rational decision rules.8 As a result, although

we need to keep track of both λθ and λ for simulating the model dynamics, we only need

λθ for a “snapshot” of the economy. For this reason, in what follows, we only discuss the

model solutions under the Bayesian belief. The diagnostic model easily follows through by

replacing λ with λθ in the policy functions.

8One could consider a model where a single diagnostic agent thinks they are unbiased, but other agents
are biased. This is in the spirit of the heterogenous belief models (Simsek, 2013). We conjecture that in such
a model the equilibrium impact of belief distortions will be weakened (e.g., bankers will take less leverage if
they observe that other bankers are over-levered).
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Figure 3: Simulation of Diagnostic Belief under Different Diagnostic Parameter θ. The
parameter θ ≥ 0 means the strength of the behavioral feature of the diagnostic belief, and it
becomes the Bayesian belief when θ = 0. Other parameters are set as λL = 0.001, λH = 0.5,
λH→L = 0.5, λL→H = 0.1. These parameters imply that a financial illiquidity shock happens
once about each 12 years. The diagnostic belief process is fully described by (10). In the
figure, as θ increases from 0 to 1, the believed frequency of illiquidity shocks in a pre-crisis
boom decreases by 30%.

3.5 State Variables and Decisions

We define the total wealth of banks as W b
t and the total wealth of households as W h

t . Then

we have three state variables. One is the wealth share of bankers, denoted by

wt =
W b
t

W b
t +W h

t

, (11)

The second is the expected jump intensity λt. The final one is the total productive capital

Kt. We construct an equilibrium where all relevant object scale linearly with Kt. This

reduces the computational problem to solving a model with two state variables, wt and λt.

Denote wbt as the wealth of a representative banker. Similarly, denote wht as the wealth

of a representative household. Let the associated value function be V b(wbt , wt, λt) and

V h(wht , wt, λt), respectively, at time t. To guarantee a non-degenerate wealth distribution,

we assume bankers randomly transit to becoming households at rate η.9 Bankers take this

transition possibility into account in their optimization problems.

9Without this assumption, the banker, who earns a higher return on capital, will come to own almost all
of the wealth of the economy.
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Bankers

Each banker can invest in productive capital and borrow/lend from households or other

banks via short-term debt at interest rate rdt . Note that short-term debt is riskless even

though the price of capital will jump in equilibrium. This is because a forward-looking

banker with log utility will never make a portfolio choice that leaves him with negative

wealth in any state.

Denote the banker’s portfolio choice (as a fraction of the banker’s wealth wbt ) in productive

capital as xKt . Then the borrowing from household is

xdt = xKt − 1 (12)

We will later show that banks always borrow from households and take leverage so we always

have xdt > 0.

Starting from time t, the time that banker will switch to becoming a household is denoted

as T , which is exponentially distributed with rate η. A banker with wealth wbt solves the

problem

V b(wbt , wt, λt) = sup
cbt≥0, xKt−≥0

E[

∫ T

t

e−ρ(s−t) log(cbs)ds+ e−ρTV h(wbT , wT )
∣∣wbt , wt ], (13)

subject to the solvency constraint

wbt ≥ 0. (14)

The second part of the objective function is the transition to a household, which changes

the continuation value from V b to V h. The dynamic bank budget constraint is:

dwbt
wbt−

= xKt−(µRt− +
Ā

pt−
)dt︸ ︷︷ ︸

return from capital

− xdt−r
d
t−dt︸ ︷︷ ︸

deposit funding

−
cbt−
wt−

dt︸ ︷︷ ︸
consumption

+xKt−(σK + σpt−)dBt︸ ︷︷ ︸
volatility of capital

− (xKt−κ
p
t− + α(xdt−)+)dNt︸ ︷︷ ︸

losses in illiquidity shock

,

where (xd)+ = max{xd, 0} measures the net borrowing from households, and the “non-

dividend” component of capital return is:

µRt = µpt︸︷︷︸
price appreciation

− δ︸︷︷︸
depreciation

+ σKσpt︸ ︷︷ ︸
Ito term

+ µKt −
φ(µKt )

pt︸ ︷︷ ︸
net investment return

, (15)

In equation (15), the bank obtains returns from capital investment and pays the funding

costs to depositors and dividends (i.e., banker consumption) to bank shareholders, subject

to the Brownian risks of capital volatility, and losses caused by the liquidity shocks. The

return from capital can be classified into a dividend component denoted by Ā/pt, and a
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non-dividend component denoted by µRt , which as shown in equation (15) consists of capital

price appreciation, capital depreciation, the Ito term on capital volume and price volatility,

and finally the net investment returns. During a liquidity shock, the banker suffers from

both an exogenous liquidation cost (α) and a valuation drop on their capital holdings (κpt−).

Note that the net funding withdrawal that has to be fulfilled during an illiquidity episode

by selling productive capital is xdt−.

Households

Each household chooses the consumption rate cht and capital holding yKt as a fraction of

household wealth for the following objective

V h(wht , wt, λt) = sup
cht ≥0, yKt ≥0

E[

∫ ∞
t

e−ρ(s−t) ln(chs )ds
∣∣wht , wt ], (16)

subject to the solvency constraint

wht ≥ 0, (17)

and the budget constraint

dwht
wht−

= yKt−(µRt− +
A

pt−
)dt︸ ︷︷ ︸

return from capital

+ ydt−r
d
t−dt︸ ︷︷ ︸

deposit interest

−
cht−
wt−

dt︸ ︷︷ ︸
consumption

+ yKt−(σK + σpt−)dBt︸ ︷︷ ︸
volatility of capital

− κht−dNt︸ ︷︷ ︸
liquidity exposure

(18)

where in the liquidity shock, they also suffer losses on their holdings of capital, but receive

a transfer (the exogenous liquidation cost paid by the banker):

κht− = yKt−κ
p
t−︸ ︷︷ ︸

valuation drop

−α(xdt−)+ wt−
1− wt−︸ ︷︷ ︸

transfer

. (19)

Relative to the bank budget constraint in (15), the household budget constraint (18) differs

mainly in two ways: First, households earn a lower dividend return compared to bankers,

A/pt < Ā/pt; Second, during the liquidity shock, households provide emergency funding

to banks and earn a profit, while bankers lose net worth due to the financing costs. In

practice such a profit is likely intermediated by the central bank, which we have omitted in

our modeling. Our modeling implies that there is no destruction of wealth in a liquidation

shock, so the household financing benefits (per unit of wealth) multiplied by household total

wealth 1−wt equals to the banker financing costs (per unit of wealth) multiplied by banker

total wealth wt. We could alternatively model the liquidation cost as a deadweight loss.

t not to, primarily to ensure that the liquidity shock is purely financial and has no direct

impact on aggregate output.

18



3.6 Equilibrium Definition

Denote the share of capital owned by bankers as

ψt =
xKt W

b
t

xKt W
b
t + yKt W

h
t

. (20)

Then the aggregate production of consumption goods is

Yt = (ψtĀ+ (1− ψt)A)Kt. (21)

Because Ā > A, output is increasing in ψt.

Given that there is no heterogeneity within bankers and within households, we can express

the dynamics of aggregate wealth as

dW b
t

W b
t−

=
dwbt
wbt−
− ηdt (22)

dW h
t

W h
t−

=
dwht
wht−

+ η
W b
t−

W h
t−
dt, (23)

where the second terms in both (22) and (23) are due to the transition of bankers to house-

holds.

We derive a Markov equilibrium where all choices only depend on the state variables wt

and λt.
10 Let ĉb = cb/wb be the consumption of a representative banker as a fraction of

the banker’s wealth, and ĉh = ch/wh similarly. The following formalizes the equilibrium

definition.

Definition 1 (Equilibrium). An equilibrium is a set of functions, including the price of

capital p(wt, λt), bank debt yield rd(wt, λt), household consumption wealth ratio ĉh(wt, λt) and

capital holdings yK(wt, λt), banker consumption wealth ratio ĉb(wt, λt) and capital holdings

xK(wt, λt), such that

• Consumption, investment and portfolio choices are optimal.

• Capital good market clears

W b
t x

K
t +W h

t y
K
t = ptKt. (24)

10 Under diagnostic beliefs, while agents’ beliefs are diagnostic they think that theirs and all other agents’
beliefs are Bayesian. In other words, the policy functions and state variables are the same as those under
Bayesian beliefs. However, because these policy functions are evaluated under diagnostic beliefs, the equi-
librium outcomes are different. Furthermore, the dynamics of the state variables are different due to the
underlying difference between diagnostic belief and the true process. The solution strategy for the diagnostic
belief model is to solve the Bayesian decision rules under Bayesian belief θ = 0, and then apply the same
policy functions and simulate the diagnostic model with the diagnostic belief of θ > 0.
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Banker wealth share 𝑤

after shock 𝑑𝑁!

Price of capital
larger bank equity drop

Figure 4: Price of capital as a function of wt, pre- and post- dNt shock.

• The aggregate non-financial wealth of households and banks equal to total value of capital

W b
t +W h

t = ptKt. (25)

• Consumption goods market clears

ĉbtW
b
t + ĉhtW

h
t = (ψtĀ+ (1− ψt)A)Kt − itKt. (26)

3.7 State-Dependence and Distress Dynamics

We solve the model and illustrate the nonlinear and state-dependent effects of a financial

illiquidity event and the dynamics of the capital price around illiquidity shocks.

Figure 4, Panel (a) graphs the price of capital in blue as a function the banker’s wealth

share, wt, which is one of the state variables in the equilibrium (λt is the other state variable).

We note that the price of capital is increasing in wt up to a point and then is flat thereafter.

In the increasing portion, both bankers and households own capital. As the wealth share

increases, more of the capital is in the bankers’ hands, and hence more of the capital produces

a higher dividend of Ā. This force leads to a positive relationship between the price of capital

and the wealth share. To the right of the dashed line, all of the capital is in the bankers’

hands. Now, it will be the case that as the wealth share of bankers rises to the right of the

dashed line, the risk premium required by bankers to absorb capital risk falls, which by itself

would raise capital prices. However, because of log utility, the interest rate rises to offset

the fall in the risk premium, and the net effect on the discount rate is to keep the price of

capital constant to the right of the dashed-line.
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There are two cases of interest. If the illiquidity shock occurs when banker wealth share

is high – on the right side of the dashed line in panel (a) – bankers suffer the exogenous

liquidation loss, which means that the post-shock wealth share jumps to the left, as indicated

by the red arrow. But since at this new wealth share, the price of capital is the same as at the

old wealth share, there is no endogenous fall in the price of capital. On the other hand, on the

left side of the dashed line, the exogenous loss leads to a fall in banker wealth share, which

leads to an endogenous fall in the price of capital, which implies further losses to bankers, and

so on. The post-shock capital price traces along the red dashed line, reflecting a downward

jump in the capital price and the banker wealth share state variable. The exogenous loss is

amplified in this case. Our model thereby captures an amplification mechanism, where the

degree is state-dependent.

3.8 Leverage, Risk and Liquidity Premia

For an individual bank, the net funding withdrawal that has to be fulfilled during an illiq-

uidity episode by selling productive capital is (xdt )
+ = (xKt − 1)+. In Appendix A.3, we

prove that:

Lemma 3. In equilibrium, banks always borrow from households and take leverage, i.e.,

xKt ≥ 1.

The statement is true because banks earn higher returns on holding productive capital

than households. Thus, we have

(xdt )
+ = xdt (27)

With the results in Lemma 3 and the properties of log utility, we write the equivalent

banker’s optimization problem as:

max
cbt ,x

d
t ,x

K
t

{
log(cbt) +

1

ρ

(
Et−[

dwbt
wbt−

]/dt− 1

2

(
dwbt
wbt−

)2

/dt

)}
(28)

subject to the bank budget constraint, (15), rewritten as,

dwbt
wbt−

= −
cbt−
wbt−

dt+rdt−dt+x
K
t− ·(µRt− +

Ā

pt−
− rdt−)︸ ︷︷ ︸

capital excess return

dt+xKt−(σK + σpt−)dBt︸ ︷︷ ︸
Brownian risks

− (αxdt− + xKt−κ
p
t−)dNt︸ ︷︷ ︸

losses in illiquidity shocks

(29)

The objective has the familiar mean-variance form over the evolution of wealth that comes

from log-utility. We note the key quantities that enter into this mean-variance tradeoff: (1)

purchasing capital funded by deposits earns the capital excess return; (2) but this return is

at the cost of capital price risk (Brownian risk) and the costs in a bank run (losses in an
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illiquidity shock). Note that the net funding withdrawal that has to be fulfilled during an

illiquidity episode by selling productive capital is xdt−.

Denote the return to a bank on holding capital as dRb
t . Then we have the following first

order condition for the excess return earned by the banker in purchasing capital funded by

deposits:

Et−[dRb
t ]− rdt− = (σK + σpt−)2xKt−︸ ︷︷ ︸

Brownian risk premium

+λt−(α + κpt−)
xKt−κ

p
t− + αxdt−

1− xKt−κ
p
t− − αxdt−︸ ︷︷ ︸

liquidity risk premium

(30)

where the first term is the required compensation for taking on Brownian risk. The two

sources of Brownian risk are the exogenous capital shock, σK , and the endogenous capital

price risk, σpt . The second term is a liquidity risk premium. Deposits are subject to run

risk, in which case the bank has to sell capital, suffering the exogenous loss of α and the

endogenous fire sale loss of κpt−. This possible loss requires a compensation, which is the

liquidity risk premium.11

Equation (30) can also be used to understand the leverage decision of a banker, which is

xKt . In particular, consider how news that leads the banker to revise upwards his estimate

of λt will affect leverage. Since purchasing capital funded by runnable deposits exposes

the banker to liquidity risk, this higher liquidity risk will lead the banker to take on less

leverage. Figure 9 illustrates this negative relationship in our model. A useful intuition to

help understand our model’s results is:

Prob of crisis ∝ Leverage︸ ︷︷ ︸
↑ as λ↓

× λ︸︷︷︸
Prob of liquidity shock

(31)

We return to this relation in Section 5.

3.9 Spreads and Bank Pricing of Liquidity and Credit

In this section, we define spreads that enable us to align the model with data. First, we

define the spread on a hypothetical instantaneous loan with interest rate rCt and no capital

price risk. While there is no price risk when making this loan, we assume it is subject to

illiquidity costs of α in the event of a bank run. It is straightforward to show12 that the

11Note that the expected loss under the physical probability is λt−(α + κpt−). The term for the liquidity
risk premium in (30) reflects the risk compensation for being exposed to these losses.

12The derivation detail is in Appendix A.6.

22



spread on this loan relative to the deposit rate is:

rCt− − rdt− =
λt−

1− xKt−κ
p
t− − αxdt−︸ ︷︷ ︸

risk-adjusted probability

· α︸︷︷︸
liquidity loss

(32)

This object is a pure liquidity spread and reflects banks concern over liquidity risk. We use

this spread to help calibrate the unconditional mean intensity of the liquidity shock.

Second, we aim to match the crisis-cycle pattern of bank’s credit pricing, which reflect

pre-crisis froth, a sharp tightening in the crisis, and a gradual post-crisis recovery. A natural

model object that will reflect bank’s credit pricing is Et−[dRb
t ]−rdt− which is banks’ required

return on holding capital (i.e., loans) over its funding cost. Loosing speaking, Et−[dRb
t ]−rdt−

is a bank’s required loan spread. However, the exact historical data we match over the crisis

cycle is not loan spreads but credit spreads (see Section 2). There is considerable empirical

support for the association between credit spreads and bank lending standards. See Gilchrist

and Zakrajsek (2012). We next define a credit spread that is needed to map the model to

the credit spread data.

We define a zero net-supply defaultable bond, matching the characteristics of the credit

spreads in the data presented in Section 2. These defaultable bonds are priced by the

banker’s pricing kernel. This last point is worth stressing, as the model-defined credit

spread will thus pick-up endogenous variation in bankers’ attitude towards risky lending.

We define the credit spread as the yield differential between a risky zero-coupon bond and

a zero-coupon safe bond with the same [expected] maturity. We model the default intensity

of the bond as related to the intensity of the illiquidity shock, λt−. In default, the losses

to bond holders are affine in the capital price decline κpt−. Details on this specification, the

bond pricing solution, and the calibration are provided in Appendix A.7.

Figure 5 plots the credit spread in the calibrated model against the liquidity premium,

rCt− − rdt−, and the loan spread Et−[dRb
t ] − rdt−. The variation in the spreads is generated

by model’s variation in the state variable λt. The figure plots this relation for two different

values of w, one at the median, and one at a higher value of w. The upshot from this figure

is that all of these spreads move together. We use the liquidity premium and the credit

spread as targets for calibration because they have measured data counterparts.

3.10 Solution Methodology and Simulation

The challenge of solving this model comes from both multiple state variables and the en-

dogenous jumps in the state variables. To ensure stability, we use a functional iteration

method that begins with an initial guess of the capital price function p(0)(w, λ), and then

iterates over the equilibrium equation system to get an updated price p(1). This updating
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(a) Liquidity Premium (Equation (32))

0.006 0.008 0.01 0.012 0.014 0.016 0.018

credit spread

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

ba
nk

 lo
an

 s
pr

ea
d

w=0.18
w=0.35

(b) Bank Loan Spread (Equation (30))

Figure 5: Credit Spread against Bank Loan Spread and Liquidity Premium in the calibrated
Bayesian Model. In this figure, we show the relationship between credit spread, liquidity
premium, and the bank loan spread. We fix the state w and then trace the relationship
among different spreads along the λ dimension.

step involves solving a fixed-point problem at each state (w, λ). Then we iterate until at

step k, we have ∫ 1

0

∫ λH

λL

|p(k+1)(w, λ)− p(k)(w, λ)|dλdw < ε

for a small positive number ε.

We simulate the model at a monthly frequency but analyze simulations at a yearly

frequency to be consistent with the data.

• We set the simulation interval as dt = 1/12 (a month), and generate the independent

Brownian shocks dBt ∼ N (0,
√
dt), as well as an independent frequency of illiquidity

shock process λ̃t. Based on the illiquidity shock process λ̃t, we generate illiquidity shocks

dNt that hits with probability λ̃tdt for the time interval dt.

• Once shocks are generated, we solve for the dynamics of state variables, including wt, λt,

and Kt. For the static belief model, λt = λ̄. For the diagnostic belief model, we need to

generate λθt based on λt.

• With state variables determined, we generate all other quantities and prices of the model.

• We discard the first one thousand data points of each simulation path collected in this

manner. As a result, the initial values do not affect our computed moments. The sim-

ulation approximates picking initial conditions from the ergodic distribution of the state

variables.
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• Finally, we average all of the monthly quantities for a given year to get an annual data

set. For prices, we use the first observation of every year.

4 Calibration

In order to map model outputs to data, we need to define a financial crisis. Crises are the

events where the growth in bank credit/GDP in a given month falls into the lowest 4%

quantile of the distribution of monthly bank credit/GDP growth rates, and there has not

been another such event in the previous three years. This latter criterion is to ensure that a

longer crisis is still dated as a single crisis, as is done in the empirical literature. This crisis

corresponds to a disintermediation event, and in the simulation almost always involves an

illiquidity shock and bank run, although as crises are endogenous, not all illiquidity events

are crises. We target the 4% number based on fact 1 of Section 2. We also consider a crisis

definition based on bank equity crashes, as in Baron and Xiong (2017), in Section 5.8.

We solve and calibrate three variants of the model:

1. Bayesian (rational) Model: Agents form beliefs over the illiquidity state following Bayes

rule, and this belief varies over time.

2. Diagnostic (non-rational) Model: Agents form beliefs over the illiquidity state via diag-

nostic expectations, and belief varies over time.

3. Static-belief Model: Agents’ beliefs are constant.

We apply a combination of calibration and estimation for model parameters. Specifically,

we directly set parameter values for those with standard values in the literature. Then we

estimate the rest of parameters based on moments chosen to best reflect the economics of

those parameters.

Table 1: Calibrated Parameter Values

Choice Moment

δ Depreciation rate 10% Depreciation rate in the literature

ρ Time discount rate 4% Discount rate in the literature

χ Investment adjustment cost 3 Adjustment cost in literature

α Distress illiquidity costs 0.05 Data

θ Diagnostic belief weight 0.90 Literature
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A list of the calibrated parameters for the model (not including the credit spread which

is given in Appendix A.7) are shown in Table 1. We follow the macroeconomics literature

to set annual depreciation rate δ = 0.1 (Gertler and Kiyotaki, 2010), annual time discount

rate ρ = 4% (Gertler and Kiyotaki, 2010), and investment adjustment cost χ = 3 (He and

Krishnamurthy, 2019). For the emergency liquidity costs (α), we do not have good data for

the historical financial crises to pin these down. From data of the 2008 crisis, the effective

liquidation loss is about 0.05, which is the value of α · β in Li (2019). Alternatively, we

can interpret this liquidation loss as a funding premium. The value of α = 0.05 translates

to a 10% premium for a illiquidity event that lasts 6 months. Last, in our investigation

of beliefs in the model, we choose the diagnostic parameter θ based on the research by

Bordalo, Gennaioli and Shleifer (2018), Bordalo et al. (2019b), and Bordalo et al. (2020).

These authors estimate θ based on the dynamics of forecasts for financial and economic

variables. We set θ equal to 0.9, which is the value used by Bordalo, Gennaioli and Shleifer

(2018) and Bordalo et al. (2019b).13

Table 2: Moments and Model Estimates

Panel A. Moments
Data Static Bayesian Diagnostic

Average liquidity premium 0.90% 0.90% 0.93% 0.75%

Avg credit spread change in crises 70% 7% 51% 55%

Half-life of credit spread recovery (years) 2.5 2.7 2.6 2.3

Output/capital ratio 14% 16% 17% 15%

Avg 3-year output drop in crises -9.1% -7.9% -8.8% -9.4%

Output growth volatility 3.8% 3.5% 2.8% 3.6%

Average bank leverage 5.0 5.1 5.0 5.0

Panel B. Estimated Parameter Values

Parameter Static Bayesian Diagnostic

Avg frequency of liquidity shock λ̄ 0.08 – –

High intensity of liquidity shock λH – 0.51 0.58

Low to high transition λL→H – 0.11 0.11

High to low transition λH→L – 0.52 0.48

Household productivity AL 0.12 0.17 0.13

Bank lending advantage AH − AL 0.055 0.03 0.02

Volatility of capital growth σK 0.055 0.03 0.03

Banker-household transition rate η 0.135 0.06 0.04

13Bordalo et al. (2020) report an estimate of θ of 0.5.
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Then we proceed to estimate other parameters, reported in Table 2 Panel B. The Static

Belief model has only one parameter λ̄ governing the crisis frequency process which is con-

stant over time. There are four parameters governing beliefs in the Bayesian model: λH ,

λL, λL→H , and λH→L. We note that as long as λL is close to zero, the impact of its value

is negligible. Therefore, we pick λL = 0.001 directly. The diagnostic model adds θ as one

more degree of freedom (the ’look-back period” parameter t0 is set to 1, the implicit value

from discrete-time diagnostic belief process such as Bordalo, Gennaioli and Shleifer (2018)).

Finally, we note that the Bayesian Belief and Diagnostic Belief models are exactly identified,

while the Static Belief model has two more moments than parameters. After experimenta-

tion with the model, we find that the following moments to be particularly informative for

the belief parameters:

• The average liquidity premium will reflect banks’ assessment of liquidity risk, and thus the

average value of λ. See equation (32). The spread between P2 rated 3-month commercial

paper and 3-month T-bills in data from 1974 to 2018 is 94 basis points. We target

a liquidity premium of 90 basis points. Krishnamurthy and Vissing-Jorgensen (2015)

estimate the average liquidity premium on long-term Treasury bonds relative to AAA

corporate bonds to be 75 basis points. We focus on a short-term bond in our exercise

and thus target a higher spread. Our estimate reported in Panel B implies an average λ

of 0.08, which translates to a liquidity event once over 12.5 years. In the high illiquidity

state, the λH for the Bayesian and Diagnostic models are a little over 0.5 implying a

liquidity event roughly every two years.

• Credit spread changes during a crisis (fact 2). The spike in the credit spread is 0.7σs.

This moment helps determine λL→H , which affects the degree of surprise in beliefs due to

the realizations of illiquidity shocks.

• Half-life of credit spread recovery (fact 4). According to Krishnamurthy and Muir (2020),

the half-life is 2.5 years. This moment primarily determines λH→L, since the speed of

recovery of beliefs after a illiquidity shock is directly affected by the underlying transition

probability.

The parameters Ā, A, σK , and η govern the output process both in and out of crises.

The following targets inform these parameter choices:

• Average output decline during a crisis (fact 3): We target -9.1% as explained in Section

2. This moment is most directly related to the productivity differential Ā− A.

• Investment to capital ratio: We use the same target as He and Krishnamurthy (2019).

This moment mainly affects the average of productivity parameters, Ā and A.
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• Average output growth volatility: According to Bohn’s historical data, the volatility of

real GDP growth from 1791 to 2012 for the U.S. is 4%. This moment mainly affects the

capital volatility σK .

• We map banks in the model to depository institutions and broker dealers in the flow of

funds. Bank equity is defined as total bank assets minus total bank liabilities. Since our

model only captures runnable liabilities, we define effective bank liabilities as total liabil-

ities minus insured deposits. Then we calculate bank leverage as (bank equity + effective

bank liabilities)/bank equity. Using all data available, we find that bank leverage is ap-

proximately 5. This moment disciplines η, the transition rate from bankers to households,

which affects the stationary distribution of leverage in the model. For example, setting η

very low leads to a stationary distribution where almost all of the wealth is in bankers’

hands and average leverage in equilibrium is very low.

To search for parameter values that best match moments, we need to repeatedly solve the

model for a large combination of parameter values. A simple discretization of the param-

eter space (5 parameters for the benchmark, 7 parameters for the Bayesian and diagnostic

models) renders the task computationally infeasible. To resolve this difficulty, we apply the

Smolyak grid method (Judd et al., 2014) to generate a discretized state space. For each

version of the model, we follow the estimation procedure:

• Discretize the state space of parameters around their initial values. We pick a discretiza-

tion level of 3 in the Smolyak discretization. This results in 177 combinations for the

static belief model, 241 combinations for the Bayesian model, and 389 combinations for

the diagnostic model. Simulate all of these models and collect their moment values.

• Denote the moments in the data as m1, · · · , mJ , and the moments from the model as

m̂1, · · · , m̂J . From all of the parameter combinations, pick the one that minimizes the

objective
J∑
j=1

weightj
|m̂j −mj|

mj

.

Here weightj reflects the importance of a given target in the estimation. We set the weight

for the liquidity premium to be three and the rest of the weights to be one. The average

liquidity premium determines the frequency of illiquidity shocks which is a particularly

important parameter in the model.

• Once we have picked a set of parameters, we search in a smaller region around this set

of parameters and find a new best set of parameters in the smaller region. We iterate

the above process until the difference between the optimized objective value between two

iterations is below a threshold.
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5 Model Evaluation

This section evaluates the models we consider and explains the mechanisms that help the

models match the crisis data patterns.

5.1 Targeted Moments

We target means across crises in choosing parameters. Table 2 presents the model’s fit in

hitting the targets. We re-calibrate the model parameters to best match moments for each

version of the model, thus giving each model the best chance to represent the data. Although

each version of the model is at least exactly identified (static belief model is overidentified),

because the state-space is restricted, we do not fit all of the moments accurately. The static

belief model, in particular, misses the spread change in the crisis by a wide margin. It is

possible to fit this moment if we increase the exogenous liquidation cost α, but we opt to

keep α constant across all of the models to better illustrate the mechanisms underlying the

models.

[TABLE 2 HERE]

Figure 7 plots the path of the model-generated credit spread, bank credit/GDP and GDP

around a crisis at t = 0. The credit spread and bank credit variables are plotted in units of

standard-deviations from their mean value over the sample. The figure should be compared

to the data in Figure 1. We see that the model is able to generate the jump in spreads,

contraction in credit, and drop in GDP. For both the Bayesian and Diagnostic model, the

magnitudes of the spread spike and GDP decline are also in line with the data. During a

crisis, spreads jump about 50% in the model (that is, 0.5 σs) and 70% in the data. As noted

above, the magnitude of the spread spike in the static belief model is too small relative to

the data. The magnitude of the credit contraction of around 0.55σs is larger than the data

counterpart of 0.33σs. This is likely because in our model all credit is extended via banks,

while in the data, there are other intermediaries involved in the credit process. Note that

we have not explicitly targeted the credit contraction in the calibration.

[FIGURE 7 HERE]

All of the models match the sharp transition in the crisis, driven by the model’s ampli-

fication mechanism, and output that is below trend for a sustained period post-crisis. The

figures also reveal how the pre-crisis patterns vary across the models. In the years before

the crisis, bank credit and GDP are rising while credit spreads are below normal in both

dynamic belief models. In the static belief model, spreads are slightly higher than normal,
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while credit is falling. This contrast points to the need for time-variation in beliefs to fit the

data.

5.2 Ergodic Distributions

In Figure 6, we graph the ergodic distributions of the state (wt, λt) for the three models.

Underlying movements in w are driven by three forces: the exogenous diffusion shocks to

capital shift wealth, creating paths from the center of the distribution to both right and

left; paths that go to the left are pushed back to the middle because in low w states, risk

premia are high and bankers expected wealth growth is high; the transition rate of bankers

into households, η, result in a drift in w of −ηw, which pushes all paths to the left. The

result of these forces is a mean-reverting w process and the single-peaked distribution. In

the diagnostic and Bayesian models, the realization of a jump leads to a larger adjustment

in w relative to the static beliefs model, because agents belief shift from the low illiquidity

to the high illiquidity state. As a result, more mass is shifted to low-w states. Broadly, all

three of the models generate a similar left-skewed output distribution.

[FIGURE 6 HERE]

5.3 Non-targeted Moments

The success in matching the mean patterns of crises verifies that our model’s mechanisms can

speak to the data. However, as we have noted, our calibration explicitly targets the means.

We next describe the model’s fit in the cross-section of crises, which are non-targeted

moments. Within the sample of crises, there are smaller and larger crises. The moments

we report measure variation within these crises. We discuss the model’s fit of these non-

targeted moments in this section, and delve further into the fit in the next sections. Table

3 summarizes the model’s performance in matching non-targeted moments.

Panel A reports that all the models’ fit on the data patterns on the crisis and its after-

math. First, in the data, episodes where credit spreads increase more are followed by larger

output contractions. The first row of Panel A reports these moments from the models and

data. All the model get the signs right, but the static belief model comes closest to match-

ing the data. Credit spreads are likely too informative in our model relative to the data,

because in our model credit spreads only reflect aggregate downside risk, when in the data

idiosyncratic risk likely also drives spreads. Second, crises that are preceded by a run up in

bank credit are also more severe crises. The second row of Panel A reports the models’ fit

with data on this dimension. In general, all three of the models get the signs right and are

in the ballpark of the data, but again the diagnostic and Bayesian models are over-sensitive.
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We note that these crisis facts are well modeled even in the static belief model which only

has a financial intermediation mechanism.

Panel B reports that all of the models are able to fit the negative data relationship

between bank credit and risk premia. The panel is not explicitly about financial crises,

but more generally about the relationship between movements in credit and risk premia.

In the data, credit growth is negatively correlated with excess equity returns (Baron and

Xiong, 2017). Periods of high credit growth are followed by low returns, and periods of low

credit growth are followed by high returns. We verify that all of the models we consider

deliver this relation. They do so via time variation in the supply of risk-bearing capacity.

The state variables of the model, such as w, capture variation in the effective risk aversion

of the banking sector. When effective risk aversion is low, banks lend more and credit

grows, while risk premia are low; the opposite pattern holds when risk aversion is high. This

mechanism thus delivers the relation between bank credit and risk premia. The fact that this

relationship holds even in the model with static beliefs bears stressing: a sentiment/belief

mechanism is not necessary to replicate the credit/risk premia relationship.

Panels C and D consider the pre-crisis patterns where we see divergence across the

models. In Panel C, we examine whether the model can reproduce the fact that spreads

are below normal before crises. The first row considers the mean pre-crisis spread. Both

the diagnostic model and the Bayesian model deliver the below normal spread, while the

static belief model delivers an above normal spread. We explain this failure in further detail

below. Panel D considers the predictive relationship between measures of credit market

excess and subsequent crises. We again see that the static belief model fails to generate a

sign in keeping with the data. Both of the belief models succeed in this dimension, although

each model does better (and worse) in some dimensions.

[TABLE 3 HERE]

5.4 Mechanism 1: Frictional Intermediation and Leverage

Figure 8 graphs the histogram of 3-year GDP growth in crises for all three models. In a

model with no financial amplification and only diffusion shocks to AKt, output growth would

be normally distributed. All three models, and particularly the static model with only an

amplification mechanism, generates the skew in line with the data. Thus, we conclude that

the left-skewed output growth distribution in line with the data can be generated by a pure

financial amplification mechanism.

[FIGURE 8 HERE]

In the data, the skewness in output growth matches the skewness of the jump in credit
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spreads in the crisis (fact 7). Panel A in Table 3 evaluates the relationship between the

jump in credit spreads in this model and the fall in GDP. The bottom row of Panel A

evaluates the relation between the run-up in bank credit at the start of the crisis and the

subsequent severity of the crisis. This is a relation reported by several empirical studies

(Jordà, Schularick and Taylor, 2013). As noted all of the variants of the model get the signs

right, while the credit variables in the diagnostic and Bayesian model are over-sensitive to

crisis information. We have also seen in Panel B of Table 3 that all of the models generate

the negative relation between bank credit and excess equity returns (risk premia). The

models capture this moment because all of the models embed variation in the supply of

risk-bearing capacity that drives both leverage and risk premia.

These observations indicate that the frictional intermediation mechanism, which is the

only mechanism present in the static belief model, can capture the patterns of the economy

in a crisis and its aftermath. Again, it is possible to improve the quantitative fit of the static

belief model for the crisis and if its aftermath if we allow α to vary across models and be

determined via the estimation. We choose not to go down this path because, as we explain

next, this static belief model fails to fit the pre-crisis facts even qualitatively. It is likely

also possible to reduce the over-sensitivity of spreads and credit in the belief models if we

include an idiosyncratic component of risk in the determination of credit spreads.

5.5 Mechanism 2: Beliefs and Leverage

We report in Table 3 Panel C that the static belief model generates a spread that is higher

than normal in the pre-crisis period, contrary to the data. The failure can be understood

as follows. The amplification mechanism of the model, which is what drives the response of

the economy to the illiquidity shock, is governed by the single state-variable w. If w is low

(and leverage is high), a negative shock triggers a large fall in GDP and a crisis. However,

since the credit spread is forward-looking, variation in the spread is also driven by w. The

economy is more vulnerable when w is low, and hence credit spreads are higher when w is

low. As a result, the static belief model generates an above normal spread before a crisis,

contrary to the data.

The belief models are able to generate a spread with the right sign of the data.14 To

understand the economics here, consider Figure 9. We graph the policy function of bankers,

for both Bayesian and diagnostic models, in choosing leverage as a function of the true

state λ (denoted “rational” in the figure). Bankers in our model lever up to gain high

returns on capital, but at the cost of the illiquidity event where they suffer bankruptcy costs

from liquidating capital. Thus there is a bankruptcy risk/return tradeoff that drives their

14 We report the results of a regression of spreads on a dummy that takes the value of one for the 5 years
before a crisis. This regression also includes a control for the 5 years after the crisis so that the pre-crisis
dummy indicates the level of spreads relative to non-crises periods.
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leverage decision. When λ is low, the illiquidity event is less likely, and the banker chooses

high leverage; hence, the negative slope in the curves in the figure. A useful relation to keep

in mind is:

Severity of crisis ∝ Leverage and, (Leverage ↑ , Spreads ↓) as λ ↓

When λ is low and leverage is high, if an illiquidity shock dNt occurs, then its impact on

GDP will be severe and more likely to result in the large GDP decline of a crisis. Finally,

when λ is low, spreads are low, as is evident from Figure 5. This endogenous relationship

between illiquidity risk and vulnerability generates the low credit spread before crises.

The diagnostic model with the calibration of θ = 0.9 generates a magnitude in line with

the data. The Bayesian model gets a spread that is below normal, but not as low as the data

fact that spreads are about 0.34σs lower than normal in the pre-crisis period. The diagnostic

model strengthens the belief mechanism and helps bring the model closer to matching the

pre-crisis froth patterns. Consider the red dashed curve in Figure 9. We plot the banker’s

leverage decision as a function of the true lambda – not the agent’s perceived diagnostic

lambda. Clearly, at lambda of zero, the true and diagnostic lambda are the same. But

as lambda becomes larger than zero, the diagnostic agent chooses higher leverage than the

Bayesian agent. This is because the banker is overoptimistic and thinks lambda is lower

than it actually is. When the true lambda is larger than a threshold, the banker is on

average over-pessimistic and thinks lambda is higher than it actually is, thus choosing lower

leverage. As a result, the leverage/lambda curve steepens under the diagnostic model and

the diagnostic model better fits the spread/output relation as reflected in Panel C of Table

3.

[FIGURE 9 HERE]

This analysis indicates a “recipe”: to strengthen the pre-crisis relationship, a model needs

to steepen the leverage/lambda curve, even beyond that of the curves in Figure 9. Increasing

the belief distortion helps in this regard. But it worth stressing that other specifications of

the banker’s problem – altering the corporate financing frictions, for example – can likely

also deliver this steepening.

5.6 Pre-crisis: Predicting a Crisis with High Bank Credit

Next, we consider the evidence that high bank credit predict crises and not just precede

crises. To see the difference, note that the former conditions on the event of a crisis. Table

3 Panel D, second row, presents the crisis prediction result. For the bank credit regression,

we aim to match the result in Schularick and Taylor (2012) that a one-sigma increase in

bank credit/GDP increases the probability of a crisis over the next year by 2.8%.
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In the dynamic belief models, we find the variables have the right signs, although the

models are somewhat high in terms of magnitudes for spreads, and low for the credit quantity

variable. The static belief model fails again, generating a sign that is the opposite of the

data. See Table 3 Panel D.

To understand what drives the mechanism in the dynamic belief models, consider the

following intuition:

Prob of crisis ∝ Leverage︸ ︷︷ ︸
↑ as λ↓

× λ︸︷︷︸
Prob of liquidity shock

(33)

There are two competing forces at work. As λ falls, endogenous leverage rises, but the

probability of the illiquidity shock falls. If the leverage force is stronger, as it is in both

versions of the calibrated belief models, we match the data relationship between high leverage

and higher probabilities of a crisis.

Figure 10 illustrates this further. We plot the density of GDP growth over the next year

conditional on the level of credit/GDP today. The red lines correspond to the Bayesian

model and the dashed-blue lines correspond to the static-belief case. In panel (a) of the

figure, we condition on low bank credit/GDP, which is typically the outcome when w is

low and/or λ is high. This is a case where the banker faces higher illiquidity risk and

endogenously chooses lower leverage. As a result, the economy is faced with moderate

volatility of GDP but this volatility is confined to the center of the distribution and there is

little mass at the left tail. Next, consider panel (b) where condition on high levels of credit

and hence lower effective banker illiquidity aversion. The dotted black vertical line on the

figure indicates the cutoff we have used to define a financial crisis. Mass is now pushed

from the center of the distribution towards the left-tail crisis states. Effectively, the more

risk-tolerant banker is willing to take on more liquidity risk when making decisions. There

is less risk at the center of the distribution, but more mass in the tail. As a result, high

credit states forecast more left-tail events.

The static belief model has only w as the state variable to drive effective risk aversion.

With only this state variable driving decisions, the banker chooses leverage in a manner that

crises are avoided when w and credit are higher. As shown in Panel C and D of Table 3,

the signs on the credit-crisis relationship are the opposite of that in the data. This result

reinforces a lesson of our analysis that we do need a model with two state variables to explain

the entire crisis cycle.

[FIGURE 10 HERE]

Panels (c) and (d) of Figure 10 plots the distribution of GDP growth over the next year

conditional on different levels of credit in the diagnostic model relative to the Bayesian
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model. We plot the diagnostic’s model distribution in green dashed lines and the Bayesian

model in red. We can see that the forces that work to generate the relation between high

credit and crises are similar but stronger in the diagnostic model compared to the Bayesian

model. As we go from left to right panel in the figure, the mass in the left tail rises. The

improvement of the diagnostic model is again due to steepening of the leverage/lambda

relationship.

Figure 11 examines the predictive relation in a different way. In the figure, we plot the

banker’s wealth return conditional on high and low values of credit. Recall that our banker

has log utility, so the mean and variance of this distribution are the key statistics driving

banker utility and the leverage decision. The banker’s wealth volatility is highest in the

low credit case (left panel) driven by a significant mass spread between -0.1 and 0.4 at the

center of the distribution. Distress and bankruptcy costs are salient to the banker, and

thus he chooses low leverage. In the right panel high credit case, the output distribution

is tight so that over most of the distribution, there is little distress for the banker. While

there is a tail of wealth losses in crisis states, the banker’s decision to take high leverage is

largely driven by the tight central peak of the distribution. The banker understands that

the typical negative shock will have small effects on his wealth, and is willing to gamble on

avoiding the large tail shock. Note also that the banker’s wealth process is different from the

economy-wide GDP process, as should be expected in a model where banks drive systemic

risk. Banker wealth is more sensitive than GDP to small shocks, and since such shocks are

more likely, they are the drivers of the banker’s leverage decision. As a result, the model

produces the result that in the Bayesian model, even if illiquidity events are less likely (low

λ), crises are more likely.

[FIGURE 11 HERE]

5.7 Pre-crisis: Predicting a Crisis with Low Credit Spread

We next turn to the relation driving froth (low credit spreads) and crises as reflected in the

first row Table 3 Panel D. To replicate the spread predictability regressions in Krishnamurthy

and Muir (2020), we define “high froth” as a dummy that indicates whether the credit spread

is below its median value at time t. In Krishnamurthy and Muir (2020), the froth definition

is based on credit spreads being below median over a 5 year period, which is necessary

because a crisis in the data is not sharp 0-1 phenomena as in our model (spreads typically

rise before the historian-dated crisis). We predict the likelihood of a crisis over the next 5

years in the model, in line with the data moment.

As we will explain, the froth relation holds for the belief models in the parameterization

we study, but need not hold generally. Figure 12 draws density plots of next-year GDP

35



growth for the diagnostic, Bayesian and static belief model conditional on different levels of

the credit spread. We can see that the static belief model gets the sign of the mass shift

wrong. The diagnostic and Bayesian models, on the other hand, succeed in this dimension.

We see again that the relative to the Bayesian model, the diagnostic model shifts more mass

to the left tail when spreads are low, and leverage is endogenously high. We also see that

the larger shift of the diagnostic model brings the coefficient more in line with the data,

albeit still too small. See Table 3 Panel D.

[FIGURE 12 HERE]

The logic behind froth is more nuanced than for the high credit relation of the last

section. There are two forces driving variation in the credit spread that are salient for

understanding the mechanisms: (i) lower λ means less illiquidity events and hence lower

spreads; (ii) worse crises mean higher loss-given default (via κpt ) and hence higher spreads.

If we imagine shutting down effect (ii), then we can understand the froth relation easily

from equation (33). Now, if we add back effect (ii), the froth relation is weakened. The

reason is that more crises imply larger losses given default and hence higher ex-ante spreads.

If we consider the extreme case where κ = 0, and hence recovery has no fixed component,

the regression coefficient on froth falls to 0.96, thus reduced further relative to the data

counterpart. The sign of the froth relation depends quantitatively on the exact cyclicality

of recoveries in default and thus the relation between λ and spreads. We have calibrated

our model to the history of recoveries on BAA bonds in the U.S., as reported by Moodys.

5.8 Bank equity crises

Baron and Xiong (2017) and Baron, Verner and Xiong (2021) define financial crises in terms

of large (<30%) declines in bank equity values. They note that many of the crisis patterns

documented in the narrative crisis dating literature (e.g., Laeven and Valencia (2013), Jordà,

Schularick and Taylor (2011)) hold for this quantitative definition of financial crisis. In this

section we define an equity-crash crash as an event where the return on bank equity in a

given quarter is below −X%, where X is chosen to yield a frequency of bank equity crashes

of 4%. Because crashes can cluster in our simulation, we define the crash-crisis as the first

crash that occurs after at least 3 years of no crash-crises. Thus we are effectively defining

a crash as a single crisis. In our simulations, X = 42% for the Bayesian model and 41% in

the diagnostic model.

Table 4 Panel A reports the declines in GDP in the 3 years subsequent to the crash-crisis.

Baron, Verner and Xiong (2021) report that a crash-crisis is followed by a GDP decline of

around 4.5%. Our numbers are larger than theirs. They also consider a definition of a crisis

which involves a crash and a banking panic. In this event, they show the GDP declines are
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about 6%. This latter definition is more in line with our model, as a crash almost always

occurs with a liquidity shock. We also report the interaction regression, describing how

bank credit pre-crisis worsens GDP outcomes in an equity crash. Analogous to our earlier

results, bank credit is a vulnerability indicator for GDP declines in a crisis. Note that this

is a regression we do in the model, but is not presented in Baron, Verner and Xiong (2021).

Table 4 Panel B presents predictive regressions, analogous to Table III of Baron and Xiong

(2017), of bank credit/GDP on the likelihood of an equity crash. Baron and Xiong (2017)

report that the the marginal probability of an equity crash rises by around 5.4% (column 7,

top row of their table) in response to a one-sigma increase in bank credit/GDP growth. We

run this regression in our simulated data and evaluate the change in the probability of an

equity crash for a one-sigma increase in bank credit/GDP, evaluated at the mean value of

bank credit/GDP. Our model regressions are considerably lower than the data regression.

A part of this is that in Baron and Xiong (2017) the one-year probability of a crash using

the −30% cutoff is 8% rather than 4%. However, this factor accounts for only half of the

discrepancy. The main reason for the discrepancy is that in the model, equity crashes can

occur when w is low and bank credit is low – essentially a situation where much of the

capital is held outside the banking sector. In this case, the model can produce an equity

crash from a state of low bank credit/GDP. When using contractions in bank credit/GDP

to define the crisis, as in our the main crisis definition we have used, this situation does not

arise.

[TABLE 4 HERE]

Finally, note that we have not reported these regressions for the static belief model. That

model implies the wrong sign relative to the data. We can see this in Figure 13, which is

a plot of the return on bank equity from month t to t + 1 if an illiquidity shock occurs

against the time t value of bank credit/GDP. Over the entire range, we see that the relation

is positive rather than negative .

6 Policy Impact under Diagnostic and Bayesian Beliefs

We have shown that a financial friction mechanism plus a belief mechanism can capture the

main features of the crisis cycle. We also learn that both the Bayesian and diagnostic belief

models work, with the diagnostic model generating over-sensitivity relative to the data for

the crisis and post-crisis patterns, while the Bayesian model is under-sensitive in its fit of

the pre-crisis froth. Our take on these results, generated from a fairly parsimonious model,

is that nailing down the source of belief fluctuations is not essential to a researcher aiming

to match the main patterns of the crisis cycle.
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We next turn to evaluating our model’s implications for a policy experiment. We ask,

does it matter for policy purposes whether we live in a world with diagnostic beliefs or

one with Bayesian beliefs? We run the following experiment: we start the economy in

a boom state (time t = 0) with low credit spread and high leverage, and then consider

an unexpected policy that transfers wealth from households to bankers so that the banker

wealth share w0 increases by 10%. The idea is to recapitalize banks to “lean against the

wind” so that the severity of a crisis is reduced if an illiquidity shock dNt hits. This exercise

is similar to Gertler, Kiyotaki and Prestipino (2020). Under each version of the model, we

calculate the “derivative” of the nonlinear impulse response of quantities and asset prices

with respect to the recapitalization policy. We focus on aggregate variables to assess the

impact of policies.15,16

In our first experiment, we require that both models are calibrated to common data and

we simulate the models from an initial condition in terms of observables that is the same

across both models. In particular, we study a recap policy conditional on given initial bank

leverage and credit spread, which are both observables in the data. These observables pin

down the underlying states (w0, λ0) in the Bayesian model. In the diagnostic model, we also

need to know the reference belief λT0 at t = −T . Since, on average, the diagnostic belief is

equal to the rational belief, to reflect the average scenario, we assume λT0 = λ0. We simulate

the model at interval dt = 1/12 (one month), and introduce dNt = 1 at the first month (but

zero otherwise). To reflect the dynamics of the other shocks, we randomly generate dBt

in the simulation and simulate each model 10,000 times. For each model, we compute the

average impulse responses across simulation runs with and without the recap policy and plot

the difference between these responses in Figure 14. That is, we are plotting the difference

of the impulse response to the recap, across both types of models. In the top-left panel, we

plot the path-difference in w. At t = 0, due to the recapitalization policy, the response is

+10% in both cases as expected. At t = dt (monthly simulation so that dt = 1/12), the

illiquidity shock dNt hits and the nonlinear amplification mechanism turns on so that the

response becomes larger than the initial 10% difference. The output recoveries (top right

panel) after the illiquidity-shock are similar across Bayesian and diagnostic models. Since

we start the economy in a boom state that features high bank credit, the additional 10%

of bank equity has little impact on output initially. Upon the illiquidity shock, in both

models, the output is higher in the recap relative to no-recap, by around 1.5% over the

next two years. The bottom left panel plots the credit spread response. The recap leads

15In models with distorted beliefs, there is an open question of what should be the appropriate wel-
fare criterion. By focusing on aggregates, we are implicitly adopted a paternalistic criterion. Dávila and
Walther (2020) studies optimal policy in a credit market setting with heterogenous agents with distorted
beliefs. Under a paternalistic criterion, he shows that leverage restrictions depend on the source of the belief
distortion.

16The literature has observed that in models with financial frictions, there is a pecuniary externality that
can motivate restrictions on bank leverage during booms (Bianchi, 2011). This motive carries over to our
analysis.
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to a smaller rise in the credit spread. Finally, the bottom right panel illustrates the bank

credit response. The initial response-gaps are close to zero for both Bayesian and diagnostic

models, subsequently rising to about 20%.

The key message from Figure 14 is that the derivative of the impulse responses to a

recapitalization policy in the Bayesian and diagnostic models are quantitatively similar.

The result arises because the initial state is the same in terms of observables, the models

are calibrated to common data, and the initial condition for the diagnostic model is near

the Bayesian model (i.e. neither over-optimistic or pessimistic).

In our second experiment, we probe whether knowledge of the exact divergence from

Bayesian beliefs in the diagnostic model matters for outcomes. The question is whether

“getting into the minds of agents” is important for the impulse responses. The answer is

not obvious because we are simulating both models based on the same observable initial

conditions, e.g., credit spreads, which reflect agents’ beliefs. We calculate the diagnostic

model’s impulse responses in a case of overoptimism, where the initial state has the same

bank leverage and credit spread, but with λθ0 < λ0. Then we compare the results with the

no-belief distortion case of the diagnostic model in Figure 15. We again find that the impulse

response gaps are quite similar across these two cases. We thus learn that the key element

to the similarity-result is that the initial condition in terms of observables is the same. The

dynamics of the economy, conditional on a state defined by the same observables, although

different underlying state variables, are quite similar.

Finally, note that the plots in Figure 15 are conditional on an illiquidity shock. It is

also interesting to examine the unconditional response. In the overoptimism case the true

expected path of the economy will differ from the agent’s beliefs over this path. Figure 16

plots these average impulse response gaps. Now we see that the recap policy has a more

beneficial effect in the overoptimism case. However, the y-axis scale in these plots is far

smaller in magnitude than in Figure 15. That is, these average gaps will be hard to discern

in data.

In our last experiment, we do something closer to a pure comparative static exercise.

We set the parameters and the initial conditions of the Bayesian model. Then we use

the same parameters and initial conditions in terms of state variables and simulate the

diagnostic model. We think this exercise is the least economically relevant, but sheds light

on why we find similar responses in our earlier exercises. Our previous experiments tie

the model’s hands by forcing the diagnostic model’s parameters and states to match the

same observables. In Figure 17, we present the results. Both the Bayesian model and the

diagnostic model have the same parameters (other than the diagnostic parameter) and the

same initial state (w0 = w̄, λ0 = 0.9λ̄). We also set the initial diagnostic belief to feature

overoptimism at t = 0. We see that the recapitalization policies driver larger impulse

response differences. Output is higher by about 0.3% in the diagnostic model. We conclude
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that with the freedom to choose the degree of overoptimism, we can generate a larger impact

of policy. However, as noted above, this experiment is likely the least relevant in terms of

informing policy.

[TABLE 5 HERE]

A comparison of the simulation experiments is shown in Table 5.

7 Conclusion

Financial crises have clear regularities. The 2008 global financial crisis was not a unique

event. Over the last two decades, researchers have documented a number of common empiri-

cal patterns of financial crises. The main contribution of our paper is to apply a model in the

class of the recent non-linear macro-finance models (He and Krishnamurthy (2013); Brun-

nermeier and Sannikov (2014); Di Tella (2017); Gertler, Kiyotaki and Prestipino (2020)) plus

a learning mechanism (Moreira and Savov (2017); Bordalo, Gennaioli and Shleifer (2018))

to matching these patterns. We have shown that our model with a financial amplification

mechanism plus belief dynamics, either driven by Bayesian or extrapolative expectations,

is able to generate patterns on the crisis cycle consistent with the empirical literature on

financial crises. The model matches the pre-crisis froth and leverage build-up. It matches

the sharp transition to a crisis, the left-skewed distribution of output declines and asset

price declines, and the slow post-crisis recovery. The quantitative fit of the model does leave

room for improvement: the model generates froth pre-crisis, but not as much as the data,

and while the post-crisis credit market comovement with output is positive, it is too strong

relative to the data.

Our research also helps to clarify the role of beliefs and learning in matching the crisis

cycle. In our model, the crisis is triggered by a “Minsky moment;” a shock that sharply

shifts agents’ beliefs regarding liquidity risk and is then amplified and propagated to the

macroeconomy depending on the leverage of the financial sector. The work of Gorton and

Ordonez (2014) and Dang, Gorton and Holmström (2020) argues that such a shift in beliefs

occurs because financial sector information is hidden, by design, during normal periods, and

a crisis is the event when negative information comes to light. The shift from no-information

to information is at the heart of their narrative of crises. The work of Bordalo, Gennaioli

and Shleifer (2018) has instead argued that a sharp shift in beliefs in a crisis reflects a change

from over-optimistic to over-pessimistic beliefs. Extrapolative expectations are at the heart

of their narrative of the belief shift in a crisis. In both of these narratives, the pre-cursor

to a crisis is a period where agents’ perceive risk to be low, either because risk is hidden or

because it is misperceived. Our work suggests that either of these narratives fit the variation
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in beliefs over the crisis cycle as needed to match the crisis cycle facts. Indeed, it is likely

that other models of belief fluctuation such as Kozlowski, Veldkamp and Venkateswaran

(2020) where agents update their models of tail risk based on the realization of tail risk can

likely also be used to address the macro crisis-cycle facts.

A reader may ask, does our analysis favor a rational or non-rational account of the crisis

cycle. Our answer is that both are good models to describe the crisis cycle facts. As with

any moment-matching exercise, one can include further moment targets to help discriminate

among these alternative models of belief fluctuations. We show that the elements we have

included in the model match the “cake” of macro crisis-cycle facts. Discriminating further

among these alternative models amounts to choosing flavors of “icing.” For example, Baron

and Xiong (2017) show that if credit growth is high, at the tails of the credit growth

distribution, returns on equities going forward is negative. This evidence is hard to square

with any model of rational belief formation, thus favoring models of over-extrapolation such

as Bordalo, Gennaioli and Shleifer (2018). On the other hand, Dang, Gorton and Holmström

(2020) points to the importance of debt as a factor in financial crises, and argues that debt is

the financial contract that creates opacity. In their work, all agents are Bayesian. Note that

there is nothing in our research that rules out that both of these mechanisms are at play,

possibly for different agents. Our research just shows that the belief fluctuations generated

by these models are consistent with the macro crisis-cycle facts we have presented.

Finally, we have also shown that for a leaning-against-the-wind macro policy experiment

it does not matter whether beliefs are Bayesian or diagnostic. The response of the economy

to this experiment depends on observables such as the credit spread and leverage. Different

models map these observables to different values of the state variables, but given the ob-

servables, the impulse response of the models we study are quite similar. There are further

policy experiments that our model can be used to address. For example, in our model, the

regulation is introduced via an “MIT” shock. It will be interesting to consider a leverage tax

or a state-contingent capital regulation, in a manner that agents anticipate, and recompute

the equilibrium of the model. The model can be used to see how the stochastic properties

of output are altered across these policies, as well as across belief models. Our preliminary

investigation suggests that it should be possible to do these exercises.
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Figures and Tables
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Figure 6: Stationary Distribution of State Variables in Each Model
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Figure 7: Dynamics of Different Models Around Crises. Credit spread and bank credit are
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Figure 8: 3-Year GDP Growth: Model versus Data
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Figure 9: Expected Distress Frequency and Bank Leverage. This figure plots the leverage
of banks as a function of the rational belief λ, given the same state variable w. We simulate
the diagnostic model to derive the model-implied relationship between rational λ and the
diagnostic belief λθ, and show the corresponding leverage choice.
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Figure 10: Density of Next-Year GDP Growth Conditional on Bank Credit/GDP. Cutoffs
are 30% quantile and 90% quantile of bank credit/GDP.
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Figure 11: Density of Bank Equity Returns Conditional on Bank Credit/GDP. Cutoffs are
30% quantile and 90% quantile of bank credit/GDP.
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Figure 12: Density of Next-Year GDP Growth in Bayesian and Diagnostic Models Condi-
tional on Credit Spread. Cutoffs are 30% quantile and 90% quantile of bank credit/GDP.
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Figure 14: Impulse Responses of Experiment 1. In this figure, we show the impulse responses
to a recapitalization policy at t = 0 that increases banker wealth share w by 10%, in order
to “lean against the wind” and avoid future losses in a liquidity distress. The starting state
is a “boom state”, solved by matching a normal bank leverage but a credit spread 5% below
its average. In the diagnostic model, λθ0 = λ0 so that the diagnostic belief is correct at the
beginning. Both the Bayesian and the diagnostic models are the calibrated versions as in
Table 2. The impulse responses are percentage deviations between with and without the
recapitalization policy. In both cases, we introduce a dNt = 1 shock at the first month
(t = 1/12), but set dNt = 0 otherwise. The Brownian shocks dBt are randomly generated.
We simulate the model by 10000 times and show the average impulse responses in the graph.
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Figure 15: Impulse Responses of Experiment 2. Experiment 2 is identical to experiment 1
except for λθ0 > λ0 (overoptimism) in simulating the diagnostic model. Specifically, both
Bayesian and diagnostic models have the same credit spread and bank leverage at t = 0, but
the true frequency of distress in the diagnostic model is higher than the believed frequency.
More descriptions are provided in Table 5 and footnotes of Figure 14.
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Figure 16: Expected Impulse Responses of Experiment 2. In this figure, we illustrate the
expected impact of the recapitalization policy in experiment 2, by simulating dNt according
to the underlying process instead of setting dNt = 1 at t = 1/12. More descriptions of
experiment 2 are provided in Table 5 and footnotes of Figure 14 and 15.
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Figure 17: Expected Impulse Responses of Experiment 3. Experiment 3 shows the typical
evaluation of the diagnostic belief in the literature, by keeping the Bayesian component
fixed (same parameters and same starting states) but introducing the diagnostic element.
In experiment 3, unlike experiment 1 and 2, the t = 0 observables including credit spread
and bank leverage could be different across the Bayesian and diagnostic model (refer to Table
5). All impulse responses are with respect to a recapitalization policy at t = 0 that increases
banker wealth share w by 10%, in order to “lean against the wind” and avoid future losses
in a liquidity distress. The starting state is a “boom state”, with (w0, λ0) matched to the
same values as the rational model in experiment 1 (refer to Table 5). The diagnostic belief
features overoptimism so that λθ0 < λ0. The impulse responses are percentage deviations
between with and without the recapitalization policy. In both cases, we introduce a dNt = 1
shock at the first month (t = 1/12), but set dNt = 0 otherwise. The Brownian shocks
dBt are randomly generated. We simulate the model by 10000 times and show the average
impulse responses in the graph.
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Table 3: Model Simulation and Data: Non-targeted Moments

Panel A: Credit Spread, Bank Credit, and Crisis Severity

Dependent variable: GDP Growth from t to t+ 3

Static Belief Bayesian Diagnostic Data

(1) (2) (3) (4) (5) (6) (7) (8)

∆credit spreadt∗crisist −4.99 −3.20 −3.44 −7.46
(0.16)

(bank credit
GDP )t∗crisist −0.97 −2.42 −3.23 −0.95

(0.30)

Observations 641 641

Note: Model and data regressions are normalized so that the coefficients reflect the impact of one sigma
change in spreads, and bank credit/GDP.

Panel B: Bank Credit and Risk Premia

Dependent variable: Average realized excess returnt+1

Static Belief Bayesian Diagnostic Data

(bank credit
GDP )t −0.01 −0.01 −0.03 −0.02

(0.01)

Observations 867

Note: Model excess return is defined as the return to capital minus the risk-free rate. Data excess return is
from Online Appendix of Baron and Xiong (2017) (Table 3, column 1 of Panel B). To ensure comparability,
the model return to capital has been normalized to equal the standard deviation of returns reported by
Baron and Xiong (2017).

Panel C: Credit Spread Before Crises

Dependent variable: credit spreadt

Static Belief Bayesian Diagnostic Data

(1) (2) (3) (4)

pre-crisis 0.31 −0.15 −0.28 −0.34

Observations 634

Note: regression is: st = α + β · 1{t is before a crisis} + controls. For the model, “pre-crisis” is defined as
within 1 year before the next crisis. For the data, “pre-crisis” is defined as within 5 years before the next
crisis. For both model and data, controls include an indicator of within 5 years after the last crisis. The
data regression has more controls such as country fixed effect.

Panel D: Predicting Crises

Dependent variable: crisist+1,t+5

Static Belief Bayesian Diagnostic Data

(1) (2) (3) (4) (5) (6) (7) (8)

Frotht −10.25 3.33 7.95 18.0

Bank Credit/GDPt −6.79 1.47 2.44 2.80

Observations 528 1272

Note: Froth in the model measures if the credit spread is below the median at date t. In the data regression,
froth measures if credit spread is below the median over t − 5 to t (see Krishnamurthy and Muir (2020)).
In both model and data we run a Logit regression of crisis occurring over the next 5 years on the froth
measure and report the probability. Bank credit/GDP is the current ratio of bank credit over GDP. The
data regression of crisis over the next year on bank credit/GDP is from Schularick and Taylor (2012), and
we report the probability of the crisis.
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Table 4: Using Bank Equity Crash to Define a Crisis

Panel A: Crisis, Bank Credit and Severity

Dependent variable: GDP Growth from t to t+ 3

Bayesian Diagnostic Data

(1) (2) (3) (4) (5)

crisist −8.59 −9.26 −4.5

(bank credit
GDP

)t∗crisist −2.64 −3.72

Observations 2548

Note: Model and data regressions are normalized so that the coefficients reflect the impact of
one sigma change in spreads, and bank credit/GDP. The coefficient in column (5) is from Table
I (column 4) of Baron, Verner and Xiong (2021).

Panel B: Predicting Equity Crashes

Dependent variable: equity crash from t+ 1 to t+ 3

Bayesian Diagnostic Data

(1) (2) (3)

(bank credit
GDP

)t 0.37 0.51 5.4

Observations 316

Note: The coefficient on Bank Credit/GDP is the sensitivity of crisis probability (%) to a one
standard deviation increase in bank credit/GDP. The data regression is from Table III (column
7) of Baron and Xiong (2017).
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Table 5: Policy Experiments

Experiment 1 Experiment 2 Experiment 3

Same
Observables

Same Parameters,
Overoptimism

Same Parameters
and States

Initial States of the Bayesian Model (θ = 0)

Bank Leverage0 5

same as
experiment 1

same as
experiment 1

Credit Spread0 0.9

w0 0.196

λ0 0.041

λθ0 0.041

Initial States of the Diagnostic Model (θ = 0.9)

Bank Leverage0 5 5 5

Credit Spread0 0.9 0.9 0.9

w0 0.200 0.200 0.196

λ0 0.037 0.104 0.041

λθ0 0.037 0.037 0.005

Note: This table compares the initial states of the three simulation experiments. In experiment
one and two, the Bayesian model and diagnostic model are both calibrated to the same set
of moments, and they have the same bank leverage and credit spread at the beginning of the
simulation. In experiment one, the diagnostic belief is correct at t = 0, but in experiment two,
the diagnostic belief features overoptimism as the underlying λ0 > λθ0. In experiment 3, both
the Bayesian and the diagnostic model have the same parameters as the calibrated Bayesian
model, and same starting states (w0, λ0). However, the behavioral belief λθ0 is below λ0 and
there is overoptimism.
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A Model Solutions

A.1 Proof of Lemma 1

We will derive the Bayesian belief process λt in two different ways. The first method is

by applying the theorem in Liptser and Shiryaev (2013). The second one is by taking

the continuous-time limit of a discrete-time process. The reason that we show the second

method is because we will use the connection between discrete-time and continuous-time

processes to prove the results for the diagnostic belief in Lemma 2.

Method 1

We can represent the Poisson process of bank-run as

Nt =

∫ t

0

1λ̃s=λL
dNL

t +

∫ t

0

1λ̃s=λH
dNH

t = At +Mt

where NH
t and NL

t are two independent Poisson processes, Mt is a martingale, and At is a

previsible process

At =

∫ t

0

(1λ̃s=λL
λL + 1λ̃s=λH

λH)dt

Denote FNt = σ{Ns, 0 ≤ s ≤ t}, θ̃ = 1λ̃t=λH , and

θt = E[θ̃t|FNt ] = P (λ̃t = λH |FNt )

Then according to Theorem 18.3 of Liptser and Shiryaev (2013), the compensator of Nt that

is measurable with respect to FNt is

Āt =

∫ t

0

E[(1λ̃s=λLλL + 1λ̃s=λHλH)|FNs−]ds =

∫ t

0

((1− θs−)λL + θs−λH)ds

Moroever, the compensator of θt is∫ t

0

(
1λ̃s=λH

(−λH→L) + 1λ̃s=λL
λL→H

)
ds

and the FNt− measurable version is∫ t

0

(θs−(−λH→L) + (1− θs−)λL→H)ds

Finally, the martingale component of θ̃t is independent from the jumps in Nt. Thus we can
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apply Theorem 19.6 of Liptser and Shiryaev (2013) to get

dθt = (θt−(−λH→L) + (1− θt−)λL→H) dt+ E[λ̃t(
dAt
dĀt
− 1)|FNt−]d(Nt − Āt)

= (θt−(−λH→L) + (1− θt−)λL→H) dt+E[1λ̃t=λH (
1λ̃t=λLλL + 1λ̃t=λHλH

(1− θt−)λL + θt−λH
−1)|FNt−](dNt−((1−θt−)λL+θt−λH)dt)

= (θt−(−λH→L) + (1− θt−)λL→H) dt+
θt−(1− θt−)(λH − λL)

(1− θt−)λL + θt−λH
(dNt−((1−θt−)λL+θt−λH)dt)

= (θt−(−λH→L) + (1− θt−)λL→H − θt−(1− θt−)(λH − λL)) dt+
θt−(1− θt−)(λH − λL)

(1− θt−)λL + θt−λH
dNt

Denote λt = E[λ̃t|FNt ]. We can get the motion of λt from

λt = E[1λ̃t=λH |F
N
t ]λH + E[1λ̃t=λL|F

N
t ]λL

⇒ θt =
λt − λL
λH − λL

which results in

dλt =

(
(λL − λt−)λH→L + (λH − λt−)λL→H

−(λt− − λL)(λH − λt−)

)
dt+

(λt− − λL)(λH − λt−)

λt−
dNt

Method 2

Consider a discrete-time Markov process λ̃k with two states λH and λL. We define

∆t ∗ λ̃k as the probability of a financial distress shock within a single period. The transition

probability from high to low is λH→L∆t, and the transition probability from low to high

is λL→H∆t. We note that as ∆t → 0, this discrete-time Markov chain converges to the

continuous-time Markov chain in our main model.

Agents observe the realizations of financial distress shocks, and update their beliefs. De-

note the crash realization process asNk ∈ {0, 1}, and the filtration as Fk = σ{N1, N2, · · · , Nk}.
Denote the updated belief at period k as λk = E[λ̃k|Fk], with λ̃k the state of the hidden

Markov process. In each period, the financial distress shock first realizes, and then the agent

updates belief for that period.

Suppose that the belief on the probability at high state λH is πk at period k. Then the

relationship between πk and λk is as follows:

λk = πkλH + (1− πk)λL
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Observing Nk+1 = nk ∈ {0, 1}, the belief πk+1 is

πk+1 = P (λ̃k+1 = λH |Nk+1 = nk+1, πk)

=
P (Nk+1 = nk+1|λ̃k+1 = λH , πk)P (λ̃k+1 = λH |πk)

P (Nk+1 = nk+1|λ̃k+1 = λH , πk)P (λ̃k+1 = λH |πk) + P (Nk+1 = nk+1|λ̃k+1 = λL, πk)P (λ̃k+1 = λL|πk)

Note that the probabilities P (λ̃k+1 = λH |πk) and P (λ̃k+1 = λL|πk) can be calculated from

the Markov one-step transition(
πk

1− πk

)T (
1− λH→L∆t λH→L∆t

λL→H∆t 1− λL→H∆t

)
=

(
πk(1− λH→L∆t) + (1− πk)λL→H∆t

πkλH→L∆t+ (1− πk)(1− λL→H∆t)

)T

which results in

P (λ̃k+1 = λH |πk) = πk(1− λH→L∆t) + (1− πk)λL→H∆t

and

P (λ̃k+1 = λL|πk) = πkλH→L∆t+ (1− πk)(1− λL→H∆t)

Therefore, the belief πk+1 is

πk+1 =
((nk+1λH∆t+ (1− nk+1)(1− λH∆t))(πk(1− λH→L∆t) + (1− πk)λL→H∆t))(
(nk+1λH∆t+ (1− nk+1)(1− λH∆t))(πk(1− λH→L∆t) + (1− πk)λL→H∆t)

+(nk+1λL∆t+ (1− nk+1)(1− λL∆t))(πkλH→L∆t+ (1− πk)(1− λL→H∆t))

)

Now it is easier to separately discuss nk+1 = 0 and nk+1 = 1. Suppose that no financial

distress shock happens (nk+1 = 0), then we have

πk+1 =
(1− λH∆t) (πk(1− λH→L∆t) + (1− πk)λL→H∆t)(
(1− λH∆t)(πk(1− λH→L∆t) + (1− πk)λL→H∆t)

+(1− λL∆t)(πkλH→L∆t+ (1− πk)(1− λL→H∆t))

)

Suppose that a financial distress shock happens (nk+1 = 1), then we have

πk+1 =
λH∆t (πk(1− λH→L∆t) + (1− πk)λL→H∆t)(
λH∆t(πk(1− λH→L∆t) + (1− πk)λL→H∆t)

+λL∆t(πkλH→L∆t+ (1− πk)(1− λL→H∆t))

)

=
λH (πk(1− λH→L∆t) + (1− πk)λL→H∆t)(
λH(πk(1− λH→L∆t) + (1− πk)λL→H∆t)

+λL(πkλH→L∆t+ (1− πk)(1− λL→H∆t))

)

Note that taking ∆t → 0 will result in πk+1 = πk when nk+1 = 0. This is reasonable,

because this is like calculating µtdt for the λt process in continuous time, which is a small
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order term. An appropriate way to derive the time limit is to calculate

lim
∆t→0

πk+1 − πk
∆t

|nk+1=0,Fk

= lim
∆t→0

1

∆t

 (1− λH∆t) (πk(1− λH→L∆t) + (1− πk)λL→H∆t)

−πk(1− λH∆t)(πk(1− λH→L∆t) + (1− πk)λL→H∆t)

−πk(1− λL∆t)(πkλH→L∆t+ (1− πk)(1− λL→H∆t))


= lim

∆t→0

1

∆t

(
(1− πk)(1− λH∆t) (πk(1− λH→L∆t) + (1− πk)λL→H∆t)

−πk(1− λL∆t)(πkλH→L∆t+ (1− πk)(1− λL→H∆t))

)

= lim
∆t→0

1

∆t

(
(1− πk) (πk − πkλH→L∆t+ (1− πk)λL→H∆t− λHπk∆t)
−πk (πkλH→L∆t+ (1− πk)(1− λL→H∆t)− λL(1− πk)∆t)

)
(removing ∆t2 terms)

= −πkλH→L + (1− πk)λL→H − (λH − λL)πk(1− πk)

Therefore, we have

lim
∆t→0

πk+1 − πk
∆t

|nk+1=0,Fk
= −πkλH→L + (1− πk)λL→H − (λH − λL)πk(1− πk) (34)

To build an exact connection to λk, we can write λk in terms of πk as

πk =
λk − λL
λH − λL

(35)

Then the limit of ∆t→ 0 expressed with λk is

1

λH − λL
λk+1 − λk

∆t
|nk+1=0,Fk

= − λk − λL
λH − λL

λH→L+
λH − λk
λH − λL

λL→H−(λH−λL)
λk − λL
λH − λL

λH − λk
λH − λL

which can be simplified as

lim
∆t→0

λk+1 − λk
∆t

|nk+1=0,Fk
= (λL − λk)λH→L + (λH − λk)λL→H − (λk − λL)(λH − λk) (36)

Suppose that a financial distress shock happens (nk+1 = 1). By taking ∆t → 0, the

updating is

πk+1|nk+1=1,Fk
=

λHπk
λHπk + λL(1− πk)

Using (35), the updating is
1

πk+1

= 1 +
λL
λH

1− πk
πk

λk+1 =
λH(λk − λL)

λk
+ λL =

(λH + λL)λk − λHλL
λk
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which implies

λk+1 − λk|nk+1=1,Fk
=

(λH + λL)λk − λHλL
λk

− λk =
(λH − λk)(λk − λL)

λk

Finally, we express the above with the continuous-time notation dNt and dt to get

dλt =

(
(λL − λt−)λH→L + (λH − λt−)λL→H

−(λt− − λL)(λH − λt−)

)
dt+

(λH − λt−)(λt− − λL)

λt−
dNt

which is the same as method 1.

A.2 Proof of Lemma 2

To prove Lemma 2, we start with discrete time process and then take the continuous-

time limit. The discrete-time distress frequency process λ̃t is the same as Section A.1.

Specifically, the process has two states λH and λL, with transition probability from high

to low as λH→L∆t, and the transition probability from low to high as λL→H∆t. Agents

observe the realizations of financial distress shocks, and update their beliefs. Denote the

crash realization process as Nk ∈ {0, 1}, and the filtration as Fk = σ{N1, N2, · · · , Nk}.
Denote the updated belief at period k as λk = E[λ̃k|Fk], with λ̃k the state of the hidden

Markov process. Also denote the probability πk = P (λ̃k = λH), which implies

λk = πkλH + (1− πk)λL

We choose the period length ∆t so that T (∆t) = t0/∆t is an integer, where t0 is the

“look-back period” for the diagnostic belief. Then we denote the reference probability for

the diagnostic belief at period k as

πTk = P (λ̃k = λH |πk−T (∆t))

We already know from method 2 of Section A.1 that when ∆t → 0, the continuous-

time limit of the Bayesian belief process results in (7). Our task now is to prove that the

discrete-time diagnostic belief process converges to a continuous-time process as in (10). By

definition, the diagnostic belief at period k is

πθk = πk · (
πk
πTk

)θ
1

Zk

1− πθk = (1− πk) · (
1− πk
1− πTk

)θ
1

Zk
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with

Zk =
1

πk · ( πkπT
k

)θ + (1− πk) · ( 1−πk
1−πT

k
)
θ

which implies

πθk = πk(
πk
πTk

)θ
1

πk(
πk
πT
k

)θ + (1− πk)( 1−πk
1−πT

k
)
θ

= πk
1

πk + (1− πk)(
πT
k

1−πT
k
/ πk

1−πk
)
θ

Therefore, if πTk < πk, then πθk > πk, leading to an overreaction. Now we can replace the

probability with λt. Define the expected λ̃k under the diagnostic belief as λθk. Then we have

λθk − λL = (λk − λL)
(λH − λk) + (λk − λL)

(
λTk−λL
λH−λTk

/ λk−λL
λH−λk

)
θ

(λH − λk) + (λk − λL)

where

λTk = πTk λH + (1− πTk )λL

The key is to derive πTk and λTk under the limit of ∆t→ 0 while keeping t = k∆t constant.

Using the probability transition matrix, we get(
P (λk = λH |πTk )

P (λk = λL|πTk )

)′
=

(
πk−T

1− πk−T

)′(
1− λH→L∆t λH→L∆t

λL→H∆t 1− λL→H∆t

)T

where the ′ notation denotes transpose of a matrix. The limit of the above expression with

∆t→ 0 is effectively the transition of a continuous time Markov chain, with rate matrix

Q =

(
−λH→L λH→L

λL→H −λL→H

)

A decomposition reveals that the two eigenvalues of this matrix are 0 and −(a + b), where

a = λH→L and b = λL→H . The associated eigenvector formed matrix is

Q̄ =

(
1 −a
1 b

)

with the inverse

Q̄−1 =
1

a+ b

(
b a

−1 1

)
Then we can decompose

Q = Q̄

(
0

−(a+ b)

)
Q̄−1
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Then the transition for t units of time is

Q̄

(
1

e−(a+b)t

)
Q̄−1 =

1

a+ b

(
b+ ae−(a+b)t a− be−(a+b)t

b− be−(a+b)t a+ be−(a+b)t

)

Using the t notation (t = k ∗∆t), and taking the limit ∆t→ 0 while keeping t unchanged,

we have

lim
∆t→0

(
P (λk = λH |πTk )

P (λk = λL|πTk )

)T

=

(
P (λt = λH |πt−t0)
P (λt = λL|πt−t0)

)T

=

(
πt−t0

1− πt−t0

)T
1

a+ b

(
b+ ae−(a+b)t0 a− be−(a+b)t0

b− be−(a+b)t0 a+ be−(a+b)t0

)

∆
=

(
aHπt−t0 + aL(1− πt−t0)
bHπt−t0 + bL(1− πt−t0)

)T

where (
aH bH

aL bL

)
=

1

a+ b

(
b+ ae−(a+b)t0 a− ae−(a+b)t0

b− be−(a+b)t0 a+ be−(a+b)t0

)
(37)

Therefore, the intensity process follows

λθt − λL = (λt − λL)
(λH − λt) + (λt − λL)

(
λTt −λL
λH−λTt

/ λt−λL
λH−λt

)
θ
(λH − λt) + (λt − λL)

(38)

where

λTt − λL = aH(λt−t0 − λL) + aL(λH − λt−t0) (39)

λH − λTt = bH(λt−t0 − λL) + bL(λH − λt−t0) (40)

When the total transition rates a+ b are low, we have aH ≈ 1, aL ≈ 0, bH ≈ 0, and bH ≈ 1.

Then we have λTt ≈ λt−t0 . When λTt > λt, i.e., the likelihood of a crisis is decreasing, then

the subjective probability is even lower, with λθt < λt. When λTt < λt, i.e., the likelihood

of a crisis is increasing, then the subjective probability is even higher, with λθt > λt. These

predictions are perfectly consistent with the spirit of the diagnostic expectations. The extent

of such extrapolation is larger as θ becomes larger, and we have λθt = λt when θ = 0.

A.3 Proof of Lemma 3

To save on notation, we omit the subscripts t and t−.

Suppose that in equilibrium, xK < 1. This implies that (xd)+ = (xK − 1)+ = 0, which
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leads to the following first order conditions for households and bankers:

µR +
Ā

p
− rd = (σK + σp)2xK + λκp

1

1− xKκp

µR +
A

p
− rd = (σK + σp)2yK + λκp

1

1− yKκp

Subtracting the above two equations, we obtain

Ā− A
p

=

(
(σK + σp)

2
+

λ(κp)2

(1− xKκp)(1− yKκp)

)
(xK − yK) (41)

The first bracket on the right hand side is always positive, since the nonnegative wealth

constraint implies xKκp < 1 and yKκp < 1. However, from market-clearing conditions (24)

and (25),

wxK + (1− w)yK = 1

Under the assumption of xK < 1, we must have

yK > xK

which implies that the right-hand side of (41) should be negative. This is a contradiction

since the left-hand side of (41) is positive.

Importantly, all of the above derivations go through regardless of whether we use the

Bayesian Bayesian belief or the diagnostic belief, as long as bankers and households have

the same belief.

In summary, we have xK ≥ 1 in equilibrium. In other words, bankers borrow from

households in the debt market.

A.4 First-Order Conditions

In this section, we derive bank and household first-order conditions. To save on notation,

we omit the subscripts t and t−.

From equation (27) and a bank’s optimization problem in (28) and (29), we obtain the

first-order condition over xK ,

µR +
Ā

p
− rd = (σK + σp)2xK + λ

κp + α

1− xKκp − α∆x
(42)
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As a result, the excess return on capital is

E[dRb] = µR +
Ā

p
− rd − λ(κp + α)

= (σK + σp)2xK + λ(α + κp)
xKκp + αxd

1− xKκp − αxd

(43)

The household objective function can be equivalently written as

max
ch,yd,yK

{
log(ch) +

1

ρ

(
E[
dwh

wh
]/dt− 1

2

(
dwh

wh

)2

/dt

)}
(44)

Combined with household budget dynamics in (18), we obtain the first-order condition over

yK as

µR +
A

p
− rd ≤ (σK + σp)2yK + λ

κp

1− κh
,with equality if yK > 0 (45)

In equation (45), the left hand side is the yield spread on productive capital over bank debt,

while the right hand side includes the risk-adjusted losses of productive capital in liquidity

shocks. When the yield spread is lower than the cost, households do not hold productive

capital and set yK = 0.

Combining (45) and (42), we have

Ā− A
p
≥ (σK + σp)2(xK − yK) + λ

κp + α

1− xKκp − α∆x
− λ κp

1− κh

where the equality holds when yK > 0.

A.5 Equilibrium Solutions

With log utility, the optimal consumption rule is ċb = ċh = ρ. Then we simplify the

equilibrium conditions into the following equations:

ρ =
ψAH + (1− ψ)AL − i

p
. (46)

xKw + yK(1− w) = 1. (47)

ψ =
xKw

xKw + yK(1− w)
= xKw, (48)

Next, b we derive the dynamics of state variables. We apply Ito’s lemma on the definition
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of wealth share in (11) and get the dynamics of w as

dw

w
∆
= µwdt+ σwdB − κwdN

= (1− w)
(
µb − µh + (σh)

2 − σbσh − w(σb − σh)2 − η
)
dt

+ (1− w)(σb − σh)dB − (1− w)
1− 1−κb

1−κh

1 + w( 1−κb
1−κh − 1)

dN.

(49)

where all variables in the right hand side should have subscripts t− which we omit. Then

we can apply Ito’s lemma on price function p(w) to get
µp = pwwµ

w +
1

2
pww(wσw)2 + pλµ

λ(λ)

σp = pww(1− w)(σb − σh)

κp = 1− p(w 1− κb

1− κh − w(κb − κh)
, λ))/p(w, λ).

(50)

To fully characterize the economy, we also need to know the dynamics of aggregate capital

quantity K ( although all policy functions are scalable with respect to K). Denote the Ito

process for K as
dK

K
= µKdt− δdt+ σKdB, (51)

We collect the system of equations for jumps from (6), (15), and (19) as follows:
κb = xKκp + αxd

κh = yKκp − αxd w
1−w

κp = 1− p(w 1−κb
1−κh−w(κb−κh)

, λ+ κλ(λ))/p(w, λ)

(52)

From (15), (18), and (50), we collect the exposure to Brownian shocks as
σp = pww(1− w)(σb − σh)
σh = yK(σK + σp)

σb = xK(σK + σp).

(53)

Diagnostic Beliefs

We solve the model with diagnostic beliefs as follows. As households act as if their beliefs

are the true ones, their policy functions are the same as the model with Bayesian beliefs.

However, the true (physical) frequency of jumps with differ from that of the agents’ beliefs.

There are two steps to clear the market during a jump with diagnostic belief:

• First, the agents interpret λθt as the Bayesian belief. After a crisis shock dNt, the market

price of capital switches to the level under this “Bayesian belief”.
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• The realization of belief, however, is different from the Bayesian expectation, because

the diagnostic belief formation. Now additional price adjustment is needed to clear the

market under the diagnostic belief.

A.6 Loan Spread

To price the loan spread, denote the bank holding of this risk-free but illiquid loan as

xCt . Then the equivalent bank optimization problem in (28) will have two additional terms

involving xCt :

...+ xCt−(rCt− − rdt−)dt− xCt−αdNt

which implies the FOC on xCt− as

rCt− − rdt− =
λt−

1− xKt−κ
p
t− − αxdt− − αxCt−

α

Since the illiquid loan does not take up the balance sheet (i.e., we are using the existing

bank SDF to price the loan), we have xCt− = 0 and

rCt− − rdt− =
λt−

1− xKt−κ
p
t− − αxdt−

α

A.7 Credit Spread

In this section, we define the credit spread used in the calibration, derive the jump differential

equation for the credit spread and provide the solution methodology.

Define τ as the expected maturity of the bond. We assume that the bond matures based

on the realizations of a Poisson event with intensity 1/τ . This modeling allows for a simple

recursive formulation for bond pricing. Moreover, we suppose that a fraction of the maturity

events result in default, while another fraction result in full repayment. In particular, we

assume that a bond matures in two cases: (1) conditional on the financial illiquidity dNt

shock, the bond matures with probability π; (2) conditional on another independent Poisson

process dN τ
t (with intensity λτt ), the bond matures with probability 1. The two intensities

sum up to a fixed number, i.e.,

πλt + λτt = 1/τ (54)

where τ can be interpreted as the maturity of the bond. We can see that

1/τ ≥ πλH
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and therefore,

τ ≤ 1

πλH

which is the maximum maturity of bonds that we can define with this method.

Each risky bond has a face value of 1. One unit value of a risky asset is continuously

posted to back this risky bond, i.e., the bond is fully collateralized if the bond matures

as long as there is no jump in the value of the risky asset. If dNt hits when the bond

matures, the underlying risky asset’s value jumps downwards by m · κpt− + κ̂0. The first

term varies with economic conditions. It contains capital price drop κpt−, and a multiplier

m that measures the exposure of the collateral to capital price decline. The second term

here a constant “baseline” loss given default. If maturity occurs with no illiquidity event,

we assume that the bond pays back in full. Thus, the loss function upon maturity for the

risky bond is

κ̂t = (m · κpt− + κ̂0)dNt (55)

This structure gives a time-varying default probability. Specifically, when a bond ma-

tures, the probability of default is

πλt
πλt + λτt

= τπλt (56)

Therefore, the unconditional probability of default is τπλ̄, where λ̄ is the unconditional

average of the expected illiquidity frequency.

Denote the current market value of this risky bond, priced using the banker’s pricing

kernel, as vt = v(wt, λt), and the value of the safe bond as v̄t. Then we define the credit

spread as

St(pt0) =
1

τ
log(1/vt)−

1

τ
log(1/v̄t) (57)

We expect St ≥ 0, given that risky bonds may default, and default occurs in high marginal

utility states. Solving for this credit spread involves solving an endogenous jump equation

with second-order derivatives.

HJB Equations

From Ito’s lemma, we have

dv(w, λ) =
∂v(w, λ)

∂w
(wµwdt+ wσwdBt) +

1

2

∂2v(w, λ)

∂w2
w2(σw)2dt

+
∂v(w, λ)

∂λ
µλ(λ)dt+ (v(w + ∆w, λ+ ∆λ)− v(w, λ))dNt

Denote
dv(w, λ)

v(w, λ)
= µvdt+ σvdBt − κvdNt
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Matching the coefficients, we have

v(w, λ)µv =
∂v(w, λ)

∂w
wµw +

1

2

∂2v(w, λ)

∂w2
w2(σw)2 +

∂v(w, λ)

∂λ
µλ(λ)

v(w, λ)σv =
∂v(w, λ)

∂w
wσw

v(w, λ)κv = v(w, λ)− v(w + ∆w, λ+ ∆λ)

From banker’s perspective, the optimization problem is

dwbt
wbt

= ...+ xvt−(
dvt
vt−
− vt− − (1− κ̂t)

vt−
ξtdNt − κvt−(1− ξt)dNt +

vt− − (1− κ̂t)
vt−

dN τ
t )

with λτt = 1/τ − πλt, ξt ∈ {0, 1}, P (ξt = 1) = π, and {ξt} is an i.i.d. process that is

independent from everything else. The jump κvt− is the amount of decline of bond price

upon the distress shock if the bond does not mature during the financial distress shock.

Rewriting the above and omitting the time subscripts, we have

dwb

wb
=

(
rf + xK(µR +

AH

p
− rf ) + xd(rf − rd) + xv(µv − rf )− ρ

)
dt

+
(
xK(σK + σp) + xvσv

)
dBt−(xKκp+αxd+xvξ

v − (1− κp − κ̂0)

v
+xv(1−ξ)κv)dNt−xv

v − 1

v
dN τ

t

where I have omitted the subscripts t and t− for simplicity. To solve the price of the safe

bond v̄, we can simply replace the notation v with v̄, and set the term κp and κ̂0 both to

zero.

The first order condition over xv is

µv−rf−λπ
v−(1−κp−κ̂0)

v

1− (xKκp + αxd + xv v−(1−κp−κ̂0)
v

)
−λ(1−π)

κv

1− (xKκp + αxd + xvκv)
−λτ

v−1
v

1 + xv v−1
v

− (σv)2xv︸ ︷︷ ︸
compensation for change in risk - bearing capacity

− xKσv(σK + σp)︸ ︷︷ ︸
compesnation for covariance

= 0

Given that in equilibrium xv = 0, we have

µv − rf = λπ
1

1− κb
v − (1− κp − κ̂0)

v
+ λ(1− π)

1

1− κb
κv + λτ

v − 1

v
+ xKσv(σK + σp)

with

λτ =
1

τ
− πλ

Therefore, the excess return has three components: (1) the compensation for losses during

a distress shock, (2) the compensation for losses (negative losses mean positive benefits)

in a maturity event without distress shock, and (3) the compensation for exposure to the
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volatility risk dBt, where the price of risk is xK(σK + σp). This equation together with the

matched coefficients form an HJB equation for the value of bonds,

∂v

∂w
wµw +

1

2

∂2v

∂w2
w2(σw)2 +

∂v

∂λ
µλ − rfv = xK(σK + σp)

∂v

∂w
wσw

+ λπ
1

1− κb
(
v − (1− κp − κ̂0)

)
+ λ(1− π)

1

1− κb
κvv + λτ (v − 1)

(58)

Solution Methods

We will use the “false time derivative” method, by introducing a time dependence of v.

Define such a function as ṽ(w, λ, t). Following a similar derivation as (58), we can get the

HJB equation for ṽ as

∂ṽ

∂t
= λπ

1

1− κb
(
v − (1− κp − κ̂0)

)
+ λ(1− π)

1

1− κb
κvv + λτ (v − 1)

+xK(σK + σp)
∂v

∂w
wσw + rf ṽ −

(
∂ṽ

∂w
wµw +

1

2

∂2ṽ

∂w2
w2(σw)2 +

∂ṽ

∂λ
µλ
)

We can start with a function ṽ that satisfies ṽ(0, λ, T ) = v(0, λ), and ṽ(1, λ, T ) = v(1, λ),

and has linear interpolation in other regions. By taking T large enough, we are going

to have convergence before t reaches 0, i.e., two iterations have close to zero differences.

Denote the converged solution as ṽ(w, λ, 0). From the property of convergence, we must

have ∂ṽ(w, λ, t)/∂t|t=0 = 0. As a result, ṽ(w, λ, 0) satisfies the original PDE of v(w, λ),

which implies that v(w, λ) = ṽ(w, λ, 0).

Next, we show how to solve the boundary conditions at w = 0 and w = 1.

Boundary Conditions

We note that w = 0 and w = 1 are two absorbing boundaries. At both w = 0 and w = 1,

we have p = p or p̄ forever, and µw = σw = κp = 0. Thus, we can simplify the HJB equation

(58) into

∂v(w, λ)

∂λ
µλ(λ)− rf (w, λ)v(w, λ) = λπ

1

1− κb(w, λ)

(
v(w, λ)− (1− κ̂0)

)
+ λ(1− π)

1

1− κb(w, λ)
κv(w, λ)v(w, λ) + λτ (λ)(v(w, λ)− 1), w ∈ {0, 1}

(59)

Suppose that κv = 0 when λ = λ∗ (defined as µλ(λ∗) = 0). Then we get

v(0)(w, λ∗) =
λ∗π 1

1−κb(w,λ∗)
(1− κ̂0) + λτ (λ∗)

λ∗π 1
1−κb(w,λ∗)

+ rf (w, λ∗) + λτ (λ∗)
, w ∈ {0, 1}

Denote the value function at iteration k as v(k)(w, λ). Then for w = 1 or w = 0, the
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algorithm works as follows:

• Step k: Solve for the jump κvv = v(w, λ)− v(w+ δw, λ+ δλ) using v = v(k). Denote this

value as ∆v(k). With such jump solved, we translate the jump equation (59) into an ODE

of v(w, λ), w ∈ {0, 1} as a function of λ. The ODE solution starts with the initial value

v(w, λ∗) = v(k)(w, λ∗), w ∈ {0, 1}. Solve this ODE and denote the solution as v(k+1).

• Stop if ∫ λH

λL

|v(k+1)(w, λ)− v(k)(w, λ)| dλ < ε, w ∈ {0, 1}

for a small ε > 0.

Finally, we notice that once the λ = λ∗, it will not go up or down unless there is a dNt

shock. Once we know the jump component, we can solve v(w, λ∗) along the w dimension as

an ODE. The ODE is

∂2v

∂w2
=

(
λ∗π 1

1−κb (v − (1− κp − κ̂0)) + λ(1− π) 1
1−κbκ

vv

+λτ (v − 1) + xK(σK + σp) ∂v
∂w
wσw + rfv − ∂v

∂w
wµw

)
1
2
w2(σw)2

for w 6= 0, 1.

Credit Spread Calibration

Table 6 summarizes the credit spread calibration.

Table 6: Calibrated Parameters for the Credit Spread Construction

Parameters Choice Moment

τ Risky bond maturity 7 Years Maturity of 7 years.

π Maturing probability in illiquidity 0.31 Average default intensity of 0.04

mEcrises[κ
p
t ]− Additional loss in crises 0.1 Additional loss of 10% in crises

mEnon-crises[κ
p
t ]

mEcrises[κ
p
t ] + κ̂0 Baseline default loss 0.55 Average loss rate of 0.55

• In our baseline calibration, we target the an average maturity of τ = 7 years, which is the

average maturity of bonds used in Krishnamurthy and Muir (2020).

• According to Chen, Collin-Dufresne and Goldstein (2008), the 10-year BAA (AAA) de-

fault rate is 4.89% (0.63%). The difference in their default rates is 4.26%. We use 4% as
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our target. In the model, the default rate is

πλ̄ = 0.04

where λ̄ is the average frequency of financial illiquidity, which is 12.8% according to our

calibration. Therefore, we have π = 0.31.

• The total loss given default is m · κpt + κ̂0 if a illiquidity shock dNt hits, where κpt is the

percentage decline of capital price pt during a crisis shock. The price jump component

κpt is large during crises but close to zero otherwise. We calibrate the loss given default

to that of BAA bonds, which from Moodys data has been 55% on average over the last

three decades and rose by 10% during the 2008 crisis. As a result, we set m so that m ·κpt
during crises is 10% larger than other defaults. Then we set the average of losses during

default to 55% to get κ̂0.

Finally, we should note that we define our spread measures in units of standard-deviation

differences relative to the unconditional mean value of the credit spread. This is what

Krishnamurthy and Muir (2020) do in their empirical work. As a result of this normalization,

the results are relatively insensitive to the exact values of the credit-spread calibration.
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