
Wealth Fluctuations and Risk Preferences:

Evidence from U.S. Investor Portfolios∗

Maarten Meeuwis†

December 30, 2019

Job Market Paper

[Click here for the latest version]

Abstract

Using data on the portfolio holdings and income of millions of U.S. retirement investors, I
find that positive and persistent shocks to income lead to a significant increase in the equity
share of investor portfolios, while increases in financial wealth due to realized returns lead
to a small decline in the equity share. In a standard homothetic life-cycle model with human
capital and constant risk aversion, the portfolio responses to these two wealth shocks should
be of equal magnitude and opposite sign. The positive net effect in the data is evidence for
risk aversion that decreases in total wealth. To quantify the implications for risk preferences, I
estimate a structural life-cycle consumption and portfolio choice model that accounts for inertia
in portfolio rebalancing. The model matches the reduced-form estimates with a significant
degree of non-homotheticity in risk preferences, such that a 10% permanent income growth
leads to a decrease in risk aversion by 1.5%. I find that decreasing relative risk aversion in
the model doubles the share of wealth at the top, as equity is concentrated in the hands of
the wealthy. The model also implies that rising income inequality in the U.S. has led to a 16%
decline in the equity premium over the past three decades.
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1 Introduction

Does relative risk aversion decrease with wealth? The relation between wealth and risk aversion
is a key ingredient in any portfolio choice model or macro-finance model that deals with the
dynamics of saving and investment over the life cycle or with cross-sectional differences between
households. Traditional portfolio choice models and macro-finance models typically assume
constant relative risk aversion (CRRA) preferences. An alternative that has gained popularity
is decreasing relative risk aversion (DRRA) preferences. In portfolio choice theory, DRRA
preferences offer a potential explanation for stylized facts of the data: a relatively flat or even
upward-sloping equity share profile over the life cycle and a positive cross-sectional correlation
between wealth and equity shares (see, for example, Carroll, 2002; Wachter and Yogo, 2010). In
macro finance, models where risk aversion changes with wealth have had success in matching
asset pricing moments (Constantinides, 1990; Bakshi and Chen, 1996; Campbell and Cochrane,
1999; Wachter, 2006; Verdelhan, 2010) and explaining the joint dynamics of asset prices and
business cycle fluctuations (Jermann, 1998; Boldrin, Christiano, and Fisher, 2001).

Measuring the relationship between wealth and risk aversion in micro data is challenging.
First, due to unobserved heterogeneity across investors, this relationship needs to be identified
from individual changes over time, which places high demands on the data. Prior findings on
the effect of financial wealth on risk taking have been mixed, and depend on the instrument for
financial wealth that is used.1 Second, the effect of financial wealth on risk taking is in itself
not informative about DRRA (Wachter and Yogo, 2010). Since the riskiness of human capital
affects optimal portfolio choice, the relative proportion of human capital to financial wealth is
a confounding factor. Even with CRRA preferences, changes to financial wealth therefore lead to
changes in optimal asset allocations. Finally, to the extent that there is reduced-form evidence that
is suggestive of DRRA preferences, it is an open question what the quantitative implications of
non-homothetic preferences are in a life-cycle model that matches empirical magnitudes.

In this paper, I use detailed panel data on changes in financial profiles for the same individuals
over time to test for non-homothetic risk preferences. I find that positive and persistent shocks to
income lead to a significant increase in the equity share of investor portfolios, while increases in
financial wealth due to realized returns lead to a small decline in the equity share. The positive
net effect of these two wealth shocks is consistent with risk aversion that decreases in total
wealth. Second, I use these portfolio responses to estimate the parameters of a structural life-cycle
consumption and portfolio choice model that accounts for inertia in portfolio rebalancing. The
model matches the reduced-form estimates with a significant degree of non-homotheticity in
risk preferences, such that a 10% permanent income growth leads to a decrease in risk aversion
by 1.5%. Third, I find that decreasing risk aversion has important quantitative implications for

1Brunnermeier and Nagel (2008) and Chiappori and Paiella (2011) do not reject the absence of an effect of financial
wealth on risk taking. On the other hand, Calvet, Campbell, and Sodini (2009), Calvet and Sodini (2014), and
Paravisini, Rappoport, and Ravina (2017) find evidence in support of a positive relation between financial wealth and
risk tolerance. I review these findings below.
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wealth inequality. Since wealthier households select riskier positions, they have higher average
returns. Due to this heterogeneity in expected returns to financial wealth, the wealth share of the
top 1% in the model nearly doubles. The model also implies that rising income inequality in the
U.S. has led to a 16% decline in the equity premium over the past three decades.

How can the relation between wealth and risk aversion be estimated from micro data?
Households face two main types of wealth shocks: income growth and returns on financial assets.
By observing the portfolio responses to these two wealth shocks, the effects of changes in the
composition in wealth can be separated from the effects of changes in the overall level of wealth.
In a homothetic life-cycle model where risk aversion is constant, only the composition of wealth
matters for optimal allocations and not the level of wealth. This means that the relevant state
variable is the ratio of human capital to financial wealth. In that case, the portfolio responses to
income growth and portfolio returns exactly offset each other – up to log-linear approximation
– and therefore add up to zero. A positive net effect is evidence for DRRA preferences. Thus,
DRRA can be detected by measuring the joint effects of income growth and realized portfolio
returns on portfolio allocations.

To measure these portfolio responses, I use a dataset that contains individual portfolio
holdings, trades, income, and demographic characteristics of millions of U.S. retail investors with
trillions of dollars in investable wealth. The sample covers annual observations between 2006
and 2018 and therefore spans various market conditions. I restrict attention to a subsample that
is representative of the data and a subset of the overall U.S. population: Retirement Investors
(RIs), which are “typical” American investors that have retirement assets in the middle 80% of the
age-adjusted redistribution of retirement wealth, and for whom retirement savings are the main
form of investable wealth.

In response to an increase in income growth, retirement investors increase their allocation
towards equity, and reduce allocations to bonds and cash-like securities. This relation is driven
by investor-driven portfolio changes through trading, not by ex-ante differences in portfolios
and market fluctuations, and is robust to including various sets of demographic controls and
employer-year fixed effects. While the variation in the data is predominantly coming from income
changes within jobs, I find similar effects for the subset of investors that had a job change. The
effects of income growth on equity share changes are long-lasting – portfolio allocations do not
revert back to the initial composition. As a result, there is a cross-sectional correlation between
income levels and equity shares.

Theory predicts that investors should respond differently to persistent income shocks than
to transitory income shocks. Indeed, the positive relation between income growth and equity
share changes is stronger over longer horizons, where persistent shocks are a relatively bigger
component of total income growth. I measure the effect of persistent income growth on portfolios
by instrumenting income growth by the long difference of lead income and lag income. The effect
of persistent income growth on portfolio equity shares is more than double the effect of overall
income growth. The coefficient does not change when controlling for employer-year fixed effects
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or annual effects by observable characteristics. Although the relation between income growth and
changes in portfolio equity shares is highly statistically significant, the magnitude of the effect is
modest, even when focusing on persistent income growth. The baseline estimate implies that a
ten percent increase in the persistent component of labor income leads to an increase in equity
share by 0.4 percent.

I find considerable heterogeneity in the effect of income growth on equity shares due to
infrequent portfolio adjustment. It is well known that many investors irregularly update their
portfolios, in particular in retirement accounts. A large share of the sample stick with the default
allocation and only a small percentage of the sample rebalance their portfolio in any given year.
First, I find that investors without initial portfolios at the default allocation have a much stronger
response to income shocks. Second, the effects are driven by a small share of the sample that
reallocate their portfolios. Conditional on having a significant portfolio turnover, a ten percent
increase in persistent income leads to an increase in equity share by 1.8 percent. Third, the effect
size is increasing in the number of web visits that investors make during the year, suggesting that
inattention might be an important channel through which infrequent adjustment arises.

To quantify the effect of income on targeted equity holdings and to separate the effects of
asset fluctuations from investor reallocation decisions, I estimate a partial adjustment model
similar to Calvet et al. (2009). The model quantifies the speed of adjustment in portfolios and
changes in desired portfolio allocations. In line with baseline statistics on trading behavior, I find
that the asset return-driven component captures over 80 percent of overall portfolio changes.
Controlling for the effects of infrequent adjustment and for aggregate market movements, the
effect of idiosyncratic portfolio returns on risk taking is slightly negative. The positive net effect of
income growth and portfolio returns on equity shares conflicts with the prediction of a standard
homothetic life-cycle model and is consistent with risk aversion that decreases in total wealth.

In a second step, I investigate the quantitative implications of these findings by specifying
and estimating a realistic life-cycle consumption and portfolio choice model. In the model,
agents receive labor income subject to uninsurable idiosyncratic shocks during their working life
and allocate their savings towards a risky and a riskless asset. The model has three important
ingredients: a preference specification that generalizes CRRA preferences and can account for
non-homothetic risk preferences, human capital with countercyclical tail risk in permanent
income, and infrequent portfolio rebalancing. I find that trading activity is largely determined
by outside factors – the predictive power of changes in financial circumstances on investor
reallocation activity is low and the hazard function of portfolio adjustment is flat. This finding
is consistent with a model where rebalancing is (predominantly) time dependent rather than
state dependent.2 The parameters of the model that are estimated through indirect inference
are the rate of time preference, baseline risk aversion, non-homotheticity in risk aversion, and
the frequency of portfolio rebalancing. To match the additional empirical fact that permanent-
income rich households save disproportionally more than poor households and therefore the

2Giglio, Maggiori, Stroebel, and Utkus (2019) arrive at a similar conclusion for the effect of beliefs.
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cross-sectional relation between consumption and permanent income is concave (Straub, 2019), I
allow for heterogeneity in discount factors that is correlated with permanent income levels. The
model is able to fit the regression evidence on portfolio changes in response to wealth shocks,
jointly with the age profile of savings to income and the average equity share at age 50 from SCF.
Key to this result are a significant elasticity of risk aversion with respect to wealth and a model of
human capital that accounts for cyclicality in high order moments of income growth.

Third, I find that the model has important long-run implications for inequality and asset
prices. Since risk aversion decreases in wealth, richer households choose to invest a larger share
of their portfolios in equity than poorer households. Wealthier households therefore have higher
returns on average. This positive correlation between wealth and average portfolio returns
matches empirical patterns (Fagereng, Guiso, Malacrino, and Pistaferri, forthcoming).3 The
estimated non-homotheticity in risk preferences thus implies a two-way relation between wealth
and equity demand that has important implications for inequality. The range of expected returns
by net worth, conditional on age, nearly spans the full equity premium: households in the lowest
percentile of the net worth distribution invest the majority of their financial wealth in the risk-free
asset, while households in the top of the net worth distribution invest only in equity. By targeting
the within-person portfolio responses to wealth shocks and the cross-sectional relation between
consumption and permanent income, the model generates an (untargeted) wealth distribution
with large inequality: the wealth share of the top 1% is 41.0%. An important contributor to this
large wealth inequality is that equity holdings are concentrated in the hands of the rich. In an
alternative estimation of the model, I show that if risk preferences were CRRA, the top 1% wealth
share would only be 21.8%.4

I use the model to examine the effects of rising income inequality in the United States over the
past few decades on wealth inequality and asset demand. An important force behind increased
income inequality is an increase in the dispersion of permanent income levels of new cohorts
(Guvenen, Kaplan, Song, and Weidner, 2018). I calibrate the dispersion in initial income to match
the Gini coefficient of income in the SCF and compare simulations of the model with levels of
income inequality in 1989 and 2016. The top 1% wealth share rises from 35.4% to 41.0%. I calculate
the changes in the risk-free rate and equity premium that offset these changes in asset demands
in the model, assuming fixed asset supply.5 The model suggests that inequality over the past few
decades has led to a decrease in the risk-free rate of 1.59 percentage points and a decrease in the
equity premium of 0.73 percentage points (16% of the equity premium in the model).6

3Since all agents in the model have access to two assets, a risk-free asset and a stock market index, these patterns
are fully driven by differences in risk-taking behavior as opposed to differences in technologies. Fagereng et al.
(forthcoming) find that average returns to net worth are different even within narrow asset classes.

4Similarly, in a version of the model where the equity premium is set to zero, the top 1% wealth share is 19.9%.
5Catherine (2019) runs a similar exercise to calculate the effects of cyclical skewness in income growth on risk premia.
6Over this time period, the real interest rate declined by roughly 3% percentage points (Laubach and Williams, 2016).

Evidence on changes in the equity risk premium is mixed. Pástor and Stambaugh (2001), Fama and French (2002), and
Jagannathan, McGrattan, and Scherbina (2000) found that the equity premium decreased in the decades leading up
to the 2000s. Duarte and Rosa (2015) and Caballero, Farhi, and Gourinchas (2017) argue that the equity premium has
increased over the most recent decades.
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Finally, the estimated non-homotheticity in risk tolerance provides qualitative support for
asset pricing models based on cross-sectional or time-series variation in risk aversion that
quantitatively fit important asset pricing facts such as the equity premium, equity volatility, and
countercyclical risk premia (e.g. Campbell and Cochrane, 1999; Chan and Kogan, 2002; Gârleanu
and Panageas, 2015). DRRA preferences have asset pricing implications through two channels.
First, households with DRRA have a risk aversion that changes over time as aggregate wealth
changes. As a result, cash flow shocks get amplified through their effect on risk aversion. Second,
DRRA preferences generate cross-sectional heterogeneity in risk aversion through dispersion in
wealth. This heterogeneity leads to differences in optimal portfolios and concentrates holdings in
the hands of the most risk tolerant agents. A negative shock to the economy redistributes wealth
towards agents with lower risk tolerance, thereby raising wealth-weighted risk aversion. These
two channels amplify the volatility of the stochastic discount factor and lead to a more negative
relation between equity investors’ marginal utility and equity returns. While my estimates do
not speak directly to the dynamics of asset prices in general equilibrium, I examine the scope
for quantitative effects on asset prices by exploring the dynamics of aggregate risk aversion in
the model. In model simulations, I find that the volatility of annual changes in log aggregate
risk aversion is 4.8%. This is an order of magnitude lower than the variation of changes in log
aggregate risk aversion implied by Campbell and Cochrane (1999), which is 22.7%.

Literature. Portfolio choice theory prescribes how investors should allocate their financial
wealth across asset classes under a wide set of assumptions on preferences, human capital
endowments, and other constraints or financial characteristics. In the absence of non-tradable
labor income, the optimal equity share of a CRRA investor is constant (Samuelson, 1969; Merton,
1969). With human capital, what matters is the relative proportion of human capital to financial
wealth; the overall level of wealth plays no role. Risk-free human capital implies that the demand
for equity in investment portfolios should increase in the share of human capital in total wealth.
As human capital diminishes with age and as financial wealth grows, the share of financial
wealth invested in equity decreases over the life cycle (Jagannathan and Kocherlakota, 1996).
This insight extends to many quantitative life-cycle models where human capital has limited
stock-like properties.7 Empirical findings on investor portfolios pose several challenges to these
theoretical predictions. First, the portfolio equity share of investors that participate in financial
markets tends to be relatively flat or even upward sloping over the life cycle (Guiso, Haliassos,
and Jappelli, 2002; Ameriks and Zeldes, 2004). Second, the average portfolio equity share of
participants is relatively low compared to optimal allocations in a model with bond-like human
capital and moderate risk aversion. Third, it has been well documented that there is a positive
relation between wealth and risk taking in the cross section of households (see e.g. Heaton and
Lucas, 2000; Carroll, 2002). Two important variations on the traditional setup of life-cycle models

7See e.g. Bertaut and Haliassos (1997), Heaton and Lucas (1997), Gakidis (1998), Viceira (2001), Campbell, Cocco,
Gomes, and Maenhout (2001), Cocco, Gomes, and Maenhout (2005), Gomes and Michaelides (2005), Gomes, Kotlikoff,
and Viceira (2008), and many others.

5



that address these facts and have been studied extensively are deviations from CRRA preferences
and alternative properties of human capital.

First, Wachter and Yogo (2010) show the appeal of DRRA preferences for matching equity
share profiles over the life cycle and the cross-sectional relation between wealth and asset prices.
However, empirical evidence on the link between wealth and risk preferences is mixed. Since
cross-sectional differences in portfolios could be due to differences in risk tolerance, influenced
for instance by socioeconomic status, this link cannot be estimated in a simple cross-sectional OLS
regression. Several papers have looked at the effects of financial wealth on risk-taking behavior
in panel data. Chiappori and Paiella (2011) use Italian data to regress changes in risky shares
on changes in wealth and find support for a CRRA specification. To address measurement error
in the joint measurement of financial wealth and portfolio allocations, Brunnermeier and Nagel
(2008) instrument wealth growth by income growth and find a negative relation between wealth
changes and risky portfolio shares, while Calvet et al. (2009) instrument wealth changes with
return realizations and find a positive effect of wealth growth on portfolio risk taking. Calvet and
Sodini (2014) use a different identification strategy by running a cross-sectional regression of risk
taking on financial wealth in a dataset of Swedish twin investors and controlling for twin fixed
effects.8 They find that portfolio shares in risky assets are strongly increasing in financial wealth.
Lastly, Paravisini et al. (2017) find that risk aversion increases in response to a negative housing
wealth shock. By looking at the reduced-form effect of financial wealth on risk-taking behavior,
none of these papers explicitly make the distinction between (1) the effect of overall wealth on
risk-taking behavior, and (2) the effect of a changing composition of total wealth. Only Calvet and
Sodini (2014) have evidence on portfolio risk taking by both financial wealth and human capital,
identified from twin regressions. They find an effect of human capital on risky asset allocations
that is positive but much smaller than the effect of financial wealth, and is only (marginally)
significant for identical twins. These findings are hard to reconcile with a portfolio choice model
that matches the empirical properties of labor income risk. In contrast, I find a strongly significant
positive effect of labor income on equity shares and a smaller negative effect of portfolio returns.

Second, several papers have argued that human capital has more stock-like properties than
what is implied by the low correlation between income growth and stock returns. Benzoni, Collin-
Dufresne, and Goldstein (2007) document cointegration between wages and dividends and show
that this cointegration alters the life-cycle profile of equity shares. Other papers have explored
variation in idiosyncratic income risk. Storesletten, Telmer, and Yaron (2007) and Lynch and Tan
(2011) consider countercyclical variation in volatility, which is absent in U.S. administrative data
(Guvenen, Ozkan, and Song, 2014). Catherine (2019) explores the role of cyclical skewness in labor
income and finds that a model with large countercyclical tail risk can generate an upward-sloping
age profile of equity shares.9 I show that accounting for tail risk in labor income is important for

8A caveat is that even with perfect controls for background heterogeneity, cross-sectional regressions in levels
potentially suffer from reverse causality.

9Countercyclical tail risk in non-diversifiable income risk also has important asset pricing implications. These
implications are studied by Constantinides and Ghosh (2017) and Schmidt (2016).
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matching micro evidence on individual portfolio changes. However, only in combination with
a significant degree of non-homotheticity in risk preferences can the model match the empirical
findings.

Finally, since panel data on portfolios is scarce, the portfolio choice literature has primarily
relied on cross-sectional (survey) evidence on investor portfolios to calibrate or estimate life-cycle
model parameters from differences across investors with different ages and other characteristics.
I contribute to this literature by estimating the key parameters of a standard life-cycle model,
extended on a few dimensions, based on evidence on individual portfolio changes. Recent papers
by Fagereng, Gottlieb, and Guiso (2017) and Calvet, Campbell, Gomes, and Sodini (2019) also use
detailed panel data to estimate structural model parameters of life-cycle models. These papers
target age profiles of wealth accumulation and equity shares and do not target individual portfolio
changes in response to wealth shocks.

2 Motivation of Empirical Analysis

This section motivates the empirical analysis by illustrating the implications of portfolio choice
theory for changes in risky asset holdings in response to wealth changes. The objective is to show
how the combined effects of income growth and asset returns on portfolios are informative about
the presence of non-homothetic risk preferences and the riskiness of human capital. I review a
stylized two-period model and discuss how the insights of the stylized model extend to a more
general life-cycle portfolio choice model.

2.1 Stylized Model Setup

I analyze a simple two-period model that builds on Campbell and Viceira (2002). A household is
endowed with financial wealth W at time t = 0 that can be invested in a risky and a risk-free asset.
Consumption takes place at time t = 1, when all wealth W1 is consumed. The household chooses
its portfolio to maximize expected utility at t = 1:

max
E0
[
(W1 − X1)

1−γ
]

1− γ
, (1)

where γ is the curvature of the utility function and X1 is a minimum subsistence or habit level.
When X1 = 0, preferences are CRRA. The case of X1 > 0 implies that risk aversion decreases in
wealth.

Denote the time-1 stochastic gross return on the risky asset by Re. The risk-free asset pays a
fixed return R f . At time t = 1, households also receive labor income P1.10 Let φ be the correlation
between labor income and the return on the risky asset. In addition, assume for simplicity here

10For consistency with the rest of the paper, P1 is interpreted as permanent income.
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that human capital only loads on aggregate risk and is not subject to idiosyncratic risk:11

P1 = P(φRe + (1− φ)R f ), (2)

where P is the present value of labor income.

2.2 Portfolio Choice

Investors decide at time t = 0 on the share of financial wealth W that is invested in the risky asset,
θ. Terminal wealth is given by

W1 = W(R f + θ(Re − R f )) + P1. (3)

Since labor income is tradable and portfolios are unconstrained, the problem can be reduced to an
investment decision on the allocation of total wealth W + P. The optimal allocation of financial
wealth then follows trivially by adjusting for the relative proportion of human capital to financial
wealth.

I derive an approximate expression for the optimal portfolio allocation θ using a log-linear
approximation to the Euler equation. Let µe = E[log Re], r f = log R f , and σ2

e = Var[log Re].

Proposition 1. The optimal portfolio share as a fraction of financial wealth is, up to a log-linear
approximation, given by

θ = ᾱ + (ᾱ− φ)
P
W
− ᾱ

(
1 +

P
W

)
X

W + P
, (4)

where ᾱ =
µe−r f +

1
2 σ2

e
γσ2

e
.

The proof is in Appendix A.2. A benchmark case is the model without human capital (P = 0)
and with constant relative risk aversion preferences (X = 0), which yields the seminal result
from Samuelson (1969) and Merton (1969) that the portfolio equity share satisfies the “myopic”
allocation ᾱ. With risk-free labor income (φ = 0), the optimal portfolio share is increasing in the
ratio of permanent income to financial wealth. More generally, the portfolio is tilted towards risky
assets when human capital is safer than the optimal allocation of total wealth (ᾱ > φ), and tilted
towards risk-free assets when human capital is riskier (ᾱ < φ). A positive subsistence level X
increases effective risk aversion and therefore lowers the optimal allocation towards equity, since
a larger share of the portfolio is devoted towards insurance against the fixed subsistence level X.

2.3 Wealth Shocks and Portfolio Allocations

For a fixed subsistence level X, the optimal portfolio at t = 0 is function of the state variables W
and P. To guide the empirical analysis on dynamic portfolio choice, I derive comparative statistics

11The presence of idiosyncratic income risk does not affect the results here since the focus is on deriving a simple
log-linearized solution. Idiosyncratic risk will play a key role in the full quantitative life cycle model in Section 6.
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of the portfolio share at t = 0. Suppose that at time t = 0, cash on hand is given by

W = WRp f + P, (5)

where Rp f is the return on a pre-determined portfolio that is realized at t = 0.
Define X = XR f and P = PRp, where Rp is the realization of permanent income growth at

t = 0. Another log-linearization generates an expression for the effects of income and realized
portfolio returns on portfolio allocations.

Proposition 2. The optimal portfolio is, up to a log-linear approximation, given by

log θ = const + (κ1λ1 + (1− κ2)λ2︸ ︷︷ ︸
b1

) log P + (−κ1λ1 + κ2λ2︸ ︷︷ ︸
b2

) log Rp f , (6)

where κ1, κ2 ∈ (0, 1), and

θ = ᾱ + (ᾱ− φ)
P

W + P
− ᾱ

(
1 +

P
W + P

)
X

W + 2P

λ1 =
ᾱ− φ

θ
· P

W + P
, λ2 =

ᾱ

θ

(
1 +

P
W + P

)
X

W + 2P
.

(7)

The coefficients b1 and b2 capture the effects of income growth and portfolio returns on
equity allocations, respectively. Both types of wealth shocks affect optimal allocations through
two channels: a human capital channel, and a DRRA channel. The effect of human capital is
determined by λ1 and is driven by the equity exposure of human capital, φ. With relatively safe
(risky) human capital, λ1 > 0 (λ1 < 0). The effect of DRRA preferences is determined by λ2 and is
driven by the degree of non-homotheticity X̄. With CRRA preferences, X̄ = 0 and hence λ2 = 0.
Figure 1a plots the coefficients b1 and b2 by φ, for X = 0. The coefficient b1 is decreasing in φ,
while b2 increases in φ.

Equation (6) provides a crucial restriction of homothetic preferences on the joint portfolio
effects of income growth and portfolio returns: b1 + b2 = 0. The human capital channel generates
offsetting implications of human capital and financial wealth on the equity share – up to log-linear
approximation – and therefore the two coefficients add up to zero. With DRRA preferences,
the total effect is positive: b1 + b2 > 0. In contrast, the individual effect of fluctuations in
either component of total wealth is not informative about risk preferences. Panel 1b plots the
coefficients b1 and b2 by X, for relatively low φ in line with typical empirical estimates. Note that
b2, the effect of changes in financial assets, can be negative even when risk aversion decreases in
wealth (Wachter and Yogo, 2010). Similarly, Figure 1a illustrates that a positive relation between
asset returns and equity shares can be generated in a model with CRRA when human capital
is sufficiently risky. In order to test for DRRA and identify the key parameters of a life-cycle
portfolio choice model, it is therefore crucial to measure the effects of both income growth and
financial returns in the data.
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2.4 Extension to Dynamic Model

The basic implications from the stylized two-period model carry over to a general life-cycle
framework. I now introduce three assumptions that are met by many standard life-cycle models
and generate a homothetic value function. In that case, the effects of income shocks and asset
returns on optimal portfolio allocations offset each other (to an approximation).

Assumption 1 (Homothetic preferences). Agents have Epstein-Zin preferences with a constant
elasticity of intertemporal substitution ψ and coefficient of relative risk aversion γ. The value function at
death, capturing bequest motives, is proportional to cash on hand Wit.

Assumption 2 (Income with permanent and transitory shocks, linear taxes). Pre-tax income Yit

can be written as product of a deterministic component in age Ga(i,t), a permanent component Pit, and
an idiosyncratic component eεit . In retirement, agents receive an income that is a constant fraction of
permanent income in the final pre-retirement period. Income taxes are linear: Ypost

it = (1− τ)Yit.

Assumption 3 (Constant investment opportunities). Investors allocate financial wealth to financial
assets that have i.i.d. returns, so that investment opportunities are constant over time. There is either no
borrowing constraint, or a borrowing constraint of zero.

Under these three assumptions, the problem admits a homothetic solution where the level of
total wealth is irrelevant for saving rates and portfolio choice, and only the proportions of financial
wealth and human capital matter. Thus, the state variables in the homothetic model are age a(i, t)
and cash on hand relative to permanent income, wit ≡ Wit

Ga(i,t)Pit
. The law of motion for wit is given

by

wi,t+1 = (wit − cit)Rp f
i,t+1

Ga(i,t)Pit

Ga(i,t+1)Pi,t+1
+ (1− τ)Ga(i,t)e

εi,t+1 , (8)

where cit ≡ Cit
Ga(i,t)Pit

is normalized consumption.
Let the optimal portfolio be given by θit = Θ(wit, a(i, t)). I consider a log-linear approximation

to again find the coefficients b1 and b2 on income growth and portfolio returns.12

Proposition 3. Under assumptions 1–3, the optimal portfolio in the homothetic dynamic model is, up to a
log-linear approximation, given by

log θi,t+1 = k + b1∆ log Pi,t+1 + (−b1︸︷︷︸
b2

) log Rp f
i,t+1 + b3εi,t+1. (9)

The approximate restriction b1 + b2 = 0 under homothetic preferences thus extends to a
dynamic life-cycle model. As in the stylized model, b1 is positive and b2 is negative in the
traditional calibration of the model where income is mostly bond-like (see e.g. Wachter and Yogo,

12Note that in a dynamic model, these coefficients depend on state variables at time t. I suppress the dependence of
the log-linearization constants on time-t information here. In empirical work and for identifying the parameters of the
structural model, I will mainly focus on the average values of these coefficients.
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2010). My empirical strategy will focus on measuring these coefficients b1 and b2 in the data. I will
then estimate a structural model that targets these empirical moments and quantifies the degree
of non-homotheticity in risk preferences.

3 Data

3.1 Description

I analyze the portfolio behavior of a large sample of individual investors in the United States.
For this analysis, I use a dataset of account-level administrative data on financial holdings,
transactions, and investor characteristics from a large U.S. financial institution. The data cover
anonymized information on all taxable and non-taxable accounts of individual investors at the
firm. For these accounts, all balances and security-level portfolio holdings are available at an
end-of-year frequency between 2006 and 2018, as well as all inflows, outflows, and transactions at
a daily frequency. The data span millions of investors with trillions in financial wealth.

In addition to detailed information on financial portfolio compositions and trades, the data
contain information on investor demographics and employment-related variables. The main
demographic variables that are covered in the data are age, gender, marital status, and zip code.
Employment-related information is available for a subsample of the client base that have an
active employment relationship. For this subset, I observe an anonymized employer indicator,
employer industry (3-digit NAICS code), employment tenure, and, importantly, gross annual
wage income. I annualize all income observations by scaling up part-year incomes to a full-year
equivalent. I drop annualized incomes that are below the annual minimum wage at 20 hours per
week ($7540 from 2010). All variables are constructed at the individual level.13

To characterize portfolio allocations, all fund and individual security holdings are divided
into four main asset categories: equity, fixed income, cash and cash-like assets, and alternative
assets. Multi-asset class funds (e.g. target date funds) are split between equity and fixed income
in proportion to the observed equity share of the fund. I also compute the market betas of all assets
by regressing fund and security excess returns on the market excess return, requiring at least 24
months of return observations. These asset characteristics are complemented by other security-
level information, such as international exposures. Appendix A.1 contains additional details on
the data construction.

13While the data include household identifiers that allow spouses to be linked, in most cases only one spouse is
observed. Requiring income to be observable, as I do in this paper, further tilts the sample towards households with
full information for only one person. For transparency, I therefore run the analysis at the individual level. Where there
are multiple individuals that co-own an account, the account is assigned to a single individual by selecting the (oldest)
owner with the highest total assets. This yields a unique mapping from accounts to individuals. The results do not
change when running the analysis at the household level.
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3.2 Sample Selection

While the dataset used for this analysis provides a rare opportunity to study detailed portfolio
allocations of a large sample of U.S. retail investors, there are two potential limitations of this
data. First, even though the data cover a significant share of American retail investors, the sample
is obviously selected by holding an investment account at this firm. In particular, most investor
wealth is in retirement accounts and few investors have very high net worth. Second, investors
may have other investable wealth in accounts at another firm. To address these issues, I follow
an approach similar to Meeuwis, Parker, Schoar, and Simester (2019) by restricting the analysis to
a subsample of investors that is reasonably representative of “typical” American investors with
some retirement savings. To that end, I impose sampling restrictions on age and retirement wealth.

First, I select a sample of investors that are between 30 and 58 years of age. I exclude younger
and older investors for two reasons: (i) the youngest age group typically has low levels of
investable wealth, while retired investors are underrepresented due to attrition from the sample.
I select age 58 as the upper bound because penalty-free withdrawals from retirement accounts
can be taken from age 59.5. And (ii), standard life-cycle models are best equipped to capture the
wealth accumulation and investment behavior of households at middle ages and tend to perform
worse at young age and at retirement.

The second restriction I impose is on retirement wealth. I particular, I focus on investors with
moderate levels of retirement wealth, labeled as retirement investors (RIs). Specifically, RIs are
investors without extremely high or low retirement wealth, defined as all wealth in retirement
saving accounts of all types (excluding defined benefit plans and Social Security). The cutoffs are
determined using the 2016 SCF. For the sample of working age investors with positive retirement
wealth, I run quantile regressions of the log of retirement wealth on a third-order polynomial in
age. The 10th and 90th percentile by age form the cutoffs for selection into the sample. Within the
set of investors of age 30 to 58, the sample of RIs captures 40% of the population, 51% of retirement
wealth, and 44% of household investable wealth.

Finally, estimating the effect of income on portfolio allocations is a key part of the empirical
analysis in this paper. I therefore require individuals in the sample to have an active employment
relation where income is observable.14 In particular, I select RI investors into the sample in year
t when income is observed at {t− 1, t, t + 1}. There are two main reasons for requiring the lead
and lag of income to be observable. First, this restriction limits the impact of measurement error
in full-year incomes inferred from part-year income observations. Second, I will use lead and lag
observations of income as instruments when estimating the effects of persistent income growth.
As a consequence of this restriction, the final dataset used for the empirical analysis runs from
t = 2007 to t = 2017.

1441% of the full RI sample has an income observation. This subsample still spans millions of investors.
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3.3 Summary Statistics

Figure 2 illustrates that the distribution of retirement wealth in the sample of RI investors lines
up well with the distribution of retirement wealth for retirement investors in the SCF. Since not
all components of wealth are available at the individual level in the SCF, Appendix Figure A.1
compares the distribution of total investable wealth at the household level in the SCF to individual
investor wealth in the sample. The distribution of total investable wealth in the sample also lines
up reasonably well the distribution in the SCF, although the sample misses some non-retirement
wealth of wealthy households.

Table 1 reports summary statistics on the sample of RIs with income observations. The
average age is 44, 42% of the sample is female, and 71% is married. Appendix Figure A.2 plots
the age distribution and shows that the sample is balanced by age. Partly due to the selection
requirements on consecutive income observations that the empirical strategy requires, investors
in the sample are relatively well off in terms of income: the median income is $80K, and the
average income is $107K. Figure 3 compares the distribution of income to RIs in the SCF, where
income is measured at the household level. When restricting both samples to single (unmarried)
individuals, it is clear that sample is tilted towards higher-income population. Investors in the
sample also tend to have relatively stable jobs: the median tenure is 8.5 years.

The average equity share of investor portfolios is 77%. The remaining portfolio assets are
largely invested in fixed income, with an average share of 19%. Only a small fraction of the sample
hold cash or other assets. There is substantial heterogeneity in portfolio allocations: the cross-
sectional standard deviation of equity shares is 21%. Market betas of investor portfolios tend to
be slightly above equity shares, with a dispersion that is similar to the variation in equity shares.
Most investors hold an equity portfolio that has a market beta close to one, and bear limited
idiosyncratic risk. On average, only 5% of portfolio assets are invested in individual stocks.

Since retirement accounts form an important part of the sample, many investors have
significant allocations to target date funds (TDFs). The average TDF share of portfolio assets in
the sample is 53%. An important reason for the prominence of TDFs is default allocations. For
almost all investors, the default allocation is a TDF. I define a default investor to be someone who
has 100% of assets invested in the default fund in an employment-based account, or at least 90%
in TDFs in a personal retirement account and the remainder in cash. Default investors cover 43%
of the sample.

Many investors are not actively engaged with their portfolios. I define an investor-initiated
trade to be a trade or exchange that is not associated with an account inflow or outflow. Just 22%
of people in the sample have an investor-initiated trade over the year. As another measure of
portfolio rebalancing, I define portfolio turnover as one half times the sum of absolute value of
investor trades divided by beginning-of-year financial wealth. The average portfolio turnover is
13%. To measure engagement, I calculate in each year the number of months with at least one web
login. On average, retirement investors have four months with web visits during the year. There
is substantial heterogeneity in engagement: the bottom 10% has no web logins, while the top 10%
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logs in at least once in nearly every month.

4 Income and Portfolio Allocations

I start by investigating the relation between income and equity allocations in investor portfolios.
The full estimation of b1 and b2 requires a model of rebalancing behavior and will be postponed to
Section 5. Motivated by the stylized model, the objective here is to estimate the following system
of equations:

∆h log θit = bp
1 ∆h pit + δ′Xit + ηit (10a)

yit = git + pit + εit + eit, (10b)

where log income y is decomposed into a predictable component g, a persistent component p,
a transitory component ε, and measurement error e. Assume that predictable income is of the
form git = λ′X̃it. Let ỹit = yit − λ̂′X̃it be log labor income after orthogonalizing with respect to
observable demographics X̃it.

First, in Section 4.1, I test whether portfolio risk taking varies with overall income in a baseline
OLS regression. Second, in Section 4.2, I investigate the long-run effects of income growth on
portfolios. In Section 4.3, I consider job changes and background risk. Section 4.4 makes the
distinction between persistent and transitory income shocks and estimates the effect of persistent
income growth on equity share changes. In Section 4.5, I consider heterogeneity in the portfolio
response to income growth. Finally, Section 4.6 discusses portfolio outcomes other than equity
shares.

4.1 Income Growth and Equity Share Changes

First, I analyze the basic relation between income and portfolio allocations. Since the cross-
sectional distribution of income and portfolio compositions does not only depend on risk
preferences but also on heterogeneity across investors, I use panel data to concentrate on the
impact of changes in income on changes in the equity share of investor portfolios.

Regression setup. As a first pass, consider an OLS regression of changes in log equity shares,
∆h log θit, on income growth ∆hỹit, where ∆h is the h-year difference operator:

∆h log θit = by
1∆hỹit + δ′Xit + ηit. (11)

I control for ex-ante differences in financial characteristics and life-cycle considerations in portfolio
choice by including a basic set of demographics. The vector Xit of controls includes a second-order
polynomial in age, gender, marital status, a second-order polynomial in employment tenure, log
income, and the log of financial assets, all measured at t− h. In addition, I control for fixed effects
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by year. For the purpose of running OLS regressions, I limited the sample to 90% of the range of
wage changes by trimming income growth at the 5th percentile and 95th percentile.

The main outcome variable is the change in log equity share. There are two main reasons
for using the logarithm of the equity share. First, if the expected return µe and volatility σe of
equity are constant, a basic power utility investor with risk aversion γi chooses a constant equity
share equal to µe−r f

γiVar[Re]
(Samuelson, 1969; Merton, 1969). Hence, when taking the difference of

the log equity share, we can control for static heterogeneity in beliefs. Second, the data only
cover wealth in investment accounts, mainly through retirement accounts. For a large part of
the U.S. population, quasi-liquid retirement wealth is the main component of investable wealth.
However, this misses other forms of financial wealth, predominantly consisting of bank accounts
and other non-equity holdings. Therefore, a reasonable approximation for the typical Retirement
Investor is that the equity share of total financial wealth is θ

f
it = φitθit, where θit is the observed

equity share of investable wealth and φit ∈ (0, 1] is the share of investable wealth in total financial
wealth. I assume that ∆ log φit is independent of wealth changes after controlling for Xit. Under
this assumption, using θit as a proxy for θ

f
it does not lead to a bias when using the change in logs

as outcome variable.
Changes in portfolio equity shares are strongly related to the composition of initial portfolios.

Low initial equity shares are associated with subsequent increases in equity shares, and vice versa.
This mean reversion effect is partly mechanical, since portfolio shares are bounded between 0 and
1. I find that mean reversion is stronger for investors with bigger income shocks. Figure A.3 in the
appendix plots the average change in portfolio equity share as a function of the initial equity share,
for investors with different magnitudes of income growth. To account for the observed mean
reversion in portfolio shares that is stronger when the magnitude of income growth is bigger, I
include initial equity share and the interaction between initial equity share and absolute income
growth as controls in Xit.

OLS results. Table 2 presents the regression estimates for various sets of controls and horizons.
The regressions show a positive and strongly significant relation between income growth and
portfolio equity share changes in all specifications. Relative to the specification in the first column
that only includes time fixed effects, the magnitude of the relation between income growth and
equity share changes doubles in the second column when controlling for demographic variables
and the initial portfolio share. Column (3) confirms the stronger mean reversion in equity shares
for investors with bigger income shocks, without changing the estimate of the main coefficient.

Columns (5)–(7) report the results for longer horizons. The magnitude of the effect increases
with the horizon. We would expect the coefficient to increase with the horizon if investors
respond more to persistent income growth than to transitory income growth, since the variance
of persistent income growth increases with the horizon while the variance of transitory income
growth does not. Section 4.4 deals with directly estimating the effects of persistent income
growth.
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Nonlinear effects. Figure 4 shows a binscatter plot of the relation between income growth
and log equity share changes at a one-year and five-year horizon, after taking out the effects
of demographic differences and ex-ante differences in portfolios. Not surprisingly, the cross-
sectional variance of income growth greatly increases with the horizon. The relation between
income growth and changes in log equity shares is S-shaped: the elasticity is largest when income
growth is relatively close to zero. This variation could either be due to a different sensitivity of
portfolios to small versus large shocks in income, or due to the role of different components of
income growth: if small income shocks are more likely to be persistent, we would expect to find
a larger elasticity of equity shares to income for small income shocks. Section 4.5.3 will revisit
heterogeneity by the magnitude of income growth.

4.2 Long-Term Effects

Income growth is positively related to changes in equity shares. A homothetic model predicts that
there should be an offsetting effect of portfolio returns, but in Section 5 I show that there is no such
offsetting effect. I therefore interpret the positive relation between income growth and equity share
changes as evidence of non-homothetic risk preferences. There are several important models of
financial behavior that generate a negative relation between wealth and risk aversion. The stylized
model in Section 2 had a subsistence level to generate DRRA. A closely related alternative is the
habit model. Habits have similar implications to a subsistence level when they are slow moving,
as is typically the case in finance models. Campbell and Cochrane (1999) show that habits need to
be slow moving to match high persistence of price-dividend ratio and moments of equity returns.
Another alternative that generates DRRA preferences is consumption commitments, that provide
another reason for costly adjustment of consumption (Chetty and Szeidl, 2007, 2016). Finally,
rich households could be a consuming a different bundle of consumption goods, with a lower
curvature over “luxury” goods. This luxury good may be wealth itself, as in models with a “spirit
of capitalism” (Bakshi and Chen, 1996; Carroll, 2000, 2002).

Distinguishing these different theories is challenging with the available data. However, one
important test is whether the portfolio changes are temporary or long lasting. Are the previous
findings about temporary changes in risk aversion (e.g. macro habits) or about level effects of
wealth on risk preferences?

Effects on future portfolios. First, I estimate the effects of income growth on equity shares at
future horizons. I estimate the following regression equation at future horizon j:

∆h+j log θi,t+j = by
1∆hỹit + δ′Xit + ηit. (12)

The first four columns of Table 3 report the effect of three-year income growth on changes in
equity shares over 3 + j years, for j = 0, 1, 3, 5. The point estimate on income growth slightly
increases at longer horizons, likely due to sluggish portfolio adjustment. There is no evidence that
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the equity share reverts back to the original level. These results suggests that the effects of income
on equity shares are long lasting, consistent with a model where risk tolerance depends on the
level of wealth, e.g. through a subsistence level or bequest motive.

The results in Table 3 show that the effect of income growth on changes in equity shares does
not further increase in magnitude more than one year in the future. This finding is somewhat
puzzling when portfolio adjustment is infrequent and treated as (mostly) driven by external
factors, which will be a key part of the later analysis. However, it turns out that this finding is
specific to using the change in log equity share as outcome variable. Figure A.4 in the appendix
plots the coefficients of equity share changes over all horizons on three-year income growth, both
when using the equity share in logs and in levels. When considering changes in the level of equity
shares, the estimated effect of income growth increases monotonically with the horizon.

Level differences. The empirical analysis in this paper focuses on the effects of wealth
changes on equity share changes in the time series. This approach has the advantage over
cross-sectional comparisons that it can better account for unobserved heterogeneity across
investors. Nevertheless, it is interesting to see how the results on portfolio changes compare to a
cross-sectional regression of the level of equity shares on the level of income in this data. Unless
endogeneity offsets the positive effect within individual, we would expect a positive relation
between level of equity share and level of income. The results of a cross-sectional regression of
the log equity share on log income are in columns (5)–(8) of Table 3. Indeed, there is a positive
correlation between income and the portfolio equity share. The estimated elasticity is similar to
the estimate from running the regression in first differences. The correlation between income and
equity shares holds within employer. The estimated elasticity is somewhat larger for investors
without a default allocation.

4.3 Job Turnover and Background Risk

Most individuals have a single job over the period that they are in the sample. As a result, the
previous results on the relation between income growth and changes in equity shares are largely
driven by within-employment changes in income. The first four columns in Table 4 make this
selection explicit by selecting the sample to be investors with a single job during the window
of portfolio changes. For robustness, I repeat the analysis for the relatively smaller subsample of
individuals (but still sizeable in numbers) that switched jobs in between income observations. The
results are in columns (5)–(8). For this subsample, I find a positive and significant effect of income
growth on changes in equity share that is consistent with the baseline estimates. The magnitude
of the effect is even somewhat larger, perhaps because the relative share of permanent income
growth in total income growth is larger when comparing income across jobs. For this subsample
the point estimate declines with the horizon, although power is limited at long horizons.

Next, in models of individual financial decisions, the risk properties of human capital are
crucial for determining optimal allocations of investable wealth. Because human capital is non-
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tradable, not just systematic risk but also uninsurable wage risk matters for portfolio allocations.
The quantitative importance of uninsurable wage risk was recently studied by Fagereng, Guiso,
and Pistaferri (2018). By instrumenting variation in worker earnings by variation in firm
profitability, they find a large marginal effect of uninsurable income risk on portfolio choices. In
standard models of wage income, there is no relation between individual income growth and
changes to future uninsurable wage risk. However, if income growth is in fact negatively related
to future variability of earnings, that would provide an alternative explanation for the positive
relation between income growth and equity share changes.

Lacking a direct measure of background risk in the data, I consider the probability of job
separation as a proxy. I construct an indicator for job separation in year t + 1 for individuals
that have an active employment relation at the end of year t, which equals one if that relation
has been terminated by the end of year t + 1. Figure 5a plots the probability of having a job
separation in year t + 1 as a function of income growth in year t, using 20 bins for income growth.
Consistent with Holzheu (2018), there is a U-shaped relationship between income growth and job
separations. Workers with high negative or positive changes in wages have a higher probability
of job separation in the next period. To confirm that large changes in earnings represent a real
economic risk for households, especially on the right tail of the income growth distribution, I
also measure withdrawals from retirement accounts due to liquidity needs. Figure 5b plots the
probability of having such a withdrawal in year t + 1 as a function of income growth in year t,
again using 20 bins for income growth. The result is a similar U-shaped relation.

If background risk is the channel through which income growth affects portfolio allocations,
we would expect a similar nonlinear relation between income growth and equity share changes. In
Table 5, I test this prediction. Columns (1)–(4) confirm a positive relation between squared income
growth and separations, after controlling for the basic set of controls from the portfolio regression
and various fixed effects. Next, I add squared income growth to the baseline portfolio regression.
The results are in columns (5)–(8). The coefficient on squared income growth is insignificant in all
specifications. Hence, I find no evidence that income growth affects portfolio risk taking through
background risk instead of a first-order wealth effect.

4.4 Persistent Income Shocks

Portfolio choice theory predicts a notable difference in the portfolio effects of persistent and
transitory income growth. Transitory income shocks have an impact on cash on hand in the
current period, but do not change the present value of future labor income. In contrast, persistent
income shocks change both the amount of resources available in the current period and total
human capital. Recall that we are interested in the effect of persistent income growth on
portfolios:

∆h log θit = bp
1 ∆h pit + δ′Xit + ηit.
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I use an IV approach to consistently estimate the effect of persistent income growth on equity
shares. To introduce this approach, make the following assumptions: first, all innovations are
i.i.d. across investors i. Second, controls Xit are uncorrelated with p, ε, e, and η. Third, income
measurement error eit is i.i.d. and uncorrelated with residual portfolio changes η. Fourth, future
and past income innovations are uncorrelated with ηit: Cov(pi,t−h−j, ηit) = Cov(pi,t+j, ηit) =

Cov(εi,t−h−j, ηit) = Cov(εi,t+j, ηit) = 0 for all j > 0.

OLS bias. If portfolio equity shares respond differently to transitory income shocks than to
persistent income shocks or when there is measurement error in income, the OLS regression of
equity changes on income growth will give a biased estimate of bp

1 :

bOLS
1 =

Cov(∆h log θit, ∆hỹit)

Var(∆hỹit)
= bp

1 −
(

bp
1 −

Cov(∆hεit, ηit)

Var(∆hεit) + Var(∆heit)

)
Var(∆hεit) + Var(∆heit)

Var(∆hỹit)
.

(13)
When the portfolio response to transitory income shocks is small, i.e. Cov(∆hεit, ηit) ≈ 0, the OLS
estimate of the effect of income growth on portfolio allocations suffers from an attenuation bias.

IV approach. To address the OLS bias and separate the effects of persistent income shocks
from transitory income shocks, I use lead and lag observations of income for identification
(Guiso, Pistaferri, and Schivardi, 2005; Blundell, Pistaferri, and Preston, 2008). To estimate the
effect of persistent shocks, I instrument income growth by income growth over a wider horizon.
Specifically, I use the long difference ∆+

h ỹit ≡ ỹi,t+1 − ỹi,t−h−1 as an instrument for ∆hỹit. Under
the above assumptions, this IV approach yields a consistent estimate of bp

1 :

bIV
1 =

Cov(∆h log θit, ∆+
h ỹit)

Cov(∆hỹit, ∆+
h ỹit)

= bp
1

Cov(∆h pit, ∆+
h pit)

Cov(∆h pit, ∆+
h pit)

= bp
1 . (14)

The fourth assumption requires that past income is uncorrelated with current portfolio
changes. Since portfolio adjustment is sluggish, this assumption is likely to be violated.
Therefore, I add the lag of log financial wealth and the lag of log income to the controls X, where
ỹi,t−1 is instrumented by ỹi,t−2. I assume that these controls appropriately capture the effects of
past income growth on current portfolio changes.

Figure 6a shows a binscatter plot for the first stage, using the same set of controls Xit as before.
Figure 6b shows a binscatter plot for the reduced form. Like the baseline OLS specification, the
reduced-form scatter plot shows a positive relation between income growth and changes in log
equity shares. As expected when there are no anticipation effects, the reduced-form specification
has a flatter slope than the OLS specification.

IV results. Table 6 presents the results for IV regressions of log equity share changes on income
growth, where income growth is instrumented by the long difference ∆+ỹit of log income.
Column (1) shows the estimate with time fixed effects as the only control. The specification
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in column (2) includes the basic set of demographic controls, the initial log equity share, and
the interaction of demographic controls with the initial log equity share. As before, I include
in the main specification in column (3) the interaction between the absolute value of income
growth (instrumented) and the log initial equity share, to account for stronger mean reversion for
investors with large income shocks. The estimated coefficient implies that a 10% income growth
leads to an increase in equity share of 0.43%.

The remaining columns in Table 6 show that the results are robust to including various
additional sets of controls. In column (4), I interact all controls by yearly dummies to account
for possible heterogeneity over time, for instance due to varying market conditions. Column (5)
includes zip code by year fixed effects and shows that the relation between income growth and
equity share changes is not driven by geographical variation.

The final sets of controls highlight that the results are driven by the effect of individual changes,
not by changes at the employer level. Employer-driven changes are a possible confounding factor,
for example through employer actions in retirement portfolios or due to the effect of employer-
wide changes on investment opportunities. In column (6), I include 3-digit NAICS fixed effects
interacted by yearly dummies to control for employment industry effects. Column (7) controls
for employer–year fixed effects, and, ultimately, column (8) has employer by income bin by year
fixed effects. The coefficients in these specifications are not significantly different from the baseline
estimate.

4.5 Heterogeneity in Effect Size

In the next part of the analysis, I test for heterogeneity in the relation between income growth and
portfolio equity changes across the population. First, I investigate to what extent the low average
magnitude of the estimated effect can be explained by portfolio frictions by considering various
subsamples. Second, I explore heterogeneity across investors at different stages of the life cycle
and with different financial profiles. Third, I break down the results by the magnitude of income
changes. In this section, I will continue to use the IV specification that was introduced in the
previous subsection.

4.5.1 Portfolio Frictions

The empirical results so far have highlighted a positive relation between income growth and
changes in portfolio equity shares. Although this relation is highly statistically significant, the
magnitude of the effect is modest. While the results in Table 6 imply that the effect of persistent
income growth is more than double the effect of overall income growth, the economic magnitude
is still limited. The relatively low effect size could either be evidence of a weak overall relation
between income and desired portfolio allocations, or could arise from frictions that limit the
transmission from risk preferences to portfolios. I now explore the role of portfolio frictions.
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Corner solutions. Since retail investors generally do not have access to a margin account and
cannot short assets, portfolio shares are bounded by 0 and 1. This raises two potential concerns
on the previous analysis of portfolio changes. First, running the regression in logs requires a
strictly positive equity share. This drops 4.5% of the sample that hold no equity. If very risk
averse investors in fact choose an allocation of zero, this may put a downward bias on the effect of
income growth. Second, the boundaries of 0% and 100% may lower the sensitivity of equity shares
to income changes because the least and most risk-averse investors cannot take more extreme
positions. Column (1) of Table 7 reports that the positive relation between income growth and
equity share changes carries over to the specification in levels rather than logs. Column (2) shows
that the results are almost identical when restricting the sample to interior equity shares in (0, 1).
Thus, I conclude that the results are not sensitive to portfolio restrictions.

Infrequent portfolio adjustment. The second portfolio friction I consider is limited adjustment
of portfolios due to infrequent rebalancing behavior. It is well known that many investors are
passive in selecting and rebalancing their portfolios, in particular among retirement accounts (e.g.
Madrian and Shea, 2001; Agnew, Balduzzi, and Sunden, 2003). As a result, we would expect a
lower sensitivity of portfolio allocations to wealth changes.

First, I establish that the elasticity of equity shares to income is driven by investor reallocation
decisions. Infrequent portfolio rebalancing means that portfolio allocations are sensitive to
fluctuations in asset prices. While the portfolio regressions control for aggregate effects, a
correlation between individual income growth and idiosyncratic portfolio returns combined
with infrequent portfolio rebalancing could create a spurious relation between income growth
and observed equity shares. I therefore track hypothetical price-constant portfolios that are
constructed as if there were no changes in valuations, by adding security-level trades to positions
at the beginning of the year. Columns (3) and (4) establish that the estimated effect of income
growth on equity shares of price-constant portfolios almost fully captures the effect on overall
portfolios.

Second, a robust and important feature of retirement portfolio choice is that default allocations
are very sticky. Choi, Laibson, Madrian, and Metrick (2004) find that more than half of
automatically enrolled participants stick with the default allocation even after three years. Since
investors with default allocations have never made an active decision to rebalance, we would
expect the elasticity of equity shares to income growth to be smaller for this sample. Column (1)
of Table 8 confirms that the coefficient on income changes is more than twice as large for investors
without a default allocation.

Third, recall from the summary statistics in Section 3.3 that trading activity and portfolio
turnover is low across the sample. This means that even for investors that have opted out of the
default allocation or have chosen an initial allocation in a personal account, portfolio reallocation
is infrequent. To estimate the effect of income growth on equity shares for the subsample of
investors that rebalance their portfolios, I split the set of investors in three groups based on
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portfolio turnover over the year. Column (2) of Table 8 shows that the average effect of income
growth on equity share changes is driven by a relatively small number of investors that make
significant changes in their portfolios. The elasticity for those investors that have no portfolio
turnover based on their own actions is similar to the elasticity of investors that hold the default
allocation. The effect of income growth on equity share changes is more than three times larger for
investors with some portfolio turnover (below 25%), and the elasticity is nearly 0.2 for investors
with large portfolio turnover (above 25%). These estimates suggest that infrequent portfolio
rebalancing is likely an important driver behind the low sensitivity of portfolio allocations to
wealth changes. In Section 5, I will quantify these effects.

Fourth, I explore whether limited attention could be part of the explanation of the low average
elasticity of portfolio shares due to infrequent trading. I split the sample of investors by the
number of months with at least one web login over the year. Column (3) shows that the elasticity
of equity shares is increasing in the number of months with web activity. Investors that frequently
log into their account adjust their portfolios on average by almost twice as much as investors that
rarely log into their account. I therefore conclude that limited attention is likely to be an important
driver behind the small average effect of income growth on equity share changes.

Tax burden. The final portfolio friction I consider is limited portfolio adjustment due to tax
implications. When capital gains are taxable, investors may be reluctant to rebalance their
portfolios in response to wealth shocks in order to avoid realizing a capital gain. The sample
of investment accounts consists of both taxable and non-taxable accounts. Retirement accounts
are not subject to capital gains and dividend tax, while individual non-retirement accounts are
taxable. I examine heterogeneity in the elasticity of equity shares to income by account type.
In column (5) of Table 7, the sample is restricted to retirement accounts. The estimated effect is
similar to the full sample. Columns (6) and (7) report results for the subsample of investors with
non-retirement accounts. Column (6) shows that the estimated effect in retirement accounts is
larger for this type of investors, that may be more active in monitoring their portfolios. Column
(7) reports a lower coefficient for the same subsample in their non-retirement accounts. This
finding suggests that tax considerations play a role in limiting portfolio adjustment in taxable
accounts.

4.5.2 Life-Cycle Variation

Next, I consider heterogeneity in the relation between income growth and portfolio equity share
changes by demographic characteristics. I test for variation in the effect size by age, financial
assets, and income. Table 8 reports the results. I find that the relation between income growth
and equity share changes is somewhat larger for older investors. There is little variation in the
effect by total asset wealth. Finally, the elasticity of equity to income is decreasing in the level of
income. Since we have seen that the effects of income growth on portfolio changes are driven by a
small set of people that make substantial changes, I also report the estimates conditional on high
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turnover over the year (defined as a turnover of more than 25% of initial assets). In this way, we
can rule out that differences by demographics are driven by a differential likelihood of portfolio
adjustment. Indeed, the findings are consistent after conditioning on high turnover.

4.5.3 Small versus Large Changes in Labor Income

As a final dimension of heterogeneity, I report heterogeneity of the effect of income growth
on portfolio equity shares by the magnitude of income changes. Theories that generate DRRA
preferences differ in their predictions on heterogeneity in the effect by shock size: a habit
specification predicts that big changes have the largest effects, while models with consumption
commitments predict a concentration of the effect on small shocks.

Table 9 reports the regression results when restricting the sample to various ranges of income
growth. For the OLS specification from Section 4.1, the magnitude of the effect strongly increases
as the range of income growth gets narrowed down. For the IV specification, the magnitude
still increases when restricting the sample to smaller shocks, but the relative differences are much
smaller.

4.6 Other Portfolio Outcomes

The results so far have concentrated on equity share as the measure that summarizes investor
portfolios. To conclude this section, I look at the effects of income growth on other portfolio
outcomes.

Table 10 reports results for the main IV specification applied to other portfolio measures.
Column (1) has the market beta of the portfolio as outcome variable. The results closely match
the findings for the equity share (column (1) of Table 7). The reason is that the dominating source
of variation across investor portfolios is variation in holdings across asset classes. There is much
less variation in market exposure within asset classes. The second column shows that income
growth does not lead to an increase in the market beta of equity, but in fact leads to a slightly
lower equity beta. Instead, income growth leads to an increase in the market exposure of investor
portfolios by a reallocation from both fixed income and cash-like securities to equity products, as
evident from columns (3) and (4).

Columns (5)–(7) of Table 10 display the results for three other portfolio measures. Column
(5) shows that the main effect of income growth on portfolio equity shares is driven in part by
a positive relation between income growth and the share of assets invested in individual stocks.
There is no effect on the share of equity invested in international equity funds or securities (column
6). Finally, I find only a very small positive relation between income growth and the share of assets
invested in target date funds (column 7). This finding suggests that the positive effect of income
growth on equity shares reflects investor preferences and cannot be explained by investors moving
out of default allocations or moving into more “advised” products like target date funds for other
reasons.
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5 Market-Driven Portfolio Fluctuations and Rebalancing Behavior

In this section, I address two key points that arise from the analysis in Section 4. First, many people
rebalance their portfolios only infrequently. For most individuals in the U.S., retirement wealth is
the main form of investable wealth. Retirement wealth is notoriously “sleeply”, as is well known
from the literature on retirement investment. Only 20–25% of households in the full sample of RIs
reallocate money across assets in a given year. This means that the measured relation between
wealth shocks and portfolio changes likely understates the impact on desired portfolios.

Second, recall from the stylized model that we are interested in estimating the joint effects of
income growth and portfolio returns on changes in equity shares. Only the combined response
to these two types of wealth shocks is informative about a non-homotheticity in risk preferences.
Infrequent rebalancing induces a mechanical correlation between portfolio returns and portfolio
allocation changes. To estimate the effects of portfolio returns on desired allocations, it is therefore
crucial to account for fluctuations in portfolios due to irregular portfolio adjustment.

5.1 Hazard Rate of Trading

We have seen before that portfolio reallocation is infrequent: a relatively low percentage of
the sample update their portfolios in any given year. We want to infer the effects of changes
in investor financial profiles on risk preferences from this subsample that makes an active
reallocation decision. For dealing with selection issues and for modeling rebalancing behavior, it
is therefore important to understand who trades, and why.

Figure 7a plots the probability of having at least one investor-driven trade over the year as
a function of income growth in that year, using 20 bins for income growth. Figure 7b repeats
this analysis on the probability of having a large portfolio turnover (more than 25% of initial
assets over the year).15 Both plots show a hazard rate of rebalancing activity that is flat in income
growth. Hence, while the earlier empirical analysis highlighted that income growth affects the
intensive margin of trading, there is little effect on the extensive margin.

Table 11 presents estimates of an OLS regression of rebalancing activity on the magnitude of
income growth and portfolio equity returns. There is a clear statistical relationship between the
magnitude of these shocks and the probability of portfolio adjustment, but the economic impact
is limited. For example, an additional 10% positive or negative income growth only increase the
probability of trading in the current year by 0.3 percentage points. The incremental R-squared
of both income growth and equity returns is nearly zero. The table also highlights a strong
heterogeneity across investors: individual fixed effects can explain over 50% of total variation
in rebalancing activity in a balanced sample of investors that are present over the whole sampling
period.

I conclude that trading activity is largely consistent with a model of random, time-dependent

15These plots are constructed from the same subsample that is used in the remainder of this section, as described in
5.2. Investors in this subsample have a somewhat higher trading intensity than in the full sample.
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adjustment where rebalancing does not vary (much) with changes in observable factors. Giglio
et al. (2019) arrive at a similar conclusion in the context of subjective beliefs. Similarly, Meeuwis
et al. (2019) find that a small share of investors make large portfolio adjustments in line with their
political affiliation in response to the outcome of the 2016 U.S. national election.

5.2 Decomposition of Portfolio Changes

Definition of passive equity share. When portfolios are not continuously rebalanced, changes in
asset allocations are driven both by investor reallocation actions and by realized asset returns. Due
to asset return-driven fluctuations, portfolio equity shares will typically rise under good equity
market conditions, and decline in a bear market. In order to decompose portfolio changes into
appreciation-driven changes and investor reallocation decisions, I calculate the passive equity
share of investor portfolios. The passive equity share is defined as the equity share at the end
of the year in the absence of any trades during the year. Let ωi,j,t−1 be the portfolio holdings of
investor i in asset j at the beginning of year t. It is straightforward to calculate the passive portfolio
weight ω

p
ijt on security j from the realized gross return Rjt in year t: ω

p
ijt ≡ ωi,j,t−1Rjt. The passive

equity share θ
p
it can then be computed as the equity share of a portfolio with weights ω

p
it.

The passive equity share change ∆pθit is the change in equity share over year t if the investor
does not make any trades during that year: ∆pθit ≡ θ

p
it − θi,t−1. The passive equity change is zero

for investors that start with a portfolio that is either 100% or 0% invested in equity. Since the
market component captures a large part of the variation in returns on risky assets, the average
passive change as a function of initial equity share is inverse U-shaped in years with positive
market returns, and U-shaped in years with negative market returns. For illustration, Figure 8
plots the average total change and passive change in equity shares as a function of initial equity
share, in a bear market (2008) and bull market (2013). The residual change θit − θ

p
it in equity

shares is the change in the portfolio that does not mechanically follow from realized returns
and is due to rebalancing. Consistent with the earlier analysis in Section 4, I will run the main
empirical specifications in logs. The log passive change in equity shares is analogously defined by
∆p log θit ≡ log θ

p
it − log θi,t−1.

Sample. The variation that passive portfolio changes due to fluctuations in asset prices induce
on investor portfolios provides an opportunity to quantify the extent of portfolio rebalancing.
Necessary for this decomposition is that investors hold a portfolio that is sensitive to asset
fluctuations. I therefore restrict the sample in this part of the analysis to investors with beginning-
of-period holdings that generate variation in passive changes to equity shares. In particular, I
restrict the sample to investors with an initial equity share between 0.01 and 0.99, and that have
less than 100% invested in blended funds that automatically rebalance their asset mix.16 The

16Note that rebalancing of equity shares in response to market fluctuations is done both by individual investors and
by the fund managers of multi-asset class funds. For the purpose of this analysis, I take the perspective of an individual
investor by treating multi-asset funds as one asset position like any other fund.
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resulting sample is likely to be more active in rebalancing their portfolios than the excluded
investors for whom we do not observe variation in passive equity changes. Recall from the
heterogeneity analysis in Section 4.5 that there is a consistent but lower effect of income growth
on equity shares for investors with a default allocation (usually a TDF), likely because this subset
is less engaged with their portfolios.

Baseline rebalancing regression. When portfolios are infrequently rebalanced, passive changes
in equity shares due to market fluctuations have an effect on overall portfolio changes. To examine
the relation between passive changes and total changes in equity shares, I run the following
rebalancing regression:

∆h log θit = b0∆p
h log θit + δ′Xi,t−1 + ηit. (15)

The coefficient b0 is inversely related to the speed of portfolio adjustment: with full adjustment,
b0 = 0. When adjustment is partial, we should find b0 to be between 0 and 1. I run the
regression (15) with controls for log initial equity share and the same set of basic demographic
characteristics as before.17 Column (1) of Table 12 reports that the coefficient b0 on the passive
portfolio change is 0.82. This translates to a speed of adjustment of 18% at an annual basis.18

5.3 Partial Adjustment Model

To quantify the effects of wealth shocks on desired portfolio allocations, I estimate a model of
partial portfolio adjustment in the spirit of Calvet et al. (2009).

Setup. To be able to infer the effects of wealth shocks on desired portfolio allocations from
changes in observed equity shares, while accounting for infrequent portfolio rebalancing, I make
four assumptions on portfolios and rebalancing behavior.

First, assume that the realized log equity share of the portfolio is a linear combination of the
log passive share log θ

p
it and the log desired equity share log θd

it:

log θit = (1− χit) log θ
p
it + χit log θd

it + ηit, (16)

where the residual ηit is i.i.d., reflecting idiosyncratic variation in individual investor portfolios.
Subtracting the lagged equity share log θi,t−1 from both sides yields

∆ log θit = (1− χit)∆p log θit + χit(∆ log θd
it + log θd

i,t−1 − log θi,t−1) + ηit. (17)

17Running an OLS regression is problematic here due to measurement error in the equity share of multi-asset
class funds that introduces a correlation between ∆p

h log θit and ηit. Therefore, I instrument passive changes by the
counterfactual passive change where the equity share of multi-asset class funds is set to the beginning-of-year value.
This construction has little effect on the estimation results.

18The estimated speed of adjustment is considerably lower than the adjustment speed of 64% in Calvet et al. (2009).
This difference is likely caused by sampling differences – Retirement Investors may be more passive than the typical
individual that holds risky assets outside of retirement accounts.
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Second, note that χit determines the speed of adjustment towards the target allocation θd
it.

When χit = 1, the realized log equity share is equal to the log target share plus a residual
component. For χit ∈ (0, 1), changes in portfolios are driven by both market fluctuations and
portfolio rebalancing. Assume that the speed of adjustment is an affine function of time-varying
investor observables Zit:

χit = χ0 + χ′Zit, (18)

where Zit is independent of ηit.
Third, assume that the change in log desired equity share is a linear combination of portfolio

factors Dit and lagged investor characteristics Xi,t−1:

∆ log θd
it = λ′dDit + λ′xtXi,t−1, (19)

where Dit and Xi,t−1 are independent of ηit. The factors in Dit capture innovations to investor
financial profiles that lead to changing in desired allocations, such as wealth shocks. Desired
allocations can also change based on ex-ante differences in Xi,t−1, such as age, with an effect that
may vary by year.

Fourth, assume that the initial distance from the target is

log θd
i,t−1 − log θi,t−1 = ζ ′tXi,t−1. (20)

This assumption does not require that desired portfolios take a common form across investors,
but imposes the less restrictive condition that the distance of the initial portfolio from the targeted
equity share is proxied by observables Xi,t−1.

Combining these four assumptions leads to the following reduced-form specification:

∆ log θit = b0∆p log θit + b′Dit + δ′1Zit∆p log θit + δ′2tXi,t−1 + Z′it∆3Dit + Z′it∆4tXi,t−1, (21)

where the coefficients of this specification are related to the underlying structure as follows: b0 =

1− χ0, b = χ0λd, δ1 = −χ, δ2t = χ0λxt + χ0ζt, ∆3 = χλ′d, and ∆4 = χλ′xt + χζ ′t.

Adjustment model estimates. I estimate (21) in the data. The main object of interest is λd, which
captures the effects of characteristics Dit on desired portfolio allocations. In particular, I specify
Dit to include income growth and portfolio return. I demean all characteristics in Zit, so that
1− b0 captures the average speed of adjustment. Note that we can recover λd from the estimated
regression coefficients via b/(1− b0). To restrict the number of regressors to be estimated, I impose
∆3 = 0 and ∆4t = 0, with the exception of the constant in Xi,t−1.

Table 12 shows the regression estimates. In the baseline estimation of the adjustment model in
column (2), the speed of adjustment is restricted to be constant, i.e., χ = 0. The controls include
the basic set of demographics characteristics, year fixed effects, and a third-order polynomial
in beginning-of-year log equity share interacted by yearly dummies to take out the systematic
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component of returns and portfolio changes. In this specification, the coefficient of the total
change in log equity shares on the passive change is 0.832. Similar to the results from Section 4,
the estimated coefficient on (persistent) income growth is 0.052. This estimate translates into a
structural effect on changes in the desired log equity share of 0.052/(1− 0.832) = 0.310. After
controlling for the mechanical relation between returns and portfolio allocations due to infrequent
rebalancing, I find a negative effect of portfolio returns on changes in the log equity share, with a
point estimate of −0.009. This estimate translates into a structural effect of −0.009/(1− 0.832) =
−0.054 on desired portfolios. The estimated effect of portfolio returns is substantially closer to
zero than the income growth effect. As a result, the combined effect is that b1 + b2 > 0, which is
evidence of non-homothetic risk preferences.

Next, I examine the variation in estimates by market conditions. Recall that the sample period
of portfolio changes is 2007–2017 and therefore spans a range of market conditions. I split the
sample in years with a good market return – above the historical average – and years with a
bad market return. The good market years are {2009, 2010, 2012, 2013, 2014, 2016, 2017}; the bad
market years are {2008, 2011, 2015}. Columns (3) and (4) present the estimation results for these
two samples. The estimated effect of income is stable across market conditions. In contrast, the
coefficient on idiosyncratic portfolio returns varies considerably by sample. Note the consistency
with Calvet et al. (2009): the effect of portfolio returns is positive in years with a bad market return.
However, we get an opposite effect in years with a good market return. Pooled across all market
conditions, the overall result is a small negative effect of portfolio returns on equity shares.

Finally, I consider heterogeneity in the speed of adjustment. In the vector Zit of factors that
drive the speed of adjustment, I include (1) the basic set of demographic characteristics, and (2)
the absolute value of income growth and the absolute value of the return on equity. Consistent
with Section 5.1, I find that investors with large shocks are more likely to rebalance. However, the
magnitudes are limited: even for a 50% shock to both income and equity return, the coefficient on
the passive change is still as large as 0.69.

6 Life-Cycle Portfolio Choice Model

In this section, I present a discrete time life-cycle model that can account for the empirical features
of portfolio choice. The model builds on workhorse models of saving and portfolio choice (Cocco
et al., 2005) and has three non-standard features: non-homothetic risk preferences, a distribution
of idiosyncratic labor income shocks that incorporates countercyclical tail risk, and infrequent
portfolio adjustment.

6.1 Preferences

Households have finite lives and live from model age a = 1 (actual age 23) to a maximum age
of AD = 78 (actual age 100). The life cycle consists of a working phase and a retirement phase.
Households work until age AR = 43 (actual age 65), after which they retire. The probability that
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the household survives until the next year conditional on being alive at age a is denoted by πa. I
set the survival probability during the working phase to one. The age-dependent probabilities of
survival during retirement are obtained from U.S. mortality tables.

Households have Epstein-Zin utility over a single consumption good with constant elasticity
of intertemporal substitution (EIS) ψ:

Vit =

{
(1− βi)C

1− 1
ψ

it + βi

(
J−1
(

Et

[
πa(i,t) J(Vi,t+1) + (1− πa(i,t))J(Wi,t+1/b̃)

]))1− 1
ψ

} 1
1− 1

ψ , (22)

where Cit is consumption of household i in year t, b̃ captures the strength of the bequest motive,
Wit is cash on hand at beginning of period, and J is a certainty equivalent aggregation function.

Risk preferences. The typical choice for J in an Epstein-Zin framework is power utility: J(v) =
v1−γ0−1

1−γ0
. In this form, relative risk aversion is constant and equal to γ0. I consider a generalized

case of non-homothetic risk preferences, where J(v) is defined by the ODE19

− J′′(v)v
J′(v)

= γ0 (v/κ)−γ1 . (23)

Note that J takes the form of power utility when γ1 = 0. The case with γ1 > 0 is a reduced-form
way to capture cross-sectional and time series variation in risk aversion. The coefficient of relative
risk aversion decreases as the value function that enters the certainty equivalent calculation
increases. Richer households with higher lifetime expected utility therefore have a lower risk
aversion. Such a relation can be generated in a multiple good setting with non-homotheticities
across goods, e.g. basic versus luxury goods (Wachter and Yogo, 2010) or consumption versus
bequests (Carroll, 2000, 2002). Dew-Becker (2014) considers a similar modification of standard
Epstein-Zin preferences by choosing a habit-formation utility form for J.

I set the normalization constant κ to 0.4 so that average risk aversion roughly equals γ0 in
model simulations.

Time discounting. Since a full exploration of the cross-sectional distribution of preferences is
outside the scope of this paper, I assume constant values of the EIS ψ and risk-aversion parameters
γ0 and γ1. However, I do allow for cross-sectional heterogeneity in time preferences βi. I assume
that discount factors are correlated with initial permanent income. This heterogeneity allows me
to capture cross-sectional saving patterns in the data, namely that income-rich households tend
to have higher saving rates than poor households (see discussion below in Section 7.2). I use a
simple functional form for βi where the discount rate is a logistic function of initial permanent

19Note that this ODE does not have a closed-form solution. I solve for J numerically when solving the life-cycle
model.
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income. Let βi = β(Pi1; β0, β1), where β(·) is given by

β(P1; β0, β1) = 1− (1− β0)
2

1 + Pβ1
1

, (24)

with baseline discount rate β0 and a slope β1 that captures the dependence of the discount factor
on initial permanent income. Figure 9 plots this parameterization for β as a function of initial
permanent income for different values of β1. When β1 = 0, the discount rate is constant at β0.
A positive slope parameter β1 implies that discount factors are increasing in initial permanent
income P1. Discount rates range between 2β0 − 1 and 1.

6.2 Income

Working life. During their working life, households earn wage income that is subject to
idiosyncratic risk. Gross income consists of three components: a deterministic age component Ga,
permanent income P, and a transitory income shock eεit . The process for gross income Yit is given
by

log Yit = log Ga(i,t) + log Pit + εit (25)

log Pit = log Pi,t−1 + ηp,xxt + ξit, (26)

with aggregate permanent shock xt and idiosyncratic permanent shock ξit.
Agents pay income taxes over their wage income. I use a parametric form for after-tax

income as a function of pre-tax income that captures progressivity in income taxes and is used
in the literature by Benabou (2000), Heathcote, Storesletten, and Violante (2017), and others. In
particular, after-tax income is given by Ypost

it = (1− τ)Y1−ρ
it . Taxes are progressive when ρ > 0

and neutral when ρ = 0.

Retirement. In retirement, agents receive Social Security benefits. These payments are modeled
according to the formulas of the Social Security’s Old-Age, Survivors, and Disability Insurance
program. Retired households receive a percentage of the national average wage index Ysoc based
on their historical average earnings, subject to a cap. Let ȲitR be average earnings over the working
life at retirement:

ȲitR =
∑tR

t=t0
min(Yit, 2.44Ysoc)

AR
, (27)

where t0 and tR satisfy a(i, t0) = 1 and a(i, tR) = AR, respectively. The schedule for replacement
income is given by

f soc(Ȳ) = 0.9 min(Ȳ, 0.21Ysoc)+ 0.32 max(min(Ȳ, 1.27Ysoc)− 0.21Ysoc, 0)+ 0.15 max(Ȳ− 1.27Ysoc, 0)
(28)

Since Social Security replacement income is based on average income over the working life,
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it is necessary to keep track of the history of labor income for calculating individual retirement
benefits. To save one state variable and limit the computational burden, I instead predict agents’
Social Security benefits in retirement based on the terminal value of permanent income at
retirement.20

6.3 Asset Markets

Agents can invest in two assets: one-period risk-free bonds and a risky asset. Investment
opportunities are constant over time. The risk-free asset pays a fixed gross return R f . The risky
asset has return Re

t = Reeνt , where Re is the average gross return to equity. Return shocks are
given by

νt = −
1
2

σ2
ν + ην,xxt + ut. (29)

The macro risk variable xt is i.i.d. normally distributed: xt ∼ N(0, σ2
x). The purely financial shock

ut is also normally distributed: ut ∼ N(0, σ2
u). The total variance of log stock market returns is

σ2
ν = η2

ν,xσ2
x + σ2

u .

6.4 Wealth Dynamics

Households enter a period with cash on hand Wit, that is composed of financial wealth and labor
income. They decide on how much to consume, Cit, and how much to invest in stocks, Sit, and in
bonds, Bit. The budget constraint is given by

Cit + Sit + Bit = Wit. (30)

Wealth is accumulated through labor income and returns on asset positions:

Wi,t+1 = SitRe
t+1 + BitR f + Ypost

it . (31)

Following common assumptions in the life-cycle literature, borrowing and short selling are not
allowed, so that

Sit ≥ 0 (32)

Bit ≥ 0. (33)

Let θit ∈ [0, 1] denote the share of the portfolio that is invested in stocks. The budget constraint
can be written in terms of θit as

Wi,t+1 = (Wit − Cit)(R f + θit(Re
t+1 − R f )) + Yi,t+1. (34)

20Specifically, I predict the retirement replacement rate by a third-order polynomial in log permanent income. The
R2 of this regression is 96%.
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To capture infrequent rebalancing in portfolios, I assume that portfolios can only be updated
with some probability each year. Let χ be the Calvo frequency of portfolio adjustment. Without
rebalancing, the portfolio equity share equals the passive equity share that moves with realized
asset returns. Hence, the equity share θit is given by

θit =

θ
pass
it if no update, with probability 1− χ

θ∗it if update, with probability χ,
(35)

where the passive portfolio equity share is

θ
pass
it = θi,t−1

Re
t

R f + θi,t−1(Re
t − R f )

. (36)

I assume that agents can freely choose their initial portfolio θi1.
The agent’s objective function is to maximize (22) subject to the budget constraint (34), the

dynamics for asset returns and labor income, and the process for θit. Since an analytical solution
to this problem does not exist, I solve the model through numerical dynamic programming.

6.5 Calibration

Table 13 reports the parameters that are fixed or estimated outside of the model.

Preferences. I fix the parameter values of the EIS ψ and the bequest motive b̃ at standard values.
First, since investment opportunities are constant over time, it is hard to separately identify the EIS
from the rate of time preference.21 I therefore fix the EIS to a standard value of ψ = 0.5. Second,
because the focus is on pre-retirement behavior, I do not estimate the bequest parameter. I set this
parameter to b̃ = 2.5, similar to Gomes and Michaelides (2005).

Asset returns. I calibrate the moments of asset returns to standard values in the portfolio choice
literature. The real risk-free bond return is set to R f = 1.02 and the equity premium to 4.5% per
year. I set the volatility of stock returns to σν = 18%, so that the Sharpe ratio of equity is 0.25.

Income. The age profile G is given by

log Ga = g0 + g1 · age + g2 · age/10 + g3 · age/100. (37)

I use the estimated income profile of college-educated households from Cocco et al. (2005) that
captures the hump-shaped pattern of earnings over the working life. Income is normalized so
that average income across all working agents in the model is equal to one. I set the baseline

21In recent work, Calvet et al. (2019) show that the EIS can be identified in a standard life-cycle model from
endogenous variation in expected returns due to life-cycle profiles in equity shares and due to mortality risk. They
find a distribution of EIS that is widely dispersed across households.
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income tax rate to τ = 0.3, and I use the estimated tax progressivity from Heathcote et al. (2017)
with a value of ρ = 0.181. The Social Security wage index is $49K in 2016. Since average income
in the sample of Retirement Investors in the SCF is $111K, this yields Ysoc = 0.44.

In the main specification for the distribution of idiosyncratic income shocks, I incorporate
countercyclical tail risk in wage income. I use the specification of permanent idiosyncratic income
shocks from McKay (2017) that fits recent empirical evidence on the cyclicality of skewness in
income growth as reported by Guvenen et al. (2014).22 Most people have a common earnings
change that is drawn from a distribution N(µ1,t, σ2

ξ,1). A fraction λξ,2 of workers receive a large
and persistent earnings loss that is drawn from the distribution N(µ2,t, σ2

ξ,2). Similarly, a fraction
λξ,3 of workers receive a very positive shock with distribution N(µ3,t, σ2

ξ,3). I assume a perfect
correlation between aggregate income shocks and time-varying skewness in idiosyncratic shocks.
Hence, we get the following setup for persistent shocks:

ξit ∼


N(µ1t, σ2

ξ,1) with probability 1− λξ,2 − λξ,3

N(µ2t, σ2
ξ,2) with probability λξ,2

N(µ3t, σ2
ξ,3) with probability λξ,3,

(38)

where the macro shock xt drives the distribution of the tails and idiosyncratic shocks have mean
zero:

µ1t = µ̄t

µ2t = µ̄t + µ2 − xt

µ3t = µ̄t + µ3 − xt

µ̄t = −λξ,2µ2 − λξ,3µ3 + (λξ,2 + λξ,3)xt.

(39)

The skewness process x estimated by McKay (2017) is persistent. I choose the volatility of x to
match the annual volatility of Kelley’s skewness in five-year permanent income growth rates that
is generated by the persistent process.23 The resulting value of σx is 0.210. The other parameter
values in the distribution of ξit and εit are directly taken from McKay (2017).

I use the series of average income growth, net of life-cycle effects, from Guvenen et al. (2014) to
set the parameters ηp,x and ην,x. I choose ηp,x to match the volatility of aggregate income growth
of 0.029, and I pick ην,x so that the correlation between aggregate income growth and stock returns
is 0.635. This aggregate correlation leads to a correlation of individual permanent income growth
with stock returns of 0.145, which is very close to the commonly used value of 0.15 as estimated
by Campbell et al. (2001). There is no correlation between transitory shocks and equity returns.
Finally, let initial permanent income be given by log Pi1 ∼ N(0, σ2

p1
). I calibrate the dispersion of

initial log permanent income to match the Gini coefficient of income in the SCF in 2016, which is

22The full model of McKay (2017) also includes displacement risk. I abstract from unemployment in the model and
use the distribution of income growth for employed individuals.

23Kelley’s skewness is defined as ((P90− P50)− (P50− P10))/(P90− P10). This measure of individual tail risk is
commonly used for earnings growth rates as it is less sensitive to outliers than third moments.
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0.56.

Alternative income process: standard setup with normal shocks. As an alternative
specification of idiosyncratic income risk, I consider the traditional setup of the income
process from the life-cycle literature with normally distributed shocks: ξit ∼ N(0, σ2

ξ ) and, as
before, εit ∼ N

(
0, σ2

ε

)
. I set the volatility σξ to match the volatility of permanent idiosyncratic

income shocks with cyclical skewness: σξ = 0.125. This number falls in the range of values
typically used in the life-cycle literature (Gourinchas and Parker, 2002; Cocco et al., 2005). The
other parameter values of the income process follow the baseline calibration.

Alternative government system: proportional transfers and taxes. I also consider a benchmark
case of the model where transfers and taxes are proportional. Many life-cycle models have a
replacement income in retirement that is a constant fraction of permanent income just before
retirement. If in addition income is taxed at a constant rate, the present value of net labor income
is proportional to permanent income P. When γ1 = 0, this means that the value function is
homothetic in P and the problem has one less state variable. In that case, the restriction b1 + b2 = 0
holds, up to a log-linear approximation. As a benchmark, I therefore consider an alternative
specification with proportional government policies: (1) no tax progressivity, i.e. ρ = 0, and (2)
Social Security income is proportional to permanent income in final period, with the same average
replacement rate.

7 Model Results

7.1 Policy Functions

The optimal policies for consumption and asset allocations in the model are functions of the state
variables wit, Pit, and θ̃it, where wit =

Wit
Ga(i,t)Pit

is cash on hand relative to permanent income, and

θ̃it =

θ
pass
it if no portfolio update at t

−1 if portfolio update at t.
(40)

By definition, the portfolio share θit equals θ̃it if there is no portfolio update at t, which happens
with probability 1−χ. With probability χ the investor chooses a new portfolio allocation, in which
case the history of portfolio shares is irrelevant.

To illustrate optimal asset allocations conditional on updating the portfolio, consider the model
with proportional government policies and set the parameters to typical values: β0 = 0.95, β1 = 0,
and γ0 = 5, in combination with a probability of updating of χ = 0.2. Figure 10 plots the equity
share policy function at age 50 for four cases of the model: normal income shocks versus income
with countercyclical tail risk, combined with CRRA preferences (γ1 = 0) versus DRRA preferences
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(γ1 = 0.2). The figures plot the optimal θ as a function of P, for given values of normalized cash-
on-hand w, and conditional on having the opportunity of updating the portfolio.

The policy functions highlight two key channels in the effects of wealth on portfolio choice.
The first channel is the role of human capital in the composition of total wealth. The relation
between relative cash on hand and optimal portfolio shares depends on the properties of human
capital. When income is relatively stable with a low correlation to stock returns, as in the standard
income specification, human capital serves as a substitute for bonds. As a result, the optimal
allocation of financial wealth to stocks strongly decreases with relative cash on hand in panel (a).
With countercyclical tail risk in labor income, income is substantially riskier and less bond-like.
As a result, the optimal equity share is only mildly decreasing in relative cash on hand in panel
(c).

The second key channel is the effect of overall wealth on risk aversion. In panels (a) and (c), the
optimal equity allocation is flat in P for a fixed value of w, since the value function is homothetic
in permanent income. In contrast, panels (b) and (d) illustrate the policy function under non-
homotheticity in risk preferences. For a fixed value of relative cash on hand, the equity share
increases with permanent income. This reflects the effect of decreasing relative risk aversion in
total wealth.

7.2 Identification

To examine the quantitative implications of the model, I simulate a sample of 500 000 households
that all receive different aggregate and idiosyncratic shocks. Hence, there are no time series and
cohort effects in simulated data. I structurally estimate the key parameters of the model. Here, I
describe the procedure for estimating these parameters.

SCF profiles. I use the SCF to estimate life-cycle profiles of total financial wealth and equity
shares. I use data from ten waves of the SCF between 1989 and 2016. Sampling weights are
adjusted so that each year gets equal weight. Following the empirical analysis, I limit attention to
the subsample of retirement investors between age 25 and 65.24 As a measure of wealth, I use the
sum of financial wealth ( f in) and home equity (homeeq). The equity share is the ratio of equity
holdings to financial wealth (equity/ f in). I normalize financial wealth by average household
income in the sample, which is $111K.

Following Ameriks and Zeldes (2004), I construct three-year age groups. Since the SCF is a
triennial survey, this means that each cohort moves to the next age group in the following survey
year. It is well known that without additional restrictions, it is impossible to separately identify
age, cohort, and time fixed effects (see e.g. Ameriks and Zeldes, 2004). The reason is perfect

24Since the relevant variables in the SCF are at the household level, I replicate the selection of the individual RI sample
at the household level. Specifically, for the sample of working age households with positive retirement wealth, I run
quantile regressions of the log of retirement wealth on a third-order polynomial in age. The 10th and 90th percentile
by age form the cutoffs for selection into the sample. As in the empirical procedure, I impose the additional restriction
that wage income is above the minimum wage at 20 hours per week.
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collinearity: time = cohort + age. As in Fagereng et al. (2018), I solve this collinearity problem
by imposing parametric restrictions on time dummies, as proposed by Deaton and Paxson (1994).
In particular, I assume that time dummies add up to zero and are orthogonal to a linear trend.
With this restriction, age effects can be estimated in a regression with controls for cohort fixed
effects and restricted time dummies.

I run a quantile regression to estimate the profile of median normalized financial wealth over
the life cycle. As target moments for the model, I include median normalized financial wealth for
the age groups with midpoints {28, 34, 40, 46, 52, 58, 64}. In addition, the estimated average equity
share at age 50 is a model target. The standard errors of these moments are obtained through
bootstrapping the procedure. I target the equity share for 50-year old investors to pin down
average risk aversion, but I do not target the life-cycle profile of equity shares that is estimated
from a cross-sectional comparison of investors. Instead, the model targets individual changes in
portfolio allocations in response to wealth shocks. I later use the estimated age profile of equity
shares in the SCF as a test of the implications of the model.

Portfolio regressions. To find the model-implied regression coefficients b0, b1, and b2 from the
portfolio adjustment model in Section 5, I run the same regression in model-simulated data. I
select investors with age 30 to 58 and control for a third-order polynomial in initial log financial
assets, initial log income (instrumented), a third-order polynomial in the initial log equity share,
and a second-order polynomial in age.

Using the parameter setup from Section 7.1 for illustration, Figure 11 plots the adjustment
model regression coefficients estimated from model-simulated data for different values of γ1. As
predicted by the log-linear approximation, the coefficients nearly add up to zero if γ1 = 0. Both b1

and b2 increase in γ1 due to a larger DRRA effect. Figure 11a highlights the difficulty of the model
with a standard income process to fit the data. There is no value of γ1 that comes close to fitting
the empirical estimates of both b1 and b2. The reason is that human capital is largely bond-like,
which means that the optimal allocation of financial wealth is declining in cash on hand relative
to permanent income. This channel leads to high absolute values of b1 and b2. Taking as given
the other parameter values for this illustration, Figure 11b shows that the model with cyclical
skewness provides a better fit to the empirical regression coefficients, although the empirical
coefficient on income growth now appears somewhat high compared to the model counterpart.

Permanent income and saving rates. A well-known stylized feature of the data is that rich
households with high lifetime income have higher saving rates than income-poor households
(Mayer, 1972; Dynan, Skinner, and Zeldes, 2004). Straub (2019) proposes a method to measure
the cross-sectional curvature of consumption in permanent income, and finds estimates of this
curvature that imply a significant deviation from the linear relation that is implied by many
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macroeconomic models. Straub (2019) estimates the following relation:25

cit = φpi,t1(i) + δ′Xit + ηit, (41)

where cit is log consumption and pi,t1(i) is log permanent income upon entering the labor market.
Since permanent income is not directly observable, consistent estimates of φ can be obtained
through running an IV regression of cit on yit and Xit, with yi,t1(i) as instrument for yit. Straub
(2019) estimates φ in PSID data between 1999 and 2013 for households with age 30–65.26 The
estimated value of φ is 0.732 with a standard error of 0.05.

The life-cycle model in this paper has Epstein-Zin preferences that separate the elasticity of
intertemporal substitution from risk aversion. The EIS is assumed to be constant. Furthermore,
the bequest motive is homothetic. As a consequence, total wealth levels have little effect on saving
rates. In fact, when γ1 = 0 (CRRA preferences) and transfers and taxes are proportional, the value
function is homothetic in permanent income and only the relative proportion of financial wealth
to human capital matters for consumption and saving rates. This neutrality is broken by the Social
Security system where replacement rates decrease in income, by progressive income taxation, and
by DRRA preferences that imply that poorer households are more risk averse and therefore have
a greater demand for precautionary savings. However, these deviations from a neutral model
are not sufficient to generate the empirical degree of concavity φ. I introduce a simple way to
account for variation in saving behavior by wealth in the population by having heterogeneous
time discount factors βi that are correlated with initial permanent income. To find the slope β1 of
discount factors with respect to permanent income, I estimate the relation (41) in model-simulated
data. The controls include a third-order polynomial in age.

Objective function. I estimate the model parameters through indirect inference. In total, there
are 12 empirical target moments. The objective is to minimize the weighted distance between
moments in the model and in the data:

α̂ = arg min(m(α)− µ)′W(m(α)− µ), (42)

where α is the vector of parameters to be estimated, m(α) are model moments, and µ is the vector
of moment values in the data. The weighting matrix W is the inverse of the empirical variance-
covariance matrix.

The mapping from parameters to moments is relatively straightforward. The baseline risk
aversion parameter γ0 pins down the average equity share, the degree of non-homotheticity in
risk aversion γ1 drives the regression coefficients b1 and b2, the probability of updating χ is tightly
linked to the coefficient b0 of overall equity share changes on passive equity share changes in the

25I focus on the case where the persistent component of individual income is a random walk. Straub (2019) also
considers the case with a fixed permanent component wi and a mean-reverting process for pit.

26Straub (2019) focuses on after-tax income. I follow his approach by running the IV regression in model-simulated
data with post-tax income.
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rebalancing regression, the baseline rate of time preferences β0 drives wealth profiles over the
life cycle, and heterogeneity in discount rates β1 captures concavity in the cross-sectional relation
between consumption and permanent income.

As described below, I will also consider versions of the estimation where some of the moments
are excluded from the target vector.

7.3 Estimation Results

Table 14 reports the estimated parameters for different specifications of the model. Columns (1)–
(3) start from the setup where transfers and taxes are proportional to permanent income, and
without heterogeneity in discount rates. Column (1) imposes the restriction γ1 = 0 (CRRA
preferences). In that case, for a given value of relative cash on hand, there are no effects of
permanent income P on consumption and saving rates. Indeed, we find that φ = 1. The portfolio
regression coefficients add up to a number slightly below zero. Columns (2) and (3) allow for γ1 6=
0, and target the empirically measured portfolio regression coefficients. Both specifications imply
a significant degree of non-homotheticity in risk preferences. Neither the standard specification
of income with normal shocks nor the specification with cyclical tail risk in labor income can fully
match the regression evidence. In the former case the bond-like properties of human capital imply
a rebalancing in response to changes in the relative shares of financial wealth and human capital
that is too strong, while in the latter case the more stock-like properties of human capital imply
that rebalancing in response to changes in the relative shares is too weak.

Columns (4)–(7) report parameter estimates for the main setup of the model that includes a
realistic Social Security system with non-proportional replacement rates and progressive taxes.
Column (4) maintains homogeneity in discount factors β. Accounting for non-proportional
government policies increases the degree of non-homotheticity in risk preferences that is
necessary to match the portfolio coefficients. However, consistent with Straub (2019), the model
does not fit the degree of cross-sectional concavity in consumption by income levels. Columns
(5)–(7) allow for a positive slope β1 that targets the degree of concavity φ. With β1 > 0 and γ1 = 0,
the model can match the coefficient φ but the combined portfolio effect b1 + b2 is substantially
negative. Columns (6) and (7) estimate the full set of parameters for the model with a standard
income process and the model with countercyclical tail risk income, respectively. The latter model
provides a better fit to the data.

The parameter γ1 drives the curvature of the certainty equivalent aggregation function J
in the Epstein-Zin framework. A positive γ1 implies that preferences are DRRA. What is the
implied elasticity of risk aversion with respect to wealth? I calculate the relative risk aversion
of households from the local curvature evaluated at Vit: RRAit = γ0 (Vit/κ)−γ1 . I estimate the
following specification in model-simulated data:

∆ log RRAit = ζ · ∆pit + δ′Xit + ηit. (43)
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The controls Xit include a polynomial in age. I find an average elasticity ζ of−0.15 of risk aversion
with respect to permanent income.

Panel (a) of Figure 12 plots the equity share over the life cycle in the baseline model with DRRA
and the restricted specification with CRRA preferences. While the estimations only target the level
of the equity share at age 50, both versions generate age profiles of the equity share that are very
closely aligned with the age profile of equity shares of Retirement Investors in the SCF. In panel
(b), I plot the average equity share by age for the full sample and for the lower and upper quartile
of the wealth distribution in the baseline model. The model generates a pattern that is consistent
with the data where households with high net worth hold considerably higher equity shares than
households with lower net worth (see e.g. Wachter and Yogo, 2010). Having DRRA preferences is
crucial for generating this pattern.

8 Aggregate Implications

I exploit the estimated life-cycle consumption and portfolio choice model to analyze three types
of aggregate implications. First, I examine heterogeneity in expected returns across the wealth
distribution, and the implications for inequality. Second, I look at the effect of rising income
inequality on wealth inequality and asset prices. Third, I investigate the model implications for
asset pricing fluctuations at business cycle frequencies.

8.1 Heterogeneity in Expected Returns and Inequality

Estimations of the model parameters yield a significant degree of non-homotheticity in risk
preferences. Figure 13a plots a histogram of risk aversion at age 50 in the baseline model
specification. There is a significant dispersion in risk aversion across investors. I now investigate
the implications of DRRA preferences on the cross-sectional distribution of returns and wealth.
Non-homotheticity in risk preferences implies that there is a two-way relation between wealth
and equity demand. Since risk aversion decreases in wealth, richer households invest a larger
share of their portfolios in equity. Because of the equity premium of 4.5%, wealth inequality gets
further amplified through differences in average portfolio returns.

Figure 13b plots expected returns by wealth for three different ages. The positive relation
between wealth and average portfolio returns matches patterns in the data (Fagereng et al.,
forthcoming). The range of expected returns by net worth, conditional on age, nearly spans the
full equity premium: households in the lowest percentile of the net worth distribution invest
the majority of their financial wealth in the risk-free asset, while households in the top of the
net worth distribution invest only in equity. Since all agents in the model have access to two
assets, a risk-free asset and a stock market index, these patterns are fully driven by differences in
risk-taking behavior as opposed to differences in technologies.

Heterogeneity in expected returns has important implications for inequality. By targeting
the within-person portfolio responses to wealth shocks and the cross-sectional relation between
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consumption and permanent income, the model generates an (untargeted) wealth distribution
with large inequality: Table 15 reports that the wealth share of the top 1% is 41.0%. An important
contributor to this large wealth inequality is that equity holdings are concentrated in the hands of
the rich. Figure 14 compares the Lorenz curves for DRRA preferences and CRRA preferences. In
an alternative estimation of the model where risk preferences are CRRA, the top 1% wealth share
drops to 21.8%. Similarly, in a version of the model where the equity premium is set to zero, the
top 1% wealth share is 19.9%.

8.2 Effects of Rising Income Inequality

The last few decades have seen an increase in income inequality in the United States (Autor,
Katz, and Kearney, 2008). An important force behind increased income inequality is an increase
in the dispersion of permanent income levels of new cohorts (Guvenen et al., 2018). With a
concave relation between permanent income and consumption, an increase in permanent income
inequality leads to increased wealth inequality (Straub, 2019). DRRA preferences amplify wealth
inequality by generating heterogeneity in expected returns across the wealth distribution. In this
section, I ask two questions: (1) What is the effect of rising inequality on wealth inequality in
the presence of multiple assets combined with non-homothetic risk preferences? (2) What are the
long-term effects of rising inequality on asset prices?

I use the estimated life-cycle model to run a counterfactual analysis of the effects of rising
inequality on asset demand and the wealth distribution. As input, I take the rise in income
inequality in the SCF between 1989 and 2016. Recall that in the baseline model, the dispersion
in initial income is calibrated to match the Gini coefficient of income in the SCF in 2016, which is
0.56. I now compare simulations of the model to a version where the dispersion in initial income
is calibrated to match the 1989 Gini coefficient of income of 0.49. All other parameters are held
constant. Table 15 reports the effects of rising income inequality on the wealth distribution. In the
model, the top 1% wealth share rises from 35.4% to 41.0%.

Holding the risk-free rate and the equity premium constant, the increase in inequality leads to
additional demand for the risk-free asset and, in particular, for equity. In a restricted version of
the model where relative risk aversion is constant, increased income inequality raises aggregate
asset holdings by 40%. Non-homothetic risk preferences amplify the transmission of income
inequality to wealth inequality: total asset demand increases by 67%, and the demand for equity
even increases by 73%.

As a second step, I run a similar exercise as in Catherine (2019): I calculate the changes in
the risk-free rate and equity premium that offset these differences in asset demands in the model,
assuming fixed asset supply. In particular, in the model with income inequality at 2016 levels, I
find the values for the risk-free rate and equity premium that move demand back to the levels of
demand in the model with inequality at 1989 levels. The differences in expected returns capture
the effects of the rise in income inequality on asset prices, assuming a fully inelastic supply
of assets. I find significant low-frequency effects on asset prices due to increased inequality.
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Inequality over the past few decades has led to a decrease in the risk-free rate of 1.59 percentage
points and a decrease in the equity premium of 0.73 percentage points. This implies a decline in
the equity premium by 16%.

8.3 Asset Pricing Implications

The estimated non-homotheticity in risk tolerance provides qualitative support for asset pricing
models based on cross-sectional or time-series variation in risk aversion that quantitatively fit
important asset pricing facts such as the equity premium, equity volatility, and countercyclical
risk premia (e.g. Campbell and Cochrane, 1999; Chan and Kogan, 2002; Gârleanu and Panageas,
2015).27 First, households with DRRA have a risk aversion that changes over time as aggregate
wealth changes, as in a habit model (Constantinides, 1990; Campbell and Cochrane, 1999). As
a result, cash flow shocks get amplified through their effect on risk aversion. Second, DRRA
preferences generate cross-sectional heterogeneity in risk aversion through dispersion in wealth.
This heterogeneity leads to differences in optimal portfolios and concentrates holdings in the
hands of the most risk tolerant agents. With concentrated equity holdings as in Mankiw (1986),
the marginal investor is more exposed to stock market risk than the average household. Ex-ante
differences in risk aversion lead to differences in portfolios, which in turn generate variation in the
distribution of wealth, thereby changing aggregate risk aversion. In particular, negative (positive)
shocks get amplified by a redistribution of wealth to more (less) risk averse agents. Under the
right calibration, these effects have been shown to generate empirically relevant magnitudes of
the equity premium, equity volatility, and countercyclical risk premia (Chan and Kogan, 2002;
Gârleanu and Panageas, 2015). These two channels amplify the volatility of the stochastic discount
factor and lead to a more negative relation between equity investors’ marginal utility and equity
returns.

I examine the implications of DRRA preferences on time-series variation in aggregate risk
aversion. Aggregate risk aversion is strongly linked to conditional Sharpe ratios in equilibrium
models of asset prices. As a simple illustration, consider an economy where agents choose their
portfolio allocations according to the Merton (1971) model. Let κ be the Sharpe ratio and σe the
volatility of equity. The share of wealth invested in risky assets by individual i is given by

θi =
κ

γiσe
. (44)

Imposing market clearing and letting Ni be the net worth of agent i, this yields the aggregate

27Other channels that have been successfully incorporated in general equilibrium asset pricing models include long-
run risks (Bansal and Yaron, 2004), rare disasters (Rietz, 1988; Barro, 2006), idiosyncratic risk (Heaton and Lucas,
1996; Constantinides and Duffie, 1996), institutional or intermediary frictions (Brunnermeier and Sannikov, 2014; He
and Krishnamurthy, 2012), and alternative probability assessments due to behavioral mistakes or ambiguity aversion
(Hansen and Sargent, 2001). See Cochrane (2017) for a nice overview.
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relation (see also Kimball, Shapiro, Shumway, and Zhang, 2019)

∑
i

θiNi =
κ

γ̄σe
N̄ = N̄,

1
γ̄
= ∑

i

Ni

N̄
1
γi

, (45)

where γ̄ is aggregate risk aversion. Assuming a constant stock volatility, it follows that the Sharpe
ratio is proportional to aggregate risk aversion.

In model simulations, I find that the volatility of annual changes in log aggregate risk aversion
is 4.8%. This is an order of magnitude lower than the variation in aggregate risk aversion
implied by Campbell and Cochrane (1999), which is 22.7%. In contrast, the model of Gârleanu
and Panageas (2015) with ex-ante heterogeneity in risk aversion has similar implications on
time-series variation in aggregate risk aversion with volatility of changes in log aggregate RRA
of 4.9%. Figure 15 illustrates these time-series fluctuations in aggregate risk aversion in the three
models.

9 Conclusion

A rich theoretical literature on household portfolio choice studies optimal asset allocations
under a wide range of assumptions on preferences and financial profiles. More recent models
extend the assumptions of traditional life-cycle models by including realistic features of the
household problem such as non-diversifiable idiosyncratic income risk, borrowing constraints,
and time-varying investment opportunities. Due to the limited availability of panel data that
meets the demanding requirements for testing these theories at the micro level, papers have
relied on cross-sectional patterns in the data, often from surveys, for calibrating or estimating key
model parameters. This identification strategy requires restrictive assumptions on differences
across individuals. In parallel, existing micro-level studies of portfolio choice in panel data have
focused on qualitative tests of some of the main channels of theoretical models in reduced-form
specifications. The quantitative implications of empirical patterns in household portfolio choice
are largely unexplored.

In this paper, I provide new evidence on investor portfolio changes in response to financial
changes in a large sample of U.S. retirement investors that (1) provide a qualitative test of whether
risk aversion decreases in wealth, and (2) guide a quantitative investigation of portfolio choice
behavior. I measure how portfolio risk taking changes in response to fluctuations in labor income
and returns to financial wealth. While the effect of financial wealth on risk taking is in itself not
informative about risk preferences, the combined effects of income growth and portfolio returns
provide a test of CRRA versus DRRA preferences. Controlling for infrequent portfolio adjustment
and ex-ante differences across individuals, I find that positive and persistent shocks to income
lead to an increase in the equity share of investor portfolios. Increases in financial wealth due to
realized returns lead to a small decline in the equity share. The positive net effect of income growth
and portfolio returns on equity shares conflicts with the prediction of a standard homothetic life-
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cycle model and suggests that risk aversion decreases in wealth.
Using these empirical findings, I structurally estimate the parameters of a life-cycle

consumption and portfolio choice model that allows for DRRA preferences and accounts for
business cycle variation in the tail risk that is embedded in human capital. I find that the model is
able to closely match the empirical findings with a significant degree of non-homotheticity in risk
preferences – the average elasticity of risk aversion with respect to permanent income is -0.15. I
use the model to study the distributional and aggregate consequences of DRRA preferences. The
model has important implications for inequality. Decreasing risk aversion in wealth concentrates
equity in the hands of the wealthy and leads to a cross-sectional relation between wealth and
expected returns that is consistent with patterns in the data. The wealth share of the top 1% in the
model almost doubles due to heterogeneity in expected returns to financial wealth. The model
further suggests that rising inequality in the U.S. has led to a decrease in the equity premium of
16%.
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Figures and Tables

Figure 1: Coefficients in Stylized Model

(a) Coefficients by φ (X = 0)
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(b) Coefficients by X (small φ)
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Notes: This figure illustrates the coefficients b1 and b2 on income and portfolio returns, respectively, in the
stylized model, as a function of the riskiness of human capital φ and non-homotheticity in risk preferences
X.
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Figure 2: Individual Retirement Wealth Distribution
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Notes: This figure plots the distribution of individual retirement wealth in the sample of RI investors
versus the distribution of individual retirement wealth for RI investors in the SCF.
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Figure 3: Income Distribution

(a) All Investors
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Notes: This figure plots the distribution of individual income in the sample of RI investors versus the
distribution of household income for RI investors in the SCF. Panel (a) plots the full distribution. Panel
(b) restricts the sample to individuals (heads) that are unmarried.
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Figure 4: Income Growth and Equity Share Changes

(a) One-Year Horizon
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(b) Five-Year Horizon
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Notes: This figure shows binscatter plots that illustrate the OLS regression of changes in log equity shares
on income growth, measured over a one-year and five-year horizon. The variables on both axes are
orthogonalized with respect to the basic set of demographic controls, the initial log equity share, and the
interaction of demographic controls with the initial log equity share. The demographic controls include
a second-order polynomial in age, gender, marital status, a second-order polynomial in employment
tenure, log income, and the log of financial assets, all measured at t− h.
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Figure 5: Background Risk and Income Growth

(a) Probability of Job Separation
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(b) Probability of Liquidity-Driven Withdrawal
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Notes: The upper panel plots the probability of having a job separation in year t + 1 as a function of
income growth in year t, using 20 bins for income growth. The lower panel plots the probability of
having a liquidity-driven withdrawal in year t + 1 as a function of income growth in year t, again using
20 bins for income growth.
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Figure 6: Income Growth and Equity Share Changes, IV Specification

(a) First Stage
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(b) Reduced Form
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Notes: This figure shows binscatter plots that illustrates the IV regression of changes in log equity shares
on income growth. The upper panel illustrates the first stage, and the bottom panel illustrates the
reduced-form specification. The variables on both axes are orthogonalized with respect to the basic set
of demographic controls, the initial log equity share, and the interaction of demographic controls with
the initial log equity share. The demographic controls include a second-order polynomial in age, gender,
marital status, a second-order polynomial in employment tenure, log income, and the log of financial
assets, all measured at t− 1.
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Figure 7: Income Growth and Rebalancing Activity

(a) Share of Sample with Trading Activity
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(b) Share of Sample with High Turnover
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Notes: The upper panel plots the probability of having an investor-driven trade during the year as a
function of income growth in that year, using 20 bins for income growth. The lower panel plots the
probability of having a high portfolio turnover (at least 25% of initial assets) as a function of income
growth, again using 20 bins for income growth.
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Figure 8: Decomposition of Portfolio Changes

(a) Equity Share Changes in 2008

−0.10

−0.05

0.00

0.05

0.10

0.00 0.25 0.50 0.75 1.00

Initial Equity Share

C
ha

ng
e 

in
 E

qu
it

y 
Sh

ar
e

Total Change Passive Change

(b) Equity Share Changes in 2013
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Notes: This figure plots the average total change in portfolio equity share and the average passive
change in portfolio equity share as a function of the initial equity share. The upper panel shows this
decomposition for 2008 (a bear market). The lower panel shows this decomposition for 2013 (a bull
market).
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Figure 9: Discount Factor Heterogeneity by Initial Permanent Income in Model
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Notes: This figure plots the parameterization (24) for discount factors β that are a function of initial
permanent income P1, for different values of the slope parameter β1.
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Figure 10: Optimal Allocation Policy in Model (Proportional Government Policies)

(a) CRRA, Standard Income
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(b) DRRA, Standard Income
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(c) CRRA, Income Tail Risk
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(d) DRRA, Income Tail Risk
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Notes: This figure plots the policy function for the portfolio equity share θit at age 50 as a function of
permanent income P, for different values of cash on hand relative to permanent income w and conditional
on having the opportunity to update the portfolio. The four panels cover four cases of the model with
proportional government policies: CRRA preferences (γ1 = 0) versus DRRA preferences (γ1 = 0.2), and
income with normal shocks versus income with countercyclical tail risk.

59



Figure 11: Adjustment Model Coefficients in Life-Cycle Model (Proportional Government
Policies)

(a) Standard Income Process
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(b) Income with Countercyclical Tail Risk
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Notes: This figure plots the coefficients b1 and b2 of the portfolio adjustment regression estimated in
model-simulated data for different values of γ1 in the model with proportional government policies,
compared to the empirical estimates of b1 and b2.
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Figure 12: Model-Implied Equity Share over the Life Cycle (Baseline Model)

(a) Average Equity Share by Age
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(b) Average Equity Share by Age and Wealth
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Notes: This figure plots the average equity share by age. The upper panel compares the age profiles in the
baseline model with DRRA preferences, the restricted model with CRRA preferences, and the SCF. The
lower panel plots the average equity share by wealth group in the baseline model.

61



Figure 13: Heterogeneity in Risk Aversion and Returns to Wealth

(a) Distribution of Risk Aversion (Age 50)

(b) Expected Returns by Wealth
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Notes: This figure illustrates heterogeneity in risk aversion and expected returns by wealth in the baseline
model. The upper panel plots the distribution of the coefficient of relative risk aversion at age 50. The
lower panel plots expected returns over the wealth distribution at age 35, age 50, and age 65.
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Figure 14: Lorenz Curves

(a) Lorenz Curve for Wealth
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(b) Lorenz Curve for Consumption
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Notes: This figure shows Lorenz curves for wealth and consumption in the baseline model. The Lorenz
curve illustrates the share of wealth that the bottom x% of the distribution hold, as a function of x. The
further away the curve is from the 45-degree line, the more unequal the distribution is.
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Figure 15: Fluctuations in Aggregate Risk Aversion

(a) Life-Cycle Model: σ(∆ log RRA) = 0.0480
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(b) Campbell-Cochrane: σ(∆ log RRA) = 0.2271
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(c) Garleanu-Panageas: σ(∆ log RRA) = 0.0485
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Notes: This figure illustrates the time-series dynamics of log aggregate risk aversion in simulations of the
life-cycle model, the habit model of Campbell and Cochrane (1999), and the heterogeneous-agent model
of Gârleanu and Panageas (2015).
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Table 1: Summary Statistics

Variable Mean SD P10 P25 P50 P75 P90

Age 44.06 8.36 32 37 44 51 56
Female 0.42 0.49 0 0 0 1 1
Married 0.71 0.46 0 0 1 1 1
Income 106,555 155,847 38,646 53,466 79,859 120,490 182,602
Employment tenure (years) 10.40 8.15 1.99 3.85 8.50 15.15 21.77
Investable wealth 113,242 238,441 7,462 16,950 48,863 137,049 298,336
Retirement wealth 105,813 147,097 7,398 16,753 47,984 133,360 287,166
Portfolio shares

Equity 0.77 0.21 0.54 0.71 0.84 0.89 0.97
Fixed income 0.19 0.18 0.01 0.09 0.14 0.25 0.38
Cash 0.03 0.13 0.00 0.00 0.00 0.00 0.04
Alternative 0.01 0.04 0.00 0.00 0.00 0.00 0.00

Market beta of portfolio 0.82 0.24 0.56 0.75 0.87 0.95 1.01
Market beta of equity 1.02 0.25 0.82 0.98 1.03 1.08 1.16
Default investor 0.43 0.49 0.00 0.00 0.00 1.00 1.00
Share in TDFs 0.53 0.44 0.00 0.00 0.56 1.00 1.00
Share in auto rebalancing funds 0.03 0.13 0.00 0.00 0.00 0.00 0.01
Share in individual stocks 0.05 0.14 0.00 0.00 0.00 0.00 0.18
International share of equity 0.06 0.12 0.00 0.00 0.00 0.07 0.25
Investor-initiated trade 0.22 0.41 0 0 0 0 1
Portfolio turnover 0.13 0.51 0.00 0.00 0.00 0.00 0.31
Months with web login 4.11 4.02 0 1 3 7 11

Notes: This table presents summary statistics on demographics, wealth, portfolio allocations, and
engagement of the sample of retirement investors as of December 31, 2016.

65



Table 2: Income Growth and Equity Share Changes – OLS

∆h log equity sharet

h = 1 year h = 2 h = 3 h = 5

(1) (2) (3) (4) (5) (6) (7)

∆h log incomet 0.0081 0.0173 0.0181 0.0136 0.0192 0.0225 0.0280
(0.0009) (0.0009) (0.0009) (0.0009) (0.0010) (0.0012) (0.0016)

Log equity sharet−h -0.2396 -0.2333 -0.2347 -0.3431 -0.4144 -0.5480
(0.0006) (0.0009) (0.0009) (0.0012) (0.0015) (0.0022)

|∆h log incomet| -0.0109 -0.0052 -0.0077 -0.0107 -0.0135
(0.0013) (0.0013) (0.0014) (0.0016) (0.0021)

|∆h log incomet| × -0.0956 -0.1006 -0.0658 -0.0763 -0.0756
log equity sharet−h (0.0092) (0.0090) (0.0093) (0.0100) (0.0112)

Year FE Y Y Y
Demographic controls Y Y Y Y Y Y
Demographic controls × Y Y Y Y Y Y

log equity sharet−h
Employer × year FE Y Y Y Y

R-squared 0.023 0.152 0.152 0.177 0.240 0.283 0.371
Share of individuals 92.4% 92.4% 92.4% 92.4% 69.8% 52.7% 33.4%

Notes: This table presents the results of an OLS regression of changes in log equity shares on income
growth, measured over several horizons. The demographic controls include a second-order polynomial
in age, gender, marital status, a second-order polynomial in employment tenure, log income, and the log
of financial assets, all measured at t− h. Standard errors are clustered at the individual level.
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Table 3: Income Growth and Equity Share Changes – Long-Run Effects

∆3+j log equity sharet+j

j = 0 j = 1 j = 3 j = 5 Log equity sharet

(1) (2) (3) (4) (5) (6) (7) (8)

∆3 log incomet 0.0225 0.0263 0.0261 0.0241
(0.0012) (0.0013) (0.0018) (0.0025)

Log equity sharet−3 -0.4144 -0.4796 -0.5970 -0.6564
(0.0015) (0.0016) (0.0019) (0.0023)

|∆3 log incomet| -0.0107 -0.0105 -0.0119 -0.0102
(0.0016) (0.0018) (0.0024) (0.0035)

|∆3 log incomet| × -0.0763 -0.0578 -0.0377 -0.0413
log equity sharet−3 (0.0100) (0.0105) (0.0121) (0.0148)

Log incomet 0.0256 0.0317 0.0339 0.0395
(0.0003) (0.0004) (0.0005) (0.0005)

Year FE Y Y
Demographic controls Y Y Y Y Y Y Y Y
Demographic controls × Y Y Y Y

log equity sharet−3
Employer × year FE Y Y Y Y Y Y

Sample Non-default
investor

R-squared 0.283 0.308 0.378 0.382 0.048 0.090 0.033 0.076
Share of individuals 52.7% 51.0% 38.0% 27.1% 97.4% 97.4% 51.6% 51.6%

Notes: This table presents estimates of the long-run relation between income and equity shares. Columns (1)–(4) report
the results of an OLS regression of changes in log equity shares, measured over several horizons, on three-year income
growth. The demographic controls include a second-order polynomial in age, gender, marital status, a second-order
polynomial in employment tenure, log income, and the log of financial assets, all measured at t− h. Columns (5)–(8)
report the results of an OLS cross-sectional regression of log equity shares on log income. The demographic controls
include a second-order polynomial in age, gender, marital status, and a second-order polynomial in employment
tenure. Standard errors are clustered at the individual level.
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Table 4: Income Growth and Equity Share Changes – Job Spells

∆3+j log equity sharet+j

j = 0 j = 1 j = 3 j = 5 j = 0 j = 1 j = 3 j = 5

(1) (2) (3) (4) (5) (6) (7) (8)

∆3 log incomet 0.0202 0.0247 0.0273 0.0247 0.0423 0.0374 0.0328 0.0131
(0.0013) (0.0014) (0.0016) (0.0027) (0.0068) (0.0067) (0.0078) (0.0133)

Log equity sharet−3 -0.4046 -0.4702 -0.5370 -0.6505 -0.7314 -0.7718 -0.8076 -0.8417
(0.0016) (0.0017) (0.0019) (0.0024) (0.0095) (0.0093) (0.0095) (0.0145)

|∆3 log incomet| -0.0038 -0.0065 -0.0081 -0.0080 -0.0317 -0.0061 -0.0058 -0.0180
(0.0017) (0.0019) (0.0022) (0.0038) (0.0111) (0.0111) (0.0126) (0.0227)

|∆3 log incomet| × -0.0256 -0.0072 -0.0160 -0.0196 -0.0449 -0.0496 -0.0263 -0.0436
log equity sharet−3 (0.0108) (0.0114) (0.0122) (0.0161) (0.0496) (0.0503) (0.0528) (0.0730)

Year FE Y Y Y Y
Demographic controls Y Y Y Y Y Y Y Y
Demographic controls × Y Y Y Y Y Y Y Y

log equity sharet−3
Employer × year FE Y Y Y Y

Sample Same job in t− 3 and t Job change between t− 3 and t− 1

R-squared 0.275 0.298 0.337 0.376 0.451 0.481 0.513 0.517
Share of individuals 48.6% 47.1% 40.9% 25.2% 2.4% 2.3% 1.8% 0.7%

Notes: This table presents the results of an OLS regression of changes in log equity shares, measured over several
horizons, on three-year income growth. Columns (1)–(4) report the results for the subsample of investors with the
same job in t− 3 and t. Columns (5)–(8) report the results for the subsample of investors that had a job change between
t− 3 and t− 1. The demographic controls include a second-order polynomial in age, gender, marital status, a second-
order polynomial in employment tenure, log income, and the log of financial assets, all measured at t− 3. Standard
errors are clustered at the individual level.
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Table 5: Income Growth and Future Income Risk

Job separationt+1 ∆ log equity sharet

(1) (2) (3) (4) (5) (6) (7) (8)

∆ log incomet -0.1301 -0.1305 -0.1232 -0.1283 0.0182 0.0143 0.0137 0.0136
(0.0008) (0.0008) (0.0008) (0.0009) (0.0009) (0.0009) (0.0009) (0.0010)

(∆ log incomet)2 0.1848 0.1359 0.1993 0.1905 -0.0108 -0.0209 -0.0331 -0.0377
(0.0182) (0.0182) (0.0178) (0.0180) (0.0204) (0.0204) (0.0205) (0.0208)

Log equity sharet−1 -0.0021 -0.0011 0.0004 0.0003 -0.2333 -0.2341 -0.2347 -0.2346
(0.0002) (0.0002) (0.0002) (0.0002) (0.0009) (0.0009) (0.0009) (0.0009)

|∆ log incomet| 0.0688 0.0769 0.0442 0.0432 -0.0089 -0.0040 0.0012 0.0027
(0.0036) (0.0036) (0.0036) (0.0036) (0.0041) (0.0041) (0.0041) (0.0042)

|∆ log incomet| × -0.0031 -0.0047 -0.0060 -0.0059 -0.0956 -0.0972 -0.1006 -0.1010
log equity sharet−1 (0.0020) (0.0020) (0.0019) (0.0019) (0.0092) (0.0092) (0.0090) (0.0091)

Year FE Y Y
Demographic controls Y Y Y Y Y Y Y Y
Demographic controls × Y Y Y Y Y Y Y Y

log equity sharet−1
Industry × year FE Y Y
Employer × year FE Y Y
Employer × income bin × Y Y

year FE

R-squared 0.016 0.026 0.104 0.124 0.152 0.155 0.177 0.190
Share of individuals 91.9% 91.5% 91.9% 91.5% 92.4% 91.9% 92.4% 92.0%

Notes: This table reports OLS estimates of two outcome variables on a second-order polynomial in income growth.
Columns (1)–(4) report estimates of the relation between job separation rates and quadratic income growth. Columns
(5)–(8) report estimates of the relation between changes in log equity shares and quadratic income growth. The
demographic controls include a second-order polynomial in age, gender, marital status, a second-order polynomial in
employment tenure, log income, and the log of financial assets, all measured at t− 1. Standard errors are clustered at
the individual level.
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Table 6: Income Growth and Equity Share Changes – IV

∆ log equity sharet

(1) (2) (3) (4) (5) (6) (7) (8)

∆ log incomet 0.0262 0.0441 0.0429 0.0439 0.0421 0.0440 0.0432 0.0480
(0.0014) (0.0013) (0.0013) (0.0013) (0.0014) (0.0013) (0.0014) (0.0016)

Log equity sharet−1 -0.2440 -0.2340 -0.2353 -0.2350 -0.2364 -0.2363
(0.0006) (0.0013) (0.0014) (0.0013) (0.0013) (0.0013)

|∆ log incomet| -0.0338 -0.0353 -0.0329 -0.0316 -0.0298
(0.0016) (0.0017) (0.0017) (0.0018) (0.0020)

|∆ log incomet| × -0.0890 -0.0928 -0.0884 -0.0850 -0.0857
log equity sharet−1 (0.0106) (0.0108) (0.0106) (0.0105) (0.0106)

Year FE Y Y Y Y
Demographic controls Y Y Y Y Y Y
Demographic controls × Y Y Y Y Y Y

log equity sharet−1
|∆ log incomet| × year FE Y
|∆ log incomet| × Y

log equity sharet−1 × year FE
Demographic controls × year FE Y
Demographic controls × Y

log equity sharet−1 × year FE
Zip code × year FE Y
Industry × year FE Y
Employer × year FE Y
Employer × income bin × Y

year FE

Income instrumented Y Y Y Y Y Y Y Y

R-squared 0.022 0.153 0.154 0.164 0.175 0.156 0.178 0.190
Share of individuals 96.3% 96.3% 96.3% 96.3% 93.1% 95.9% 96.3% 95.9%

Notes: This table presents the results of an IV regression of one-year changes in log equity shares on income growth. Log
income at t− 1 and t is instrumented by log income at t− 2 and t + 1, respectively. The demographic controls include a
second-order polynomial in age, gender, marital status, a second-order polynomial in employment tenure, log income, and
the log of financial assets, all measured at t− 1. Standard errors are clustered at the individual level.
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Table 7: Income Growth and Equity Share Changes – Alternative Specifications

∆ equity sharet ∆ log equity sharet

(1) (2) (3) (4) (5) (6) (7)

∆ log incomet 0.0234 0.0228 0.0216 0.0395 0.0415 0.0500 0.0311
(0.0005) (0.0005) (0.0005) (0.0013) (0.0013) (0.0042) (0.0068)

Portfolio sharet−1 -0.1405 -0.1629 -0.1234 -0.2044 -0.2322 -0.2796 -0.2441
(0.0004) (0.0005) (0.0004) (0.0013) (0.0014) (0.0044) (0.0047)

|∆ log incomet| -0.0221 -0.0230 -0.0208 -0.0365 -0.0223 -0.0434 -0.1183
(0.0006) (0.0006) (0.0006) (0.0015) (0.0016) (0.0054) (0.0072)

|∆ log incomet| × -0.1034 -0.1124 -0.1028 -0.0977 -0.1045 -0.0886 -0.1187
portfolio sharet−1 (0.0034) (0.0042) (0.0033) (0.0105) (0.0110) (0.0316) (0.0282)

Year FE Y Y Y Y Y Y Y
Demographic controls Y Y Y Y Y Y Y
Demographic controls × Y Y Y Y Y Y Y

portfolio measuret−1

Income instrumented Y Y Y Y Y Y Y

Sample / measure All Interior Price- Price- Retirement Retirement, Non-
equity constant constant non-ret retirement
share portfolios portfolios owners

R-squared 0.128 0.143 0.099 0.137 0.154 0.181 0.128
Share of individuals 99.6% 91.1% 99.5% 96.7% 96.2% 12.8% 7.7%

Notes: This table presents the results of an IV regression of one-year changes in log equity shares on income growth for various
subsamples and alternative equity share measures. Columns (1)–(2) have the change in the level of the equity share as outcome
variable. Column (2) restricts the sample to interior initial equity shares. Column (3) has the price-constant portfolio equity
share change as outcome variable. These hypothetical price-constant portfolios are constructed by starting from beginning-of-
period asset holdings, assuming that there are no price changes, and adding to these holdings all inflows and outflows at the
asset level. The price-constant equity share change is the difference between the equity share of the price-constant portfolio and
the initial equity share. Column (4) has the price-constant log equity share change as outcome variable. In column (5)–(6), the
outcome variable is the log equity share change of retirement assets. Column (6) limits the sample to non-retirement account
owners. Column (7) has the log equity share change of non-retirement assets as outcome variable. Log income at t− 1 and t
is instrumented by log income at t − 2 and t + 1, respectively. The demographic controls include a second-order polynomial
in age, gender, marital status, a second-order polynomial in employment tenure, log income, and the log of financial assets, all
measured at t− 1. Standard errors are clustered at the individual level.
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Table 8: Income Growth and Equity Share Changes – Heterogeneity

∆ log equity sharet

(1) (2) (3) (4) (5) (6) (7) (8) (9)

∆ log incomet 0.0223
× Default investor (0.0015)
∆ log incomet 0.0537
× Non-default investor (0.0021)

∆ log incomet 0.0216
× Turnovert = 0 (0.0009)
∆ log incomet 0.0694
× Turnovert ∈ (0, 25%] (0.0036)
∆ log incomet 0.1819
× Turnovert > 25% (0.0080)

∆ log incomet 0.0313
×Months with web visitst ≤ 1 (0.0013)
∆ log incomet 0.0481
×Months with web visitst ∈ [2, 6] (0.0022)
∆ log incomet 0.0604
×Months with web visitst >= 7 (0.0034)

∆ log incomet 0.0320 0.1019
× Aget−1 < 40 (0.0017) (0.0111)
∆ log incomet 0.0453 0.1512
× Aget−1 ∈ [40, 49] (0.0023) (0.0130)
∆ log incomet 0.0573 0.1905
× Aget−1 >= 50 (0.0034) (0.0170)

∆ log incomet 0.0407 0.1335
× Assetst−1 ∈ bottom tercile (0.0019) (0.0153)
∆ log incomet 0.0475 0.1735
× Assetst−1 ∈middle tercile (0.0023) (0.0149)
∆ log incomet 0.0411 0.1346
× Assetst−1 ∈ top tercile (0.0026) (0.0115)

∆ log incomet 0.0582 0.2054
× Incomet−2 ∈ bottom tercile (0.0022) (0.0178)
∆ log incomet 0.0418 0.1657
× Incomet−2 ∈middle tercile (0.0025) (0.0174)
∆ log incomet 0.0388 0.1291
× Incomet−2 ∈ top tercile (0.0022) (0.0101)

Year FE Y Y Y Y Y Y Y Y Y
|∆ log incomet| Y Y Y Y Y Y Y Y Y
|∆ log incomet| × Y Y Y Y Y Y Y Y Y

log equity sharet−1
Demographic controls Y Y Y Y Y Y Y Y Y
Demographic controls × Y Y Y Y Y Y Y Y Y

log equity sharet−1

Income instrumented Y Y Y Y Y Y Y Y Y

Sample High High High
turnover turnover turnover

R-squared 0.164 0.267 0.169 0.153 0.336 0.154 0.336 0.153 0.336
Share of individuals 81.8% 96.3% 96.3% 96.3% 22.9% 96.3% 22.9% 96.3% 22.9%

Notes: This table presents the results of an IV regression of one-year changes in log equity shares on income growth interacted by various
indicators. Log income at t − 1 and t is instrumented by log income at t − 2 and t + 1, respectively. The demographic controls include
a second-order polynomial in age, gender, marital status, a second-order polynomial in employment tenure, log income, and the log of
financial assets, all measured at t− 1. Standard errors are clustered at the individual level.
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Table 9: Income Growth and Equity Share Changes – Magnitude of Income Change

∆ log equity sharet

(1) (2) (3) (4) (5) (6) (7) (8)

∆ log incomet 0.0050 0.0173 0.0314 0.0394 0.0429 0.0468 0.0559 0.0628
(0.0004) (0.0009) (0.0017) (0.0037) (0.0013) (0.0017) (0.0026) (0.0067)

Log equity sharet−1 -0.2369 -0.2333 -0.2325 -0.2338 -0.2340 -0.2320 -0.2355 -0.2625
(0.0007) (0.0009) (0.0011) (0.0014) (0.0013) (0.0018) (0.0029) (0.0097)

|∆ log incomet| -0.0077 -0.0099 -0.0082 -0.0138 -0.0338 -0.0330 -0.0509 -0.0980
(0.0005) (0.0013) (0.0029) (0.0067) (0.0016) (0.0024) (0.0044) (0.0182)

|∆ log incomet| × -0.0630 -0.0944 -0.0969 -0.0253 -0.0890 -0.1019 -0.0494 0.3107
log equity sharet−1 (0.0029) (0.0089) (0.0208) (0.0484) (0.0106) (0.0167) (0.0305) (0.1216)

Year FE Y Y Y Y Y Y Y Y
Demographic controls Y Y Y Y Y Y Y Y
Demographic controls × Y Y Y Y Y Y Y Y

log equity sharet−1

Income instrumented N N N N Y Y Y Y

|∆ log incomet| in range [0, ∞) [0, 0.25] [0, 0.1] [0, 0.05] [0, ∞) [0, 0.5] [0, 0.25] [0, 0.1]

R-squared 0.154 0.152 0.150 0.148 0.154 0.153 0.152 0.144
Share of individuals 96.3% 92.6% 83.3% 70.1% 96.3% 91.8% 84.9% 67.7%

Notes: This table presents regression estimates of one-year changes in log equity shares on income growth for
various restrictions on the range of income growth. Columns (1)–(4) report the results for the OLS specification.
Columns (5)–(8) report the results for the IV specification where log income at t− 1 and t is instrumented by log
income at t− 2 and t+ 1, respectively. The demographic controls include a second-order polynomial in age, gender,
marital status, a second-order polynomial in employment tenure, log income, and the log of financial assets, all
measured at t− 1. Standard errors are clustered at the individual level.

73



Table 10: Income Growth and Portfolio Changes

∆ portfolio measuret

Portfolio Equity Fixed income Cash Indiv stock Intl share TDF
beta beta share share share of equity share

(1) (2) (3) (4) (5) (6) (7)

∆ log incomet 0.0248 -0.0032 -0.0075 -0.0153 0.0091 0.0003 0.0013
(0.0006) (0.0005) (0.0004) (0.0004) (0.0003) (0.0003) (0.0006)

Portfolio measuret−1 -0.1424 -0.0735 -0.1363 -0.1638 -0.0900 -0.1201 -0.0533
(0.0006) (0.0015) (0.0005) (0.0008) (0.0007) (0.0006) (0.0002)

|∆ log incomet| -0.0192 0.0084 -0.0062 0.0298 0.0018 0.0002 -0.0048
(0.0007) (0.0006) (0.0005) (0.0005) (0.0004) (0.0003) (0.0007)

|∆ log incomet| × -0.1320 -0.1756 -0.0613 -0.1249 -0.1688 -0.0670 -0.1010
portfolio measuret−1 (0.0049) (0.0140) (0.0040) (0.0064) (0.0059) (0.0053) (0.0016)

Year FE Y Y Y Y Y Y Y
Demographic controls Y Y Y Y Y Y Y
Demographic controls × Y Y Y Y Y Y Y

portfolio measuret−1

Income instrumented Y Y Y Y Y Y Y

R-squared 0.116 0.060 0.120 0.107 0.074 0.095 0.033
Share of individuals 97.9% 62.0% 99.6% 99.6% 99.6% 96.2% 99.6%

Notes: This table presents the results of an IV regression of one-year changes in various portfolio outcomes on income growth. Log
income at t− 1 and t is instrumented by log income at t− 2 and t + 1, respectively. The demographic controls include a second-order
polynomial in age, gender, marital status, a second-order polynomial in employment tenure, log income, and the log of financial
assets, all measured at t− 1. Standard errors are clustered at the individual level.
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Table 11: Trading Behavior

Trade indicator High turnover indicator

(1) (2) (3) (4) (5) (6) (7) (8)

|∆ log incomet| 0.0339 0.0390 0.0339 0.0196
(0.0025) (0.0050) (0.0019) (0.0042)

|Log equity returnt| 0.1804 0.0915 0.1427 0.0667
(0.0024) (0.0046) (0.0019) (0.0039)

Year FE Y Y Y Y Y Y Y Y
Demographic controls Y Y Y Y Y Y Y Y
Individual FE Y Y Y Y

Sample Balanced Balanced Balanced Balanced

R-squared 0.061 0.061 0.534 0.534 0.022 0.022 0.389 0.389
Share of individuals 54.2% 54.2% 5.8% 5.8% 54.2% 54.2% 5.8% 5.8%

Notes: This table presents regression estimates of two measures of portfolio reallocation activity on the magnitude of
income growth changes and realized equity returns of individual portfolios. In columns (1)–(4), the outcome variable
is an indicator for having at least one investor-driven trade during the year. In columns (5)–(8), the outcome variable
is an indicator for having a turnover of at least 25% of initial assets over the year. The demographic controls include
a second-order polynomial in age, gender, marital status, a second-order polynomial in employment tenure, log
income, and the log of financial assets, all measured at t− 1. Standard errors are clustered at the individual level.
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Table 12: Adjustment Model Coefficients

∆ log equity sharet

(1) (2) (3) (4) (5) (6)

Passive change in log equity sharet 0.8238 0.8324 0.8980 0.7647 1.0037 1.0047
(0.0057) (0.0059) (0.0087) (0.0080) (0.0152) (0.0153)

∆ log incomet 0.0517 0.0507 0.0562 0.0551
(0.0021) (0.0023) (0.0044) (0.0020)

Log portfolio returnt -0.0090 -0.0466 0.0455 0.0069
(0.0023) (0.0029) (0.0039) (0.0024)

Passive change in log equity sharet -0.2368 -0.2396
× |∆ log incomet| (0.0718) (0.0718)

Passive change in log equity sharet -0.3871 -0.3899
× |Log equity returnt| (0.0276) (0.0277)

Year FE Y Y Y Y Y Y
Log equity sharet−1 (3rd order) × Y Y Y Y Y Y

year FE
Demographic controls Y Y Y Y Y Y
Demographic controls × Y Y

passive changet
Demographic controls × Y Y

log equity sharet−1
Shock size controls Y Y

Income instrumented Y Y Y Y Y

Sample Good Bad
market market

R-squared 0.163 0.162 0.187 0.080 0.175 0.174
Share of individuals 56.3% 56.2% 51.0% 40.1% 56.2% 56.2%

Notes: This table presents regression estimates for adjustment models. Log income at t − 1 and t is
instrumented by log income at t− 2 and t+ 1, respectively. The demographic controls include a second-
order polynomial in age, gender, marital status, a second-order polynomial in employment tenure,
log income, and the log of financial assets, all measured at t− 1. Standard errors are clustered at the
individual level.
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Table 13: Calibrated Parameters

Parameter Description Value Source / target

Asset returns
R f risk-free rate 1.02 literature
Re − R f equity premium 0.045 literature
σν equity volatility 0.18 literature

Income process
g0 income profile, constant -4.315

Cocco et al. (2005)
g1 income profile, coefficient on age 0.319
g2 income profile, coefficient on age2/10 -0.058
g3 income profile, coefficient on age3/100 0.003

σξ,1 volatility of center of permanent income shock 0.064

McKay (2017)

λξ,2 probability of left tail of permanent income shock 0.032
µξ,2 mean of left tail of permanent income shock -0.167
σξ,2 volatility of left tail of permanent income shock 0.334
λξ,3 probability of right tail of permanent income shock 0.019
µξ,3 mean of right tail of permanent income shock 0.394
σξ,3 volatility of right tail of permanent income shock 0.334

σx volatility of macro shock 0.210 derived from McKay (2017)
ηp,x exposure of income growth to macro shock -0.140 volatility of aggregate

income growth
ην,x exposure of stock return to macro shock -0.544 correlation of stock returns

and aggregate income growth
σp1 dispersion of initial permanent income 0.822 Gini coefficient of income
τ baseline income tax 0.3 literature
ρ tax progressivity 0.181 Heathcote et al. (2017)

Preferences
ψ elasticity of intertemporal subsitution 0.5 literature
b̃ bequest motive 2.5 Gomes and Michaelides (2005)

Notes: This table summarizes the parameter values that are fixed or estimated outside of the model.
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Table 14: Parameter Estimates

Proportional govt policies Non-proportional govt policies

(1) (2) (3) (4) (5) (6) (7) Data

Baseline discount rate β0 0.9292 0.9320 0.9314 0.9311 0.9397 0.9422 0.9325
(0.0019) (0.0019) (0.0016) (0.0017) (0.0016) (0.0016) (0.0019)

Slope of discount rate β1 0 0 0 0 3.6591 4.7759 4.9699
(0.5170) (0.4365) (0.4912)

Baseline risk aversion γ0 5.3682 5.9810 4.5220 5.4242 6.4426 7.8620 5.9916
(0.0588) (0.1092) (0.0506) (0.0782) (0.0551) (0.1386) (0.0900)

Non-homotheticity in risk aversion γ1 0 0.1187 0.2360 0.3989 0 0.1475 0.2638
(0.0146) (0.0099) (0.0104) (0.0099) (0.0135)

Calvo probability χ 0.1733 0.1512 0.2113 0.2033 0.1726 0.1442 0.1706
(0.0062) (0.0038) (0.0062) (0.0060) (0.0061) (0.0041) (0.0053)

Income process Tail risk Standard Tail risk Tail risk Tail risk Standard Tail risk

Targets
Age profile of financial wealth Y Y Y Y Y Y Y
Equity share at age 50 Y Y Y Y Y Y Y
Portfolio regression b0 Y Y Y Y Y Y Y
Portfolio regression b1, b2 Y Y Y Y Y
Saving regression φ Y Y Y

Value of objective 22.323 54.613 75.620 51.006 12.551 62.902 56.210

Equity share at age 50 0.4277 0.4214 0.4890 0.4509 0.4069 0.4236 0.4309 0.4309
(0.0111)

Portfolio regression b0 0.8318 0.8489 0.8132 0.8339 0.8372 0.8582 0.8538 0.8324
(0.0059)

Portfolio regression b1 -0.0026 0.0519 0.0452 0.0504 0.0054 0.0516 0.0488 0.0517
(0.0021)

Portfolio regression b2 -0.0147 -0.0182 -0.0022 -0.0094 -0.0318 -0.0231 -0.0187 -0.0090
(0.0023)

Saving regression φ 1.0001 1.0055 1.0074 0.9603 0.7212 0.6295 0.6712 0.7300
(0.0500)

Notes: This table reports the results of structural estimations of different versions of the model. I first report the estimated parameter values
and their corresponding standard errors, I then indicate which moments were targeted in the estimation, and finally I report the value of
the objective and the key moments of the model evaluated at the estimated parameter values.
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Table 15: Inequality in the Model

Share of wealth or consumption in top

Gini Top 1% Top 5% Top 10% Top 25% Top 50%

Wealth inequality
Baseline model 0.875 41.0% 69.3% 81.2% 93.8% 98.6%
CRRA preferences 0.796 21.8% 50.0% 66.8% 88.4% 97.7%
No equity premium 0.781 19.9% 48.6% 65.7% 87.3% 96.8%
Homogeneous β 0.551 13.0% 31.8% 44.6% 65.9% 84.4%
1989 income inequality 0.825 35.4% 60.9% 73.8% 89.7% 97.1%

Consumption inequality
Baseline model 0.504 13.5% 29.5% 40.6% 61.2% 81.8%
CRRA preferences 0.422 6.4% 19.6% 31.1% 54.5% 78.5%
No equity premium 0.359 4.9% 15.8% 25.9% 48.5% 74.8%
Homogeneous β 0.465 8.2% 22.8% 34.6% 57.8% 80.7%
1989 income inequality 0.458 11.8% 26.3% 37.0% 57.6% 79.2%

Notes: This table reports statistics on inequality in the distribution of wealth and
consumption for different versions of the model. Starting point is the baseline estimation
of the model with non-proportional transfers and taxes. The first deviation is a restricted
parameterization where γ1 = 0, so that risk preferences are CRRA. In a second deviation,
I set the equity premium to zero so that investors allocate all financial assets to the risk-
free security. The third deviation is a restricted parameterization where β1 = 0 so that
discount rates are homogeneous. Finally, I consider an alternative calibration where the
distribution of initial income is chosen so that the Gini coefficient of income in the model
matches the equivalent in the 1989 SCF (as opposed to the 2016 SCF).
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Appendix

A.1 Data

This section includes additional details on the construction of the dataset.

Asset classes. Investor portfolios are composed of positions in funds, individual securities, and
annuities. Holdings are assigned to four different asset classes based on product descriptions:
equity, fixed income, cash and cash-like securities, and alternative assets.28 Equity holdings
consist of pure equity funds, directly held equity, and the equity portion of multi-asset class
funds. The fixed income category includes bond funds, individual bonds, and the portion of
multi-asset class funds that is not allocated to equity. The category of cash and cash-like securities
includes money market funds and liquid short-term debt.

Mixed-assets funds, such as target date funds, are split into an equity component and a fixed
income component based on fund equity shares. I use quarterly data on fund asset compositions
from the CRSP Survivor-Bias Free US Mutual Fund database if available, and complement this
with internally available quarterly target equity shares on other mixed-asset funds.

International exposure. To characterize international equity exposures in investor portfolios,
equity holdings are divided into a domestic and an international component. Pure equity funds
are characterized as either domestic or international based on internal product descriptions. The
equity portion of mixed-asset funds is treated as a domestic equity investment. For individual
securities, I set the location to international if it is a foreign security (i.e., has a foreign ISIN) or if the
company is incorporated outside of the US according to Compustat, and to domestic otherwise.
The international share of equity is defined as the ratio of international equity to total portfolio
equity holdings.

Returns. I compute realized returns using two methods. The first method is based on external
return data. Observed portfolio holdings are linked to external data on realized returns from
CRSP stock, treasury, and mutual fund return files, as well as WRDS corporate bond returns,
using CUSIP identifiers that are available for all public securities and funds in the data. Assets in
the cash and cash-like securities class are treated as risk-free assets and are assigned the risk-free
rate (one-month Treasury bill rate) as return. While this method provides a return for the large
majority of assets in the data, the returns on some assets are not available (e.g. non-public funds).

In a second method, I compute yearly portfolio returns from annual portfolio holdings and
transactions at the security level. In particular, I calculate the price appreciation from positions
with constant holdings in the asset. To this price appreciation I add the dividends that were paid

28Investment products with insufficient detail to categorize holdings are excluded. Average holdings in these assets
are less than 1.5% of total (investable) assets.
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out over the year, assuming no reinvestment. Using this method, I get a nearly complete coverage
of asset returns. The results that are reported in the paper are based on this second method. The
results are robust to using the publicly available returns from the first method.

Market betas. CAPM market betas are estimated from monthly regressions of excess asset
returns on excess market returns. A market beta is assigned to funds and securities that have at
least 24 monthly return observations.

A.2 Stylized Model Derivations

Portfolio choice. Let Z = W + P be total wealth at time t = 0. Note that

W1 = W(R f + θ(Re − R f )) + P(R f + φ(Re − R f ))

= (W + P)
{

R f +

(
θ

W
W + P

+ φ
P

W + P

)
(Re − R f )

}
= (W + P)(R f + α(Re − R f )) ≡ ZRtot.

(A.2.1)

Hence, θ = α + (α− φ) P
W .

Let V1(W1) =
(W1−X1)

1−γ

1−γ be the value function as a function of wealth at time 1. The standard
first-order condition of the portfolio choice problem is

E[V ′1(W1)Re] = E[V ′1(W1)R f ]. (A.2.2)

Applying the approximation log E[ey] ≈ E[y] + 1
2 Var[y], which holds with equality when y is

normally distributed, to the left hand side and right hand side of (A.2.2) yields

µe − r f +
1
2

σ2
e ≈ −Cov[log Re, log V ′1]. (A.2.3)

Let X = X1/R f be the present value of the subsistence level, and let smaller case letters denote
logs, with w̃1 = log(W1 − X1). A log-linearization around Re = R f gives

w̃1 = k′ +
Z

Z− X
rtot, (A.2.4)

where k′ is a log-linearization constant. Plugging this into the approximated Euler equation gives

µe − r f +
1
2

σ2
e ≈ α

Z
Z− X

γσ2
e . (A.2.5)

The solution to the portfolio choice problem is

α =
µe − r f +

1
2 σ2

e

γσ2
e

· Z− X
Z

= ᾱ

(
1− X

W + P

)
, (A.2.6)
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where

ᾱ =
µe − r f +

1
2 σ2

e

γσ2
e

. (A.2.7)

As a fraction of financial wealth, the optimal portfolio share θ is given by

θ = α + (α− φ)
P
W

= ᾱ + (ᾱ− φ)
P
W
− ᾱ

(
1 +

P
W

)
X

W + P
.

(A.2.8)

Comparative statics. Further log-linearization of (A.2.8) around Rp f = R f and Rp = R f yields

log θ ≈ k + λ1
W

W + P
(log P− log Rp f )

− λ2

(
P

W + 2P
W

W + P
(log P− log Rp f )− W

W + 2P
log Rp f − 2P

W + 2P
log P

)
,

(A.2.9)

where k is a log-linearization constant, and

θ = ᾱ− ᾱ

(
1 +

P
W + P

)
X

W + 2P
+ (ᾱ− φ)

P
W + P

,

λ1 =
ᾱ− φ

θ
· P

W + P
, λ2 =

ᾱ

θ

(
1 +

P
W + P

)
X

W + 2P
.

(A.2.10)

After rearranging, we arrive at

log θ ≈ k + (κ1λ1 + (1− κ2)λ2) log P + (−κ1λ1 + κ2λ2) log Rp f , (A.2.11)

where

κ1 =
W

W + P
, κ2 =

W
W + 2P

(
1 +

P
W + P

)
. (A.2.12)

Extension to dynamic model. The state variables in a standard homothetic life-cycle model are
age a(i, t) and relative cash on hand wit. The optimal portfolio is θit = Θ(wit, a(i, t)). The dynamics
of wit are given by (8). Consider a log-linearization of θi,t+1 around Rp f

i,t+1 = R f , Pi,t+1/Pit = R f ,
and εi,t+1 = 0. Let

wi,t+1 = (wit − cit)
Ga(i,t)

Ga(i,t+1)
+ 1− τ. (A.2.13)

We obtain the approximation

log θi,t+1 = kit +
Θw(wi,t+1, a(i, t + 1))wi,t+1

Θ(wi,1, a(i, t + 1))
(ρit log Rp f

i,t+1 − ρit∆ log Pi,t+1 + (1− ρit)εi,t+1),

(A.2.14)
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where kit is a log-linearization constant that depends on time-t information, and

ρit =
(wit − cit)

Ga(i,t)
Ga(i,t+1)

wi,t+1
. (A.2.15)

Hence, we get

log θi,t+1 = kit + b1,i,t∆ log Pi,t+1 + (−b1,i,t︸ ︷︷ ︸
b2,i,t

) log Rp f
i,t+1 + b3,i,tεi,t+1, (A.2.16)

where

b1,i,t = −
Θw(wi,t+1, a(i, t + 1))wi,t+1

Θ(wi,1, a(i, t + 1))
ρit

b3,i,t =
Θw(wi,t+1, a(i, t + 1))wi,t+1

Θ(wi,1, a(i, t + 1))
(1− ρit).

(A.2.17)

A.3 Numerical Details [To Be Added]
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A.4 Additional Figures and Tables

Figure A.1: Wealth in Firm Data (Individual) and SCF (Household)

(a) Retirement Wealth Distribution
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(b) Investable Wealth Distribution
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Notes: This figure plots the distribution of individual wealth in the sample of RI investors versus the
distribution of household wealth for RI investors in the SCF. The upper panel displays the distribution of
retirement wealth, and the lower panel displays the distribution of total investable wealth.
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Figure A.2: Age Distribution
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Notes: This figure plots the distribution of age in the sample of RI investors versus the distribution of
individual retirement wealth for RI investors in the SCF.
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Figure A.3: Mean Reversion in Equity Share
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Notes: This figure plots the average change in equity share as a function of initial equity share. The sample
is split by the magnitude of absolute income growth.
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Figure A.4: Long-Run Effects of Three-Year Income Growth

(a) Changes in Log Equity Share
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(b) Changes in Equity Share
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Notes: This figure plots the coefficients of an OLS regression of changes in equity shares, measured over
several horizons, on three-year income growth. The upper panel shows the coefficients when the outcome
is the change in log equity shares, and the lower panel shows the coefficients when the outcome is the
change in the level of the equity share. The demographic controls include a second-order polynomial in
age, gender, marital status, a second-order polynomial in employment tenure, log income, and the log of
financial assets, all measured at t− h. Standard errors are clustered at the individual level.
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