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1 Introduction

Asymmetric information is central to our understanding of massive swaths of the economy. Reg-

ulators oversee firms that have private information about costs and consumer tastes. Investors

evaluate entrepreneurs with differing abilities and project qualities. And in a particularly critical

sector of the economy, health insurers sell insurance to consumers who know more about both their

health status and their taste for insurance. These examples highlight settings in which there are

multiple important dimensions of private information, and in which the space of possible contracts

across which consumers can be screened is potentially vast. Until recently, however, the majority of

both theoretical and empirical papers on screening have either considered a one-dimensional hidden

information problem or else a multidimensional problem with a restricted contract space.

When both of these issues are considered together, solving screening problems becomes much

harder. And as we explain below, even what is known about such problems does not apply directly

in many settings of interest, including the canonical model of a health insurer’s problem. We

therefore have only a limited understanding of issues such as optimal exclusion, incentives to screen,

and distortions in coverage once we take seriously both the fact that consumers can vary along

multiple important dimensions and that insurers may introduce new contracts in response to this

heterogeneity. While these issues have been explored in the empirical literature on health insurance

markets, it remains unclear to what extent analytical properties can (or cannot) be derived.

In this paper, we combine theoretical and numerical analysis to address a number of challenging

questions. What are the properties of an insurer’s optimal menu of vertically differentiated health

insurance contracts, and how do they change as, for example, the insurer’s objective varies between

that of a pure monopolist and a utilitarian social planner? What are the consequences of limiting

the set of contracts the insurer can offer? Is there a way to recast this complex menu design problem

in simpler terms, allowing one to solve it graphically? Importantly, while our theoretical framework

is tailored to answering these questions in the context of a health insurance market, it is general

enough that our results apply substantially more generally.

We begin by providing a set of theoretical results that substantially extends what is known

about this class of multidimensional screening problems. Our framework is tailored to a health

insurance market, but is general enough to inform other settings. We then combine these theoretical

developments with a calibrated numerical analysis of a health insurance market. This combination

of theoretical results and numerical analysis is central to our contribution. For one, our theoretical

exploration provides a convergence result that gives a more solid foundation to standard numerical

exercises commonly carried out in applied work. So, our theoretical results support empirical

analysis. In addition, we show that under a simple additional assumption—quasiconcavity of the

consumer’s problem—the derivation of the insurer’s optimal menu becomes dramatically more

tractable, and our results more transparent. This assumption is hard to motivate from theoretical

primitives, but is easy to check numerically, and we find that it is well supported in our calibrated
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numerical setting. Hence, numerical analysis supports theory as well.

Our model of a health insurance market is as follows. An insurer faces a population of consumers

who have private information about their risk aversion, distribution of health states, and taste for

healthcare utilization. The insurer designs a menu of vertically differentiated insurance contracts,

where each contract has a premium and an out-of-pocket cost function that determines how much

of a consumer’s healthcare costs are covered by the insurer. The consumer’s outside option is a

base level of coverage provided by the government, which is exogenous. The insurer’s payoff is

a weighted average of consumer surplus, profits, and government spending. This general payoff

function subsumes, for example, the case of a monopolist insurer as well as a utilitarian social

planner. The timing is as follows: the insurer offers a menu of contracts. Consumers observe the

menu, learn their type, and then choose a contract. Consumers then privately learn their health

state and choose their healthcare utilization.

The fact that consumers only privately observe their health state allows for (ex-post) moral

hazard in the model. While our theoretical analysis would still apply (and be somewhat simpler)

absent moral hazard, we incorporate this complication because it is a first-order concern in real-

world health insurance markets (Manning et al., 1987). And as is well known, the presence of

moral hazard introduces interesting tradeoffs. Given the informational constraints, the only way to

reduce consumers’ exposure to financial loss under a bad health realization is to lower their marginal

cost of healthcare utilization, thereby inducing them to use beyond the efficient level. Even for a

social planner, the problem is therefore more complicated than simply pooling all consumers at full

insurance (Arrow, 1965; Pauly, 1968; Zeckhauser, 1970).

Our numerical analysis is based on a population of consumers calibrated to match demographics

of the under-65 US population and parameter estimates from Marone and Sabety (2022), allowing

for an extremely flexible and empirically realistic distribution of consumer types. We implement

the model using this population and a finite set of piecewise linear and concave insurance contracts.

We maintain that the government provides a base level of coverage at a $10,000 deductible and

out-of-pocket maximum contract, and that the government covers the cost associated with base

coverage regardless of what coverage level a consumer ultimately selects.1

We interpret the insurer’s menu design problem as one in which the insurer chooses a premium

schedule and recommends an allocation of coverage to each consumer type, subject to the usual

incentive compatibility constraints. We derive necessary conditions on optimal menus in two con-

texts: one in which there is a fixed set of contracts the insurer can offer, and one in which the

insurer can offer a continuum of contracts. Our necessary conditions correspond to two different

perturbations of a given menu. The main perturbation changes premiums for all contracts above

a given coverage level. The second perturbation changes the quality of a given contract, while

keeping prices the same.

1In this way, we implement “incremental pricing” as described by Weyl and Veiga (2017) and implemented in Einav
et al. (2010). Our model is also flexible enough to capture “total pricing,” as implemented in Handel et al. (2015).
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Our optimality conditions are intuitive and generalize the well-known screening conditions in the

case of one-dimensional private information. They also generalize the case where consumers are

multidimensional, but the insurer is restricted to offering just one or two contracts. The results shed

light on the insurer’s incentives to exclude, screen, and distort coverage away from the efficient level.

For example, we show that a monopolist insurer has more incentive to exclude than a utilitarian

planner, and also distorts coverage downwards, below the efficient level.

We then provide a convergence result that links the insurer’s problem with a finite set of contracts

to the fully general problem with a continuum of them. We show that the latter is well-approximated

by the former when the insurer can use a sufficiently rich set of contracts. We view this result as an

important link between settings in which product characteristics can be “fully endogenous” (i.e.,

when the insurer can offer a continuum of contracts) to settings in which the contract space is

limited by a regulator. It also provides the applied researcher solid theoretical ground on which to

conduct analysis with a finite number of contracts, often a prerequisite for computational tractabil-

ity. Indeed, this has been the approach in a number of recent applied papers (Azevedo and Gottlieb,

2017; Ho and Lee, 2021; Marone and Sabety, 2022). Our paper provides a unified framework for

thinking about this approach, as well as the theoretical foundations that justify it. In our numer-

ical application, convergence in the density of the contract space is remarkably fast: insurers can

capture over 98 percent of the available payoff with as few as five contracts.

Motivated by the convergence result, we explore a simplified version of the insurer’s problem when

limited to a fixed set of contracts. We reframe the problem of setting the premium of each contract

to one of setting the incremental premium of each marginal level of coverage. We show that under

certain conditions, the insurer’s problem “decouples,” in the sense that the optimality condition

for each incremental premium is entirely independent of all other premiums. This decoupling

dramatically simplifies the problem, yielding a potentially powerful tool for analyzing it. The

assumption that guarantees that the decoupled problem corresponds to the true problem is that

consumers’ payoffs are quasiconcave in coverage level at the optimal menu. This assumption is

hard to justify from primitives, as it is an equilibrium outcome that depends on the distribution

of consumer preferences and costs in the market. However, after solving for the optimal menu

numerically in a given population, the assumption is easily checked. We find that in our empirical

setting, the assumption is well supported. For a variety of insurer objective functions, the optimal

price schedule is quasiconcave in coverage level for 99 percent of consumers, and the difference

between the insurer’s payoff from solving the simplified problem agrees with its payoff from solving

the true problem within a margin of 1 percent.

The simplified version of the problem allows us to recast the analysis in familiar terms. Equi-

librium outcomes depend on the demand curves for incremental coverage, the associated marginal

revenue curves, and the marginal cost of providing incremental coverage. As the problem can be

solved separately for each incremental level of coverage, each margin can be analyzed graphically. A

monopolist sets marginal cost equal to marginal revenue, while a utilitarian planner sets marginal
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cost equal to price. A planner with an excess cost of public funds sets marginal cost equal to a

weighted average of marginal revenue and price. A resulting comparative static is that if the insurer

puts less weight on consumer surplus (and more weight on profits), then the entire premium sched-

ule becomes steeper and higher, and consumers choose less coverage on every margin. A monopolist

therefore serves fewer consumers than the planner at each incremental level of coverage. As this

includes the first increment, it means that a monopolist always excludes a strictly positive mass of

consumers from the market. We also show that a monopolist has more incentives to screen than a

utilitarian planner, in the sense that the monopolist optimally uses weakly more contracts.

The numerical analysis confirms and quantifies several of our theoretical results. We solve for

the optimal menu that would be offered by a social planner, a social planner facing an excess

cost of public funds, and a monopolist. Consistent with our theoretical results, We find that a

monopolist insurer excludes substantially more consumers than a social planner. Likewise, the

monopolist screens more than the social planner, separating consumers across a range of coverage

levels, and in the end offering much less coverage in the population. The monopolist’s optimal menu

reduces social welfare by $743 per household per year (equal to 7 percent of household average total

healthcare spending) relative to what can be achieved by a social planner. Finally, as the cost of

public funds rises, the social planner begins acting more like the monopolist, excluding more and

more consumers from the market.

We then use our numerical framework to explore how a regulator might best intervene on behalf

of consumers in a monopoly insurance market. We focus on three types of interventions. We first

allow the regulator to mediate prices in the form of taxes or subsidies (to which the monopolist

can strategically respond). We then restrict the set of contracts the monopolist can offer. Finally,

we allow the regulator to adjust the base level of coverage. We find that the most effective policy

tool is raising the base level of coverage, which in effect squeezes the monopolist out of the market

entirely. Absent this possibility, we find that restricting the set of contracts the monopolist can offer

and implementing a non-linear subsidy scheme are both reasonably effective at increasing coverage

and consumer surplus in the market. By contrast, the monopolist’s ability to strategically respond

to subsidies makes the linear subsidy schemes perform poorly.

Our paper is related to an extensive theoretical literature on screening as well as a large empirical

literature on health insurance markets. With respect to the empirical literature, our model of

consumer demand for health insurance builds on a workhorse introduced by Cardon and Hendel

(2001) used in several papers in the empirical literature (for example, Einav et al., 2013; Azevedo

and Gottlieb, 2017; Ho and Lee, 2021; Marone and Sabety, 2022). Our formulation is general

enough to capture a number of alternative institutional settings (for example, whether or not the

government covers the cost of base coverage regardless of the consumer’s contract choice), and we

further enrich the model to allow a unified treatment of insurers with differing objective functions.

Our graphical analysis of the insurer’s problem builds on the foundational approach in Einav et al.

(2010), who focus on competitive markets and two contracts. We show how to extend this approach
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to an arbitrary number of contracts by focusing on incremental premiums and coverage levels. Our

focus on health insurance menu design for multidimensional consumers is also closely related to

recent work by Marone and Sabety (2022) and Ho and Lee (2021), who each solve for the optimal

menus of contracts that would be offered by a utilitarian social planner in their respective empirical

settings. We build on these findings by asking to what extent various features of those solutions

will hold in general, and how optimal menus would change with the insurer objective function.

Our theoretical approach is related to the seminal works by Stiglitz (1977) (insurance), Mussa and

Rosen (1978) (quality provision), and Maskin and Riley (1984) (quantity provision), who similarly

analyze a principal-agent problem with private information, but focus on only one-dimensional

private information. There is a subsequent important literature on screening with multidimensional

private information, including Wilson (1993), Armstrong (1996), Rochet and Choné (1998), and

Manelli and Vincent (2006). This literature has been surveyed by Rochet and Stole (2003). Our

class of problems belongs to their Section 5, which they call “the one-dimensional instrument” case.

An early contribution to this class is the parametric example solved in Laffont et al. (1987), which

is a special case of our general formulation. More recently, Deneckere and Severinov (2017) provide

a solution for a class of problems with two-dimensional private information. The simplified version

we analyze was pioneered by Wilson (1993) in his work on nonlinear pricing, but for a specific

problem without common values. Veiga and Weyl (2016) conduct a similar exercise to ours with

common values, but with just one possible contract choice (plus an outside option). The extension

to many possible contracts substantially complicates the analysis.

Finally, our theoretical approach is tightly linked to the empirical setting. Health insurance

has some particular features that prevent us from using much of the extensive technical apparatus

developed in this literature. For example, existing incentive compatibility and optimal exclusion

results rely on convexity and homogeneity assumptions on the consumer’s utility as a function of

their type. These assumptions fail in our setting, where the utility function is built up from more

primitive objects, such as the certainty equivalent of a lottery over health outcomes. We therefore

remove those assumptions and derive our results using the perturbation arguments described above.

Ultimately, our results rely on a few, permissive properties of the agent’s utility and the principal’s

cost, meaning that our model can be applied beyond just health insurance settings.

The paper has distinct theoretical and numerical analyses, which are targeted to different groups

of readers. It is organized as follows. In Section 2, we describe the model. In Sections 3 and 4, we

present theoretical results, including the optimality conditions and convergence. These sections can

be skipped by the applied reader without loss of continuity. In Section 5, we present the simplified

reformulation of the problem, provide a graphical analysis, and discuss the insurer’s incentives to

exclude and screen. In Section 6, we discuss our numerical application, assess key assumptions and

solve for the optimal menus of various types of insurers. In Section 7, we apply our analysis to

evaluate the impact of regulatory intervention. This section can be skipped by readers primarily

interested in our theoretical results. Section 8 concludes.
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2 The Model

We consider a model of a health insurance market in which an insurer chooses a set of vertically

ordered contracts to offer and their associated premiums. Heterogeneous consumers then select a

single contract, incur health shocks, and choose their subsequent healthcare utilization. Consumers

have multidimensional private information at the time they choose an insurance contract. Realized

health is also private information, allowing ex-post moral hazard. Selection—either adverse or

advantageous—and moral hazard are thus intertwined. A government may also provide a base

level of insurance coverage to all consumers.

While our application is to health insurance, our model is a general workhorse for settings with

multidimensional screening. And given the limited number of general results in this literature (see

Armstrong (1996), Rochet and Choné (1998), and Manelli and Vincent (2006) for notable excep-

tions), we substantially push the technical frontier. To help the reader who is more interested in the

application, we will separate much of our discussion of the technical contribution into “Technical

Remarks” and footnotes. These can be skipped without loss of continuity.

The Consumer. There is a strictly risk-averse consumer (or a continuum thereof). She has CARA

preferences, and is privately informed about her taste for healthcare utilization ω, her coefficient of

absolute risk aversion ψ, and her distribution F over potential health states l, which has density f

on bounded support [0, l̄].2 We denote the consumer’s type by θ = (ω, ψ, F ). The distribution of

θ is given by a joint cdf G on Θ = [0, ω̄]× [0, ψ̄]×∆([0, l̄]). The support of G is some rectangular

subset suppG = [ω, ω̄]× [ψ, ψ̄]×F of Θ.3 We assume that G has a continuous density function g.

For convenience, we assume there are F and F ∈ F such that each F in F first-order-stochastically

dominates F and is first-order-stochastically dominated by F̄ . That is, there is an unambiguously

sickest and healthiest type in the population.

If the consumer chooses a dollar amount a ∈ [0, ā] of healthcare utilization (“spending”) when

her health state is l and her taste for healthcare is ω, then she enjoys a utility level which in

dollar terms is given by b(a, l, ω), where b is twice-continuously differentiable, strictly decreasing in

l and strictly increasing in a.4 That is, an agent is hurt by a worse health outcome, but helped by

more healthcare spending. We assume baa < 0, baω > 0 and bal > 0, such that the consumer has

declining marginal utility for healthcare, but that marginal utility is higher when she has either

worse health or a higher taste for healthcare.5 A canonical example introduced by Einav et al.

(2013) is b(a, l, ω) = (a − l) − (1/(2ω))(a − l)2, which satisfies all the assumptions for a ≥ l. This

2For the numerical exercises, we will take l unbounded and with an atom where the agent wants no healthcare. The
formal analysis can accommodate these, but at the cost of more notation and less transparent analysis.

3Whenever we talk about ∆([0, l̄]), we implicitly endow it with the topology of weak convergence.
4We use increasing and decreasing in the weak sense of nondecreasing and nonincreasing, adding “strictly” when
needed, and similarly with positive and negative, and concave and convex. Also, for any function f and argument x
of f , we write (f)x for the total derivative of f with respect to x. We use the symbol =s to indicate that the objects
on either side have strictly the same sign.

5We in fact only need these conditions to hold for a and l such that ba(a, l, ω) ∈ [0, 1], because in our environment
the consumer will optimally choose such an a given l and ω.
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example belongs to a canonical class of b functions that satisfy b(a, l, ω) = b̂(a − l, ω), with b̂

increasing in a− l.

Insurance Contracts. An insurance contract consists of an out-of-pocket cost function that

specifies how much the consumer pays for each level of healthcare spending. There is an exogenously

given set of potential contracts indexed by a scalar x ∈ [0, 1]. If a consumer chooses a contract

x and healthcare spending level a, then her out-of-pocket cost is c(a, x). We take c to be twice-

continuously differentiable for almost all (a, x), with 0 ≤ ca ≤ 1, caa ≤ 0, cx ≤ 0 for a > 0, and

cax < 0.6 That is, out-of-pocket costs are increasing and concave in the level of healthcare spending,

and as x gets larger, the out-of-pocket cost function gets lower and shallower as a function of a.

Contracts are thus vertically differentiated, with higher x corresponding to higher coverage.

Optimal Choice of Healthcare Spending. Given a contract x, a health state realization l,

and taste for healthcare utilization ω, the consumer chooses an optimal level of healthcare spending

a. Let a∗(l, x, ω) ≡ arg maxa∈[0,ā](b(a, l, ω)− c(a, x)) be that optimum.7 Let

(1) z(l, x, ω) ≡ b(a∗(l, x, ω), l, ω)− c(a∗(l, x, ω), x)

be the consumer’s income-equivalent payoff given (l, x, ω).

Optimal Choice of Insurance Contract. Let y be the initial wealth of the consumer. Since

the consumer has CARA preferences, we can usefully simplify her problem by expressing her prefer-

ences in certainty-equivalent units. Consider a consumer of type θ who chooses contract x with pre-

mium p and out-of-pocket cost function c(·, x). Her expected utility is
∫ (
−e−ψ(y−p+z(l,x,ω)

)
dF (l),

which has certainty equivalent y − p+ v(x, θ), where

(2) v(x, θ) ≡ − 1

ψ
log

∫
e−ψz(l,x,ω)dF (l).

For any two contracts x and x′, the consumer’s willingness to pay for the discrete jump from x

to x′ is given by v(x′, θ) − v(x, θ), while her marginal willingness to pay for incremental cover-

age is given by vx(·, θ). Faced with a menu of (x, p) pairs, the consumer chooses the contract

that maximizes the difference between the dollar value of her health activity and the premium:

maxx∈[0,1] (v(x, θ)− ρ(x)).

The Government. The government provides a base level of insurance x0 ∈ [0, 1]. If the consumer

chooses healthcare spending level a, the cost to the government is k(a, x0) = a − c(a, x0). The

government is risk neutral, but may face an excess cost of public funds, reflecting dead weight

losses in the tax system.

6We allow ourselves to consider cases with cax = 0 in our numerical exercise. Theoretically, this is tractable but
creates technical complications without economic insight.

7The notation is justified since, under our assumptions, a∗(·, x, ω) is unique for almost all l, and so, since F is atomless,
it is irrelevant which optimal a is chosen when there is more than one such optimum.
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The Insurer. The insurer is risk neutral and is a price-setter. Depending on the economic context,

the insurer might be a monopolist, a social planner, or a firm designing insurance for its workers.

Our model is flexible enough to cover all of these cases. The insurer chooses a premium schedule ρ

specifying a premium ρ(x) for each insurance contract.

We assume that ρ is left continuous in x, which will ensure that the consumer always has an

optimal choice of insurance contract.8 Without loss of generality, we take ρ to be increasing,

since the consumer will never choose a contract for which some higher coverage level is available

at a weakly lower premium. Let P be the set of such premium schedules. To reflect that the

consumer always has an option of taking the government-provided insurance level x0, we require

that ρ(x0) = 0. The insurer may also face other constraints on the set of premium schedules. We

denote the set of allowable premium schedules as a closed set P0 ⊂ P.

The insurer also makes a recommendation χ(θ) of insurance contract to each type θ. A menu

(ρ, χ) is incentive compatible if and only if, for all θ,

(IC) χ(θ) ∈ arg max
x∈[0,1]

(v(x, θ)− ρ(x))

If the consumer chooses contract x and healthcare spending a, then the cost to the insurer is k(a, x)−
k(a, x0), reflecting that the first k(a, x0) of healthcare spending is covered by the government.

We therefore implement “incremental pricing,” as described by Weyl and Veiga (2017), meaning

that the government covers the cost of base coverage regardless of which contract the consumer

ultimately selects.9

Timing. The timing is as follows. At time 0, the government sets x0. At time 1, the insurer chooses

the premium schedule ρ and recommends an allocation χ, and the consumer learns her type θ. At

time 2, facing ρ, and knowing θ (but not her health state realization l), the consumer chooses an

insurance contract x and pays ρ(x). At time 3, the consumer learns her health state l, chooses a

level of healthcare spending a, and pays out-of-pocket cost c(a, x).

Expected Insured Costs. A consumer of type θ enrolled in contract x incurs expected insured

healthcare spending equal to

γI(x, θ) ≡
∫
k(a∗(l, x, ω), x)dF (l).

8This follows since v(·, θ) is continuous and since ρ left continuous implies that −ρ is upper semicontinuous.
9Our model is also flexible enough to capture an alternative regime of “total pricing,” under which the government
would only pay for base coverage if the consumer selected base coverage. The insurer would then cover the full cost
k(a, x) of providing coverage above x0. Note that this distinction does not matter when the insurer is the social
planner, as in this case the government supplies both base and incremental coverage. But, as shown by Weyl and
Veiga (2017) and discussed in Handel and Ho (2021), it may matter a great deal when the insurer is a private firm.
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The portion paid by the government is equal to

γG(x, x0, θ) ≡
∫
k(a∗(l, x, ω), x0)dF (l).

Note that as written, the government’s portion of insured costs is tied to the consumer’s choice

of healthcare spending under her chosen contract x. It may alternatively be the case that the

government’s portion is determined by what the consumer would have done had she taken minimum

coverage x0, in which case we would have γG(x0, θ) ≡
∫
k(a∗(l, x0, ω), x0)dF (l). The decision of

how to set the government’s share of insured costs is a regulatory one. We consider both cases in

our analysis. Regardless, the net cost to the insurer of covering the consumer is γI − γG. We make

the following assumption regarding γI and γG:

Assumption 1 (Marginal Costs) The functions γI and γG are continuous. The derivatives γIx

and γGx are defined for almost all θ, and are uniformly bounded where defined.

See Online Appendix B.3 for primitives. These primitives subsume as a special case the canonical

b and the case of c piecewise linear.

The Insurer’s Objective Function. To cover a broad set of cases in a unified and parsimonious

way, we model the insurer’s objective using weights w = (wC , wI , wG) ≥ 0 on consumer surplus,

profits, and government spending, respectively. Given a set of weights w, a base coverage level x0,

an insurance contract x, and a premium p, the insurer facing type θ has payoff

(3) S(p, x, θ) = wC( v(x, θ)− p
Consumer
surplus

) + wI( p− γI(x, θ) + γG(x, x0, θ)

Insurer profit on
incremental coverage

) − wG γG(x, x0, θ)

Govt. spending
on base coverage

.

We suppress that S depends on w and x0 as they will be fixed for the relevant portion of the

analysis. Table 1 describes the weights that would correspond to different types of insurers in

the context of our model. A monopolist corresponds to w = (0, 1, 0), reflecting that it cares only

about itself. A social planner with a cost of public funds τ (where typically τ > 1) corresponds to

w = (1, τ, τ).

Table 1. Example Insurer Objective Functions

Insurer wC wI wG

Monopolist 0 1 0
Social planner 1 1 1
Social planner with cost of funds τ 1 τ τ

Notes: The table shows the weights w that would correspond to different
types of insurers.
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Given weights w, we can now write each of these insurer’s problems as simply

max
ρ∈P0,χ

∫
Θ
S(ρ(χ(θ)), χ(θ), θ)dG(θ)(P)

s.t. IC and ρ(x0) = 0,

where recall that x0 corresponds to the consumer’s outside option, and so the IC constraint together

with ρ(x0) = 0 capture the participation constraint. The central contribution of this paper is to

provide insight into the optimal structure of (ρ, χ).

In addition to providing flexibility in the insurer’s objective function, this framework also easily

permits regulatory intervention in the market. For example, a regulator may wish to restrict the

insurer to a fixed set of allowable contracts, but allow the insurer to price those contract freely.

In this case, P0 is the subset of P with steps at the pre-specified contracts. Since the consumer

prefers the highest contract in an interval where ρ is flat to any other contract in that interval, this is

equivalent to offering only the set of contracts corresponding to the step points of ρ. Alternatively,

the regulator may wish to specify a restriction on price schedules Q(ρ) ≤ 0 for some function Q

(or several such functions), in which case P0 is the subset of P that satisfies these restrictions.

The function Q could reflect a limit on the firm’s expected profit, expected profit margin, or the

expected cost to the government. It could also reflect a constraint on the fraction of consumers

excluded from the market. In both cases, the set P0 is closed.

Technical Remark 1 (Role of Price Schedule) We work directly with the price schedule ρ

as a function of the insurance contract x, rather than as a function of the type θ as is standard

in the mechanism design literature. As Rochet (1985) argues, the two approaches are equivalent.

And, as we discuss more fully below, because there will typically be many θ’s choosing any given

x, this is technically more natural since it automatically imposes that two types who choose the

same contract pay the same price. More importantly, we proceed largely as if ρ alone is the design

variable. This is because for any given ρ, our structure has enough single-crossing embedded in it

that for almost all θ, the consumer has a unique optimal contract choice. See the proof of Lemma

2 in Appendix A.6.

Technical Remark 2 (Stochastic Menus) Stochastic mechanisms can be very useful to the

principal when types are multidimensional (Manelli and Vincent, 2006), or when the type includes

the agent’s risk aversion (Kadan et al., 2017). For example, having the premium on the insurance

contract targeted at types with low risk aversion be determined by a lottery would help dissuade

more risk averse types from imitating the less risk averse types. We find it implausible that the

insurer would be allowed to run such lotteries (indeed, many regulations prevent charging identical

consumers different premiums), and so we rule them out here for reasons of economic realism.

Technical Remark 3 (Subsumed Screening Problems) If one takes v, γI and γG as prim-

itives, rather than building them up as we did from a health insurance setting, then we have a
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substantially general model of multidimensional screening with product quality or quantity that

lies in R (see Section 5 in Rochet and Stole, 2003). For example, our setting subsumes extensions

to multidimensional private information of the one-good nonlinear pricing problem in Maskin and

Riley (1984), or the quality-provision problem in Mussa and Rosen (1978), as well as optimal reg-

ulation settings in the tradition of Baron and Myerson (1982). For our analysis to go through, it

is important that the model be vertical, in that for some dimension τ of the consumer’s private

information, there is strict single-crossing, vxτ > 0. We establish this property for vxψ below.

3 Consumer Demand for Insurance

We first derive comparative statics of insurance demand as a function of the consumer’s type.

We will show that more risk averse consumers have a higher demand for insurance, as do sicker

consumers. That is, demand always increases in the consumer’s risk aversion parameter ψ given ω

and F , and it also increases in the distribution of health states F when the distribution becomes

worse (in a precise sense), given ψ and ω. The relationship between taste for healthcare utilization

and demand for insurance (determining the direction of “selection on moral hazard”) is more

complex. Concavity in the out-of-pocket cost function c(·, x) makes the demand for insurance

change in an ambiguous fashion when ω changes, given ψ and F . However, we can derive an

unambiguous result describing relationship when contracts are linear.

We will find it useful to define the following “marginal-utility-adjusted” density of health states

given x and θ:

(4) m(l|x, θ) =
e−ψz(l,x,ω)f(l)∫
e−ψz(l′,x,ω)f(l′)dl′

.

This is a transformed density of l where the weight on each health state l is updated by the marginal

utility to the consumer of an extra dollar in that state. To see the role of m, note that by the

Envelope Theorem, the derivative of the consumer’s ex-post payoff with respect to coverage level

is zx(l, x, ω) = −cx (a∗(l, x, ω) , x), since the effects on z via the associated change in the optimal

level of healthcare utilization can be ignored. Hence from (2),

(5) vx(x, θ) = − 1

ψ

∫
e−ψz(l,x,ω)(−ψzx(l, x, ω))f(l)dl∫

e−ψz(l,x,ω)f(l)dl
= −

∫
cx(a∗(l, x, ω), x)m(l|x, θ)dl,

meaning that the marginal effect of higher coverage on a consumer’s certainty equivalent payoff is

the average under m of paying −cx less in each health state.

We are interested in the comparative statics of χ with respect to θ. We therefore analyze the

behavior of vx with respect to ω, ψ, and F , since this will pin down the behavior of χ.

Proposition 1 (Properties of Insurance Demand) The consumer’s demand for insurance sat-
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isfies the following properties for all x and θ: (i) vxψ > 0, and thus χ(ω, ·, F ) is increasing in ψ;

(ii) if {f(·|τ)}τ∈[0,1] is a parametrized family of densities ordered by strict monotone-likelihood-ratio

property (MLRP), then vxτ > 0, and thus χ(ω, ψ, ·) is increasing in τ ;10 (iii) if b(a, l, ω) = b̂(a−l, ω)

and c is convex in a (includes the linear case), then vxω > 0, and thus χ(·, ψ, F ) is increasing in ω.

Technical Remark 4 (Demand for Insurance and ω) One can also show that χ(·, ψ, F ) is

increasing when F is dirac at 0.11 Beyond these cases, the comparative statics in ω are complex.

One can show that vxω > 0 if and only if

0 <

(∫
bωmdl

)
x

=

∫
bωaa

∗
xmdl +

∫
bωmxdl,

where the first term in the last expression is strictly positive. But, as x increases, the cdf M

decreases (since as insurance improves, the marginal utility of income becomes more equal across

states), and when b(a, l, ω) = b̂(a− l, ω), (bω)l =s (a∗− l)l. If c(·, x) is convex then sicker individuals

face a higher marginal cost of care, and so (a∗ − l)l ≤ 0, and
∫
bωmxdl is positive. But, if c(·, x) is

sufficiently concave, then the second term is negative and overwhelms the first term.

4 Optimal Menu Design

We now describe necessary conditions that an optimally designed menu satisfies. After some pre-

liminaries, we consider two versions of the insurer’s menu design problem. We first consider the

case in which the insurer is restricted to offering a finite set of fixed contracts. We then turn to

the case in which the insurer can offer a continuum of contracts, such that it can also control the

qualities of the contracts offered. In both cases, we derive necessary conditions for optimality of

ρ that substantially generalize the familiar screening conditions in Mussa and Rosen (1978) and

Maskin and Riley (1984) for the one-dimensional case. We emphasize that these conditions are

necessary only, since the problem does not have enough structure for us to show that the insurer’s

payoff is quasiconcave in ρ.

We then show that the optimal menu under a fixed set of contracts converges to the optimal menu

under a continuum of contracts as the number of contracts in the fixed set grows large. Because it

is substantially more tractable and can approximate the continuum case arbitrarily well, we view

the case with a fixed set of contracts to be of primary importance. We close the section with a

number of other results about the insurer’s problem, including the incentive to exclude and screen

consumers, and the existence of positive trade in the market.

10A family of densities {r(·|t)}t∈[0,1] has the strict MLRP if r(s|th)/r(s|tl) is strictly increasing in s for all th > tl.
In this case we will say that the cdf R shifts in the strict MLRP sense.

11By (4) the cdf M is also degenerate at 0. Thus, vx(x, θ) = −cx(a∗(0, x, ω), x) and hence vxω = −cxaa∗ω > 0.
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4.1 Preliminaries

To simplify our analysis of the insurer’s objective function S, we separate the portion that represents

gains from trade from the portion that represents a transfer between the insurer and consumers.

To this end, let

S(x, θ) ≡ wI(v − γI)− (wG − wI)γG,

where the term (v−γI) is the dollar value of the social surplus created by allocating a consumer of

type θ to contract x, while (wG−wI)γG captures the effect of government transfers to the insurer.

We can then rewrite the insurer’s payoff as S(p, x, θ) = S(x, θ)− (wI −wC)(v(x, θ)− p), where the

second term measures the value the insurer places on consumer surplus. It will be important in

what follows that S does not depend on p.

We can interpret the marginal gains from trade from insurance in familiar terms. The derivative

of social surplus (v − γI) with respect to coverage level is given by

vx − γIx =
∫

(−cx)mdl −
∫

(−cx)fdl

Marginal value of
risk protection

−
∫

(1− ca)a∗xfdl
Marginal social cost
of moral hazard

.

Recall that m reflects health states weighted by marginal utilities. So,
∫

(−cx)mdl represents the

benefit to the consumer of marginally more generous insurance, while
∫

(−cx)fdl is the cost to the

insurer. The difference between the two represents the marginal value of risk protection provided by

insurance. As coverage level increases, the additional healthcare spending a∗x induced by insurance

confers on the consumer a marginal benefit of ba, which at an optimum level of spending equals

its marginal out-of-pocket cost ca. The full marginal social cost to the insurer, however, remains

1. Averaging across all health states,
∫

(1 − ca)a∗xfdl then represents the marginal social cost of

spending induced by insurance.

As a final preliminary, for any θ, let x̄(θ, ρ) be the largest best response to ρ and x(θ, ρ) the

smallest best response. It will simplify the derivations if for almost all θ, x̄(θ, ρ) and x(θ, ρ) (which

may be equal) are the only best responses for θ. Formally, say that ρ has the two-best-response

property (2BRP) if for almost all (ω, F ), the best response correspondence X(ω, ·, F, ρ) has at most

two elements for any ψ. We will also assume that F has a finite-dimensional parametrization F̃ (·|t),

where t ∈ [0, 1]n, and F̃ (·|t) is strictly MLRP increasing in the first coordinate of t.12 We will also

say that two price schedules are close to each other if for a given contract available at a given price

under one price schedule, something almost as good is available for only a slightly higher price

under the other.13

12That is, there is G̃ a joint cdf on [0, ω̄]× [0, ψ̄]× [0, 1]n with density g̃ such that for all Y ⊂ [0, ω̄]× [0, ψ̄]×∆([0, l̄]),
we have G(Y ) = G̃{(ω, ψ, t)|(ω, ψ, F̃ (·|τ)) ∈ Y )}.

13That is, for two price schedules ρ′ and ρ′′, the distance d(ρ′, ρ′′) is the smallest number such that for each x, there
is x̂ within d(ρ′, ρ′′) to the left of x with ρ′′(x̂) ≤ ρ′(x) + d(ρ′, ρ′′), and vice versa. Formally,

d(ρ′, ρ′′) = min{δ|ρ′′(max (x− δ, 0)) ≤ ρ′(x) + δ and ρ′(max (x− δ, 0)) ≤ ρ′′(x) + δ for all x ∈ [0, 1]}.
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Technical Remark 5 (Genericity of 2BRP) Our strong intuition is that 2BRP holds generi-

cally. For any three x′ < x′′ < x′′′, there is a locus of θ where the consumer is indifferent between

x′ and x′′ and one where the consumer is indifferent between x′ and x′′′. It would be extremely

surprising if these loci corresponded over any region, but v is sufficiently complicated that formal-

izing this is intractable beyond some special examples. We can do the analysis that follows without

2BRP, but the notational load is extreme, and the economics less transparent.

4.2 Optimally Pricing a Fixed Set of Contracts

Suppose the insurer is restricted to offering a fixed set of contracts {xk}Kk=1, where x0 < x1 < · · · <
xK ≤ 1, but can freely set their associated premiums. Consider a candidate price schedule ρ, and

a perturbation in which the insurer raises (or reduces) by a constant amount the premiums on all

contracts more generous than a given contract x. As premiums increase, two things happen. First,

the insurer makes more money on inframarginal consumers who continue to choose a contract above

x. Second, some consumers who previously chose a contract above x will substitute to contract

x (or below). The switchers will generate a different amount of surplus than previously. At the

optimum, for either an increase or decrease in premiums, the insurer balances the two effects.

Formally, fix (ω, F ) and some 0 ≤ k < K and, suppressing them in what follows, let ψ̂ be the

boundary type such that types less risk averse than ψ̂ choose xk or below, while types more risk

averse than ψ̂ choose xk+1 or above. Now, raise the premiums for all contracts k+ 1 and above by

a small amount ε and, abusing notation, let ψ̂(ε) be the new boundary type after the perturbation.

Consumers with risk aversion between ψ̂ and ψ̂(ε) now substitute from their previous choice of

contract to a lower contract. The size of this effect depends on (i) how thick the density of types

is near ψ̂ (g(ψ̂)); (ii) how quickly the boundary moves (ψ̂ε(0)); and (iii) the per-consumer impact

on the insurer of the induced change in contract choice measured by S. When ψ̂ is interior, 2BRP

implies that the boundary type ψ̂ is indifferent between contact x = xk for some k ≤ k and contract

x̄ = xk̄ for some k̄ > k, and that these two contracts are the only two optimal choices. In this case,

we can define a ratio

(6) r =
S(x̄, ψ̂)− S(x, ψ̂)

vψ(x̄, ψ̂)− vψ(x, ψ̂)
,

where the denominator captures the speed at which the boundary type moves and the numerator

captures the impact of that move on the insurer.14 Multiplying r by g(ψ̂) captures effects (i)–(iii).

The minimum is well-defined since ρ is left-continuous. It is straightforward to check that d is a metric. Indeed,
d is the Levy metric (Billingsley (1995); Problem 14.5, p.198) adjusted to take account of the fact that x lies in a
compact support, and we will refer to it as such henceforth.

14If ψ̂ is not interior, then set r = 0, since in that case, ψ̂ε(0) = 0. In the proof, we show that with probability one
there is some (ω, F )-type such that either ψ̂ is interior or the consumer has a strict preference between his favorite
contact below xk and his favorite contract above xk+1. In that event, ψ̂ will equal either ψ or ψ̄ as appropriate,
and will remain that way even when the price vector is perturbed by a small amount.
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The other effect of the perturbation is that the insurer now makes more money on infra-marginal

consumers who continue to choose a contract above xk. The size of this effect depends on the

number of (ω, F )-type consumers who are more risk averse than ψ̂ (1 − G(ψ̂)). At the optimum,

the insurer balances the expected value of all of these effects across (ω, F )-types. Reintroducing

dependencies on (ω, F ), the overall impact on the insurer’s payoff when facing type (ω, F ) is

(7) V(xk, ω, F ) ≡ (wI − wC)(1−G(ψ̂(xk, ω, F )|ω, F ))− r(xk, ω, F )g(ψ̂(xk, ω, F )|ω, F ).

We can now state our optimality theorem. Write G(ω, F ) for the marginal of G onto (ω, F ).

Theorem 1 (Optimality Condition: Fixed Set of Contracts) Let (ρ, χ) be optimal given {xk}Kk=0,

and let ρ satisfy 2BRP. Then,
∫
V(xk, ω, F )dG(ω, F ) ≤ 0 for k < K with equality if ρ(xk) <

ρ(xk+1).

The role of ρ(xk) < ρ(xk+1) is that when ρ(xk) = ρ(xk+1), the insurer cannot lower ρ(xk+1) without

also lowering ρ(xk), given that price schedules must be monotone. The proof is in Appendix A.2.

4.3 A Continuum of Contracts

We next consider what happens when the insurer is free to offer all coverage levels x in [0, 1]. As

before, fix an x strictly above which we will raise the price by ε, and given x and (ω, F ), let ψ̂,

ψ̂(ε), x̄ and x be defined as before. If x̄ > x, then r defined by equation (6) continues to capture

the effect of types who flow from above x to below x when ε is raised. But, because we are in the

continuum, it can easily be that the best contract choice correspondence is single valued at ψ̂, so

that x̄ = x = x. In this case, it is useful think of r as reflecting a limit where x̄ − x is strictly

positive but small, and note that Cauchy’s Mean Value Theorem then tells us that

r =
Sx(x, ψ̂)

vxψ(x, ψ̂)
,

an intuition we formalize in Appendix A.4. With the definition of r modified in this way, we

can again show that the value of the perturbation facing (ω, F ) is V(x, ω, F ), and so Theorem 1

generalizes readily to the continuum. See Theorem 3 in Appendix A.4. There is also an additional

necessary condition that must hold in the continuum case, related to the insurer’s ability to adjust

coverage levels of the contracts offered, in addition to their prices. This intermediate case of a finite

number of contracts with endogenous qualities is discussed in Appendix A.3.

4.4 Some Relationships to the Literature

Theorem 1 (and Theorem 3 in Appendix A.3) generalize several results from the literature on

principal-agent problems with private information. First, our optimality condition for the premium

15



schedule
∫
VdG (ω, F ) = 0 can in fact be interpreted in quite a familiar way. When the insurer is

a monopolist, it has a marginal revenue = marginal cost interpretation, and when the insurer is

a social planner, it has a price = marginal cost interpretation. We will make this point in more

detail in Section 5, and so we defer the details.

Second, consider the monopoly case and a continuum of contracts, and assume that there is

only one (ω, F ), but that ψ is the consumer’s private information. Then the setting reduces to a

standard one-dimensional principal-agent problem, and it can be shown that our main condition

given in equation (7) reduces to

Sxg − vψx(1−G) = 0,

and so reflects the standard efficiency versus information-rents trade-off. That is, providing slightly

more coverage to a type ψ changes efficiency by Sxg, but also has an impact vψx(1 − G) on the

information rents that must be given to types higher than ψ. If instead we change a given quality

x while leaving its premium unaltered, then the perturbation has bite only if χ is constant on some

interval (ψl, ψh). Online Appendix B.6 shows that the ensuing condition reduces to the standard

“ironing” condition (Fudenberg and Tirole, 1991, Chapter 7),

∫ ψh

ψl

(
Sx − vxψ

1−G
g

)
gdl = 0.

Third, return to multidimensional types, and assume that we restrict the monopolist to choosing

a single contract, which is a special case of the setting with a finite number of contracts discussed

in Appendix A.3. Online Appendix B.6 shows that in this case, our necessary conditions coincide

with those of Veiga and Weyl (2016). Namely, the conditions can be combined to derive a single

necessary condition on the optimal contract x with a term involving the covariance between the

marginal benefit for the consumer, vx, and the cost to the insurer γI , calculated using the density

of types on the margin between choosing x and the outside option x0.15,16

Finally, and in line with Technical Remark 3, if we start with functions v and γI as primitives

(without the structure provided by the insurance problem), then our results provide the optimality

conditions for suitable extensions of, say, Mussa and Rosen (1978) and Maskin and Riley (1984)

with multidimensional types.

15Veiga and Weyl (2016) interpret a positive covariance as “adverse sorting” in that the marginal types are costly for
the firm, and a negative covariance as “advantageous sorting.”

16One can generalize this construction to any finite number of contracts (with two covariances in the resulting
expression). We omit this development for several reasons. First, we find the interpretation of the resulting
expression to be more involved than that driven directly by the two perturbations. Second, the covariance terms
disappear in the limit as steps grow small. And third, we are skeptical that there are economically interesting
primitives giving structure to these covariances.
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4.5 Convergence

We now show that the solution to the problem where the insurer can offer a continuum of contracts

is well-approximated by the problem with a finite set of contracts. Definition 1 defines convergence

of sets of price schedules. Theorem 2 then shows that if Pn converges to P0, then the payoff to the

insurer does as well, and that the limit of optimal solutions is optimal.

Definition 1 Say that a sequence (Pn) of closed subsets of the closed subset P0 ⊆ P converges to

P0 if for all ρ ∈ P0, there is a sequence (ρn) with each ρn ∈ Pn such that ρn → ρ.

Theorem 2 (Convergence) Let P0 be closed, and let Pn → P0. Then, the payoff to the insurer

under Pn converges to her payoff under P0. Further, if ρn → ρ̂ is any convergent sequence of

optimal solutions for the insurer given Pn, then ρ̂ is optimal for the insurer in P0, and the payoffs

to the consumer of each type converges to those under ρ̂.

Theorem 2 has two main implications. First, for numerical purposes, the modeler can use any

reasonable set of fixed contracts, and be confident that they get a result that approximates what

the insurer can achieve with a continuum of contracts. The details of how the sequence Pn is

constructed simply do not matter, as long as the set of contracts grows dense.

Second, this result provides theoretical flexibility. If the insurer can offer a sufficiently rich set

of fixed contracts, then there is a vanishing amount of value added by also allowing it to modify

the coverage levels of those contracts, as in Appendix A.3. We can therefore work in the case of a

(large) fixed set of contracts or in the continuum, whichever is more convenient. In the remainder of

the paper, we focus on fixed set of contracts. Our numerical exploration suggests that the number

of allowable contracts can be shockingly small and still closely approximate the continuum limit in

terms of insurer and consumer payoffs.17 We discuss the speed of convergence in Section 6.2.

4.6 Incentives to Exclude, Screen, and Trade

Besides being intuitive, the optimality condition
∫
VdG = 0 also provides insight into the insurer’s

incentives to optimally exclude and screen types. For example, one can show that from the point of

view of the social planner, a monopolist excludes too many consumers from insurance above x0. One

can also show that if ω was the only source of private information, a social planner would completely

pool types, while a monopolist insurer may even completely sort types, an extreme example of

differential incentives to screen. See Online Appendix B.7 for details. Since these insights will be

much more transparent in Section 5, we postpone further discussion of their economic implications.

17We conjecture that if the contracts are relatively evenly spaced, then convergence is of the order 1/K2. If the
insurer’s profit had a Gateaux derivative everywhere, with bounds on the second derivative, then the rate of
convergence result would follow as long as the optimal ρ is interior. Where 2BRP holds, the Gateaux derivative
as one moves from ρ linearly towards ρ̂ is

∫ ∫
(ρ̂(x)− ρ(x))VdGdx. We do not know how to show that 2BRP holds

everywhere or how to tame the speed at which the derivative changes.
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Another question of interest is whether a monopolist insurer always trades (that is, makes strictly

positive profits).18 Assume that the government’s costs γG increase with consumers’ chosen level

of coverage, that F̄ is non-degenerate (so that the worst risk type faces real risk), and that the

outside option is strictly less than full insurance. Under these conditions, the monopolist insurer

will always choose to sell to a strictly non-empty set of types.

Proposition 2 (Positive Trade) Assume that the insurer is a monopolist, that there is a contin-

uum of contracts, that the government’s costs γG increase with consumers’ chosen level of coverage,

and that x0 < 1. Then, because F̄ is non-degenerate, any optimal menu for the insurer involves a

strictly positive amount of trade. That is, the insurer sells contracts strictly greater than x0 to a

positive-measure set of types.

The proof is in Appendix A.5, but the intuition is as follows. From the point of view of the

monopolist, there is “no moral hazard” at x0, since the government pays for any spending that

occurs. Giving a little extra insurance to some types therefore has a first-order gain in terms of

the insurance motive, but only a second-order cost in terms of medical spending that is viewed as

wasteful from the point of view of the monopolist. If the government instead adjusts its policy so

that the monopolist bears the full cost of all spending induced by higher coverage, then trade will

only occur so long as there are positive gains from trade in the market for incremental coverage.

5 A Simplified Problem

We now reformulate the insurer’s problem in a way that dramatically simplifies the derivations and

allows the problem to be analyzed in a familiar graphical framework. Formally, we show that under

a quasiconcavity assumption on the consumer’s problem, the insurer’s full problem of setting a price

schedule on a fixed set of contracts can be reduced to a set of entirely independent problems of

setting the marginal price of incremental coverage. A similar approach has been proposed by Wilson

(1993) in a much simpler setting. The strengths and weaknesses of this approach are discussed in

depth in Armstrong (2016).

5.1 The Reformulation

The key aspect of the simplification is to reformulate everything in terms of incremental levels of

coverage. To that end, we wish to express the insurer’s expected payoff on a given consumer in a

given contract as the payoff the insurer obtains when the consumer takes the outside option plus

all the incremental effects of moving the consumer from one coverage level to the next until the

relevant contract is reached.
18This question has received attention both in the empirical insurance literature (see the no-trade result in Hendren,

2013) and in the theoretical insurance literature with either adverse selection or both adverse selection and moral
hazard (see Chade and Schlee (2020) and Chade and Swinkels (2022) for no-trade and trade results).
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Fix a set of allowable contracts x0 < x1 < x2 < · · · < xK ≤ 1. For a given premium schedule

ρ, and for k = 1, . . . ,K, let pk = ρ(xk) − ρ(xk−1) be the marginal premium between adjacent

contracts. Similarly, let vk(θ) = v(xk, θ) − v(xk−1, θ) be a type-θ consumer’s marginal willingness

to pay between adjacent contracts, γI,k(θ) = γI(xk, θ)− γI(xk−1, θ) be the marginal insured cost,

and γG,k(x0, θ) = γG(x0, xk, θ) − γG(x0, xk−1, θ) be the government’s part of that cost. Note that

since contracts are vertically differentiated and the premium schedule is increasing in coverage level,

pk, vk, γI,k, and γG,k are all weakly positive. The insurer’s marginal payoff from charging type θ

a marginal premium pk to move up a coverage level is then

Sk(pk, θ) = wC(vk(θ)− pk) + wI(pk − γI,k(θ) + γG,k(x0, θ))− wGγG,k(x0, θ).

Given this notation, the insurer’s objective function can be re-expressed. Let k̃(θ, ρ) be the

optimal contract chosen by a consumer of type θ facing price schedule ρ (that is, χ(θ) = xk̃(θ,ρ)).

The payoff to the insurer on type θ given ρ is then

(8) S0(θ) +

k̃(θ,ρ)∑
k=1

Sk(pk, θ),

where S0(θ) = wCv(x0, 0) + wIγI(x0, θ) + wG(x0, x0, θ) is the payoff from putting type θ into

contract x0, and where we take the sum to be zero when k̃(θ, ρ) = 0.

The function k̃ is still complicated, since the consumer’s optimal contract is still defined by a set

of non-local incentive constraints. But if the consumer’s problem has some additional structure,

we can substantially simplify k̃. Say that a price schedule ρ is quasiconcave consistent (QC) for a

consumer of type θ if the consumer’s payoff v(xk, θ) − ρ(xk) is single-peaked in k (that is, single-

peaked in coverage level). When ρ is QC for θ, then the consumer’s payoff reaches its peak at the

last point where their marginal payoff vk(θ)− pk is positive. This is very useful, because now k̃ is

defined by a local incentive constraint: k̃(θ, ρ) = max{k|vk(θ) ≥ pk}.

If ρ is QC for θ, then we can rewrite the insurer’s payoff on type θ as

(9) S(x0, θ) +
∑

{k|vk(θ)≥pk}

Sk(pk, θ).

If ρ is QC for all θ, then we can write the insurer’s expected payoff from providing increment k of

insurance to all types who are willing to pay for the increment as

Π̃k(pk) ≡
∫
{θ|vk(θ)≥pk}

Sk(pk, θ)dG(θ),
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meaning the insurer’s total payoff is given by

Π̃(ρ) ≡
∫
S(x0, θ)dG(θ) +

K∑
k=1

Π̃k(pk).

To see this, integrate (9) with respect to G and swap the order of integration and summation.19

So, consider the problem

(P̃ ) max
(p1,...,pK)

K∑
k=1

Π̃k(pk).

Since each of the insurer’s incremental payoffs Π̃k(pk) is a function only of the incremental price

pk, the solution ρ̃ to P̃ can be solved one contract at a time. That is, the optimal price schedule

ρ̃ can be constructed from the set of optimal marginal prices (p̃1, . . . , p̃K), where on each margin,

p̃k ∈ arg maxpk Π̃k(pk). P̃ is a much simpler problem than P .

When can we use the solution to P̃ to understand the solution to P? Note first that if ρ is QC

for all consumer types except a small set, then we will have Π(ρ) ∼= Π̃(ρ), with the approximation

arbitrarily good as the measure of the set of types where ρ is not QC goes to zero. The two

solutions will therefore be nearly the same if the solution to each is QC for all but a small measure

of θ. If we knew a priori that any optimal solution to either P or P̃ was QC for all θ, then the

two problems would be exactly the same.

We are unaware of theoretical primitives that justify QC (indeed, Deneckere and Severinov (2017)

cast serious doubt on whether such primitives generally exist). However, we note three features of

QC here. First, the simplification holds only for vertically differentiated contracts, since otherwise

there is no natural order on contracts (our necessary conditions can be extended to the non-stacked

case). Second, single-dimensional consumer heterogeneity is neither necessary nor sufficient for QC

to hold. For example, if moral hazard is initially strong but is lower at high levels of spending,

QC is unlikely to hold even if the only dimension of heterogeneity is risk aversion: the insurer will

want to offer lower level of insurance, where there is significant incremental moral hazard, to few

consumers, but higher level of insurance, where there is little incremental moral hazard, to many

consumers. Third, in our empirical setting below, differences in risk types (that is, in F ) drive a

substantial portion of variation in willingness to pay (WTP), and this seems to help QC to hold. In

the end, QC must be checked empirically, and our numerical results illustrate a method for doing

19Formally, letting IA be the indicator function of the set A,∫ ∑
{k|vk(θ)≥pk}

Sk(pk, θ)dG(θ) =

∫ K∑
k=1

I{vk(θ)≥pk}S
k(pk, θ)dG(θ) =

K∑
k=1

∫
I{vk(θ)≥pk}S

k(pk, θ)dG(θ)

=

K∑
k=1

∫
{θ|vk(θ)≥pk}

Sk(pk, θ)dG(θ) =
K∑
k=1

Π̃k(pk).
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so. In Section 6, we further discuss this condition and evaluate the extent to which optimal menus

are QC in our calibrated population.

5.2 Analyzing the Simplified Problem

In the simplified problem, we can think about the insurer’s optimal price increments pk one at a

time. In this section, we use this simplicity to analyze the solution to P̃ , and show how to think of

that solution in familiar terms.

To begin, rewrite the objective of the insurer in terms of quantities instead of prices. That

is, instead of choosing incremental prices, we can think of the insurer as choosing the fraction of

consumers that will purchase each incremental coverage level. When the incremental price is pk,

this fraction is equal to Qk(pk) =
∫
{θ|vk(θ)>pk} dG(θ). When Qk ∈ (0, 1), it is strictly decreasing in

pk, and thus has an inverse function P k defined by P k(Qk(pk)) = pk for every pk.20

Let

CI,k(qk) =

∫
{θ|vk(θ)>Pk(qk)}

γI,k(ω, F )dG(θ)

be the insurer’s cost of providing incremental coverage level k to the qk consumers who purchase

at price P k(qk). Let the marginal cost MCI,k be the derivative of CI,k. Similarly, let

CG,k(qk) =

∫
{θ|vk(θ)>Pk(qk)}

γG,k(x0, ω, F )dG(θ)

be the government’s cost of qk, with associated marginal cost MCG,k, and let

V k(qk) =

∫
{θ|vk(θ)>Pk(qk)}

vk(θ)dG(θ)

be aggregate consumer utility when qk consumers are served.

Note that V k
q (qk) = P k(qk). It is now straightforward to verify that

(10) Π̃k(P k(qk)) = wC [V k(qk)− P k(qk)qk] + wI [P k(qk)qk − CI,k(qk) + CG,k(qk)]− wGCG,k(qk),

and thus we can think of the insurer as solving maxqk Π̃k(P k(qk)). We can also now usefully

decompose the insurer’s payoff into a “benefit” equal to (wI − wC)P k(qk)qk + wCV k(qk) and a

“cost” equal to wICI,k(qk)− (wI−wG)CG,k(qk). In the case of a monopolist, when (wC , wI , wG) =

(0, 1, 0), the benefit is simply revenue, P k(qk)qk, and the cost is simply the expected insured cost

of incremental coverage, CI,k(qk)− CG,k(qk).

Denoting the price-elasticity of demand by ε, so that 1/ε = P k
qk
qk/P k, we can write the derivative

20To see that Qk is strictly decreasing where it is interior, recall that vxψ > 0 and so vk(ω, ·, F ) is strictly increasing.
Hence, {θ|vk(θ) > pk} is strictly shrinking in pk.
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of the insurer’s objective function as

(11)
(

Π̃k(P k(qk))
)
qk

= P k(qk)
(
wI + (wI − wC)1

ε

)
Marginal benefit

− (wIMCI,k(qk)− (wI − wG)MCG,k(qk))

Marginal cost

.

The first term is the insurer’s marginal benefit of giving more consumers incremental coverage level

k.21 As quantity increases, the insurer receives P k(qk) on the extra unit sold, but P k is falling at

rate P k(qk)/ε, resulting in a transfer from the consumer to the insurer valued at wI − wC . The

second term is the insurer’s marginal cost, where wIMCI,k(qk) is the incremental insured cost

of the marginal consumer, and (wI − wG)MCG,k(qk) is the insurer’s valuation of the associated

government spending.

At an optimum, marginal benefit is equal to marginal cost, yielding a familiar markup equation.

For example, when the insurer is a monopolist, the optimality condition reduces to P k(1+(1/ε)) =

MCI,k −MCG,k. Furthermore, all the terms in Π̃k
pk

= 0 can be unpacked to obtain an expression

that is a direct analog of the optimality condition
∫
VdG = 0.22 This makes intuitive sense, as

increasing the marginal premium pk raises the price schedule ρ for all x > xk−1 and so is effectively

the perturbation discussed in Section 4.2. It should therefore not be a surprise that we could have

interpreted the original optimality condition as a markup equation, as we do here.

5.3 Graphical Analysis

The simplified problem is composed of a set of independent two-contract problems along each

potential coverage level margin. It can therefore be analyzed graphically in the spirit of Einav

et al. (2010). Indeed, they suggest a similar “incremental” approach to generalize their model to

more than two contracts in the case of perfect competition, and Geruso et al. (2019) take a first

step in this direction by extending the graphical analysis to accommodate three contracts. Our

analysis formalizes the assumptions necessary to carry out this approach. In addition, the flexibility

of our insurer objective function allows our graphical analysis to nest both the case of a monopolist

insurer (as in Mahoney and Weyl, 2017) and the case of a social planner (as in Marone and Sabety,

2022). For simplicity, we normalize the insurer’s weight on its own profits wI to 1, and suppose the

government’s cost of providing base coverage does not depend on the consumer’s chosen contract

(γGx = 0), and hence MCG,k = 0 for all k.

Figure 1 illustrates the insurer’s problem for one marginal coverage level. It shows the inverse

demand function P k relevant on that margin, the associated marginal revenue function MRk =

P k(1 + (1/ε)), and the insurer’s marginal cost curve MCk = MCI,k.23 The insurer’s marginal

21The marginal benefit also in principle includes a term wC(V kqk (qk) − P k(qk)), but since the marginal consumer is

indifferent about paying P k(qk), this term is zero.
22See Lemma 3 in Appendix A.7.
23Note that we have drawn the marginal cost as decreasing in the quantity of consumers that purchase the marginal

coverage, reflecting an assumption that there is adverse selection (Einav et al., 2010).

22



benefit of serving more consumers is then MBk(qk) = P k(qk)(1+(1−wC)1
ε ), which can be written

as a convex combination of the marginal revenue and inverse demand curves, depending on the

weight given to the consumer:

MBk(qk) = (1− wC)MRk(qk) + wCP k(qk).

The marginal benefit curve shown is an example for a case where wC ∈ (0, 1).24 The insurer’s

optimal quantity q̃k obtains where MBk = MCk.25

Figure 1. Insurer’s Optimal Choice of qk

Notes: The figure shows the inverse demand curve P k, the marginal revenue curve
MRk, the insurer’s marginal cost curve MCk, and the insurer’s marginal benefit curve
MBk in the market for incremental coverage amount k. The insurers optimal quantity
q̃k obtains where the marginal benefit curve intersects the marginal cost curve.

Figure 1 subsumes a number of cases of interest. In the case of a monopolist (wC = wG = 0),

MBk coincides with the marginal revenue curve MRi, and the optimal quantity solves MRk =

MCk (so long as the solution is interior). For a utilitarian social planner with no excess cost of

public funds (wC = wG = 1), MBk coincides with the inverse demand curve, and the optimal

quantity solves P k = MCk. As drawn, the social planner chooses the corner q̃k = 1. Finally, in

24Note that wC > 1 is a viable possibility.
25Note we have drawn the marginal benefit curve as crossing the marginal cost curve from above. This is not

guaranteed from our primitives. Indeed, there is the possibility of a single crossing from below or of no crossing at
all, in which case the solution will not be interior, or of multiple crossings. One can similarly write the insurer’s
average benefit as ABk(qk) = (1−wC)P k(qk) +wC(V k(qk)/qk), and note that this is a convex combination of the
average benefit function of the monopolist (their average revenue), P k, and that of the social planner, V k/qk, and
the insurer’s average cost ACk as ACk(qk) = (1− wG)((CI,k(qk)/qk)− (CG,k(qk)/qk)) + wG(CI,k(qk)/qk), which
is also a convex combination. The insurer is better off not selling incremental insurance xk to anyone if ABk lies
below ACk at the optimal interior choice. In our example figure, where marginal cost crosses marginal benefit from
below, this “participation” constraint is automatically satisfied, since there are no fixed costs, so that profits are
zero at qk = 0 and increasing as we move towards q̃k.
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the case of a planner with an excess cost of public funds (wC < 1 = wG), MBk is the usual convex

combination of the marginal revenue and inverse demand curves. As the cost of public funds rises

(which, given our normalization, corresponds to wC falling), we approach the monopoly solution.

5.4 Comparative Statics

The simplified problem yields some simple monotone comparative statics of economic interest, many

of which can be read directly from Figure 1. First, when the consumer is weighted more heavily in

the insurer’s objective function, the marginal benefit curve rotates up towards the demand curve.

The optimal quantity q̃k on every marginal coverage level is therefore increasing in wC (and the

optimal price p̃k is decreasing).26 Since the price of x0 is fixed at zero, an increase in wC makes the

premium schedule lower and flatter. Conversely, if the consumer is weighted less heavily relative

to the insurer, for example if the insurer is a social planner facing a rising cost of public funds,

the marginal benefit curve rotates down towards the marginal revenue curve. As the cost of public

funds increases to infinity, the marginal benefit curve eventually coincides exactly with the marginal

revenue curve (that is, the monopolist’s and the social planner’s solutions would coincide).

Thus far we have assumed that the government’s cost of providing x0 does not depend on the

consumer’s chosen contract (γGx = 0). In this case, a change in wG has no effect on Figure 1,

since the government’s cost of providing x0 is simply a fixed sum. If MCG,k is instead strictly

positive, then increasing wG causes the marginal cost curve to go up, since the government’s cost

of providing x0 would be increasing in coverage level due to moral hazard. In this case, an increase

in wG results in an increase in the optimal price, making the premium schedule higher and steeper.

5.5 Exclusion and Screening

In Section 4.6, we argued that a monopolist has stronger incentives than a social planner to both

exclude and screen consumers. The simplified problem allows us to strengthen these results and

visualize them graphically.

First note that as long as the insurer values profits more than consumer surplus, the marginal

benefit curve will diverge to −∞ as qk goes to 1, as depicted in Figure 1. The reason for this is

that qk goes to 1, the reciprocal elasticity of demand 1/ε goes to −∞. So long as this term gets any

weight in the insurer’s objective, i.e., as long as profits are weighted at least slightly more heavily

than consumer surplus, the optimal marginal quantity q̃k is therefore strictly less than one.

Proposition 3 (Optimal Exclusion at Every Level) If wI > wC , then q̃k < 1 for all k.

The proof is in Appendix A.8. Proposition 3 applies at every marginal coverage level, including

26By standard monotone comparative statics results, this is true even if there are multiple crossings of marginal
benefit and marginal cost, if there was a single crossing from below, or if there was originally no crossing.
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the first increment of coverage. It thus implies that an insurer with wI > wC optimally excludes a

strictly positive measure set of consumers from the market for incremental coverage.27

Proposition 3 also sheds light on the differential incentives of the social planner and the monopo-

list to screen consumers. As drawn in Figure 1, the demand curve everywhere exceeds the marginal

cost curve, and so, given QC, the social planner wishes to provide a coverage level weakly greater

than k to all consumers.28 But, consistent with Proposition 3, the monopolist optimally allocates

incremental coverage k to some but not all consumers. Hence, again under QC, the monopolist is

allocating some consumers to a contract k or below, and the monopolist uses more contracts than

the social planner.

Finally, note that Proposition 3 also implies that due to the forces of both exclusion and screening,

a monopolist will offer less coverage than a social planner. We investigate the numerical magnitude

of these differences in Section 6.4.

6 Numerical Analysis

To build upon these theoretical predictions, we calibrate a model of a health insurance market and

evaluate market outcomes under various scenarios. Beyond offering a numerical illustration of our

key theoretical results, this approach also allows us to evaluate the magnitudes of the equilibrium

impacts of various policy interventions of interest.

6.1 Description of the Calibrated Market

Consumers. We simulate a population of consumers using a distribution of demographics chosen

to match the under-65 US population and parameter estimates reported in Marone and Sabety

(2022).29 Each consumer is a household composed of some number of individuals. Each household

is characterized by type θ = (ψ, ω, F ), where F is assumed to have a shifted log-normal distribution

such that log(l+κ) ∼ N(µ, σ2). Consumer preferences feature constant absolute risk aversion, and

we parameterize b such that b(a, l, ω) = (a− l)− 1
2ω (a− l)2.

Table 2 summarizes the characteristics of our simulated population. The average household

would have total healthcare spending equal to $12,170 under a full insurance contract, but only

27Optimal exclusion from coverage has precedent in the literature, but only without common values and with much
more structure on the consumer’s payoff function (Armstrong, 1996; Deneckere and Severinov, 2017).

28To see that the situation of Figure 1 can occur, with MCI,k(1) ≤ P k(1), let θ̂ = (ω̂, ψ, F ) be the type in the
population with the lowest marginal willingness to pay for k. (We appeal to Proposition 1 to know that this type
has the most favorable risk distribution F and the lowest risk aversion ψ, but may have ω̂ interior, and we assume

this type is unique for simplicity.) Then, MCI,k(1) = γI,k(θ̂), and P k(1) = vk(θ̂), and so MCI,k(1) ≤ P k(1) if
and only if γI,k(θ̂) ≤ vk(θ̂). Primitives for this are easily established. For example, if the healthiest type in the
population still faces risk, then γI,k(θ̂) ≤ vk(θ̂) holds as long as the least risk-averse type in the population is
sufficiently risk averse.

29Details of the simulation procedure are provided in Online Appendix B.1.
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$10,684 under the null contract, reflecting moral hazard. Facing an equal odds gamble between $0

and $100, the average household would have a certainty equivalent of $48.9, reflecting risk aversion.

Online Appendix Figure B.1 provides additional information on the joint distribution of types in

the population.

Table 2. Population Summary Statistics

Percentile

Sample demographic Mean 10 25 Median 75 90

Demographics

Number of adults 1.9 2.0 2.0 2.0 2.0 2.0
Number of children 0.6 0.0 0.0 0.0 1.0 2.0
Average age of household adults 43.5 26.2 32.6 43.6 54.3 60.7

Dimensions of type θ

Health state distribution parameter µ 1.6 0.3 0.9 1.6 2.3 2.8
Health state distribution parameter σ 1.0 0.8 0.9 1.0 1.2 1.3
Health state distribution parameter κ 0.6 0.1 0.3 0.5 0.9 1.3
Moral hazard parameter ω 1.4 0.8 1.0 1.3 1.7 1.9
Risk aversion parameter ψ 0.9 0.2 0.4 0.6 1.1 1.9

Resulting characteristics

CE of equal odds gamble between $0 and $100 ($) 48.9 47.6 48.6 49.2 49.5 49.7
Expected total spending, null contract ($000) 10.6 3.0 4.4 7.8 13.8 22.3
Expected total spending, full insurance ($000) 11.9 4.1 5.7 9.2 15.2 23.6

Notes: The table shows descriptive statistics for our simulated population of 10,000 households. Note
that the moral hazard parameter and coefficient of absolute risk aversion reported are relative thousands
of dollars.

Insurance Contracts. We consider a set of contracts that are piecewise linear, with a deductible,

coinsurance region, and out-of-pocket maximum design. We suppose that the base level of coverage

x0 is a “Catastrophic” contract with a deductible and out-of-pocket maximum of $10,000. Given

the theoretical analysis, we restrict attention to a potentially large, but fixed set of contracts. Our

baseline set of allowable contracts is depicted in Figure 2. Because they roughly correspond to the

levels of coverage available on the Affordable Care Act exchanges, we refer to the contracts between

Catastrophic and full insurance as Bronze, Silver, and Gold.30 As will become clear, the returns to

allowing an increasingly “dense” contract space are economically small.

6.2 Convergence

Theorem 2 predicts that an insurer’s payoff when restricted to a finite set of contracts will converge

to its unrestricted counterpart as the number of contracts grows. It is silent, however, on how

quickly this may occur. We illustrate and investigate this result by computing optimal menus on

an increasingly dense set of allowable contracts. Figure 2 depicts a set of five allowable contracts,

30The contracts’ deductibles, coinsurance rates, and out-of-pocket maximums are: $5,846, 40%, $7,500 for Bronze;
$3,182, 27%, $5,000 for Silver; and $1,125, 15%, $2,500 for Gold. The actuarial value of the five contracts in our
population of consumers are: 0.40, 0.49, 0.61, 0.79, and 1.00.
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Figure 2. Potential Contracts
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Notes: The figure shows our focal set of allowable contracts. The base
level of coverage x0 provided by the government is the Catastrophic
contract.

spaced at $2,500 out-of-pocket maximum intervals between the minimum and maximum levels of

coverage. We increase (and decrease) the density of this contract space by varying the number of

contracts used to span this range. We move from just two contracts (in which case there is just

Catastrophic and full insurance) to 65 contracts (in which case 15 contracts are added between

each of the five original contracts, meaning contracts are spaced at $156 out-of-pocket maximum

intervals).31

Figure 3 reports the results of this exercise. It plots insurer payoffs as a function of the number of

contracts in the allowable contract space for three different insurers: a social planner with no excess

cost of funds, a planner with a 25 percent excess cost of funds, and a monopolist. As predicted,

insurer payoffs are increasing in the density of the contract space. But in practice, the returns

to additional density are small. We find that after nine contracts (spaced at $1,125 out-of-pocket

maximum intervals), the gains from moving to 65 contracts do not exceed $10 per household per

year for any insurer. After five contracts, gains do not exceed $19. These results are consistent

with both Marone and Sabety (2022) and Ho and Lee (2021), who find that only a limited number

of contracts are sufficient to capture almost all the available surplus in their settings.

There are, however, economically meaningful gains from between two and five contracts. Over

this range, the social planner facing an excess cost of funds can increase social surplus by $177

per household per year, and a monopolist can increase its profits by $289. For the social planner,

31We increase the set of allowable contracts by successively adding a contract between each pair of adjacent contracts.
We proceed in this iterative manner so that under successively “dense” contract spaces, all previously allowable
contracts remain allowable.
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these gains reflect the ability to find a plan that more closely matches the tastes of consumers in

the population. For the monopolist, these gains reflect this same increase in potential gains from

trade, as well as the ability to more effectively screen consumers and thereby extract greater rents

from the market. Our results suggest that while only a modest number of contracts are needed

to closely approximate the limiting environment, there are potentially meaningful consequences

of over-restricting the contract space, for example to only two contracts. Of course, the precise

number of contracts at which payoffs flatten out may vary across settings, in particular with the

size of the range between minimum and maximum allowable coverage.

Figure 3. Convergence
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Notes: The figure shows optimal insurer payoffs as a function of the number of contracts used in
the allowable contract space. Insurer payoffs are reported on a per-consumer per-year basis, and
are measured relative to allocating all consumers to the Catastrophic contract.

Consistent with Theorem 2, we also find that the optimal premium schedules and therefore the

optimal allocations themselves converge as the density of the contract space increases. In the case

of the monopolist insurer, consumer surplus also converges alongside producer surplus. Online

Appendix Figure B.2 depicts the convergence of allocations. As the density of the contract space

increases, the insurers “fill in” in the neighborhood of the their desired allocation under a sparser

contract space. The numerical results are thus quite robust to the density of the contract space.

6.3 Performance of the Simplified Problem

Armed with the convergence results, we proceed with the set of five fixed contracts. We next

investigate how well the simplified version of the problem (presented in Section 5) approximates

the true problem (presented in Section 2). Table 3 reports these results for our three focal insurers.

For each insurer, the table reports the solution to the true problem P , as well as the solution to
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the simplified problem P̃ . Specifically, it reports the optimal premium schedule, the associated

allocations, and the associated insurer payoff when evaluated according to the objective function

of each version of the problem.

Table 3. Performance of the Simplified Problem

Premiums Allocations Insurer Payoff
$000s Pct. of households $000s

Insurer Brnz. Slvr. Gold Full Cstr. Brnz. Slvr. Gold Full Π Π̃ Pct. QC

Social planner

Solution to P 0.16 0.32 0.67 3.21 <0.01 – <0.01 1.00 – 1.823 1.823 1.00

Solution to P̃ 0.13 0.30 0.68 3.19 <0.01 – <0.01 1.00 – 1.823 1.823 1.00

Social planner, 25% ECPF

Solution to P 1.53 2.80 4.64 7.15 0.14 <0.01 0.13 0.74 – 1.659 1.631 0.91

Solution to P̃ 1.32 2.85 4.73 7.23 0.13 0.03 0.13 0.71 – 1.655 1.654 0.99

Monopolist

Solution to P 2.02 4.09 6.46 9.02 0.39 0.03 0.32 0.26 – 0.745 0.739 0.96

Solution to P̃ 2.00 4.13 6.50 9.00 0.38 0.06 0.29 0.26 – 0.745 0.744 0.99

Notes: The table reports the premium schedules ρ chosen by insurers with different objective functions when
solving the two formulations of the menu design problem: the original problem P and the simplified problem
P̃ . The table also reports the associated allocations and the insurer’s payoff when evaluated according to the
objective functions of each problem (Π and Π̃, respectively). Insurer payoffs are expressed on a per household per
year basis, and are measured relative to the allocation of all consumers to the Catastrophic contract. The final
column (Pct. QC ) reports the percent of consumers for whom the premium schedule is quasiconcave consistent.

Recall that the key condition necessary for the two versions of the problem to coincide is that

consumer payoffs are quasiconcave in coverage level at the optimal menu. The final column of Table

3 reports the fraction of consumers for whom the given price schedule fulfills this condition. We

find that it holds for nearly all consumers in the population. That is, the allocation recommended

by the insurer under the solution to the simplified problem is followed by nearly all consumers.

Because the quasiconcavity assumption is so close to being universally satisfied, it is not surprising

that insurer payoffs under the two versions of the problem are extremely close.

The quality of the approximation of the simplified problem means that it can be a very useful

tool for understanding the solution to the true problem. The graphical analysis presented in Section

5.3 described how to solve the insurer’s problem graphically on one marginal coverage level. When

considering more than two potential contracts, there are more margins to consider. Figure 4

demonstrates how to carry out the graphical analysis on all margins simultaneously, in order to

solve visually for the optimal menu across the full set of contracts. The four panels represents

the “markets for incremental coverage” on each of the four margins between our five contracts.

Each panel depicts the marginal willingness to pay curve WTP for the given incremental coverage

amount, the associated marginal revenue curve MR, and the marginal cost curve MC associated

with providing that coverage level increment.32

32Consistent with our baseline formulation of the model, we have implemented “incremental” pricing here in that
the insurer’s cost of providing Bronze coverage is simply the incremental cost over providing Catastrophic (and
not the full cost of providing Bronze). If instead we implemented “total” pricing, the only change to Figure 4
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Figure 4. Illustration of Graphical Analysis: Monopolist and Social Planner’s Problems
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(b) Gold vs. Silver
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(c) Silver vs. Bronze
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(d) Bronze vs. Catastrophic
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Notes: The figure demonstrates the graphical analysis of the simplified problem. Each panel represents the “market
for incremental coverage” between each pair of adjacent contracts. The vertical axes are measured in dollars. The
horizontal axes report the percentage of consumers choosing a given marginal level of coverage. Consumers are
ordered on the horizontal axes according to their marginal willingness to pay for the additional coverage offered on
each margin. The solid line (WTP ) represents consumers’ willingness to pay on each margin, the dotted line (MC)
represents the marginal cost curve, and the dashed line (MR) represents a monopolist’s marginal revenue curve. The
MC and MR curves are constructed as connected binned scatter plots using 100 points.

To solve the insurer’s problem, one simply needs to find the intersection of the marginal benefit

and marginal cost curves in each panel. As discussed in Section 4, a monopolist’s marginal benefit

curve is the marginal revenue curve. The quantities at which MR intersects MC in each panel

therefore reveal the fraction of consumers to whom the monopolist wishes to provide that coverage

level increment. For example, on the margin between Bronze and Catastrophic, marginal revenue

would be that the MC curve on the margin between Bronze and Catastrophic would shift up by an amount equal
to the cost of supplying the Catastrophic contract, as depicted in Online Appendix Figure B.3. This would have
the effect of substantially lowering the insurer’s optimal quantity on that margin, likely introducing a violation of
quasiconcavity.
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exceeds marginal cost for about the 60 percent of consumers with the highest willingness to pay,

consistent with the fact that we see the monopolist optimally allocating 61 percent of consumers to

coverage above the Catastrophic contract (c.f. Table 3). The associated optimal marginal premium

($2,021) can then be read from the value of the willingness to pay curve at this quantity. On the

margin between Gold and Silver coverage, marginal revenue exceeds marginal cost for about the

first 25 percent of consumers, consistent with the fact that the monopolist optimally allocates

roughly this fraction of consumers to Gold coverage or above. The same exercise can be repeated

for a social planner with zero cost of funds using the intersections of the WTP and MC curves.

Figure 1 also provides a visual test of the quasiconcavity assumption that is critical for the

graphical solution to coincide with the solution to the original problem. Recall that if a price

schedule is QC for a given consumer, the consumer only purchases a given coverage level increment

so long as they have also purchased every lower coverage level increment. They will not “skip” any

coverage level increment. A price schedule that is QC for all consumers will therefore have two

properties: (i) incremental quantities q̃k will be decreasing in coverage level, and more specifically,

(ii) the set of consumers that purchase at higher coverage levels will be a subset of those that

purchase at lower coverage levels. Property (i) can be assessed visually in Figure 1. For example

for the monopolist, the intersection between MR and MC occurs further and further to the right

as one progresses from Panel (a)–(d) (i.e., as coverage level decreases).

For any price schedule that satisfies property (i), property (ii) will hold so long as the position of

consumers on the demand curve does not change too much across different coverage level margins.33

Violations of property (ii) can arise when different consumers’ willingness to pay are driven by

different things—for example, the value of risk protection versus an expected reduction in out-of-

pocket spending—because the rate of change of these components in coverage level can be quite

different. The same consumer may therefore be located high on the demand curve for one coverage

level increment, but low on the demand curve for another. With multidimensional consumer types,

this type of reordering is sure to happen to some extent, but the extent to which it happens is

ultimately an empirical question. In practice, we find that violations of property (ii) are rare (c.f.

Table 3).

6.4 Exclusion, Screening, and Comparative Statics

Consistent with the theoretical results in Sections 5, Table 3 shows that the monopolist provides

less coverage than the social planner, uses more contracts in its optimal menu, and excludes more

consumers from the market for incremental coverage. Under the monopoly allocation, 39 percent of

consumers are excluded from the market, and consumers are screened across four contracts. In the

33It is not necessary for consumers’ position on the demand curve to be exactly consistent across coverage level
margins because a given price schedule will only be screening consumers across (at most) the number of fixed
contracts available. Whole sections of the demand curve will therefore choose the same contract, and consumers
that have moved position slightly within that section will not cause a violation of property (ii).
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social planner’s allocation (without an excess cost of funds), no consumers are excluded, and nearly

all consumers are pooled at the Gold contract (see Marone and Sabety (2022) for a full discussion

of this result). The finding that the utilitarian social planner has little incentive to attempt to

screen consumers is also echoed in Bundorf et al. (2012) and Ho and Lee (2021).

When the planner faces an excess cost of public funds, it begins behaving somewhat more like

the monopolist, in that it now places more weight on profits than on consumer surplus. We can

therefore explore comparative statics with respect to the insurer’s objective function by comparing

outcomes between our two social planners facing different costs of public funds.34 Consistent with

the results in Section 5.4, as τ increases from 1 to 1.25, the planner begins to both screen and

exclude, and the optimal amount of coverage provided decreases.

We note that all of these numerical results persist qualitatively in a world without moral hazard.

In a population of consumers identical to our focal population, but without moral hazard (ω ≈ 0 for

all consumers), the social planner of course optimally pools all consumers in full insurance. Relative

to the planner, the monopolist again provides relatively less coverage, screens consumers across

multiple contracts, and excludes some consumers from the market entirely. However, given that

there are larger gains from trade from insurance in a world without moral hazard, the monopolist

(like the social planner) increases the amount of coverage provided under its optimal menu.35

6.5 Welfare

Unsurprisingly, social welfare is lower under monopoly than under the social planner’s solution. We

now quantify these welfare differences, and investigate the impacts of various policy interventions.

Table 4 reports outcomes under a number of benchmark cases, under the optimal menus chosen

by each of our three focal insurers, and under a set of policy interventions. In each case, the table

reports welfare outcomes, spending outcomes, and the percentage of consumers enrolled in each

contract under the relevant allocation. The welfare outcomes are average per-household per-year

social surplus, consumer surplus, and producer surplus, each measured relative to the allocation

of all consumers to the Catastrophic contract. The spending outcomes are average per-household

per-year government spending, premiums, and expected out-of-pocket spending.

Panel A first shows our benchmark outcomes, which will serve as useful points of comparison

going forward. The four benchmarks are (i) the first best allocation of consumers to contracts

(which can be achieved only with type-specific pricing), (ii) the allocation of all consumers to the

full insurance contract, (iii) the allocation of all consumers to the Catastrophic contract, and (iv)

the perfectly competitive outcome. We implement the first three benchmarks as if the insurer were

34Recall that in our model, a social planner with a cost of public funds τ corresponds to welfare weights of (1, τ, τ).
We can therefore think of an increase in the cost of public funds in the same way as a decrease in the weight on
consumer surplus.

35Results available upon request.
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Table 4. Welfare Outcomes and Policy Simulations

Welfare outcomes Spending outcomes Allocations
$000 per household $000 per household Pct. of households

Scenario SS† CS† PS Gov Prem OOP Cstr. Brnz. Slvr. Gold Full

Panel A. Benchmarks

* First best 1.86 1.86 – – 9.75 1.85 <0.01 0.01 0.23 0.56 0.20
Full insurance for all 1.74 1.74 – 11.90 – – – – – – 1.00
Minimum coverage for all – – – 5.64 – 5.36 1.00 – – – –
Competitive equilibrium 1.05 1.05 – 5.64 1.31 4.18 0.06 0.77 0.16 <0.01 <0.01

Panel B. Optimal menus

Social planner 1.82 1.82 – 9.09 0.77 1.80 <0.01 – <0.01 1.00 –
Social planner, 25% ECPF 1.66 1.66 – 5.60 3.80 2.08 0.14 <0.01 0.13 0.72 0.01
Monopolist 1.08 0.33 0.74 5.64 3.07 3.26 0.39 0.05 0.28 0.28 –

Panel C. Policy interventions

(i) Linear taxes/subsidies 0.74 0.64 0.10 5.15 2.70 3.44 0.58 0.04 – 0.38 <0.01
(ii) Nonlinear subsidies 1.30 0.48 0.82 5.78 3.55 2.79 0.30 0.01 0.28 0.42 –
(iii) Restrict which plans allowed 0.94 0.48 0.46 5.64 4.49 1.70 0.46 – – – 0.54
(iv) Adjust base coverage 1.82 1.82 – 9.86 – 1.80 – – – 1.00 –

Notes: The table shows welfare outcomes, spending outcomes, and allocations under various scenarios. The first set
of columns reports social surplus (SS), consumer surplus (CS), and producer surplus (PS) in thousands of dollars
per household per year. Note that consumer welfare is normalized to zero at the Catastrophic contract, and accounts
for the tax burden associated with government spending. The second set of columns reports expected government
spending (Gov), premium spending (Prem), and expected out-of-pocket spending (OOP), again in thousands of
dollars per household per year. The final set of columns reports the percentage of households allocated to each
contract. †Relative to allocating all consumers to the Catastrophic contract when there is no excess cost of public
funds (ECPF).

the social planner facing a zero excess cost of funds, meaning all surplus accrues to consumers.36

Allocating all consumers to full insurance results in social surplus that is $1,743 per household

per year higher than allocating all consumers to the Catastrophic contract. This is only slightly

lower than the $1,860 attainable under the first best allocation. The competitive outcome features

substantial unravelling, but still generates a large amount of social surplus as very few consumers

are excluded. Panel B then reports outcomes at the optimal menus chosen by our three focal

insurers. Social surplus under a social planner facing no excess cost of public funds is equal to

$1,825 per household per year. Under the monopolist, social surplus falls to $1,081, and consumer

surplus falls to $330.

Interestingly, social surplus improves slightly under the monopolist relative to a perfectly com-

petitive market. This result is consistent with Veiga and Weyl (2016), who suggest that there may

be an interior optimum level of competition in insurance markets. And as suggested by Diamond

(1992), a regulator of a competitive market may prefer to auction off the right to serve the market

as a monopolist instead of permitting free entry and competition to unravel the available gains from

trade. Of course, the monopolist captures the majority (69 percent) of the surplus it generates.

Consumers are better off under competition.

36We calculate the competitive equilibrium proposed by Azevedo and Gottlieb (2017).
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7 Policy Analysis

In this section, we show how theory and empirical analysis can guide policymakers. Adverse

selection is the canonical rationale for public policy intervention in insurance markets. Many policies

– including taxes and subsidies – aim to counteract the pricing distortion created by selection. In

this section, we formally analyze such policies. We begin by considering the local impact of taxes

and subsidies contract by contract. The degree to which the government will want to subsidize

(or tax) insurance will depend on (a) the degree of adverse selection (as measured by slope of the

marginal cost curve), (b) consumer responsiveness to price changes (as measured by the concavity

of the demand curve), and (c) the social cost of public funds (as measured by weight wG.) After

deriving the key metric that incorporates these three factors, we apply our results to our numerical

setting. We then compare pricing regulation to benefit regulation and consider combinations of

non-local perturbations.

Focusing on the case of a monopolist insurer, we note that subsidies lower the insurer’s marginal

costs MCI,k. Fix a single marginal coverage level of interest and suppress k. To be general, let the

subsidy scheme be parameterized by s ∈ [−1, 1], where σ(q|s) is the subsidy when the monopolist

serves q consumers. Assume that σ(q|0) ≡ 0, so that s = 0 corresponds to no subsidies, and that

σs(q|s) ≥ 0 and σqs(q|s) ≥ 0, so that a higher s corresponds to higher subsidies both as an absolute

and at the margin. An important example is a linear subsidy scheme σ given by σ(q|s) = sq. A

linear subsidy (that is, constant across consumers) will lower the marginal cost curve by a constant.

With a decreasing marginal cost curve, this will raise the quantity served.

Let

q(s) = arg max
q

(P (q) q − C(q) + σ(q|s))

be the optimal quantity served by the monopolist facing subsidy scheme s, where we assume that

σ has enough regularity that q is well-defined and continuously differentiable. Further assume that

the government’s problem of choosing s is characterized by the first-order condition. Let bang

for first buck (BFFB) be defined as βs(0)/σs(q
m|0), so that BFFB is the benefit the government

realizes on the first dollar spent on subsidies. Comparing BFFB to wG then tells us whether the

government wishes to tax or subsidize. If wG < BFFB, then the government sets s > 0 and

subsidizes insurance. If wG ≥ BFFB, then the government sets s ≤ 0 and taxes insurance.

In Online Appendix B.8, we show that

(12) BFFB = wCqm
σqs
σs

1

2 +
(
MCq
−Pq + qm

Pqq
Pq

) + wI .

The fraction σqs/σs reflects the amount by which the first dollar spent on subsidies lowers the

effective marginal cost of the monopolist. For example, with a linear subsidy of s on all consumers

served, qmσqs/σs = 1. The second fraction reflects the degree to which the monopolist’s quantity
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served responds to changes in the marginal cost. When marginal cost is constant and demand is

linear, the fraction is 1/2. A decreasing marginal cost curve increases BFFB, but concave demand

decreases BFFB.37 In our setting, the (continuous) joint distribution of consumer types and the

(non-linear) structure of contracts lead to both decreasing marginal cost and substantial demand

concavity, as in Figure 4. As a result, the sign and magnitude of BFFB are an empirical question.

Armed with this theoretical insight, Panel C of Table 4 reports the impact of common strategies

a regulator might use to intervene on behalf of consumers in a monopoly market. These policies

are: (i) linear taxes or subsidies on contracts supplied by the monopolist; (ii) nonlinear subsidies

which the monopolist receives only on additional consumers that obtain coverage; (iii) banning the

monopolist from offering certain contracts, and (iv) raising the minimum level of coverage x0. In

each case, we assume the regulator aims to maximize consumer surplus, taking into account the

tax burden associated with government spending available at zero excess cost of public funds.

We first consider policy (i), as suggested by the theoretical exercise. Here, the regulator can

intervene by implementing linear taxes or subsidies on inside-option contracts. That is, the regulator

announces a vector of taxes/subsidies that the monopolist will receive on each consumer enrolled in

each contract (except Catastrophic), and the monopolist then chooses its optimal price schedule.38

Substantial concavity of the demand curve reduces BFFB to surprisingly low levels with linear

subsidies. As a result, we find that the regulator’s best course of action is to actually tax the

monopolist, thereby lowering government expenditures (and the consumers’ tax burden) but also

lowering the average level of coverage in the market. Consumer surplus increases by $315 per

household per year relative to the unregulated monopolist outcome. The welfare gains are primarily

due to lower government spending, rather than increased coverage (and risk protection). The

revenue raised by the taxes implemented reduces the consumer’s tax burden by $493.

The results of policy (i) may not reflect the political incentives of regulator intervention in

insurance markets, namely, that a popular policy goal to raise coverage levels. We next consider

a policy (ii) in which the regulator can only subsidize (and not tax) coverage, and moreover, is

able to announce that these subsidies are only available to the monopolist for marginal consumers.

That is, the vector of subsidies announced only applies to consumers served beyond the number

of consumers served under the monopolist’s unregulated optimal allocation. Theory suggests that

such a non-linear subsidy scheme may be more effective at increasing consumer surplus. The non-

linearity can substantially lower the cost of implementing subsidies, as they need not be paid on

inframarginal consumers. Indeed, we find that in this case the regulator raises the levels of coverage

37If MCq = 0, Pqq = 0, and wC = wI = 1, then BFFB = 1.5 for a linear subsidy. The logic of concavity driving
BFFB is similar to pass-through of both cost shocks and taxes.

38Computationally, this is quite a difficult problem to solve on behalf of the regulator, as it must calculate the
monopolist’s best response to every potential vector of taxes/subsidies it might consider. We gain traction by using
the logic of the simplified problem from Section 5. Namely, for every permutation of potentially allowable contracts,
we solve for the optimal marginal tax/subsidy that the regulator would choose to implement on each marginal level
of coverage, integrate these to form an optimal vector of taxes/subsidies, and then choose which permutation of
allowable contracts maximizes the regulator’s objective.
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obtained in the market while increasing government spending by only $143 per household per year.

Interestingly, however, the consumer gains from this higher coverage are only $298 per household

per year. The gains do not substantially outweigh the tax increase due to higher government

spending: total consumer surplus increases by only $155 per household per year relative to the

unregulated monopolist outcome.

We also consider alternative policies that affect the menu of contracts available to the insurer.

Under policy (iii), the regulator chooses which of the four incremental levels of coverage to allow

the monopolist to offer. Given strategic pricing by the monopolist, the regulator needs to trade off

the welfare losses from additional exclusion against the welfare gains from more pooling. We find

that the optimal policy is to ban the Bronze, Silver, and Gold contracts, and let the monopolist

offer only the full insurance contract. While this strategy is effective in shifting some consumers

to higher coverage, it also shifts some consumers to lower coverage. Relative to the monopolist’s

unconstrained solution, an additional 7 percent of the population is excluded from the market.

As suggested by Geruso et al. (2019), there is a trade-off between exclusion and the generosity

of coverage: consumer surplus increases by $156 per household per year (due to more generous

coverage on the intensive margin) relative to the unregulated monopoly market.

Finally, policy (iv) considers the case in which the regulator can raise the minimum level of

coverage x0, allowing it to shrink the size of the market served by the monopolist. This strategy

will not always allow the regulator to reach the socially optimal allocation (since the optimal menu

may involve screening), but it will prevent the primary problem of under-insurance in the market.

In our setting, given that the social planner’s solution was to pool all consumers at Gold, the

regulator can fully restore maximal consumer and social surplus by raising the level of the outside

option to the Gold contract. The monopolist cannot profitably offer the full insurance contract

when consumers receive the Gold contract for free (for the same reason the full insurance contract

was not part of the social planner’s optimal allocation), and therefore effectively exits the market.

Finally, note first that maximal consumer and social surplus can be restored by simply offering the

monopolist a take-it-or-leave-it offer to either serve the market at prices specified by the regulator

in exchange for a lump sum payment, or else to not be able to serve the market. While this

is indeed the optimal regulatory intervention, it may be difficult to implement.39 Our results

instead highlight the roles of both theory and empirical analysis in guiding policy. Conditional

39As it need not share rents with the monopolist, the regulator will implement the same price schedule as a social
planner. The regulator could also achieve this outcome by implementing quantity targets. In particular, letting
ΠM ≥ 0 be the monopolist’s profits absent regulatory intervention, and {q̂k}Kk=1 be the regulator’s chosen allocation,
then the regulator can offer a payment B = ΠM −

∑
Π̂k(q̂k) if at least q̂k is implemented for all k, and zero

otherwise. Such schemes require, for example, that the market is well-defined. It also assumes the presence of an
ex-ante competitive insurance market to which the regulator can auction the right to serve the market, or else that
the regulator can bargain (holding all the bargaining power) with the monopolist over a contract to service the
whole market. In practice, we consider a finite number of combinations of the simplified problem. As is well known,
more efficient but still simple instruments exist: subsidizing quantity only beyond some threshold q̂ < qm leaves σqs
alone, but lowers σs, with BFFB increasing without bound as q̂ approaches qm. Of course, our graphical analysis
is most useful for analyzing local changes in the marginal cost curve. Consideration of large taxes and subsidies
(or, at the extreme, banning some contracts) may require a more complex and computationally intense analysis.
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on an exogenous minimum level of coverage and a restriction that the government cannot supply

additional coverage itself, regulator intervention has a valuable role in the private market. Both

theoretical and numerical analysis suggests that the most effective strategy for raising coverage

when facing a strategic private insurer is a nonlinear subsidy scheme. This is in stark contrast

to regulating a perfectly competitive market, in which a linear subsidy can restore the optimal

feasible allocation (Azevedo and Gottlieb, 2017). When the regulator is able to supply incremental

coverage itself, this is clearly a better course of action. That said, we note these results rely on

the assumption that the monopolist does not have an informational or cost advantage in supplying

coverage relative to the regulator.

8 Conclusion

We develop a principal-agent model with multidimensional private information that is both general

and well-suited to understanding optimal menu design in health insurance markets. Our model

encompasses the problems facing a government, a private entity developing an insurance program

on behalf of its employees, and a monopolist insurance provider. We develop theoretical tools

to describe the optimal menu of insurance contracts, and use those tools to study positive trade,

optimal exclusion, and incentives to screen. We further develop a simplified version of the problem

that, in our numerical setting, is a very close approximation to the actual problem at hand. The

simplified problem is amenable to familiar graphical analysis, and allows us to derive comparative

statics and further results on exclusion and screening. We build a numerical framework that lets

us quantify the magnitudes of theoretically identified effects, and use the numerical tools to shed

light on a variety of policy questions.

There are a number of directions for further work. First, the CARA assumption suppresses

income effects, and there is good reason to believe that these effects are important, particularly

at lower levels of coverage than we permit in our numerical analysis. Relaxing this assumption

would require a large technical leap. Second, while the results establish an important benchmark

to understand insurance markets with market power, and while the assumption of a single principal

is appropriate when thinking about a single insurer such as a government or a monopolist, there

are many interesting settings where the market is oligopolistic. We hope that the tools developed

here form a basis for theoretical exploration of such markets. Finally, while the simplified version

of the problem works extremely well in our specific setting, it is as yet unknown how generally this

approach is valid. Further theoretical and numerical exploration is of prime interest.
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Appendices

Appendix A Theory

The following lemma will be used repeatedly. Its proof is in Online Appendix B.2.

Lemma 1 The best-response correspondence X(ρ, θ) is upper hemicontinuous in ρ and θ. The

consumer’s value function V (ρ, θ) ≡ maxx∈[0,1](v(x, θ)− ρ(x)) is continuous.40

A.1 Proof of Proposition 1

In each case it suffices to prove the first assertion since the second follows from a standard monotone

comparative statics result.

(i) Recall that vx = −
∫
cxmdl, where since −cx(a∗(·, x, ω), x) is increasing, it is sufficient to

show that m satisfies strict MLRP in (l, ψ). But, from (4), for any x and ω, and for any ψh > ψl,

m (l|x, ψh)

m (l|x, ψ`)
= e(ψh−ψ`)(−z(l,x,ω))

∫
e−ψ`z(l

′,x,ω)f(l′)dl′∫
e−ψhz(l′,x,ω)f(l′)dl′

,

and so, by the definition of MLRP, it would be sufficient to show that z(·, x, ω) is strictly decreasing.

But, from (1), and using the Envelope Theorem to ignore the effects on z via a, we have that

zl(l, x, ω) = bl(l, a
∗(l, x, ω), ω) < 0.

(ii) It is sufficient to show that m satisfies strict MLRP in (l, τ). But, for τh > τ` we have

m(l|x, τh)

m(l|x, τ`)
=
f(l|τh)

f(l|τ`)

∫
e−ψz(l

′,x,ω)f(l′|τ`)dl′∫
e−ψz(l′,x,ω)f(l′|τh)dl′

,

since {f(·|τ)}τ∈[0,1] is ordered by strict MLRP.

(iii) It is easy to show that vω =
∫
bωmdl and thus vxω > 0 if and only if

(13)

∫
bωaa

∗
xmdl +

∫
bωmxdl > 0.

The first term is always strictly positive since baω > 0 and a∗x > 0. The second term can be written

as
∫
bω(mx/m)mdl. Now, differentiating (4) with respect to x yields mx/m = ψ(Em[zx]− zx), and

since zx = −cx and (−cx)l = −cxaa∗l > 0, it follows that mx/m is strictly decreasing in l, single-

crosses zero from above, and integrates to zero. But, when b = b̂ and c is linear in a, (bω)l = 0.

Hence, the second term in (13) is 0. �

40To see why it is not an immediate consequence of the Theorem of the Maximum, note that v(x, θ) − ρ(x) is not
continuous in ρ.
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A.2 Proof of Theorem 1

Recall that by Proposition 1, Part (i), for any given (ω, F ) and ρ, X(ρ, ω, ·, F ) is single-valued

G(·|ω, F )-almost everywhere. Therefore, we can without ambiguity take any selection υ(·) from

X(ρ, ·, ω, F ) and write

Π(ρ, ω, F ) =

∫
S(ρ(υ(ψ)), υ(ψ), ψ, ω, F )dG(ψ|ω, F ).

as the expected payoff to the insurer from premium schedule ρ given (ω, F ), so that the designer’s

problem is simply to maximize
∫

Π(ρ, ω, F )dG (ω, F ) by choice of ρ subject to ρ(x0) = 0.

Let x = xk, and let ρε be the premium schedule in which ρε(x′) = ρ(x′) for x′ ≤ x, and

ρε(x′) = ρ(x′) + ε for x′ > x. Let

∆(ω, ψ, F ) = max
k′>k

(v(xk
′
, ω, ψ, F )− ρ(xk

′
))−max

k′≤k
(v(xk

′
, ω, ψ, F )− ρ(xk

′
)),

noting that ∆ is strictly increasing in ψ and when F moves in an MLRP direction by Proposition

1 Parts (i) and (ii). Thus in particular, ∆ strictly increases in the second coordinate of θ, and

so since G̃ has a density g̃, it follows that it is either ∆(ω, ψ, F ) = 0 or ∆(ω, ψ̄, F ) = 0 only for

a zero G-measure set of (ω, F ). Fix (ω, F ) such that 2BRP holds and neither ∆(ω, ψ, F ) = 0

nor ∆(ω, ψ̄, F ) = 0, and suppress (x, ω, F ) in what follows. Let us define ψ̂ as the type dividing

those who choose strictly above x facing ρ, and, in a small abuse of notation, write ψ̂(ε) as the

dividing type facing ρε. To formalize this, if ∆(ω, ψ, F ) > 0, so that even ψ strictly prefers an

action strictly above x to any action at or below x, then ψ̂ = ψ and for ε small, ψ̂(ε) = ψ as well.

If ∆(ω, ψ̄, F ) < 0, so that even ψ̄ strictly prefers an action below x to one strictly above x, then

ψ̂ = ψ̄ and for ε small, ψ̂(ε) = ψ̄ as well. Finally, if ∆(ω, ψ, F ) < 0 < ∆(ω, ψ̄, F ), then ψ̂ is given

by ∆(ω, ψ̂, F ) = 0, and ψ̂ is given by ∆(ω, ψ̂(ε), F ) = ε. Let x̄ ≡ x̄(ψ̂, ρ) and x ≡ x(ψ̂, ρ).41 By

2BRP, these are the only best responses for ψ̂ facing ρ. Thus, by upper hemicontinuity of the best

response correspondence X in ρ, for small ε no type near ψ̂ will choose anything other than x̄ or x

facing ρε. Hence for ε small and positive, types between ψ̂ and ψ̂(ε) will switch from x̄ to x and for

ε small and negative, types between ψ̂(ε) and ψ̂ switch from x to x̄, while other types will maintain

their previous behavior.

Where ψ̂ is interior, the defining condition for ψ̂ (ε) for ε small (positive or negative) is thus

v(x, ψ̂(ε))− ρ(x) = v(x̄, ψ̂(ε))− ρ(x̄)− ε,

41Note that x̄ or x need not be adjacent to x; it may be that the optimal choice jumps past multiple quality levels
as ψ passes through ψ̂.
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and so by the Implicit Function Theorem,

ψ̂ε(ε) =
1

vψ(x̄, ψ̂(ε))− vψ(x, ψ̂(ε))
,

where since ψ̂(0) = ψ̂, we have ψ̂ε(0) = 1/(vψ(x̄, ψ̂)− vψ(x, ψ̂)) ∈ (0,∞), using vψx > 0. Of course,

if ∆(ω, ψ, F ) > 0 or ∆(ω, ψ̄, F ) < 0, then ψ̂ε(0) = 0.

Now,

Π(ρε)−Π(ρ) = (wI − wC)(1−G(ψ̂(ε)))ε+

∫ ψ̂(ε)

ψ̂
(S(ρ(x), x, ψ)− S(ρ(x̄), x̄, ψ))dG(ψ),

where this expression also makes sense when ε < 0 under the usual convention that
∫ b
a = −

∫ a
b

when a > b. Thus,

Πε(ρ
ε) = (wI−wC)(−g(ψ̂(ε))ψ̂ε(ε)ε+(1−G(ψ̂(ε))))+(S(ρ(x), x, ψ̂(ε))−S(ρ(x̄), x̄, ψ̂(ε)))g(ψ̂(ε))ψ̂ε(ε)

But, recall that S(p, x, θ) = S(x, θ)− (wI − wC)(v(x, θ)− p), and so,

S(ρ(x), x, ψ̂(ε))− S(ρ(x̄), x̄, ψ̂(ε))

= S(x, ψ̂(ε))− S(x̄, ψ̂(ε))− (wI − wC)(v(x, ψ̂(ε))− ρ(x)− (v(x̄, ψ̂(ε))− ρ(x̄)))

= S(x, ψ̂(ε))− S(x̄, ψ̂(ε)) + (wI − wC)ε,

where the second equality follows from the defining equation for ψ̂(ε).

But then, substituting and taking a limit, where ψ̂ is interior,

Πε(ρ
ε)|ε=0 = (wI − wC)(1−G(ψ̂))− S(x̄, ψ̂)− S(x, ψ̂)

vψ(x̄, ψ̂)− vψ(x, ψ̂)
g(ψ̂)

= (wI − wC)(1−G(ψ̂))− rg(ψ̂)

and so, reinstating (x, ω, F ), we have that Πε(ρ
ε, ω, F )|ε=0 = V(x, ω, F ). Recall also that when

∆(ω, ψ, F ) > 0 or ∆(ω, ψ̄, F ) < 0, then ψ̂ε(0) = 0 and so, since we defined r = 0 in this case, we

once again have Πε(ρ
ε)|ε=0 = (wI − wC)(1−G(ψ̂))− rg(ψ̂).

Finally, note from the previous displayed equation that (Π(ρε, ω, F ))ε|ε=0 is uniformly bounded

as we vary (ω, F ). In particular, by Cauchy’s Mean Value Theorem (CMVT), when ψ̂ is interior,

r is of the form Sx/vxψ for some x ∈ (x, x̄) and so is uniformly bounded. Thus, by Lebesgue’s

Dominated Convergence Theorem (LDCT),(∫
Π(ρε, ω, F )dG(ω, F )

)
ε

∣∣∣∣
ε=0

=

∫
V(x, ω, F )dG(ω, F ).
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and we are done, noting that the perturbation with ε > 0 is always feasible, while the perturbation

with ε < 0 is feasible as long as ρ(xk) < ρ(xk+1). �

A.3 Endogenizing Quality: Another Optimality Condition

We now derive an additional necessary condition that must hold if the insurer can also vary the

coverage levels of the contracts offered, in addition to their prices. This second condition becomes

relevant when the insurer is constrained in the number of contracts it can offer, but can choose

both their price and their generosity.

Consider the perturbation in which the insurer just raises (or reduces) the generosity of a single

contract, xk, replacing xk by xk + ε. Fix (ω, F ), and assume x is chosen by ψ in some positive-

lengthed interval (ψl, ψh). There are three effects. First, consumers who stick with x generate a

different amount of surplus than they did before, changing the insurer’s payoff by
∫ ψh
ψl

(Sx − (wI −
wC)vx)dG(ψ).

Second, some types immediately below ψl now choose the new contract x + ε instead of their

previous choice, which was xl ≡ x(ψl). This has value vx(x, ψl)rl to the insurer, where if ψl is

interior, we define

(14) rl =
S(x, ψl)− S(xl, ψl)

vψ(x, ψl)− vψ(xl, ψl)
,

while if ψl = 0, we take rl = 0. In this expression, S(x, ψl) − S(xl, ψl) reflects the change in the

insurer’s payoff when the agent switches from xl to x+ε, with the utility of the switching consumer

type disappearing from the calculation because they are by definition indifferent. We will show

that the vx term and denominator of rl capture the speed at which the boundary between those

who switch and those who do not is moving.

Third, some types immediately above ψh will switch their choice down from x̄h ≡ x̄(ψh) to x+ε,

with net effect −vx(x, ψh)rh, where

(15) rh =
S(x̄h, ψh)− S(x, ψh)

vψ(x̄h, ψh)− vψ(x, ψh)
.

if ψh is interior, and zero otherwise. Reintroducing the dependence of the various objects on

(x, ω, F ), the overall impact of the perturbation on the insurer’s payoff is is

W(x, ω, F ) ≡ −vx(x, ψh(x, ω, F ))rh(x, ω, F )g(ψh(x, ω, F )|ω, F )

+

∫ ψh(x,ω,F )

ψl(x,ω,F )
(Sx(x, θ)− (wI − wC)vx(x, θ))g(ψ|ω, F )dψ

+vx(x, ψl(x, ω, F ))rl(x, ω, F )g(ψl(x, ω, F )|ω, F ),
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where if for given (ω, F ), x is never chosen, then we take W(x, ω, F ) = 0.

We can now state the optimality condition associated with this perturbation. The proof is in

Online Appendix B.4.

Theorem 3 (Second Optimality Condition: Fixed Number of Contracts) Let (ρ, χ) be op-

timal given
{
xk
}K
k=0

, and let ρ satisfy 2BRP. Then,
∫
W(xk, ω, F )dG(ω, F ) = 0 for k = 1, ...,K.

A.4 Optimality in the Continuum

In this section, we state and prove the analogs to Theorems 1 and 3 in the continuum. The proof

is in Online Appendix B.5.

Theorem 4 (Optimality Conditions: Continuum of Contracts) Let (ρ, χ) be optimal given

P, and let ρ satisfy 2BRP. Then, we have
∫
W(x, ω, F )dG(ω, F ) = 0 for all x, and

∫
V(x, ω, F )dG(ω, F ) ≤

0 except in a countable subset of [x0, 1] with equality if ρ(x′) > ρ(x) for x′ > x.

Technical Remark 6 (Main Perturbation in Continuum Case) To see why
∫
VdG = 0 need

not hold for all x in Theorem 4, assume that for a given (ω, F ) there is ψJ where x(ψJ) < x = x̄(ψJ).

If one raises the premium of all contracts strictly above x, types just to the right of ψJ will shift

their choice from a little above x̄(ψJ) down to x, while if one lowers the premium of all contracts

strictly above x, types just to the left of ψJ will shift their choice from near x(ψJ) to near x̄(ψJ).

The appropriate expression for r (see (24) in Online Appendix B.5) thus differs in the two cases,

and if there is a positive-measure set of types having a jump ending at x, there can be a difference

between the left- and right-hand derivatives of payoffs with respect to the perturbation. At the

cost of significant extra notation, one can explicitly tie down these derivatives, but the additional

economic insight is small, especially given that this issue can only occur for a countable set of x’s.

A.5 Proof of Proposition 2

It suffices to show that strictly positive profit menus exist. Fix ψ̂ ∈ (0, ψ̄). Consider the menu with

a single item x > x0 priced at

p(x) = v(x, ψ̂, ω̄, F̄ )− v(x0, ψ̂, ω̄, F̄ ).

This is accepted by all types in a neighborhood of (ψ̄, ω̄, F̄ ). Using that c(a∗, x)−c(a∗, x0) is increas-

ing in l, the cost of serving each customer is no more than
∫

(c(a∗(l, x, ω̄), x)− c(a∗(l, x, ω̄), x0))dF̄ .

So, the profit per customer is at least

J(x) ≡ v(x, ψ̂, ω̄, F̄ )− v(x0, ψ̂, ω̄, F̄ )−
∫
c(a∗(l, x, ω̄), x)− c(a∗(l, x, ω̄), x0))dF̄ .
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Trivially, J(x0) = 0. But

Jx(x) = vx(x, ψ̂, ω̄, F̄ )−
∫

(−cx(a∗(l, x, ω̄), x)))dF̄−
∫

(ca(a
∗(l, x, ω̄), x0)−ca(a∗(l, x, ω̄), x)))a∗x(l, x, ω̄)dF̄ ,

and so,

Jx(x0) = vx(x0, ψ̂, ω̄, F̄ )−
∫

(−cx(a∗(l, x0, ω̄), 0)))f̄(l)dl.

We would thus be done if vx(x0, ψ̂, ω̄, F̄ ) >
∫

(−cx(a∗(l, x0, ω̄), x0)))dF̄ , since then, J(x) > 0 for x

just to the right of x0. But, from (5)

vx(x0, ψ̂, ω̄, F̄ ) =

∫
(−cx(a∗(l, x0, ω̄), x0)))m(l|x0, ω̄, ψ̂, F̄ )dl,

where m(·|x0, ω̄, ψ̂, F̄ ) strictly MLRP dominates f̄ . Hence, −cx(a∗(l, x0, ω̄), x0)) is a strictly in-

creasing function of l. �

A.6 Proof of Theorem 2

The following lemma tells us that for any given closed set P0 ⊆ P, if we take a sequence Pn of

increasingly fine approximation to P0 then anything the insurer can do in P0 can come arbitrarily

close what can be done in Pn.

Lemma 2 The insurer’s payoff Π(ρ) is continuous in ρ.

Proof We assert first that the set of θ where X(ρ, θ) is singleton valued has full G-measure. To

see this, note that by Proposition 1 (i), for each (ω, F ) the function v is strictly supermodular in

x and ψ, and so for each pair ψ′′ and ψ′ with ψ′′ > ψ′, the smallest best response at ψ′′ is at least

as large as the largest best response at ψ′, or formally,

inf X(ρ, ψ′′, ω, F ) ≥ supX(ρ, ψ′, ω, F ).

But then, for each (ω, F ), there is a countable set of values of ψ such that X(ρ, ·, ω, F ) is unique

except on this set (see Shannon, 1995). Since the distribution over ψ conditional on (ω, F ) is

atomless, it follows that with probability one conditional on (ω, F ), X(ρ, ·, ω, F ) is unique. Since

(ω, F ) was arbitrary, we are done.

Fix ρ̀ and ρ̀n → ρ̀, and fix any measurable selection χ̀(·) from X(ρ̀, ·) and χ̀n(·) from Xn(ρ̀, ·), so

that

Π(ρ̀n) =

∫
S(ρ̀n(χ̀n(θ)), χ̀n(θ), θ)dG(θ),

and similarly for Π(ρ̀). Let θ be any type for whom X(ρ̀, θ) has unique element x̀. Then, χ̀n(θ)→
χ̀(θ) by Lemma 1. But, also from Lemma 1, V (ρ̀n, θ) = v(χ̀n(θ), θ) − ρ̀n(χ̀n(θ)) converges to

V (ρ̀, θ), and since v is continuous, v(χ̀n(θ), θ) converges to v(χ̀(θ), θ). But then, it follows that
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ρ̀n(χ̀n(θ)) → ρ̀(χ̀(θ)). Hence, since S is continuous, S(ρ̀n(χ̀n(θ)), χ̀n(θ), θ) → S(ρ̀(χ̀(θ)), χ̀(θ), θ).

But then, by LDCT, since S is bounded, and since the set of θ where X(ρ, θ) is singleton valued

has full G-measure, Π(ρ̀n)→ Π(ρ̀), and we are done. �

Proof of Theorem 2 Immediate from Lemmas 1 and 2. �

Theorem 2 provides an upper hemicontinuity result for the set of optimal solutions in our problem

as the set of allowable premium schedules is varied. A natural question is whether the set of optimal

solutions is lower hemi-continuous as well. Unfortunately, this is not true.

Example 1 Assume that the insurer has exactly two distinct optima ρ∗ and ρ∗∗ in P0 and that Pn

consists of some growing set of premium schedules where ρ∗ is always an element of Pn, but ρ∗∗ is

not. Then, the insurer has unique solution ρ∗ in each approximation. If a regulator prefers ρ∗∗ to

ρ∗, then the regulator is strictly harmed by the restriction to Pn, no matter how large is n.

In this example, the insurer has two optima that imply different things in terms of, for example,

the payoff to the consumer. If the insurer has only one optimum, then everything must converge.

Our strong intuition is that only for very unusual examples will there be more than one optimum

in P0. The intuition is that while it is not unusual that the payoff to the insurer has multiple peaks

as one runs over P0, it would be surprising if for any given specification of G two of those peaks

had exactly the same height. A proof eludes us.

A.7 Equation (11) and the Analog of
∫
VdG = 0

Let ψ̃k(pk, ω, F ) = arg minψ
∣∣vk(ω, ψ, F )− pk

∣∣. Because vxψ > 0, ψ̃k(pk, ω, F ) is unique, and

any given type has marginal willingness to pay for xk greater than pk if and only if ψ is above

ψ̃k(pk, ω, F ).42 The following lemma uses this property to characterize Π̃k
pk

.

Lemma 3 We have

Π̃k
pk(pk) =

∫
Ṽk(pk, ω, F )dG(ω, F ),

where

Ṽk(pk, ω, F ) = (wI − wC)(1−G(ψ̃k(pk, ω, F )|ω, F ))(16)

− ψ̃kpk(pk, ω, F )(wI(pk − γI,k(θ))− (wG − wI)γG,k(x0, θ))g(ψ̃k(pk, ω, F )|ω, F ).

Note that Ṽ is the direct analog to V in this setting, since where ψ̃k
pk
6= 0,

ψ̃kpk(pk, ω, F ) =
1

vkψ(ω, ψ̃k(pk, ω, F ), F )
=

1

vψ(xk, ω, ψ̃k(pk, ω, F ), F )− vψ(xk−1, ω, ψ̃k(pk, ω, F ), F )
.

42Since vxψ > 0, vk = v(xk, ω, ψ, F )− v(xk−1, ω, ψ, F ) =
∫ xk
xk−1 vx(x, ω, ψ, F )dx is strictly increasing in ψ.
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Proof of Lemma 3 We have that{
θ|vk(θ) ≥ pk

}
=
{

(ω, ψ, F )|ψ ≥ ψ̃k(p, ω, F )
}

and so,

Π̃k(pk) =

∫ ∫ ψ̄

ψ̃k(pk,ω,F )
Sk(pk, θ)g(ψ|ω, F )dψdG(ω, F ).

But then,

Π̃k
pk(pk) =

∫  ∫ ψ̄
ψ̃k(pk,ω,F )

Sk
pk

(pk, θ)g(ψ|ω, F )dψ

−ψ̃k
pk

(pk, ω, F )Sk(pk, ω, ψ̃k(pk, ω, F ), F )g(ψ̃k(pk, ω, F )|ω, F )

 dG(ω, F ).

But, Sk
pk

(pk, θ) = wI − wC , and if ψ̃k
pk

(pk, ω, F ) 6= 0, then vk(ω, ψ̃k(pk, ω, F ), F ) = pk and so,

evaluated at θ = (ω, ψ̃k(pk, ω, F ), F ),

Sk(pk, θ) = wI(pk − γI,k(θ))− (wG − wI)γG,k(x0, θ),

and the claimed expression follows. �

A.8 Proof of Proposition 3

Let vk = minω∈[ω,ω̄] v
k(ω, ψ, F ), noting that by Lemma 1, vk(θ) ≥ vk for all θ ∈ suppG, with strict

equality except on the G(ω, F )-zero-measure set where F = F . But, whenever pk < vk(ω, ψ, F ),

ψ̃k(pk, ω, F ) = ψ, and so, limpk↓vk ψ̃
k(pk, ω, F ) = ψ and limpk↓vk ψ̃

k
pk

(pk, ω, F ) = 0, and thus

limpk↓vk Ṽk(pk, ω, F ) = wI − wC . Further Ṽk(pk, ω, F ) is bounded on the compact set [vk, vk +

1] × [ω, ω̄] × F , since all components of it are uniformly bounded (ψ̃kp in particular is either equal

to 0 or to 1/((xk − xk−1)vxψ(x, ω, ψ̃k, F )) for some x ∈ [xk−1, xk]). But then by the Lebesgue

Dominated Convergence Theorem,

lim
pk↓vk

∫
Ṽk(pk, ω, F )dG(ω, F ) =

∫
lim
pk↓vk

Ṽk(pk, ω, F )dG(ω, F ) = wI − wC > 0,

and so it follows that p̃k > vk. Since suppG is a rectangle, it follows that p̃k > vk for a pos-

itive G-measure set of consumers, since this set includes a neighborhood of (ω̃, ψ, F ) for any

ω̃ ∈ arg minω∈[ω,ω̄] v
k(ω, ψ, F ). �
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Appendix B Online Appendix

B.1 Computational Details and Additional Numerical Results

We simulate a population of consumers using the parameter estimates reported in Column 3 of

Table 3 and Appendix Table A.8 of Marone and Sabety (2022). We first construct a population

of households in terms of simple demographic characteristics (such as age and gender), and then

construct each household’s type θ using the reported parameters. As in Marone and Sabety (2022),

we model a household as a group of individuals, each of whom is characterized by an age, a gender,

and a health risk score.

We construct a population of households to match characteristics of the U.S. population, as

reported in Section 6.1. We start the construction of each household with a “head of household.”

This person is female with 50 percent probability and has a uniform distribution of age between 22

and 60. We assume that 50 percent of households have a spouse present, and when present, that

the spouse is of the opposite gender to the head of household. Spouses draw an age from a normal

distribution with mean equal to the age of the head of household and a standard deviation of 4,

subject to bounds between 22 and 60. We further assume each household has between 1 and 4

children, where each child exists with 25 percent probability, independently of one another and of

the presence of a spouse. Conditional on existing, each child is female with 50 percent probability

and draws their age from a uniform distribution between 0 and 18. Finally, we assume that all

individuals draw a risk score from a log-normal distribution with mean positively related to age,

such that for individual i: log(riskscorei) ∼ N(agei20 , 1). We censor the right tail of the risk score

distribution such that no individual can have a risk score that is more than five standard deviations

above the uncensored mean. Our baseline population contains 10,000 households. Increasing the

number of households does not change our results.

With this simulated population in hand, we then apply the parameter estimates to construct

θ = (ψ, ω, F ) for each household. We make one adjustment, which is to cap the risk aversion

parameter at a value of 5.43 Summary statistics on the population distribution of demographics

and resulting household types are reported in Table 2. In addition, the joint distributions of

various household characteristics and households’ willingness to pay (for full insurance relative to

Catastrophic coverage) are shown in Figure B.1.

43We express monetary amounts in thousands of dollars, so dividing our coefficients of absolute risk aversion by 1,000
makes them comparable to other settings where monetary amounts are measured in dollars.
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Figure B.1. Distribution of Household Types in Simulated Population
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Notes: The figure shows the distribution across households of (a) the risk aversion parameter, (b) the moral hazard
parameter, (c) households’ expected total healthcare spending under the Catastrophic contract, (d) households’
variance of out-of-pocket spending under the Catastrophic contract, (e) the average age of adults in the household,
and (f) the number of individuals in the household. An adult is anyone 18 and older. Households are arranged on the
horizontal axis in order of their willingness to pay for full insurance relative to the Catastrophic contract. Each dot
represents a household, for a 25 percent random sample of households. The line in each panel is a connected binned
scatter plot, representing the mean value of the vertical axis variable at each percentile of willingness to pay.
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Figure B.2. Optimal Allocations as Density of Contract Space Increases

(a) Social Planner, n = 3 (b) Monopolist, n = 3

(c) Social Planner, n = 5 (d) Monopolist, n = 5

(e) Social Planner, n = 17 (f) Monopolist, n = 17

(g) Social Planner, n = 33 (h) Monopolist, n = 33

(i) Social Planner, n = 65 (j) Monopolist, n = 65

Notes: The figure shows the percentage of consumers allocated to each contract under the optimal menus chosen by
a social planner and a monopolist as the density of the contract space increases. The gray bars identify the set of
potential contracts available to the menu designer, while the blue bars show the actual allocations. The left-hand
side panels show the allocations chosen by the social planner, while the right-hand side panels show the allocations
chosen by the monopolist. The rows correspond to 3, 5, 17, 33, and 65 potential contracts, respectively.
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Figure B.3. Illustration of Graphical Analysis Under “Total Pricing”

(a) Full insurance vs. Gold
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(b) Gold vs. Silver

MR

WTPMC

0

500

1,000

1,500

2,000

2,500

0.00 0.20 0.40 0.60 0.80 1.00
 

(c) Silver vs. Bronze
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(d) Bronze vs. Catastrophic
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Percentile of consumers by marginal WTP on the relevant margin

Notes: The figure demonstrates the graphical analysis of the simplified problem when the government implements
“total pricing,” meaning that it only covers the cost of Catastrophic coverage in the event a consumer enrolls in the
Catastrophic contract. Each panel represents the “market for incremental coverage” between each pair of adjacent
contracts. The vertical axes are measured in dollars. The horizontal axes report the percentage of consumers
choosing a given marginal level of coverage. Consumers are ordered on the horizontal axes according to their marginal
willingness to pay for the additional coverage offered on each margin. The solid line (WTP ) represents consumers’
willingness to pay on each margin, the dotted line (MC) represents the marginal cost curve, and the dashed line
(MR) represents a monopolist’s marginal revenue curve. The MC and MR curves are constructed as connected
binned scatter plots using 100 points.
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B.2 Proof of Lemma 1

We first establish that V is continuous. Let (θn, ρn) → (θ, ρ). Let us show first that V (ρ, θ) ≥
lim supn V (ρn, θn). For each n, choose xn ∈ X(ρn, θn). Without loss of generality, xn converges to

some x̃ ∈ [0, 1]. Letting x̂n = max(xn − d(ρn, ρ), 0), and note that since x̂n is a feasible choice,

V (ρ, θ) ≥ v(x̂n, θn)− ρ(x̂n)

= v(xn, θn)− ρn(xn) + v(x̂n, θn)− v(xn, θn) + ρn(xn)− ρ(x̂n)

≥ V (ρn, θn) + v(x̂n, θn)− v(xn, θn)− d(ρn, ρ).

where the third inequality uses that V (ρn, θn) = v(xn, θn) − ρn(xn) and that ρ(x̂n) ≤ ρn(xn) +

d(ρn, ρ) by definition of d (see Footnote 13) and by construction of x̂n. But then, since v is

continuous with lim x̂n = limxn = x̃, and since d(ρn, ρ) → 0, we can apply lim supn on each side

to arrive at V (ρ, θ) ≥ lim supn V (ρn, θn) as desired. Showing that V (ρ, θ) ≤ lim infn V (ρn, θn) is

similar. In particular, choose x̌ ∈ X(ρ, θ), let x̌n = max(x̌− d(ρn, ρ), 0), and observe that for all n,

V (ρn, θn) ≥ v(x̌n, θn)− ρn(x̌n)

= v(x̌, θ)− ρ(x̌) + v(x̌n, θn)− v(x̌, θ) + ρ(x̌)− ρn(x̌n)

≥ V (ρ, θ) + v(x̌n, θn)− v(x̌, θ)− d(ρn, ρ).

Thus, since v is continuous, and since ρn → ρ, we have lim infn V (ρn, θn) ≥ V (ρ, θ). Hence, V is

continuous.

Now, let us show that X is upper hemicontinuous. To do so, let (xn, ρn, θn) → (x, ρ, θ) where

for each n, xn ∈ X(ρn, θn). We desire to show x ∈ X(ρ, θ). So, choose any x̀, and for each n, let

x̀n = max(x̀− d(ρn, ρ), 0). Since xn ∈ X(ρn, θn), we have

(17) v(xn, θn)− ρn(xn) ≥ v(x̀n, θn)− ρn(x̀n),

for all n. We will show that this implies that v(x, θ)− ρ(x) ≥ v(x̀, θ)− ρ(x̀). Since x̀ is arbitrary,

this would establish that x ∈ X(ρ, θ).

Consider the lhs. Let us argue first that lim supn(−ρn(xn)) ≤ −ρ(x). To see this, let x̃n =

max(xn − d(ρn, ρ), 0), and note that −ρn(xn) = −ρ(x̃n) + ρ(x̃n)− ρn(xn) ≤ −ρ(x̃n) + d(ρn, ρ).

But, d(ρn, ρ)→ 0 by construction, and so, since −ρ is upper semicontinuous, and since x̃n → x,

lim supn(−ρn(xn)) ≤ −ρ(x), establishing the claim. Using this, it follows that v(x, θ) − ρ(x) ≥
lim supn(v(xn, θn)−ρn(xn)), and so, since from (17), lim supn(v(xn, θn)−ρn(xn)) ≥ lim supn(v(x̀n, θn)−
ρn(x̀n)), we would be done if lim supn(v(x̀n, θn) − ρn(x̀n)) ≥ v(x̀, θ) − ρ(x̀) or, since v is contin-

uous and x̀n → x̀, if lim supn(−ρn(x̀n)) ≥ −ρ(x̀). But, −ρn(x̀n) = −ρ(x̀) + ρ(x̀) − ρn(x̀n) ≥
−ρ(x̀)− d(ρn, ρ), and the result follows immediately since d(ρn, ρ)→ 0. �
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B.3 Differentiability of γI and γG

In this section, we provide primitives for γI and γG to be almost everywhere differentiable with

bounded derivatives. We do so by restricting c to a class where we can tame the way in which the

consumer jumps from one a to another as l changes.

Assumption 2 For some finite κ̄, c(·, x) = minκ∈{1,...,κ̄} c̃ (·, x, κ) where for each κ, c̃ (·, x, κ) is

twice continuously differentiable, with baa(·, l, ω)− c̃aa (·, x, κ) strictly bounded away from zero, and

c̃a (a, x, ·) strictly decreasing.

That is, while c can have kinks, on each segment where it is differentiable, b − c is concave. An

example is when c (·, x) is piecewise linear for each x.

We also need a condition on how the marginal value of healthcare changes with ω and l.

Assumption 3 The ratio bωa(·, l, ω)/bla(·, l, ω) is strictly monotone (of either sign).

In the canonical example, bωa(·, l, ω)/bla(·, l, ω) = (a − l)/ω which is strictly increasing in a. In

general, Assumption 3 asks that bω(·, l, ω) is strictly either more or less concave than bl(·, l, ω).

Let A(l, x, ω) be the optimal correspondence of the consumer’s choice of a when the health state

is l, the contract is x, and the consumer’s taste for healthcare is ω. Assume that A has 2BRP:

for all x, there is a finite subset of [ω, ω̄] such that except on this set, A(·, x, ω) has at most two

elements. Let us first provide primitives for 2BRP.

Lemma 4 Let Assumptions 2 and 3 be true. Then, A satisfies 2BRP.

Proof Let ã(l, x, ω, κ) = arg maxa(b(a, l, ω) − c̃(a, x, κ)) be the consumer’s best action facing

c̃(·, x, κ) and let z̃(l, x, ω, κ) be the associated value function. Since baa(·, l, ω) − c̃aa (·, x, κ) is

bounded below zero, ã(·, ·, ·, κ) is uniquely defined by ba(ã, l, ω) = ca(ã, x) and is continuously

differentiable. For example, the Envelope Theorem and the Implicit Function Theorem gives us

ãx(l, x, ω, κ) =
cax(ã, x)

baa(ã, l, ω)− caa(ã, x)
,

which is uniformly bounded. Note that since c̃a (a, x, ·) is strictly decreasing, ã(l, x, ω, ·)is strictly

increasing. The consumer’s optimal choice is then given by maximizing z̃(l, x, ω, κ) over κ, and

then taking the associated ã(l, x, ω, κ). The consumer has more than one best response if and only

if z̃(l, x, ω, ·) has more than one maximizer.

For κ′′ > κ′, let l̃(x, ω, κ′, κ′′) be the l that solves z̃(l, x, ω, κ′) = z̃(l, x, ω, κ′′). The Envelope

Theorem, bal > 0, and ã strictly increasing in κ yield

z̃l(l, x, ω, κ
′) = bl(ã(l, x, ω, κ′), l, ω) < bl(ã(l, x, ω, κ′′), l, ω) = z̃l(l, x, ω, κ

′′),
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and so l̃(x, ω, κ′, κ′′) is unique. A consumer with proclivity to spend on healthcare ω will be

indifferent between ã(l, x, ω, κ′) and ã(l, x, ω, κ′′) facing insurance quality x only if their health

realization is l̃(x, ω, κ′, κ′′). By the Envelope Theorem and the Implicit Function Theorem,

l̃ω(x, ω, κ′, κ′′) = − z̃ω(l̃, x, ω, κ′′)− z̃ω(l̃, x, ω, κ′)

z̃l(l̃, x, ω, κ′′)− z̃l(l̃, x, ω, κ′)
(18)

= −bω(ã(l̃, x, ω, κ′′), l̃, ω)− bω(ã(l̃, x, ω, κ′), l̃, ω)

bl(ã(l̃, x, ω, κ′′), l̃, ω)− bl(ã(l̃, x, ω, κ′), l̃, ω)

= −
∫ ã(l̃,x,ω,κ′′)

ã(l̃,x,ω,κ′)

bωa(a, l̃, ω)

bla(a, l̃, ω)

bla(a, l̃, ω)∫ ã(l̃,x,ω,κ′′)

ã(l̃,x,ω,κ′)
bla(a, l̃, ω)da

da,

where the last equality follows from the Fundamental Theorem of Calculus applied to numerator

and denominator, and by multiplying and dividing the integrand in the numerator by bal > 0. That

is, l̃ω(x, ω, κ′, κ′′) is an expectation of bωa/bla over the interval (ã(l̃, x, ω, κ′), ã(l̃, x, ω, κ′′)).

Consider the case bωa/bla strictly increasing. Then, by (18), if κ′ < κ′′ < κ′′′ then, since

ã(l̃, x, ω, ·) is strictly increasing, l̃ω(x, ω, κ′′, κ′′′) − l̃ω(x, ω, κ′, κ′′) > 0 (the it has sign opposite

to that of the strict monotonicity of bωa/bla). Thus, for each x, there is at most one ω such that

l̃(x, ω, κ′, κ′′) = l̃(x, ω, κ′′, κ′′′). But, l̃(x, ω, κ′, κ′′) = l̃(x, ω, κ′′, κ′′′) is a necessary condition for

ã(l, x, ω, κ′), ã(l, x, ω, κ′), and ã(l, x, ω, κ′′) to all be elements of A(l, x, ω). Since κ̄ is finite, there

are a finite set of triples κ′, κ′′, κ′′′ to check, and so there are, for each x, at most a finite set of ω

where there are more than two best responses at any l. �

Lemma 5 Let Assumption 2 hold. Let A have 2BRP. Then, for each x, and for any θ with ω not

in the exceptional set,
(∫ l̄

0 c (a∗(l, x, ω), x) f(l)dl
)
x

exists and is uniformly bounded.

Proof Fix x, and fix ω such that 2BRP holds. Then, we claim, there are 1 ≤ j̄ ≤ κ̄ points

0 = l0 < l1 < l2 < . . . < lj̄ = l̄, such that on (lj−1, lj) there is a unique best κj . The case j̄ < κ̄

occurs when the consumer chooses not to use some segments of c. By 2BRP, at lj , the two best

κ’s are κj and κj+1, with all other κ’s strictly worse. That is,

z̃(lj , x, ω, κj) = z̃(lj , x, ω, κj+1) > max
κ6=κj ,κj+1

z̃(lj , x, ω, κ).

Let K =
{
κ1, . . . , κj̄

}
⊆ {1, . . . , κ̄} be the set of indexes that ωuses given x.

We claim that for all x′ in a neighborhood of x, ω chooses exactly the elements of K when facing

x′. To see this, note that any κ′ /∈ K is never an optimal choice for ω facing x. That is,

max
κ∈K

z̃(l, x, ω, κ)− z̃(l, x, ω, κ′) > 0.

This follows because if l ∈ (lj−1, lj) then the only optimal κ is κj , while if l = lj then the only best

responses are κj and κj+1. But, then, since both sides are continuous in l and x over the bounded

54



set of l and x, the same is true for all x′ in some neighborhood of x. Also, for any κj ∈ K, choose

any l̂ ∈ (lj−1, lj). Then, since

z̃(l̂, x, ω, κj) > max
κ6=κj

z̃(l̂, x, ω, κ),

the same is true on a neighborhood of x, and κj is sometimes chosen.

It follows that there are 0 = l0 < l1(x′) < l2(x′) < . . . < lj̄ = l̄ such that κj is chosen by ω facing

x′ on the interval (lj−1(x), lj(x)), where lj(x′) is defined by

z̃(lj(x′), x′, ω, κj) = z̃(lj(x′), x′, ω, κj+1).

But, as in the proof of Lemma 4, by the Envelope Theorem and the Implicit Function Theorem,

ljx(x′) is differentiable on a neighborhood of x with

ljx(x′) =
bωa(a, l

j(x′), ω)

bla(a, lj(x′), ω)

for some a ∈ (ã(l, x′, ω, κj), ã(l, x′, ω, κj). By assumption, this is bounded. We can then write

∫ l̄

0
c(a∗(l, x′, ω), x′)f(l)dl =

j̄∑
j=1

∫ lj(x′)

lj−1(x′)
c(ã(l, x′, ω, κj)f(l)dl,

and so the derivative of the rhs with respect to x evaluated at x = x′ is

(∫ l̄

0
c (a∗(l, x, ω), x) f(l)dl

)
x

=

j̄∑
j=1


ljx(x)c(ã(lj , x′, ω, κj), x′, κj)f(lj)

−lj−1
x (x)c(ã(lj−1, x′, ω, κj), x′, κj)f(lj−1)

+
∫ lj(x′)
lj−1(x′)

ca(ã(l, x′, ω, κj), x′, κj)ãx(l, x′, ω, κj)f(l)dl

 ,

each part of which is uniformly bounded. �

We can now show that γI(x, θ) and γG(x, θ) have the requisite differentiability properties.

Proposition 4 Let Assumptions 2 and 3 hold. Then, γI(x, θ) and γG(x, θ) are differentiable in x

for almost all θ, with γIx(x, θ) and γGx (x, θ) uniformly bounded.

Proof Consider any θ for which for which 2BRP holds for the relevant ω. Then, from above,∫
c(a∗(l, x, ω), x)dF (l) is differentiable with a uniformly bounded derivative. Taking the case where

c(·, x) is the identity shows that
∫
a∗(l, x, ω)dF (l) has the same property. But then, γG is differen-

tiable with a uniformly bounded derivative. Taking x = x0 then covers γI . �
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B.4 Proof of Theorem 3

Let x = xk be the quality level being modified, and let ρε be the premium schedule in which

the step in ρ at x has been replaced by a step at x + ε. Formally, let ρε(x′) = ρ(x′) for x′ /∈
(min{x, x+ ε},max{x, x+ ε}), while ρε(x′) = ρ(x) for x′ ∈ (min{x, x+ ε},max{x, x+ ε}).

Fix (ω, F ) such that 2BRP holds and, similar to the construction involving ∆ in the previous

proof, such that neither ψ nor ψ̄ is indifferent between x and their next best choice. To lessen

the notational load, suppress (x, ω, F ) in what follows. If x is not a best response for any ψ, then

for small ε, x remains unattractive for all ψ and so the perturbation has no effect. Hence, since

W(x) = 0 by definition in this case, we have that W(x) = (Π(ρε))ε = 0.

So assume that x is a best response for some ψ. Then, by 2BRP, X(ρ, ψ) = x on a positive-

lengthed interval (ψl, ψh).44 In a minor abuse of notation, let (ψl(ε), ψh(ε)) be the nonempty

interval on which X(ρε, ψ) = x + ε, noting that ψl = ψl(0) and ψh = ψh(0). Arguing as in the

previous proof, if we let x̄h ≡ x̄(ψh, ρ) ≥ xk+1 > x, then types just to the right of ψh(ε) choose

x̄h, and similarly, types just to the left of ψl(ε) choose xl ≡ x(ψl, ρ) ≤ xk−1 < x. If ψh = ψ̄,then

ψh(ε) = ψ̄ for small ε, and so ψhε (0) = 0. Otherwise, the defining condition for ψh (ε) is

v(x+ ε, ψh(ε))− ρ(x) = v(x̄h, ψh(ε))− ρ(x̄h),

where the lhs is the payoff to ψh(ε) of choosing x + ε and the rhs the payoff of switching to x̄h,

and so for small ε,

ψhε (ε) =
vx(x+ ε, ψh(ε))

vψ(x̄h, ψh(ε))− vψ(x+ ε, ψh(ε))
> 0,

using vψx > 0 and vx > 0. Similarly, if ψl = ψ, then for small ε, ψlε(ε) = 0, while where ψl is

interior,

ψlε(ε) =
−vx(x+ ε, ψl(ε))

vψ(x+ ε, ψl(ε))− vψ(xl, ψl(ε))
< 0.

For ε small, we then have

Π(ρε)−Π(ρ) =

∫ ψh(ε)

ψh
(S(ρ(x), x+ ε, ψ)− S(ρ(x̄h), x̄h, ψ))dG(ψ)(19)

+

∫ ψh

ψl
(S(ρ(x), x+ ε, ψ)− S(ρ(x), x, ψ))dG(ψ)

+

∫ ψl

ψl(ε)
(S(ρ(x), x+ ε, ψ)− S(ρ(xl), xl, ψ))dG(ψ),

where the first integral reflects that types in (ψh, ψh(ε)) switch their quality choice from x̄h to x+ε,

the second integral reflects that those in (ψl, ψh) “switch” from x to x + ε, and the third integral

44If x was chosen by a single type ψ, then there would be three best responses at ψ, with one representing the action
taken by types just below ψ, and one the action of types just above ψ.
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reflects that types in (ψl (ε) , ψl) switch their quality choice from xl to x+ ε.

Thus,

(Π(ρε))ε = ψhε (ε)(S(ρ(x), x+ ε, ψh(ε))− S(ρ(x̄h), x̄h, ψh(ε)))g(ψh(ε))

+

∫ ψh(ε)

ψl(ε)
Sx(ρ(x), x+ ε, ψ)dG(ψ)

−ψlε(ε)(S(ρ(x), x+ ε, ψl(ε))− S(ρ(xl), xl, ψl(ε)))g(ψl(ε)),

where the passing of the derivative through the integral is valid by LDCT, noting that

(20) Sx(p, x, θ) = wCvx(x, θ)− wIγI(x, θ) + (wI − wG)γGx (x, x0, θ),

where vx =
∫

(−cx)zdl is defined everywhere and bounded, and where by assumption, γI and γG are

differentiable in x for almost every θ, with uniformly bounded derivatives (recall that we provide

primitives backing this assumption).

Thus,

(Π(ρε))ε|ε=0 = ψhε (0)(S(ρ(x), x, ψh)− S(ρ(x̄h), x̄h, ψh))g(ψh)(21)

+

∫ ψh

ψl
Sx(ρ(x), x, ψ)dG(ψ)

−ψlε(0)(S(ρ(x), x, ψl)− S(ρ(xl), xl, ψl))g(ψl).

Now, if ψl is interior, then as in the previous proof,

S(ρ(x), x, ψl)− S(ρ(xl), xl, ψl) = S(x, ψl)− S(xl, ψl)

and so

−ψlε(0)(S(ρ(x), x, ψl)− S(ρ(xl), xl, ψl)) = vx(x, ψl)
S(x, ψl)− S(xl, ψl)

vψ(x, ψl)− vψ(xl, ψl)
= vx(x, ψl)rl,

while if ψl = ψ, then

ψlε(0)(S(ρ(x), x, ψl)− S(ρ(xl), xl, ψl)) = 0 = vx(x, ψl)rl,

and similarly,

ψhε (0)(S(ρ(x), x, ψh)− S(ρ(x̄h), x̄h, ψh)) = −vx(x, ψh)rh.

Also, Sx(ρ(x), x, ψ) = Sx(x, ψ)− (wI − wC)vx(x, ψ), and so, making the relevant substitutions,

(Π(ρε))ε|ε=0 = −vx(x, ψh)rhg(ψh) +

∫ ψh

ψl
(Sx(x, ψ)− (wI − wC)vx(x, ψ))dG(ψ) + vx(x, ψl)rlg(ψl).
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Reinstating (x, ω, F ), we have (Π(ρε, ω, F ))ε|ε=0 =W(x, ω, F ) as asserted.

But then, as above, we can apply LDCT to see that

0 =

(∫
Π(ρε, ω, F )dG(ω, F )

)
ε

∣∣∣∣
ε=0

=

∫
(Π(ρε, ω, F ))ε|ε=0 dG(ω, F ) =

∫
W(x, ω, F )dG(ω, F ),

where the first equality reflects that ρε is a feasible perturbation and ρ is optimal. �

B.5 Proof of Theorem 4

Since it is more intricate, we begin by showing that
∫
WdG(ω, F ) = 0. We will then use the

machinery developed to analyze
∫
VdG(ω, F ). We proceed in a sequence of steps.

Step 1 Let (ρ, χ) be optimal in the continuum. Let Pk be the subset of P that are step functions

with at most k steps. Consider the problem of the insurer restricted to Pk and has payoff function

Π̃(ρ′) = Π(ρ′)−d2(ρ, ρ′). That is, the insurer is penalized for choosing ρ′ different than ρ according

to the square of the Levy distance from ρ′ to ρ. For each k, let ρk ∈ arg maxρ′∈Pk Π̃(ρ′) be

an optimum of this problem. We claim that d(ρk, ρ) → 0. Thus, with the penalty function, the

solution to the continuum problem is well-approximated by nearby solutions of the discrete problem.

Proof Fix δ > 0. By Lemma 2 (in Section A.6 below), for all k large enough, there is ρ∗ with at

most k steps with d2(ρ∗, ρ) ≤ δ/2 and Π(ρ∗) ≥ Π(ρ)− δ/2. But then, since ρ∗ is feasible while ρk

is optimal,

Π̃(ρk) ≥ Π̃(ρ∗) = Π(ρ∗)− d2(ρ∗, ρ) ≥ Π(ρ)− δ.

Now, since ρ is optimal in the original problem, it follows that Π(ρ)−d2(ρk, ρ) ≥ Π(ρk)−d2(ρk, ρ) =

Π̃(ρk), and so we must have d2(ρk, ρ) ≤ δ. Since δ was arbitrary, it follows that d(ρk, ρ)→ 0. Let χk

be the associated allocations. That is, χk is a selection from X(·, ρk), recalling that this is unique

G-almost everywhere.

Step 2 For any given τ > 0 for any given k, and for any given x̂ offered by ρ, consider the

perturbation in which each x that is offered under ρk and is contained in (x̂−τ, x̂+τ) is increased by

ε. We will first calculate the value of this perturbation by breaking it up into a set of perturbations

of the type analyzed in Section A.3 and then summing as appropriate. Then, we will consider the

form of the limiting expression as one first takes k →∞ and then takes τ → 0.

Step 3 Let us begin with some definitions. For this and the next several steps, we will work

with a fixed (ω, F ) which we will suppress, and reintroduce only later when it is needed. So, for

example, we will write χ(ψ) when we mean properly χ(ω, ψ, F ). We will asssume (ω, F ) satisfies

2BRP relative to ρ.

Let ψl(τ) = inf{ψ|χ(ψ) ≥ x̂ − τ} and ψh(τ) = sup{ψ|χ(ψ) ≤ x̂ + τ}. So, [ψl(0), ψh(0)] is the

(possibly empty) interval over which the consumer chooses x̂ under χ. Let ψl,k(τ) = inf{ψ|χk(ψ) ≥
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x̂− τ} and ψh,k(τ) = sup{ψ|χk(ψ) ≤ x̂+ τ} be the analogous objects when χ is replaced by χk.

Let {xkj }J
k

j list, in order from smallest to largest, the contracts actually chosen by (ω, F ) facing

ρk. That is, {xkj } is the range of χk. Let ψkj be the jump point from xkj to xkj+1, where we take

ψk0 = ψ, and ψk
Jk

= ψ̄. Let

rkj (τ, k) =
S(xkj+1, ψ

k
j )− S(xkj , ψ

k
j )

vψ(xkj+1, ψ
k
j )− vψ(xkj , ψ

k
j )

.

Finally, let jl(τ, k) = min{j|xkj > x̂ − τ}, and let jh(τ, k) = max{j|xkj < x̂ + τ}. Note that this

implies that types between ψk
jl(τ,k)−1

and ψk
jh(τ,k)

choose some x ∈ (x̂− τ, x̂+ τ) while other types

do not. Note also that by CMVT,

(22) rkj (τ, k) =
Sx(x, ψkj )

vψx(x, ψkj )

for some x ∈ [xkj , x
k
j+1].

Step 4 Fix some k and some j with jl(τ, k) ≤ j ≤ jh(τ, k). Consider first the perturbation of

raising xkj (and only xkj ) by ε. From (21) the derivative of payoffs with respect to this perturbation,

ignoring the impact of the perturbation on d(ρk, ρ) and evaluated at ε = 0 can be written as

πε(0, j) = −vx(xkj , ψ
k
j )rkj g(ψkj ) +

∫ ψkj

ψkj−1

Sx(xkj , ψ)dG(ψ) + vx(xkj , ψ
k
j−1)rkj−1g(ψkj−1),

where, as in the proof of Theorem 3, Sx = Sx − (wI − wC)vx does not depend on p, and so we

suppress that argument.

Step 5 Let us sum this expression over the appropriate set of indexes. For notational convenience,

abbreviate jl(τ, k) to jl, and jh(τ, k) to jh. We have

jh∑
jl

πε(0, j) =

jh∑
jl

(
−vx(xkj , ψ

k
j )rkj g(ψkj ) +

∫ ψkj

ψkj−1

Sx(xkj , ψ)dG(ψ) + vx(xkj , ψ
k
j−1)rkj−1g(ψkj−1)

)

= −vx(xkjh , ψ
k
jh)rkjhg(ψkjh)−

jh−1∑
jl

vx(xkj , ψ
k
j )rkj g(ψkj ) +

jh∑
jl

∫ ψkj

ψkj−1

Sx(xkj , ψ)dG(ψ)

+

 jh∑
jl+1

(
vx(xkj , ψ

k
j−1)rkj−1g(ψkj−1)

)+ vx(xkjl , ψ
k
jl−1)rkjl−1g(ψkjl−1).

Now, reindex the sum in the large brackets in the last line to sum from jl to jh−1, and combine it
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with the sum in the second term to arrive at

O(x̂, ω, F |τ, k) =

jh−1∑
jl

(vx(xkj+1, ψ
k
j )− vx(xkj , ψ

k
j ))rkj g(ψkj ).

Note for interpretation that O captures all of the “internal” spillovers as the consumer switches

between the set of x’s in (x̂ − τ, x̂ + τ). Also, recognize that by construction, xkj = χk(ψ) for

ψ ∈ (ψkj−1, ψ
k
j ), and so the summation of integrals can be rewritten as

∫ ψk
jh

ψk
jl−1

Sx(χk(ψ), ψ)dG(ψ).

We thus have that the profit of the perturbation facing (ω, F ) and given τ and k is W̃(x̂, ω, F |τ, k)+

O(x̂, ω, F |τ, k), where

W̃(x̂, ω, F |τ, k) = −vx(xkjh(τ,k), ψ
k
jh(τ,k))r

k
jh(τ,k)g(ψkjh(τ,k)) +

∫ ψk
jh(τ,k)

ψk
jl(τ,k)−1

Sx(χk(ψ), ψ)dG(ψ)(23)

+vx(xkjl(τ,k), ψ
k
jl(τ,k)−1)rkjl(τ,k)−1g(ψkjl(τ,k)−1)).

Note for what follows that all terms of this are uniformly bounded. In particular, as in the discussion

immediately following (20), Sx is uniformly bounded, and using (22) the r terms are bounded as

well. The density g is continuous on a compact set, and so is bounded. Finally, since vx = Ez[−cx],

where cx is bounded, vx is bounded as well.

Step 6 Let

µ ≡ max
x,ψ
|vxx(x, ψ)|max

x,ψ

(
Sx(x, ψ)

vψx(x, ψ)
g(ψ)

)
<∞,

noting that µ is finite since all of the relevant objects are continuous on the compact set [0, 1]×[ψ, ψ̄],

and since vψx(x, ψ) is strictly positive. Then, for all τ and k, |O(x̂, ω, F |τ, k)| ≤ 2τµ.

Proof Using the claim at the end of Step 3,∣∣∣rkj g(ψkj )
∣∣∣ ≤ max

x,ψ

(
Sx(x, ψ)

vψx(x, ψ)
g(ψ)

)
,

and so, since

O(x̂, ω, F |τ, k) =

jh(τ,k)−1∑
jl(τ,k)

(vx(xkj+1, ψ
k
j )− vx(xkj , ψ

k
j ))rkj g(ψkj ).

we have

|O(x̂, ω, F |τ, k)| ≤

jh(τ,k)−1∑
jl(τ,k)

(xkj+1 − xkj )

max
x,ψ
|vxx(x, ψ)|max

x,ψ

(
Sx(x, ψ)

vψx(x, ψ)
g(ψ)

)
,

hence noting that xk
jh
< x̂+ τ and xk

jl
> x̂− τ .
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Step 7 For any given τ and k, let ρk(ε) be the perturbation of ρk in which contracts in (x̂−τ, x̂+τ)

are increased by ε. Then,∣∣∣∣∫ W̃(x̂, ω, F |τ, k)dG (ω, F )

∣∣∣∣ ≤ 2d(ρk(ε), ρ) + 2τµ.

Proof We have that Π̃(ρk(ε)) = Π(ρk(ε))− d2(ρk(ε), ρ), and so since ρk is optimal,

0 = (Π̃(ρk(ε)))ε|ε=0 = [(Π(ρk(ε)))ε − 2d(ρk(ε), ρ)d(ρk(ε), ρ)ε]
∣∣∣
ε=0

,

where by Step 5,

(Π(ρk(ε)))ε

∣∣∣
ε=0

=

∫ (
W̃(x̂, ω, F |τ, k) +O(x̂, ω, F |τ, k)

)
dG (ω, F ) ,

where we used LDCT to exchange the integral and the derivative, which is valid by the discussion

immediately following (23). But, (d(ρk(ε), ρ)ε
∣∣
ε=0

can take on values only in {−1, 0, 1}, since the

effect of increasing the relevant set of x’s is to either increase d at rate one, decrease d at rate one,

or leave d unchanged. Hence, by Step 6,
∣∣∣∫ W̃(x̂, ω, F |τ, k)dG (ω, F )

∣∣∣ ≤ 2d(ρk(ε), ρ) + 2τµ.

Step 8 We have limk→∞ ψ
k
jl(τ,k)−1

= ψl(τ) and limk→∞ ψ
k
jh(τ,k)

= ψh(τ).

Proof By construction, ψk
jl(τ,k)−1

= inf{ψ|χk(ψ) ≥ x̂− τ}. But ψl(τ) = inf{ψ|χ(ψ) ≥ x̂− τ}, and

the first claim follows since almost everywhere convergence of χk to χ implies that, considered as

a function of ψ alone, the sequence of increasing functions χk converges to χ in the Levy Metric.

The other case is the same.

Step 9 Consider any (ω, F ) such that x̄(ψl(τ), ρ) = x(ψl(τ), ρ) (and so both equal x̂ − τ). Then,

limk→∞ x
k
jl(τ,k)−1

= limk→∞ x
k
jl(τ,k)

= x̂− τ , and

lim
k→∞

rkjl(τ,k)−1 = rl(τ) ≡ Sx(x̂− τ, ψl(τ))

vψx(x̂− τ, ψl(τ))
.

Similarly, if x̄(ψh(τ), ρ) = x(ψh(τ), ρ) (and so both equal x̂+τ), then limk→∞ x
k
jh(τ,k)

= limk→∞ x
k
jh(τ,k)+1

=

x̂+ τ , and

lim
k→∞

rkjh(τ,k) = rh(τ) ≡ Sx(x̂+ τ, ψh(τ))

vψx(x̂+ τ, ψh(τ))
.

Proof Following Step 8, and from the best response correspondence being upper hemicontinous,

we obtain that limk→∞ x
k
jl(τ,k)−1

= limk→∞ x
k
jl(τ,k)

= x̂− τ . But then,

lim
k→∞

rkjl(τ,k)−1 = lim
k→∞

S(xk
jl(τ,κ)

, ψkj )− S(xk
jl(τ,k)−1

, ψkj )

vψ(xk
jl(τ,k)

, ψkj )− vψ(xk
jl(τ,k)−1

, ψkj )
=
Sx(x̂− τ, ψl(τ))

vψx(x̂− τ, ψl(τ))
,
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using CMVT. The case at ψh(τ) is the same.

Step 10 Consider any (ω, F ) such that x(ψl(τ), ρ) < x̂−τ < x̄(ψl(τ), ρ). Then, limk→∞ x
k
jl(τ,k)−1

=

x(ψl(τ), ρ), limk→∞ x
k
jl(τ,k)

= x̄(ψl(τ), ρ), and

lim rkjl(τ,k)−1 = rl(τ) ≡ S(x̄(ψl(τ), ρ), ψl(τ))− S(x(ψl(τ), ρ), ψl(τ))

vψ(x̄(ψl(τ), ρ), ψl(τ))− vψ(x(ψl(τ), ρ), ψl(τ))
.

Similarly, if x(ψh(τ), ρ) < x̂+τ < x̄(ψh(τ), ρ), then, limk→∞ x
k
jh(τ,k)−1

= x(ψh(τ), ρ), limk→∞ x
k
jh(τ,k)+1

=

x̄(ψh(τ), ρ), and

lim rkjh(τ,k) = rh(τ) ≡ S(x̄(ψh(τ), ρ), ψh(τ))− S(x(ψh(τ), ρ), ψh(τ))

vψ(x̄(ψh(τ), ρ), ψh(τ))− vψ(x(ψh(τ), ρ), ψh(τ))
.

Proof Note that by upper hemicontinuity and Step 8, any cluster point of xk
jl(τ,k)−1

is a best

response to ρ for ψl(τ) which is, by construction, at or below x̂ − τ . But then by 2BRP, it

must be that this cluster point is x(ψl(τ), ρ), and so limk→∞ x
k
jl(τ,k)−1

= x(ψl(τ), ρ). Similarly,

limk→∞ x
k
jl(τ,k)

= x̄(ψl(τ), ρ). The claimed form for lim rk
jh(τ,k)

then follows immediately.

Step 11 Let T (τ, ω, F ) = 1 if χ(ω, ·, F ) has either a jump ending at x̂ − τ or a jump beginning

at x̂+ τ , and zero otherwise. Let Q(τ) = {(ω, F )|T (τ, ω, F ) = 0}. We claim that if (ω, F ) ∈ Q(τ)

then limk→∞ W̃(x̂, ω, F |τ, k) exists, is uniformly bounded, and (in an abuse of notation) is equal to

W̃(x̂, ω, F |τ) ≡ −vx(x̄(ψh(τ), ρ), ψh(τ))rh(τ)g(ψh(τ))

+

∫ ψh(τ)

ψl(τ)
Sx(χ(ψ), ψ)dG(ψ) + vx(x(ψl(τ), ρ), ψl(τ))rl(τ)g(ψl(τ)),

where we remind the reader that all of the objects on the rhs depend on (ω, F ).

Proof For given τ , Q(τ) is the set of (ω, F ) such that either Step 9 or Step 10 applies, so that the

various limiting objects are well-behaved. The result is then immediate from (23) and from Steps

8-10, with LDCT telling us that the limit can be passed through the integral.

Step 12 We claim that for almost all τ , the set Q(τ) has full measure. That is, Gω,F (Q(τ)) = 1.

Proof For each (ω, F ), χ(ω, ·, F ) jumps at most a countable number of times, and so there is

at most a countable set of τ such that T (τ, ω, F ) = 1. Hence,
∫ 1

0 T (τ, ω, F )dτ = 0. But then,∫ (∫ 1
0 T (τ, ω, F )dτ

)
dG(ω, F ) = 0, and so

∫ 1
0

(∫
T (τ, ω, F )dG(ω, F )

)
dτ = 0. But then, for almost

all τ ∈ [0, 1],
∫
T (τ, ω, F )dG(ω, F ) = 0, or equivalently, Gω,F (Q(τ)) = 1.

Step 13 Let τ be such that Gω,F (Q(τ)) = 1. Then,
∣∣∣∫ W̃(x̂, ω, F ; τ)dG (ω, F )

∣∣∣ ≤ 2τµ.

Proof By Step 1, d(ρk, ρ)→ 0. The result follows from Steps 7 and 11, once again invoking LDCT.
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Step 14 Using Step 12, choose a sequence τn → 0 where for each n, Gω,F (Q(τ)) = 1. Then, for

all (ω, F ) ∈ ∩nQ(τn) we have limn→∞ W̃(x̂, ω, F |τn) =W(x̂, ω, F ).

Proof Fix (ω, F ) ∈ ∩nQ(τn). Assume first that x(ω, ψl, F, ρ) < x̄(ω, ψl, F, ρ) = x̂. Then, for

all τn < x̄(ω, ψl, F, ρ) − x(ω, ψl, F, ρ), ψl(τn, ω, F ) = ψl(ω, F ), and so limn→∞ r
l(τn) = rl. If

instead x(ω, ψl, F, ρ) = x̄(ω, ψl, F, ρ) = x̂, then by upper hemicontinuity of the best response

correspondence, we must have that limn→∞ x(ω, ψl(τn), F, ρ) = limn→∞ x̄(ω, ψl(τn), F, ρ) = x̂, and

so again limn→∞ r
l(τn) = rl. Similarly, in both relevant cases, limn→∞ r

h(τn) = rh.

Finally, consider x(ω, ψl, F, ρ) < x̂ < x̄(ω, ψl, F, ρ). That is, at ψl, the consumer jumps from

strictly below x̂ to strictly above x̂. Then, by 2BRP, x̂ is not a best response to ψl, and so changing

x̂ a small amount has no effect on ψl, and so for n large, no effect on ψl(τn, ω, F ) = ψl(ω, F ).

Step 15 The result that
∫
WdG(ω, F ) = 0 then follows from Steps 13 and 14 and LDCT.

So, let us turn to
∫
VdG(ω, F ). Define ρk as in Step 1 above. Much as in Step 12, there is a set

Y ⊆ [0, 1] whose complement is countable, such that for each x ∈ Y and for G-almost all (ω, F ),

x̄(ω, ·, F, ρ) (or equivalently x(ω, ·, F, ρ)) does not have a jump beginning or ending at x.

Choose any x ∈ Y . Fix (ω, F ) such that x(ω, ·, F, ρ) does not have a jump beginning or ending at

x. As in the proof of Theorem 1, also choose (ω, F ) such that neither neither ∆(ω, ψ, F, ρ) = 0 nor

∆(ω, ψ̄, F, ρ) = 0, where we make explicit the dependence of ∆ on the premium schedule. Note that

by continuity, it follows that for k large enough, if ∆(ω, ψ, F, ρ) > 0 then also ∆(ω, ψ, F, ρk) > 0

and hence facing ρk, (ω, F ) chooses above x regardless of ψ, and has a strict preference for doing

so. Hence, the appropriate r(x, ω, F ) is zero both for ρ and for ρk. The situation is similar if

∆(ω, ψ̄, F, ρ) < 0.

So, in what follows, let us concentrate on the interesting case where ∆(ω, ψ, F, ρ) < 0 <

∆(ω, ψ̄, F, ρ) so that there is for large enough k an interior risk aversion parameter where the optimal

action shifts from x or below to above x. Suppressing (ω, F ), define ψk(x) as max{ψ|x(ψ, ρk) ≤ x}
and ψ∗(x) as max {ψ|x(ψ, ρ) ≤ x}. Let xk(x) = x(ψk(x), ρk) and x̄k(x) = x̄(ψk(x), ρk), not-

ing that because ρk is a step function, x̄k(x) > xk(x). Similarly, let x∗(x) = x(ψ∗(x), ρ) and

x̄∗(x) = x̄(ψ∗(x), ρ). Then, it follows from the upper hemicontinuity of X that ψk(x) → ψ∗(x),

xk(x)→ x∗(x), and x̄k(x)→ x̄∗(x). To see this, assume first that x∗(x) < x̄∗(x) so that there is a

jump in x(·, ρ) at ψ∗(x). Then, x ∈ (x∗(x), x̄∗(x)) by choice of (ω, F ). Thus, along any convergent

subsequence, x∗(x) < x ≤ limk→∞ x̄
k(x) ∈ X(ψ∗(x), ρ), and so by 2BRP, limk→∞ x̄

k(x) = x̄∗(x).

Similarly, limk→∞ x
k(x) = x∗(x). If instead x∗(x) = x̄∗(x) = x then since along any convergent

subsequence, limk→∞ x
k(x) ∈ X(ψ∗(x), ρ) = {x}, we have that limk→∞ x

k(x) = x, and similarly

limk→∞ x̄
k(x) = x.

It follows that if we define

r̃k(x) ≡ S(x̄k(x), ψk(x))− S(xk(x), ψk(x))

vψ(x̄k(x), ψk(x))− vψ(xk(x), ψk(x))
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then r̃k(x)→k r
∗(x), where

(24) r∗(x) ≡ S(x̄∗(x), ψ∗(x))− S(x∗(x), ψ∗(x))

vψ(x̄∗(x), ψ∗(x))− vψ(x∗(x), ψ∗(x))
or
Sx(x, ψ∗(x))

vψx(x, ψ∗(x))

as appropriate, and use CMVT when x̄k(x)− xk(x)→ 0.

Say that x′ is offered by ρk if ρk(x′′) > ρk(x
′
) for all x′′ > x′. Note that a non-offered contract is

never a best response for the consumer, since they can have more coverage at the same price. Let

x̃k(x) be the largest quality offered by ρk that is at or below x. Let us show that ψk(x̃k(x)) = ψk(x).

To see this, recall that ψk(x) = max{ψ|x(ψ, ρk) ≤ x} and ψk(x̃k(x)) = max{ψ|x(ψ, ρk) ≤ x̃k(x)}.
Thus, ψk(x̃k(x)) ≤ ψk(x). Assume ψk(x̃k(x)) < ψk(x). Then, for ψ ∈ (ψk(x̃k(x)), ψk(x)) we have

that x(ψ, ρk) > x, since x̃k(x) is the largest offered quality at or below x and by definition of

ψk(x̃k(x)), any ψ > ψk(x̃k(x)) has a lowest best response strictly above x̃k(x). Hence, since there

are no contracts offered between x̃k(x) and x, it is strictly above x. But x(ψ, ρk) ≤ x by definition

of ψk(x), which is a contradiction. Thus, ψk(x̃k(x)) = ψk(x), and so

−r̃k(x)g(ψk(x)) + 1−G(ψk(x)) = −r̃k(x̃k(x))g(ψk(x̃k(x))) + 1−G(ψk(x̃k(x))).

Then, reinstating (ω, F ), we have by the result for the finite case that∫
[−r̃k(x̃k(x), ω, F )g(ψk(x̃k(x), ω, F )) + 1−G(ψk(x̃k(x), ω, F ))]dG(ω, F ) = 0,

and so ∫
[−r̃k(x, ω, F )g(ψk(x, ω, F )) + 1−G(ψk(x, ω, F ))]dG(ω, F ) = 0.

But, the integrand in this expression is uniformly bounded, and so, by LDCT, we have that∫
V(x, ω, F )dG(ω, F ) =

∫
[−r∗(x, ω, F )g(ψ∗(x, ω, F )) + 1−G(ψ∗(x, ω, F ))]dG(ω, F ) = 0,

as claimed. �

B.6 Ironing and the One-Contract Case

We asserted in Section 4.4 that the optimality condition that obtains from the perturbation of one

contract x reduces, in the one-dimensional case where only ψ is stochastic, to the standard ironing

condition. In this case the optimality condition is simply W = 0, and so for each offered x > x0,

(25) − vx(x, ψh)rhg(ψh) +

∫ ψh

ψl
(Sx(x, ψ)− vx(x, ψ))g(ψ)dψ + vx(x, ψl)rlg(ψl) = 0.
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From the perturbation of the price schedule, we obtain in this case that V = 0, or rhg(ψh) =

1−G(ψh) and rlg(ψl) = 1−G(ψl), and thus (25) becomes

(26) − vx(1−G(ψh)) +

∫ ψh

ψl
(Sx(x, ψ)− vx(x, ψ))g(ψ)dψ + vx(x, ψl)(1−G(ψl)) = 0.

Integrating by parts −
∫ ψh
ψl

vxgdψ and then multiplying and dividing the integrand by g yields

−
∫ ψh

ψl
vx(x, ψ)g(ψ)dψ = (1−G)vx(x, ψ)|ψ

h

ψl
−
∫ ψh

ψl
vxψ

1−G
g

gdψ

= (1−G(ψh))vx(x, ψh)− (1−G(ψl))vx(x, ψl)−
∫ ψh

ψl
vxψ

1−G(ψ)

g(ψ)
g(ψ)dψ.

Inserting this expression into (26) and rearranging yields

∫ ψh

ψl

(
Sx(x, θ)− vxψ

1−G(ψ)

g(ψ)

)
g(ψ)dψ = 0,

which is the standard optimality condition in the ironing case.

Consider now the multidimensional case with just one contract (p, x), as in Veiga and Weyl

(2016). In this case, simple algebra reveals that W reduces to

(27) W(x, ω, F ) = −
∫ ψ̄

ψl
γIx(x, ψ)dG(ψ) + vx(x, ψl)

p− γI(x, ψl)
vψ(x, ψl)− vψ(x0, ψl)

g(ψl),

where p = v(x, ψl)− v(x0, ψl) since type (w,ψl, F ) is indifferent between choosing x and x0.

In turn, V reduces to

(28) V(x, ω, F ) = 1−G(ψl)− p− γI(x, ψl)
vψ(x, ψl)− vψ(x0, ψl)

g(ψl).

It is easy to show that
∫
V(x, ω, F )dG(ω, F ) = 0 is the same as the first-order condition with respect

to p in Veiga and Weyl (2016), and is given by

(29) p−
∫
γI(x, ψl)dR(ω, F, x, x0) =

N

s
,

where N =
∫

(1−G(ψl|ω, F ))dG(ω, F ) is the total mass of types served by the firm, s is the mass

of types that switch from x to outside option x0, given by

s =

∫
g(ψl(ω, F )|ω, F )

vψ(x, ψl(ω, F ), ω, F )− vψ(x0, ψl(ω, F ), ω, F )
dG(ω, F ),
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and R is the cdf of types that switch, and can be obtained by integrating its density r given by

r(ω, F, x, x0) =

g(ψl(ω,F )|ω,F )
vψ(x,ψl(ω,F ),ω,F )−vψ(x0,ψl(ω,F ),ω,F )

s
.

From (29), p =
∫
γIdR+ (N/s). Inserting this expression for p into (27), integrating the resulting

expression with respect to ω, F , and manipulating yields that
∫
WdG = 0 can be written as follows:

0 = −
∫
γIx(x, ψl)

1−G(ψl|ω, F )

N
dG(ω, F ) +

∫
vx(x, ψl)dQ(ω, F, x, x0)− covr(vx, γ

I)
N
s

,

where covr(vx, γ
I) is the covariance between vx and γI calculated using the density r of switching

types, and is the same as the first-order condition with respect to x in Veiga and Weyl (2016).

B.7 Incentives to Exclude and Screen

We mentioned in Section 4.6 that the optimality condition of our main perturbation can be used

to shed light on the insurer’s incentives to exclude types from any insurance above x0, and also to

screen types. Here we present the analytical support for that comment.

Incentives to Exclude. By varying the weights w, our optimality conditions highlight the

differential incentives of insurers with different objectives. We now show that the monopolist has

a greater incentive to exclude consumers than the social planner. Fix a level x0 of government-

provided insurance. We start with the incentives of a monopolist insurer. To simplify notation,

assume that any consumer who is taking the outside option has the lowest offered level of incre-

mental coverage as their second best choice, and denote this contract by x1. Fix and suppress x0,

ω, and F , and let the marginal type who is excluded by the monopolist be ψ∗ (since vxψ > 0, the

set of types excluded is an interval beginning at ψ = 0). Then, since for the monopolist, wI = 1

while wC = wG = 0, it is easy to show that V, the effect on payoffs of an increase in the premium of

all contracts x1 and above (and hence of moving some people from an inside option to the outside

option x0) is given by

VM = −ρ(x1)− (γI(x1)− γG(x1, x0))

vψ(x1, ψ∗)− vψ(x0, ψ∗)
g(ψ∗) + 1−G(ψ∗),

where the superscriptM stands for monopolist. Optimal exclusion requires that
∫
VM (x0, ω, F )dG (ω, F ) =

0.45 The term ρ(x1) − (γI(x1) − γG(x1, x0)) represents the profit the insurer was making on con-

45For a monopolist, S(x, θ) ≡ v(x, θ)− γI(x, θ) + γG(x, x0, θ), and so

S(x1, ψ∗)− S(x0, ψ∗) = v(x1, ψ∗)− γI(x1) + γG(x1, x0)−
(
v(x0, ψ∗)− γI(x0) + γG(x0, x0)

)
.

But, v(x1, ψ∗) − v(x0, ψ∗) = ρ(x1) and γG(x0, x0) = γI(x0), and so S(x1, ψ∗) − S(x0, ψ∗) = ρ(x1) − γI(x1) +
γG(x1, x0), and the expression follows by substituting into (7).
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sumers it now excludes. The other parts of the first term reflect the speed at which types are

excluded as premiums are raised. The last part of the expression 1 − G is the impact on revenue

from inframarginal consumers.46

From a regulator’s perspective, is the monopolist excluding too little or too much? To answer

this question, consider the setting where wI = wC = 1 ≤ wG, so that the regulator equally weights

consumer surplus and monopolist profits, and respects any excess cost of public funds. Under these

weights, the effect of increasing premiums on all contracts x1 and above is

VG = −ρ(x1)− (γI(x1)− γI(x0))− (wG − 1)(γG(x1, x0)− γI(x0))

vψ(x1, ψ∗)− vψ(x0, ψ∗)
g(ψ∗),

where the superscript G stands for “government”, and ρ(x1)−(γI(x1)−γI(x0)) measures the change

in consumers’ willingness to pay less the cost of serving them, while (wG − 1)(γG(x1, x0)− γI(x0))

measures the cost of increased government spending.47 Note that γG(x1, x0) ≥ γG(x0, x0) = γI(x0).

Comparing the impact of incremental exclusion from the perspective of the monopolist versus

the utilitarian regulator yields,

(30) VM − VG ≡ −wG γG(x1, x0)− γI(x0)

vψ(x1, ψ∗)− vψ(x0, ψ∗)
g(ψ∗) + 1−G(ψ∗).

The first term is negative and reflects the social cost of increased government spending that arises

when consumers receive higher coverage. The second term is positive and reflects that the monop-

olist values transfers from the consumer while the regulator is indifferent. Overall the comparison

is ambiguous. Because γG depends on consumers’ behavior in their chosen contract (in this case

x1), the monopolist in effect does not bear the full cost of additional healthcare spending due to

higher coverage. This subsidy encourages the monopolist to serve more consumers than it oth-

erwise would. However, under the alternative rule where government spending depends only on

consumers’ behavior had they chosen x0—i.e., when γG is fixed at γI(x0)—then the first term

cancels out, and the regulator unambiguously wants the monopolist to exclude fewer consumers.

Incentives to Screen. Marone and Sabety (2022) provide an empirical illustration where the

social planner chooses to pool all consumers in a single contract, and our numerical analysis also

provides a strong incentive for the planner to pool types. We now provide a theoretical example to

illustrate how nonresponsiveness in the planner’s problem can drive this outcome, as well as how it

contrasts with the outcome that would be chosen by a monopolist.48 To gain traction analytically,

46In the case where ω and F are not stochastic (the one-dimensional case), optimal exclusion requires that VM = 0,
which rearranges to the classic “virtual profit” condition.

47In this case, S =v − γI − (wG − 1)γG, and so since v(x1, ψ∗)− v(x0, ψ∗) = ρ(x1),

S(x1, ψ∗)− S(x0, ψ∗) = ρ(x1)− (γI(x1)− γI(x0))− (wG − 1)(γG(x1, x0)− γI(x0))

and the expression for V2,G follows.
48Nonresponsiveness holds when, as a function of the consumer’s type, the allocation of contracts to types that is

incentive compatible has the opposite monotonicity property than the efficient allocation.
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we limit attention to the one-dimensional problem. Specifically, we assume that the consumer’s

only private information is ω, and that the distribution of ψ and F is degenerate. We also restrict

attention to linear out-of-pocket cost functions of the form c(a, x) = (1 − x)a, and assume that

b(a, l, ω) ≡ b̂(a− l, ω).49 Finally, for simplicity, we assume that γG = 0 and that the social planner

assigns the same weight to the insurer and to the consumer.

The assumptions on c and b yield a very convenient expression for v(x, ω) (we omit ψ and F from

θ since they are fixed in this section). To see this, note first that from b̂a(a− l, ω) = ca(a, x) = 1−x,

we obtain a∗(l, x, ω) = l+ϕ(1−x, ω), where ϕ is the inverse of b̂a with respect to its first argument.

Inserting the optimal choice of a into v we obtain

v(x, ω) = b̂(ϕ(1− x, ω), ω)− (1− x)ϕ(1− x, ω)− 1

ψ
log

∫
eψ(1−x)ldF (l),

and

(31) vx(x, ω) = ϕ(1− x, ω)− 1

ψ
log

∫
e−ψldF (l),

which yields vxω = ϕω(1− x, ω) > 0, as discussed in Technical Remark 4.

Consider first the social planner’s problem without adverse selection (the ‘first-best’ case). Since

a− c(a, x) = xa in this case, the planner solves, for each ω,

max
x∈[0,1]

(
v(x, ω)− x

∫
a∗(l, x, ω)dF (l)

)
.

Using a∗(l, x, ω) = l + ϕ(1 − x, ω) and (31), we obtain that the cross-partial derivative of the

objective function with respect to (x, ω) is xϕ(1−x)ω(1− x, ω).50 One can show that this is strictly

negative for all x > 0 if b̂aω/b̂aa is strictly decreasing in a, a condition that is satisfied by the

canonical example.51 By a standard monotone comparative statics argument, this implies that the

efficient allocation of contracts to types in the first best is decreasing in ω.

But in this case a necessary condition for χ(·) to be incentive compatible is that it be increasing

in ω.52 It follows from this conflicting monotonicity that when ω is the only source of private

information, the social planner’s optimal allocation of contracts to types is “flat.”

49Under this out-of-pocket cost functions, we know that vxω > 0, and in the parametrization used in the numerical
simulations we obtain closed-form solutions for a∗ and z.

50To see this, note that vxω = ϕω(1 − x, ω),
∫
a∗ωdF = ϕw, and

∫
a∗xωdF = −ϕ(1−x)ω. Inserting these expressions

into the cross-partial derivative of the objective function we obtain vxω −
∫
a∗ωdF − x

∫
a∗xωdF = xϕ(1−x)ω.

51To see this, from b̂a(ϕ(1− x, ω), ω) = 1− x, differentiate twice and use the derivative of the inverse function ϕ to
obtain ϕ(1−x)ω = −(b̂3aa)−1(b̂aaω b̂aa − b̂aaab̂aω), and this is strictly negative if the term in parenthesis is, that is,

when b̂aω/b̂aa is strictly decreasing in a. If b(a, l, ω) = a− l − (1/(2ω))(a− l)2, then baω/baa = −(a− l)/ω, which
is clearly strictly decreasing in ω.

52The standard incentive compatibility characterization states that χ is incentive compatible if and only if it is
increasing and the consumer’s indirect utility when her type is ω, U(ω) = v(χ(ω), ω) − ρ(χ(ω)) can be written as
U(ω) = U(ω) +

∫ ω
ω
vω(χ(s), s)ds.
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Proposition 5 (Social Planner and Pooling) Assume that only ω is private information, that

b(a, l, ω) = b̂(a − l, ω), that baω/baa is strictly decreasing in a for each (l, ω), and that c(a, x) =

(1− x)a. Then the optimal χ for the social planner entails complete pooling of types.

Consider now the profit-maximizing monopolist’s problem. After some algebra that is standard

in screening with one-dimensional private information, the monopolist’s problem becomes

max
χ(·)

(∫ (
v(χ(ω), ω)− x

∫
a∗(l, χ(ω), ω)dF (l)− vω(χ(ω), ω)

1−G(ω)

g(ω)

)
dG(ω)− v(x0, ω)

)
s.t. χ increasing.53 If we ignored the monotonicity constraint, we could maximize, for each ω,

(32) v(x, ω)− x
∫
a∗(l, x, ω)dF (l)− vω(x, ω)

1−G(ω)

g(ω)

with respect to x. If this expression had a strictly negative cross-partial derivative with respect

to (x, ω), then once again we would have complete pooling.54 But, unlike the planner’s objective

function, whose cross-partial is strictly negative when b̂aω/b̂aa is strictly decreasing in a, we have

an extra term, −vω(x, ω)((1−G(ω))/g(ω)). As a result, the cross-partial derivative of (32) is

(33) xϕ(1−x)ω − vxωω
1−G
g
− vxω

(
1−G
g

)
ω

= xϕ(1−x)ω − ϕωω
(

1−G
g

)
− ϕω

(
1−G
g

)
ω

.

To see that this expression need not be strictly negative, assume b̂(a−l, ω) = a−l−(1/(2ω))(a−l)2,

and that g is a strictly increasing density with g′ > 0. Then one can show that (33) is actually

strictly positive, which implies that the monopolist completely sorts types at the optimal menu,

providing a drastic contrast with the social planner’s solution.55

B.8 Omitted Algebra from Section 7

The payoff to the government with subsidy scheme s is

(34) wC
∫ q(s)

0
P (q′)dq′ − wIC(q(s)) + (wI − wC)P (q(s))q(s) + wIσ(q(s)|s)︸ ︷︷ ︸

β(s)

− wGσ(q(s)|s),

53The algebraic steps are as follows. First, use the incentive compatibility characterization in Footnote 52 to write
the monopolist’s problem as maxρ(χ(·)),χ(·)

(∫ (
ρ(χ(ω))− x

∫
a∗(l, χ(ω), ω)dF (l)

)
dG(ω)

)
subject to χ increasing

and ρ(χ(ω)) = v(χ(ω), ω) − v(x0, ω) −
∫ ω
ω
vω(χ(s), s)ds, where we have set U(ω) = v(x0, ω), which is optimal for

the monopolist. Second, insert the expression for ρ into the objective function. Finally, integrate by parts a double
integral that appears after the replacement and rearrange.

54The solution to the relaxed problem (which ignores the monotonicity constraint) would be decreasing, and thus
there would be a need for ironing, which would yield a flat allocation of contracts to types.

55To see that (33) is strictly positive, note that from b̂a = 1−x we obtain ϕ(1−x, ω) = ω(1− (1−x)), and thus (33)
is equal to −x− 0 + x((g′/g)((1−G)/g) + 1), which is strictly positive if g′ > 0.
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where β(s) is the benefit of the subsidy and wGσ(q(s)|s) is the cost. Differentiating the government’s

payoff function (34) we obtain

(
wCP (q(s))− wIMC(q(s)) + (wI − wC)MR(q(s)

)
qs(s) + (wI −wG)(σq(q(s)|s)qs(s) + σs(q(s)|s)),

which has the same sign as(
wCP (q(s))− wIMC(q(s)) + (wI − wC)MR(q(s)

)
qs(s)

σq(q(s)|s)qs(s) + σs(q(s)|s)
+wI−wG =

βs(s)

σq(q(s)|s)qs(s) + σs(q(s)|s)
−wG

Evaluating the last expression at s = 0, and recalling that q(0) = qm and σq(q|0) = 0 we obtain

equation (12). And since at qm we have MR = MC, we obtain

BFFB = wC
P (qm)−MC(qm)

σs(qm|0)
qs(0) + wI .

But, differentiating the identity MR(q(s))− (MC(q(s))− σq(q(s)|s))) = 0 yields

qs(0) =
σqs(q

m|0)

MCq(qm)−MRq(qm)
,

and so

BFFB = wC(P (qm)−MC(qm))
1

MCq(qm)−MRq(qm)

σqs(q
m|0)

σs(qm|0)
+ wI

To see the intuition for this equation, start from the right and work left, and note first that wI

reflects the direct benefit to the government of the fact that the monopolist receives a dollar of

subsidies. Since the monopolist has chosen price optimally, their payoff is otherwise unchanged.

Next, σqs/σs is the amount by which the first dollar spent on subsidies lowers the effective marginal

cost of the monopolist. The term 1/(MCq −MRq) reflects the amount by which a decrease in the

marginal cost of the monopolist leads the monopolist to increase output. Finally, the effect of a

change in output by the monopolist on the surplus of the consumer is P −MR, which, since we

are at the monopolist’s optimum is the same as P −MC.

Now, P −MC = −Pqqm from the standard monopoly optimum formula, while MRq = 2Pq +

qmPqq, and so, substituting and manipulating,

BFFB = wCqm
σqs
σs

1

2 +
(
MCq
−Pq + qm

Pqq
Pq

) + wI ,

which is the expression in the text. �
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