Discussion of:

Nonlinearity and Flight-to-Safety in the Risk-Return Tradeoff for Stocks and Bonds by Tobias Adrian, Richard Crump, and Erik Vogt

Itamar Drechsler[◊]

 $^{\circ}\text{NYU}$ Stern and NBER

Volatility Institute Conference 2015

Overview

- 1 Literature is mixed on whether volatility predicts returns
 - although there is a strong, negative contemporaneous correlation
- 2 This paper finds a non-linear and non-monotonic relationship for equities and treasuries
- 3 Equity and treasury expected excess returns are mirror images

Estimation by sieve regression: how it works

Estimate expected h-period excess return function ϕ_h of VIX_t :

$$Rx_{t+h} = \phi_h(VIX_t) + \varepsilon_{t+h}$$

• using linear combinations of *m* B-splines:

$$\phi_{m,h}(VIX) = \sum_{j=1}^{m} \gamma_j \cdot B_j(VIX)$$

- let $m \to \infty$ slowly as sample size $T \to \infty$
- Nice and simple: estimate γ_j's by OLS on the (m × T) matrix with columns [B_j(VIX₁),...B_j(VIX_T)]', j = 1...m

Results very similar using cubic polynomials

- Using VIX, VIX², VIX³ produces very similar estimates
- note: VIX > 45 only occurs in 2008/9

Estimates

1990 - 2007

Horizon $h = 6$										
	(1) Li	inear VIX	(2) Nonlinear VIX		(3) Nonlinear VIX and Controls					
	a^i	b^i	a^i	b^i	a^i	b^i	f_{DEF}^{i}	f_{VRP}^{i}	f_{TERM}^{i}	f_{DY}^{i}
MKT	0.03	1.00	0.72	1.00	0.25	1.00	-0.03	-0.84^{*}	0.00	0.12
cmt1	0.00	0.23^{**}	-0.09	-0.16^{***}	-0.15	-0.59^{***}	0.01	0.03	0.00^{*}	0.03***
cmt2	0.00	0.29	-0.16	-0.28^{**}	-0.22	-0.92^{***}	0.01	0.10^{*}	0.00	0.03***
cmt5	0.01	0.30	-0.31	-0.53^{*}	-0.34	-1.57^{***}	0.00	0.25^{*}	0.01	0.03^{*}
cmt7	0.03	0.18	-0.36	-0.62^{*}	-0.35	-1.75^{**}	-0.01	0.31^{*}	0.02	0.02
cmt10	0.04	-0.23	-0.37	-0.62	-0.32	-1.74^{*}	-0.03	0.36^{*}	0.02^{*}	0.02
<u>1990 - 2014</u> Horizon h = 6										
	(1) Linear VIX		(2) Nonlinear VIX		(3) Nonlinear VIX and Controls					
	a^i	b^i	a^i	b^i	a^i	b^i	f_{DEF}^{i}	f_{VRP}^i	f_{TERM}^i	f_{DY}^i
MKT	-0.01	1.00	1.00^{*}	1.00***	0.31	1.00***	0.05*	*-1.42**	**-0.01	0.17
cmt1	0.00	0.07^{*}	-0.05^{*}	-0.07^{***}	-0.09^{*}	* -0.20***	° 0.00	0.03^{*}	0.00^{*}	0.02***
cmt2	0.01	0.09	-0.11^{*}	-0.14^{***}	-0.15^{*}	-0.32^{***}	^k 0.00	0.08*	* 0.00	0.02^{**}
cmt5	0.03	0.04	-0.26	-0.31^{***}	-0.25	-0.60^{**}	* -0.02*	0.23*	* 0.01**	0.01
cmt7	0.04	0.04	-0.31	-0.38^{**}	-0.27	-0.70^{***}	* -0.03*	* 0.32**	* 0.02**	0.00
cmt10	0.05	-0.08	-0.30	-0.37^{**}	-0.25	-0.66^{**}	-0.03^{*}	* 0.39*	* 0.03**	** 0.01

- Linear only: insignificant for equities and treasuries
- Equity nonlinear: insignificant pre-crisis, significant in full sample
- Treasuries nonlinear: negative and significant
- Note that linear VRP (variance risk premium) is consistently significant
 - sign is correct given how it is defined (realized vol minus VIX)

Comments #1

- 1) convex relationship for VIX above its median is consistent with $E[R_{t+1}] = \gamma \sigma^2$
 - since increased σ_t raises both risk σ_t and risk price $\gamma\sigma_t$
- 2 Seemingly robust and surprising finding is low-VIX non-monotonicity
- 3 High-VIX non-monotonicity driven by single episode (fall 2008)
 - but important for finding predictability (Table 3, Figure 8)
 - difficult to rationalize investors knowingly accepting low return
- 4 Estimated relationship is consistent across treasuries and equities
 - but then not much added by using cross-section
- **5** Paper "controls" for VRP, but only in early
 - what about non-linearly?
 - ⇒ interesting to estimate predictability by VRP (or add realized variance as separate predictor)

Comments #2

How come VIX predicts six month returns but not 1 or 3 month returns?

- plausible economic explanation?
- VIX monthly persistence (AC1) is only 0.80
- 2 Negative treasury coefficient is consistent with precautionary savings
 - higher uncertainty \rightarrow increased precautionary savings \rightarrow lower r_f
 - impact on long maturities offset by increased term premium

3 Interesting to see how price of variance risk depends on VIX?

• estimate $RVar_{t,t+1}/VIX_t^2 - 1 = \phi(VIX_t) + \varepsilon_{t+1}$

Final Remarks

- Findings are interesting and give much food for thought
 - non-monotonicity can explain 0 linear predictability
 - but what's a good story for non-monotonicity?
- Low-VIX non-monotonicity is a bigger puzzle than convexity
- Interesting to reconcile non-monotonicity with $corr(R_{t+1}, \Delta VIX) \ll 0$ ("leverage effect")