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Overview

This paper presents a new model for interest rates, to capture:

Very long-term mean reversion

Shorter-run autocorrelation

Very short run momentum
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US 3-month T-bill rate, Jan 1954 �Dec 2013
Clearly persistent, possibly mean-reverting, periods of momentum
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The �LM-CTAR�model

A standard AR process captures persistence:

∆Xt = κx (µ̄� Xt�1) + σx εt

The CTAR model allows the �mean� to follow another AR:

∆Xt = κx (µt � Xt�1) + σx εt

∆µt = κµ

�
µ̄� µt�1

�
+ σµεt

The LM-CTAR model additionally allows for momentum:

∆Xt = κx (µt � Xt�1) +ω
�
X̄(t�1)jn � Xt�1

�
+ σx εt

∆µt = κµ

�
µ̄� µt�1

�
+ σµεt

X̄(t�1)jn �
n

∑
i=1
biXt�i
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Related work

A time series �mean-reverting� to a time-varying central point:

Balduzzi, Das and Foresi (1998): CTAR model for bond yields

Engle and Lee (1999): GARCH model with time-varying mean

Barndor¤-Nielsen and Shephard (2002), and others: two factor models
for stochastic volatility

An autoregression with time-varying persistence:

Aït-Sahalia (1996) and Ang and Bekaert (2002): AR is close to random
walk near �middle�of distribution, mean-reverting for extreme values

Diebold and Inoue (2001): regime switching AR processes can appear
to have long memory

�Threshold AR�and �Smooth transition AR�models: see Granger and
Teräsvirta (1993) for a survey

Patton (Duke University) Discussion of Jin-Chuan Duan April 2015 � 5 �



Some comments on the paper

I like the paper, and it was interesting to think about how a time
series model can try to capture the features of US interest rates

I have a few questions and comments for the author
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The �local momentum�component

The new term here is the LM term: X̄(t�1)jn � ∑n
i=1 biXt�i

A few questions about X̄(t�1)jn:

1 How do we optimally choose n? Author sets n = 7, which seems
reasonable, but so would many other choices.

2 Intuition on how n will change with the sampling frequency? Would
optimal n for daily data be 5 times larger than that for weekly data?

3 What is gained by the lag coe¢ cients fbigni=1? The author imposes
these to be 1/n in estimation, which seems reasonable. Does he
envisage a scenario when this would be relaxed?

4 If fbigni=1 are not �xed, then they are unidenti�ed when ω = 0,
making estimation and inference a bit trickier.
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Realiability of standard inference methods

The models considered here may be stationary, but they are very
close to being non-stationary

AR(1) coe¢ cient in Table 2 is 0.9974

LM-AR ρ (B) coe¢ cient is 0.9957

Although LM-CTAR ρ (B) coe¢ cient for is only 0.8259 (why?)

Tese models may be inside the stationary region of the parameter
space, but they are so close to the boundary that standard inference
methods may be unrealiable

Perhaps run some simulations to see whether standard methods work,
using the parameter estimates reported in the paper
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Moving from one interest rate to the term structure

This paper considers both a scalar time series process, and its
generalization to the entire term structure (which is nice)

What is the motivation for the additional AR(1) process that appears
in this generalization (eq 14)?

rt = Xt|{z}
LM�CTAR

+ νt|{z}
AR (1)

+ εt|{z}
AR (0)

The LM-CTAR model already contains (i) an AR(1) for the central
tendency factor, µt (ii) an AR(1) for the interest rate (iii) an MA(7)
for the local momentum e¤ect

The combined model for the term structure rates is thus quite
complicated. Are all these AR/MA parameters are well identi�ed?
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Simple models w/ structural breaks vs. complicated models

One approach: keep generalizing a time series model until it �ts the
data over a (long) sample period

Out-of-sample performance? Over-�tting?

Stability of model parameters over a 50+ year period?

Identi�cation of parameters in the various components of the model?

Alternative: consider simpler time series models, estimated over
shorter samples

Formal tests for structural breaks (eg, Bai, 1995�now)

Estimate using rolling window (eg, Fan, Farmen and Gijbels, 1998)

Long-run predictions are harder, term structure extension may be hard

It would be interesting to see comparisons of the LM-CTAR model
not only with models it nests (ie, with constant parameters) but some
other alternatives as well.
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