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Abstract

Investors can choose to hold diversified or levered, concentrated portfolios of

risky assets. This paper studies the dynamics of asset prices in an economy in

which both investment styles coexist in equilibrium even though all agents are

ex-ante identical. I capture the tradeoff between risk sharing and productivity

gains by introducing what I call “active capital.” People who participate in such

investments are restricted in their outside opportunities but receive extra com-

pensation for the productivity gains they bring to the corresponding enterprises.

I show that fluctuations in the quantity of active capital increase the volatility of

asset prices relative to a standard economy. Not all shocks shift the distribution

of ownership: risk considerations determine the willingness to provide active

capital, whereas current and expected future economic activity do not play a

role. Therefore, active capital fluctuates jointly with risk premia, amplifying

their variations. As a consequence, the price of volatility risk exposure can be

large, and return volatility is mainly induced by fluctuations in future expected

returns. These results are particularly strong when fundamental volatility is low,

because at such times, a large number of concentrated owners are likely to exit

their positions and sell off their assets.
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1 Introduction

This paper characterizes the behavior of asset prices in an economy in which diversified

and concentrated, levered investment coexist even though no ex ante heterogeneity

is present. What determines the aggregate fraction of capital held by concentrated

investors? How does the presence of concentrated investors affect the determination of

asset prices? I show these two questions are intimately linked. When deciding whether

to concentrate their holdings in particular projects to increase their productivity, agents

compare the induced wealth risk to that of a diversified portfolio. Therefore, they

respond to price dynamics. Conversely, as assets change hands among categories of

investors, prices fluctuate. This two-sided relation between concentrated ownership

and asset prices has rich implications for the equilibrium dynamics of prices.

Concentrated, levered ownership is ubiquitous in the economy. A number of eco-

nomic activities can run more efficiently if some agents invest a significant fraction of

their wealth in the enterprise. The benefits of such positions are one of the reasons

advanced for stock-based compensation of executives and for why entrepreneurs keep a

large equity stake in their businesses. The gains from concentrated, levered ownership

can also come from investors outside the firm, typically financial institutions, exerting

direct control or monitoring insiders.1 As assets change hands between different types

of investors and agents switch activity, we typically observe changes in aggregate asset

prices.2 The financial crisis of 2007-2009 is such an episode: business creation dropped

and many leveraged financial institutions largely reduced or ceased completely their

activities as asset prices dipped across markets.3 This paper sheds light on how, in ag-

gregate, the organization of ownership between concentrated and diversified investors

is determined jointly with asset prices.

I present a dynamic general equilibrium model with a role for concentrated invest-

ment. Agents are allowed to pick what I call “active capital” as an alternative form

of asset ownership. Active investors constrain themselves to a concentrated risky po-

1Venture capitalists and private equity funds exemplify this type of behavior, but one can also

think of the activity of investment banks and hedge funds.
2For instance, broker-dealers (Adrian et al., 2010), buyout funds (Haddad et al., 2011), and venture

capitalists (Gompers et al., 2008) diminish their activities in periods of high risk premium.
3Between December 2007 and March 2009, the hedge fund industry equity went from $1975bn to

$973bn according to the Barclay Hedge database. For broker-dealers, He et al. (2010) estimate a

change of trading assets from $2601bn to $1810bn using balance sheets of three pure broker-dealers.

Private equity activity was also largely impaired for an extended period of time: the CityUK report

on global private equity reports a drop in funds raised from $480bn in 2007 to $140bn in 2009.
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sition in a firm, which makes the firm more productive. I represent this activity by

a constraint on the portfolio shares in risky assets for active agents. This constraint

reproduces the high portfolio leverage typical of these investors and is close to the

optimal contract as a solution of a moral hazard problem.4 This framework allows me

to study the joint determination of the quantity of active capital and asset prices in a

variety of stochastic structures. I show the effects of active capital on asset prices and

the real economy crucially depend on the nature of fundamental risk in the economy.

Active capital affects asset prices through two channels: distorted risk sharing and

deleveraging risk. The static effect of active capital is a distortion of the risk-sharing

arrangement in the economy. Active agents hold a disproportionate fraction of the risky

assets. Therefore, the passive agents bear less risk in equilibrium. Consequently, they

require a lower risk premium for the asset. This channel tells us risks that active agents

bear will tend to have a lower price than those with no active ownership. Diverging

from the standard perfect risk sharing is optimal in this framework because it improves

the productivity of firms. I show, however, that a competitive market yields an excess

amount of active capital. Taxing firms that use this source of capital raises the welfare

of all agents by improving risk sharing.

The second channel, deleveraging risk, is driven by the dependence of the quantity of

active capital on economic fundamentals. For instance, if fundamental risk increases,

the quantity of active capital decreases. We observe a deleveraging episode: some

active investors switch back to passive investments. This switch requires selling assets

to reduce their excess risky portfolio holdings. Existing passive agents have to absorb

these assets arriving on the market, which tends to lower prices further than the direct

impact of the increase in risk. In this sense, active capital amplifies the fundamental

volatility risk. Ex ante, this effect will tend to increase the price of this risk. The

general finding is that shocks that affect the supply or demand of active capital are

amplified and command a higher price of risk.

The determination of the quantity of active capital is key to understanding char-

acteristics of these two effects. Equilibrium in the active capital market equates the

quantity of active capital firms demand with the number of investors willing to accept

this particular portfolio. Firms demand active owners because they increase cash flow.

They trade off these productivity gains with the extra cost of active capital. I assume

the gains per fraction of active capital are independent of the state of the economy.

4See Holmstrom (1979) for the original derivation and Holmstrom and Tirole (1997) for a general

equilibrium application.
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Therefore, the demand curve for active capital is constant over time. On the other

hand, the supply of active capital is endogenously determined. Because all agents are

ex-ante identical, the extra returns paid to active capital must exactly compensate

active agents for the extra risk they bear. The required compensation (cost of active

capital) depends positively on risk aversion, the riskiness of the asset, and the size of

the deviation from the optimal portfolio. This result points at two important shocks

that shift the amount of active capital: volatility and risk-aversion shocks. But not

all shocks do impact asset prices and the economy: shocks to the level of output, in

the style of TFP shocks, do not yield changes in the composition of ownership, and

therefore are not amplified. Such distinction points at an explanation why not all re-

cessions occur jointly with financial crises: the active sector is resilient to technological

recession, but much less so to periods of economic uncertainty.

In general equilibrium, asset prices change with different levels of active capital.

Market clearing implies that with more active agents, passive agents hold a smaller

quantity of risky assets. For this condition to be consistent with optimization by

passive agents, the asset must be more expensive. Therefore, the portfolio of active

agents becomes more costly and they ask for more compensation for their activity. This

feedback of activity on risk sharing makes the supply of active capital an increasing

function of its price. Because deleveraging risk plays a role through variations in the

quantity and not the price of active capital, the effects are more dramatic when the

demand and supply are more elastic and when supply is more responsive to economic

conditions. In particular, the deleveraging risk is large in periods with important

quantities of active capital.

The main contribution of this paper is to provide an equilibrium model of investor

heterogeneity resulting from choices of agents. To my knowledge, this paper is the first

to provide such an approach to asset-pricing theory with heterogenous agents. The rest

of this large literature has focused on heterogenous investment behavior resulting from

exogenous differences in preferences or ability. I show this distinction is meaningful,

affecting not only the dynamics of asset prices but also real dynamics as well as response

to policy interventions. Related, an important contribution is the characterization of

the equilibrium dynamics of asset prices. I argue the behavior of prices in the model

echoes a number of asset pricing-facts. In particular, the model generates a negative

link between the quantity of active capital and the aggregate risk premium. Further, the

presence of active capital increases the volatility of asset prices through fluctuations in

expected returns, unrelated to fluctuations in the current level of the economy or growth

prospects. Finally, a third contribution of the paper is to provide a tractable model
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with meaningful investor heterogeneity. I show that for arbitrary Markov dynamics,

solving the model with or without heterogenous agents has the same complexity. The

two problems share the same difficulty, a partial differential equation in the number of

exogenous state variables characterizing the price function. All other quantities admit

simple closed-form expressions.

After discussing related work, section 2 presents a simple case of the model showing

how equilibrium in the active capital market is determined, illustrating the two main

mechanisms. I detail the general model in section 3. Section 4 focuses on the pricing

implications of the presence of active capital in an economy with changes in aggregate

uncertainty and growth prospects. In particular it helps draw a comparison between

level and volatility shocks. Finally, I discuss the role of variation in financial constraints

and firm-level uncertainty as well as the effect of policy actions in section 5.

Related Literature

This paper fits in the literature studying asset prices in the presence of heterogeneous

investors. In particular, it is closely related to the work on heterogeneity resulting from

financial frictions.5

I focus on the role of equity constraints on agents linked to particular firms for

asset-pricing dynamics. Closest to my paper are Brunnermeier and Sannikov (2013),

and He and Krishnamurthy (2013). They both study the dynamics of asset prices

in models with an equity constraint. Related is Danielsson et al. (2009), who study

volatility dynamics in the presence of a Value At Risk constraint. My approach differs

from these papers because all agents in the economy choose between being levered

or not, rather than having two predetermined categories of agent. As a consequence,

they focus on the net worth of each category of agents rather than the incentives to

be active rather than passive. I further detail in section 4 how this distinction affects

asset pricing predictions across the two types of models.

Other sources of heterogeneity in the behavior of agents have been pointed to as

potential sources of fluctuations in risk premia. For instance, Dumas (1989) shows that

even with i.i.d. dynamics, heterogeneity in risk aversion can generate fluctuations in

expected returns. Basak and Cuoco (1998) study an economy with participation con-

straints. Gennaioli et al. (2011) study the implications of neglected risks for deleverag-

ing and asset prices. Geanakoplos (2009) focuses on how belief heterogeneity interacts

with margins. Again, a key difference in my paper is that the heterogeneity is always

5Brunnermeier et al. (2010) survey extensively this literature.

5



predetermined.

Finally, a number of papers study how traders with large stakes affect firm dynam-

ics. DeMarzo and Urošević (2006) study the trading behavior of a large investor that

can influence the firm. Basak and Pavlova (2013) study pricing in an economy where an

investor can affect aggregate prices. In my economy, investors hold concentrated stakes

in individual firms but are atomistic at the scale of the economy; therefore individual

decisions do not feed back directly on the equilibrium.

2 Basic Model

In this section, I present a case of my model with constant economic conditions to illus-

trate how the quantity of concentrated capital and asset prices are jointly determined in

equilibrium. I study an infinite-horizon, continuous-time economy. I first explain how

I model the role of concentrated positions in increasing productivity. Then I move on

to determining the equilibrium of the model, and emphasize properties of prices in my

economy that will drive the results in the general model with time-varying conditions.

I depart from the standard framework by relaxing the assumption that the produc-

tion outcomes of firms are independent of their ownership structure. In a Walrasian

equilibrium, ownership is determined only by concerns about consumption smoothing

across time and states of the world; having agents that influence the production of the

firm own it provides no benefit. Many (e.g., Berle and Means (1932)) have argued the

development of larger firms and financial markets causing more diffuse ownership, has

led this model to be an increasingly accurate representation of the world. However,

this argument is at odds with the data. Holderness et al. (1999) find the mean percent-

age of common stock held by a firm’s officers and directors for exchange-listed firms

actually increased from 13% in 1935 to 21% in 1995. Additionally, private firms still

represent a large fraction of the economy, and most of their equity is owned by their

workers. I capture the particular role of concentrated ownership by introducing the

notion of active investors: agents that concentrate their asset holdings in a given firm

increase its productivity.

I do not explicitly model the labor and production decisions, but rather focus on

the implications of an exogenously specified constraint for asset allocation. Specifically,

each firm can choose to pay some agents to actively invest in it. Firms thereby trade

off the cost of hiring these agents with the additional productivity they provide. The

additional productivity is proportional to the fraction of capital active investors own,
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where the marginal return λ is exogenously specified. Agents, on the other hand,

choose whether to allocate their wealth optimally without focusing on any precise firm

or investing actively in a given firm. An agent investing actively must allocate a fraction

θ̄ > 1 exogenously specified of his wealth in claims to the output of the firm, financing

this position by taking up risk-free debt. The motive for concentrating holdings is

that the firm in which an agent invests actively will compensate him in addition to the

regular asset returns.

Similar to these assumptions is the decision of inside ownership by firms. They can

choose whether to provide their employees with fixed or stock-based compensation.

Conversely, people can choose “safe” career paths that do not link their labor decisions6

to their wealth-allocation decisions, or to concentrate their wealth in one firm where

its evolution depends on the enterprise’s performance. However, note that many other

forms of active investment exist. For instance, entrepreneurs usually keep a large stake

in the firms they create. Active investment also does not need to come from agents

working directly inside the firm. Holmstrom and Tirole (1997) emphasize that outside

investors can affect a firm’s outcomes through their monitoring activity. Typical of

such activity are private equity funds and venture capitalists, whether they fund new

projects or buy out firms, but one can also think of the investment activities of a

number of hedge funds or investment banks.

2.1 The hiring decision of firms

I assume a continuum of identical firms indexed by j ∈ [0, 1]. Firms can go on the

occupation market and hire the services of active investors in order to increase their

productivity. Let mj
t be the fraction of total firm value held by active agents at time

t. The evolution of the firm cash flow Dj
t is given by

(2.1)
dDj

t

Dj
t

= (µD + λmj
t)dt+ σDdZt.

The parameters µD and σD control the fundamental drift and volatility of cash-

flow growth, and {Zt} is a univariate Brownian motion. Active investment increases

cash-flow growth, with a marginal return λ. Such an effect is similar to the effect of

investment in a standard q-theory framework. For instance, active investors can help

the firm make better decisions or work harder, thereby increasing productivity while

they are at the firm and permanently increasing the scale of production.

6I focus only on the active capital friction. In particular, I assume the wealth of all other agents is

perfectly liquid and tradable at all times.
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Firms have to pay active investors for their services. I assume the payment takes

the form of a fee ftdt per unit of capital. This fee is determined by the competitive

equilibrium of the occupation market, and the firm takes it as given. Denoting P j
t as

the market value of the firm, the total payment to active investors at time t is ftm
j
tP

j
t dt.

Equivalent to a direct payment, ft can be thought of as a rate of share issuance: for

each unit of capital they provide, active investors receive ftdt extra shares. Because

this payment is infinitesimal, whether investors receive it before or after the resolution

of uncertainty is irrelevant. Another equivalent interpretation of this payment is an

issuance of new shares paid to the active investors.

The firm chooses how many investors, as a fraction of its capital, it hires to maximize

its share value. The firm takes the process for the stochastic discount factor {Sτ} and

the fee {fτ} as given. As in the standard investment theory, the firm faces a static

tradeoff between productivity increase and the fee payment. The marginal benefit of

increasing mj
t is a gain in scale generating a value λP j

t dt, whereas the marginal cost

is the payment ftP
j
t dt. Because neither the marginal benefit nor the cost depends on

mj
t , we obtain a perfectly elastic demand for active capital from the firm:

mj
t = 1 if λ > ft,

mj
t ∈ [0, 1] if λ = ft,

mj
t = 0 if λ < ft.

In the case of an interior equilibrium, λ = ft, cost and benefit exactly cancel each

other out. Firms are indifferent between any level of active capital. Their valuation

does not depend on the level they choose; that is, the valuation is the same as that

of a firm without active capital. In section 3, I provide a more complete derivation of

this result and justify the time consistency of the policy function, even though the cost

depends on the value the firm is optimizing.

2.2 The occupation decision of agents

I assume a continuum of ex-ante identical agents indexed by i ∈ [0, 1]. They value

risky consumption plans with the standard power utility function:

U ({Cτ}∞τ=t) = Et
[∫ ∞

0

e−βτ
Cγ
t+τ

γ
dτ

]
,

where β is the rate of time discount and Γ = 1− γ is the relative risk aversion. Agents

are all endowed with an equal fraction of all firms at time 0. Let W i
t be their wealth

8



at time t. At each point in time, agents can choose to be either passive or active

investors. If they decide to be passive, they can also choose their portfolios. They

make this decision in order to maximize their lifetime utility, taking asset returns and

the fee for active capital as given.

Practically, most forms of active investment have some degree of illiquidity. Com-

pensation contracts often involve some long-term relation, at least at the yearly fre-

quency with the annual payment of bonuses. Similarly, entrepreneurs cannot always

liquidate their firms on short notice. My model does not feature this long-run illiquid-

ity, but captures the idea that at any point in time, some agents decide to take on or

leave active investments. Indeed, we observe a lot of mobility in the workforce, and

the landscape of firms is constantly changing.7

Passive investors are standard neoclassical agents. Let this (endogenous) subset of

investors at time t be P∗t . They have unrestricted access to the asset markets: they

can buy and sell claims to any payoff. I note θi,j∗t as the number of shares of firm j

bought by agent i, and µjR,t and σjR,t as the drift and volatility of these shares’ returns.

The wealth evolution for a passive agent is then

(2.2)

dW i
t =

(
W i
t

(∫ 1

0

θi,j∗t (µjR,t − rf,t)dj + rf,t

)
− Ct

)
dt+W i

t

(∫ 1

0

θi,j∗t σjR,tdj

)
dZt.

Active investors (set Aj∗t for firm j and A∗t in aggregate) focus on a single firm j

and help increase its productivity. I assume a fraction θ̄ > 1 of shares of firm i financed

by risk-free borrowing must comprise the investors’ portfolios. The assumption that

θ̄ > 1 implies aggregate risk is concentrated in the hands of active investors.8 As

a compensation for focusing on firm j, they receive an extra return ft per unit of

investment. The wealth evolution for an active agent investing in firm j is therefore

(2.3) dW i
t =

(
W i
t ( θ̄ (µjR,t − rf,t) + rf,t + θ̄ft)− Ct

)
dt+W i

t θ̄ σ
j
R,tdZt.

This constraint departs from the standard optimal contract in the presence of moral

hazard(Holmstrom, 1979) in three ways: no benchmarking of aggregate risk, contract

on market price rather than actual output, and constraint proportional to wealth.9

7Puri and Zarutskie (2011) find that about 3 million firms are created in any five-year period

between 1981 and 2005.
8It is easy to check that an inequality constraint of θ ≥ θ̄ would always bind. If θ̄ ≤ 1 with an

inequality constraint, the constraint would always be slack.
9The first two are common assumptions of the literature on the macroeconomic role of financial

constraints and are present in Bernanke et al. (1999), He and Krishnamurthy (2012), and Brunnermeier

and Sannikov (2013). Di Tella (2013) offers a rationalization of this property.
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The standard theory predicts the contract should only take into account a measure of

the idiosyncratic part of cash flow, not an overall stock position. However, in prac-

tice, equity-based compensation is widely used and little evidence points to relative-

performance evaluation.10 The concentrated positions even seem to make agents bear

an excessive amount of aggregate risk.11 One could argue agents can go on markets

and choose whether to hedge any excess exposure to aggregate risk. To my knowl-

edge of the literature, little evidence supports that agents engage in such shorting of

aggregate risk. This lack of hedging might be due to a limited ability to take short

positions. My results still hold if agents cannot hedge as much as they would like to.

In this case, θ̄ becomes the loading on risk after all possible hedging is done. Whether

compensation should be commensurate with changes in stock prices or proportional to

the percentage change is ambiguous from the theoretical point of view. Empirically,

percentage-percentage measures appear to give more sensible results and are more

stable across firms.12

When choosing his occupation, an agent faces a tradeoff between optimizing his

portfolio and receiving the fee ft. Because passive agents are unconstrained, without

the fee, the utility of a passive investor would be smaller than that of an active investor.

Concentrating a portfolio on a levered position in one firm would serve no purpose.

To solve for the optimal decision of an agent, we can make a few simplifying remarks.

First note that because all firms are identical, they all have the same return and

volatility, µjR,t and σjR,t, so I drop the superscript j and note θi∗t as the optimal risky

position of agent i if he is passive. Also note the opportunity set of agents is linear

in their wealth and independent of their past occupation, preferences are homogenous

of degree γ, and the opportunity set of a firm is linear in its current size. The model

is therefore stationary, and no endogenous state variable is present. In particular, the

utility level of each agent as a function of wealth does not depend on i and t. It is

given by

U it =
(W i

t )
γ

γ
G

for some endogenous constant G.

10Janakiraman et al. (1992) and Aggarwal and Samwick (1999) do not find significant evidence in

favor of relative performance evaluation for firms’ executives.
11Moreira (2009) finds small-business owners’ income loads excessively on aggregate risk.
12The seminal paper of Jensen and Murphy (1990) finds an apparently small dollar-dollar sensitivity

of 0.3% for CEOs. Edmans et al. (2009) propose a model predicting percentage-percentage pay. They

find empirically this measure is 9 on average and is stable across different sizes of firms.
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We can then focus on the Hamilton-Jacobi-Bellman equation, determining the util-

ity of an agent starting with one unit of wealth:
0 = max{HJBP ,HJBA}

HJBA = supc c
γ − βG+ γG(θ̄(µR − rf ) + rf + θ̄ft − c) + 1

2
γ(γ − 1)Gθ̄2σ2

R

HJBP = supc,θ c
γ − βG+ γG(θ(µR − rf ) + rf − c) + 1

2
γ(γ − 1)Gθ2σ2

R,

where the first maximization corresponds to the occupation choice and the next two

correspond to the consumption and portfolio choices of an agent in each occupation.

The first-order condition with respect to consumption is the same for both occupations.

It tells us that if both occupations occur in equilibrium, the consumption-wealth ratio

of all agents will be the same, equal to

c = G
1

γ−1 .

The other first-order condition is the portfolio choice of a passive investor. Because a

passive investor is just a regular investor with power utility, we obtain the standard

Merton formula:

θ∗ =
µR − rf

(1− γ)σ2
R

.

The two HJB are the same linear-quadratic function of the portfolio share, with the

exception of the fee θ̄f . Depending on whether the fee exceeds the quadratic cost

of deviating from the optimal portfolio, agents will choose one or the other activity.

Agents are indifferent between occupations if:

(2.4) θ̄f =
1

2
(1− γ)(θ̄ − θ∗)2σ2

R.

If the left-hand side is larger than the right-hand side, all agents are active; if the

right-hand side is larger, all agents are passive. The supply of active capital, taking

asset prices as given, is therefore perfectly elastic.

The cost of deviating from the optimal portfolio is proportional to relative risk

aversion (1−γ), return volatility σ2
R, and the distance between the active portfolio and

the optimal one. Note this cost is not a measure of the absolute excessive risk taken

by an active investor, but rather of how far is his portfolio is from that of the optimal

one in terms of risk.

2.3 Equilibrium

We can now turn to the determination of the equilibrium. To do so, I add market-

clearing conditions to the problems of agents and firms. I generalize the standard
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Walrasian equilibrium by adding a market for active investment where firms and agents

are price takers. This market structure represents the idea that firms compete for hiring

active investors, and investors compete for the active positions.

Definition 2.1. Given θ̄A and λ, an equilibrium constitutes θi,jt , cit, a partition Aj∗t
and P∗t , mj

t , St, and ft for i, j ∈ [0, 1] and t ∈ [0,∞) such that

(i) The portfolio choices of active investors satisfy the equity constraint:

∀t ∈ [0,∞),∀j ∈ [0, 1],∀i ∈ Aj∗t , θ
i,j
t = θ̄ and ∀j′ 6= j, θi,j

′

t = 0.

(ii) Occupation Ot(Aj if i ∈ Aj∗t , P if i ∈ P∗t ) portfolio, and consumption choices

are feasible and maximize utility given aggregate prices, the active fee f , and the

wealth evolutions (2.2) and (2.3):

max
Ot,Ct,{θi,j}t

Et
[∫ ∞

0

e−βτ
Cγ
t+τ

γ
dτ

]
such that

dW i
t =

(
W i
t

(∫ 1

0

θi,j∗t (µjR,t − rf,t)dj + rf,t

)
− Ct

)
dt

+W i
t

(∫ 1

0

θi,j∗t σjR,tdj

)
dZt if Ot = P

dW i
t =

(
W i
t ( θ̄ (µjR,t − rf,t) + rf,t + θ̄ft)− Ct

)
dt

+W i
t θ̄ σ

j
R,tdZt if Ot = Aj

Wt, Ct ≥ 0, ∀t.

(iii) Levels of active investment maximize firm value:

∀t ∈ [0,∞),∀j ∈ [0, 1],

{mj
τ} ∈ arg max

{mτ}
Pt = arg max

{mτ}
Et
[∫

St+τ
St

Dt+τ − ft+τmt+τPt+τdτ

]
given the cash-flow evolution (2.1).

(iv) The occupation market clears:

∀j ∈ [0, 1],mj
tP

j
t =

∫
Aj∗t

θi,jt W
i
t di.

(v) The market for assets clears:

∀j ∈ [0, 1], P j
t =

∫ 1

0

θi,jt W
i
t di.
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(vi) The market for goods clears: ∫ 1

0

Ci
tdi =

∫ 1

0

Dj
tdj.

Some of the integrals in the definition above are a slight abuse of notation in order

to keep clarity. Indeed, individual passive investors’ stock positions in a given firm

will typically be negligible compared to those of active investors. These problems

disappear once we aggregate across firms. To do so, let Pt =
∫ 1

0
P j
t dj be the price of

the aggregate endowment. It is equal to the aggregate wealth Wt =
∫ 1

0
W i
t di. We can

note the aggregate fraction of active capital as Mt =
∫ 1

0
mj
tP

j
t /Ptdj. Finally, let θ∗t be

the portfolio of a passive agent, as we saw they all make the same choice. Combining

the market-clearing conditions for the occupation and the asset markets, we obtain the

following market-clearing condition:

(2.5)
Mt

θ̄
+

1−Mt

θ∗t
= 1.

This condition is summarized in Figure 1. All wealth is owned either by active

investors, who have in total a fraction Mt of risky assets by each taking a position θ̄,

or passive investors, who have in total a fraction 1 −Mt of risky assets by taking a

position θ∗t .

Agents Shares 

Active M 

Passive 1-M 

Active 

Passive 
  

Own 

Own !

! *

M /!

(1!M ) /! *

Figure 1: Market-clearing condition

This market-clearing condition, combined with the individual supply of active cap-

ital (2.4), determines the aggregate supply of active capital. This function, linking

the quantity M to the price f , is increasing. Indeed, as M increases, the fraction of

risky assets owned by active investors increases. The market-clearing condition (2.5)
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M 

f 

Demand λ   

Supply 

Figure 2: Equilibrium of the active capital market

shows that as passive agents have to sell risky assets to the new active investors, their

portfolio share θ∗ decreases. This change in positions increases the distance between

the active and passive portfolios and, as shown by the individual supply (2.4), increases

the fee required by agents to invest actively.

To determine the equilibrium of the active capital market, it suffices to equate the

aggregate supply to the perfectly elastic demand of firms at the fee level λ. Figure 2

illustrates this equilibrium, which corresponds to the quantity M such that

λ =
1
2
(1− γ)(θ̄ − θ∗)2σ2

R

θ̄
.

This equilibrium pins down the portfolio share θ∗ of passive agents and therefore

the level of active capital. We obtain directly the following comparative statics:

Proposition 2.2. The portfolio share of passive agents θ∗ and the fraction of passive

capital 1−M are

(i) increasing in return volatility σD and,

(ii) increasing in relative risk aversion 1− γ.

2.4 Asset prices

Let us turn to the behavior of asset prices. Because of the absence of state variables,

we can start by noticing the price–cash-flow ratio is constant. This result implies the
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volatility of return will exactly equal the volatility of cash-flow σD. The active capital

market does not affect price volatility in this setting. The price–cash-flow ratio satisfies

the standard Gordon growth formula:

V = (rf + σDrp− µD)−1,

where rp is the risk price of the innovation dZ of cash flow and rf is the risk-free rate.

To determine these quantities, note that passive investors are standard investors à la

Merton. Therefore, the stochastic discount factor in the economy corresponds to the

marginal utility of these agents. In particular, using the first-order condition of the

portfolio decision, we obtain the risk price:

rp = (1− γ)σDθ
∗.

This formula helps us detail the two main effects of the active capital market: distorted

risk sharing and deleveraging risk.

Distorted risk sharing. Because θ∗ < 1, we can conclude the risk price is lower

than in an economy without active capital (which corresponds to θ∗ = 1). Active in-

vestors hold a disproportionate share of the aggregate risk of the economy; therefore, in

equilibrium, passive investors have to bear less risk. The risk active investors take does

not affect the risk price. Indeed, though investors take asset prices into account in their

occupation choice, active investors are not marginal in the asset market: their portfolio

is constrained to take the value θ̄. Of course, they are compensated for taking this risk

by the fee f 13. The importance of the distortion in risk sharing is clearly linked to the

fraction M of active investors. As Proposition 2.2 shows, risk prices will be relatively

lower in economies with low fundamental volatility and populated by agents with low

risk aversion.

Deleveraging risk. This dependency with respect to risk conditions yields the second

main effect of active capital: deleveraging risk. Because the quantity of active capital is

sensitive to risk, fluctuations in risks will generate large fluctuations in prices and risk

premium. I illustrate this effect here as a comparative static. I detail it in a completely

dynamic model in the following sections. Figure 3 represents the equilibrium changes

after an increase in fundamental volatility σD. First, on the right panel, we see the

13The fee f cannot exactly be interpreted as a different expected return incentivizing active agents

to take on a portfolio θ̄. One can prove active agents, even in the presence of the fee, would always

choose a lower share of risky assets if relieved of the constraint.
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Figure 3: Deleveraging following an increase in volatility

demand for risky assets decreases: passive agents ask a higher risk price. This effect is

standard in an economy without active capital. To hold the same quantity of a more

risky asset, agents demand a larger compensation. Therefore, we move vertically from

the initial demand curve to the new one. But this change is not the only one: the

relative cost of providing active capital increases. We can see this increase on the first

panel: the supply curve for active capital shifts left. Because the demand is perfectly

elastic, this shift results in a lower quantity M of active capital. Active agents sell

off their assets, and passive agents have to hold more risky assets. The middle panel

shows this move along the market-clearing condition. Finally, returning to the right

panel, we move along the demand curve of passive agents having to hold more risky

assets and therefore, asking for a larger risk price.

Another way to look at this phenomenon is to consider the elasticity of the risk

price with respect to volatility or relative risk aversion; the results are the same. In the

standard model without active capital, the risk price is proportional to volatility and

therefore the elasticity is 1. With active capital, as the amount of risk as well as the

quantity of risky assets held by passive agents increase, this elasticity is larger than 1:

∂ log(rp)

∂ log(σD)
= 1 +

∂ log(θ∗)

∂ log(σD)
> 1

= 1 +
θ̄ − θ∗

θ∗
.

This elasticity indicates the determinant of the magnitude of the deleveraging effect.

The deleveraging effect is proportional to the leverage of the active investors’ risky
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position relative to that of passive investors. For instance, if θ̄ > 2, this effect is always

more important than the standard quantity of risk effect. When the quantity of active

capital in the economy is large, the price of risk is more sensitive to volatility, as θ∗

gets smaller.

On the other hand, no such deleveraging occurs following shocks to the level of

cash flow, as shown by the constant equilibrium fraction of active capital M . As

a comparative static, changes in future expected cash flow, created by a change in

fundamental growth rate µD, also do not yield any change in the fraction of active

capital. These results point to the key idea that shocks to uncertainty or risk aversion

interact strongly with the fraction of active capital, whereas shocks to the level of

present or future cash flow do not. This difference confers a particular importance of

changes in volatility and expected returns to explain asset price volatility and expected

returns once we turn to the fully dynamic model.

3 General Model

I now turn to the general case of the model. I characterize Markov equilibria in the

general case of Duffie-Epstein-Zin preferences and an arbitrary Markov diffusion for

cash-flow growth. I then explain how to obtain all quantities of the model from the

solution of a single partial differential equation. Finally, I compare the structure of my

model with endogenous activity choices to that of models with intrinsic heterogeneity.

3.1 Firms

The aggregation results regarding firms derived in the previous section still hold as I

maintain linear dynamics in the size of firms for cash flow. Therefore, I focus on a

representative firm. The evolution of its cash flow is given by

dDt

Dt

= (µD(st) + λmt)dt+ σD(st)dZt,

where {Zt} is now a multivariate Brownian motion of dimension K. Aggregate condi-

tions are characterized by {st}, a set of S state variables following a Markov diffusion:

dst = µs(st) + σs(st)dZt.

As before, firms choose their fraction of active capital mt dynamically, taking the

process for the active fee {ft} and the stochastic discount factor {St} as given. The
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firms maximize the net present value Pt of their payoffs after payment of the active

fee. This decision corresponds to the following problem:

Pt = sup
{mt+τ}0≤τ<∞

Et
[∫ ∞

0

St+τ
St

(Dt+τ − ft+τmt+τPt+τ )dτ

]
s.t.

dDt+τ

Dt+τ

= (µD(st+τ ) + λmt+τ ) dt+ σD(st+τ )dZt+τ .

The linearity of both the objective function and the dynamics in the current level

of cash flow implies the value function is linear in the level of cash flow and the optimal

policy does not depend on this level. In other words, Pt/Dt and m∗t are deterministic

functions of st. By abuse of notation, P/D(st) = V (st) and m(st), respectively, in the

remainder of the paper.

The recursive structure of the problem guarantees time consistency of the optimal

policy. Further it allows us to write the problem in the form of a Hamilton-Jacobi-

Bellman equation, as can be seen in appendix A.1. As is standard for this type of

investment model, the choice of optimal active capital turns out to be static. The

first-order condition to have an interior optimum is, as it was for the stationary case,

λ = ft.

This condition pins down the fee paid to active capital but not individual policies.

The indeterminacy can generate ex-post heterogeneity in the size of firms. However,

because the dynamics of cash flow are linear in the current level, and the way mj

aggregates to M , one can see aggregate dynamics are invariant to the distribution of

individual firms’ policies.

Another implication of this first-order condition, also derived in appendix, is that

the price of the firm is the same as that of an identical firm without active capital:

Pt = Et
[∫ ∞

0

St+τ
St

Dt+τdτ

]
s.t.

dDt+τ

Dt+τ

= µD(st+τ )dt+ σD(st+τ )dZt+τ .

In particular, any difference in the price of the firm compared to an economy without

active capital must come from different processes for the stochastic discount factor.

In this sense, my model emphasizes that fluctuations in the quantity of active capital,

even if they do not affect the payoffs to passive investors, affect asset prices through

the changes in the valuation of this cash flow.
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3.2 Asset markets

Because some passive agents that are marginal in complete asset markets are always

present, we know no arbitrage opportunities are available. Therefore, a stochastic

discount factor exists. It follows a diffusion given by

dSt
St

= −rf,tdt− rptdZt,

where rf is the risk-free rate and rp is the vector of risk prices of the K shocks.

Without loss of generality, I assume a set of K assets are available to investors. The

first one is a share of any of the firms. As noted previously, they all have the same price

and cash-flow evolution, so their shares have the same returns. The other K − 1 asset

returns are in zero net supply, have unit variance, and complete the market. Their

expected excess returns can directly be inferred from the stochastic discount factor

{St}, because they correspond to the risk prices. I note µR,t as the vector of expected

returns and σR,t as the vector of volatility of these assets. The risk-free asset is in zero

net supply. In equilibrium, all these quantities are deterministic functions of the state

st of the economy.

3.3 Agents

Agents now rank consumption streams according to the stochastic differential utility of

Duffie and Epstein (1992). It is a continuous-time version of the recursive preferences

of Epstein and Zin (1989). Let Ut be the utility of the agent at time t, and let f(C,U)

be the aggregator. The utility value Ut is defined recursively by:

Ut = Et
[∫ ∞

t

g(Cs,Us)ds
]
.

For the aggregator g, I use the standard function:

g(C,U) = β
γ

ρ
U
[

Cρ

γ
ρ
γU

ρ
γ

− 1

]
.

β is the rate of time preference. Γ = 1 − γ is the relative risk aversion (RRA) of

the agent. ψ = 1
1−ρ is the intertemporal elasticity of substitution (IES). When Γ = 1

ψ
,

or, equivalently, γ = ρ, the utility function reduces to the standard power utility

specification of section 2. This utility function is homogenous of degree γ and therefore

preferences are homothetic. An important motivation for using these preferences, in
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addition to the fact that they have proven useful in obtaining good quantitative results

for asset-pricing models, is that they generate a volatility risk premium.

Agents can choose whether they are active or passive investors. Let A∗t and P∗t
be these sets of investors at each time. Agents can move freely between occupations.

They can choose their consumption Ct without any constraint.

Passive investors choose freely their portfolio θ∗t across all assets. Their wealth

evolution is then

dW i
t =

(
W i
t (θ

∗ ′ (µR,t − rf,t) + rf,t)− Ct
)
dt+W i

t θ
∗ ′ σRdZt.

Active investors are constrained to choose a portfolio θ̄ = [θ̄, 0, . . . , 0] that only

consists of a position in shares of the firm. Again, I assume θ̄ > 1. This assumption

constrains them to hold more of the asset than anybody would hold in a world without

active investors. Additionally, they cannot hedge the risk coming from changes in the

state variables. As a compensation for accepting this constraint, they receive the fee

ftdt for each unit of capital of the firm in which they invest. The evolution of their

wealth is driven by

dW i
t =

(
W i
t ( θ̄

′
(µR,t − rf,t) + rf,t + θ̄Aft)− Ct

)
dt+W i

t θ̄
′
σRdZt.

Because all these dynamics are linear in wealth and the homogeneity of utility

functions, one can see all agents will face the same tradeoff, irrespective of their current

wealth, when choosing their occupations. Additionally, agents in each occupation will

all have the same consumption-wealth ratio, written as cit = Ci
t/W

i
t . To have an

interior equilibrium for the level of active capital, agents, given their wealth, have to

be indifferent between activities at each point in time. Let Gt/γ be the utility of an

agent with wealth 1 at date t. The utility of an agent with wealth W i
t is then

Ut =
(W i

t )
γ

γ
Gt,

where Gt is a deterministic function of the state variables I note as G(st). In particular,

G(.) must be the value function of an agent being active or passive for some interval

of time. The following proposition formalizes this idea.

Proposition 3.1. The fee ft is such that the value function per unit of wealth G(st)

solves the Hamilton-Jacobi-Bellman problems:

(i) Passive investor:

0 = max
c≥0,θ∈RK

g(γ1/γc,G) +
E [d (W γG)]

W γdt

s.t. dWt = (Wt(θ
′ (µR,t − rf,t) + rf,t)− Ct) dt+Wt θ

′ σRdZt.
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(ii) Active investor:

0 = max
c≥0

g(γ1/γc,G) +
E [d (W γG)]

W γdt

s.t. dWt =
(
Wt( θ̄

′
(µR,t − rf,t) + rf,t + θ̄ft)− Ct

)
dt+Wt θ̄

′
σRdZt.

I derive these problems in appendix A.2.1. This proposition helps us sidestep an

issue with the continuous-time model: a few of the agents switch often. The aggregate

level of active capital is a function of the state variables. As they follow a diffusion,

the fraction of active agents will also follow a diffusion. For instance, one can prove all

agents cannot possibly follow stopping-time strategies to change their activities. This

problem is not present in the discrete-time version of the model. Proposition 3.1 holds

in the limit of the discrete-time case, because it characterizes agents’ indifference, not

their actual occupation trajectory.

Examining the problems of Proposition 3.1, we can derive the consumptions and

portfolios of agents as well as the activity fee:

Proposition 3.2. At equilibrium:

(i) All agents (active and passive) have the same consumption-wealth ratio, deter-

mined by

c = β
−1

(ρ−1)G
ρ

(ρ−1)γ .

(ii) The portfolio θ∗ of passive agents is

θ∗ =
1

1− γ
(σRσ

′
R)
−1

(µR − rf ) +
1

1− γ
(σRσ

′
R)−1σRσ

′
sGs.

(iii) The activity fee f is given by

θ̄f =
1

2
(1− γ)

(
θ̄ − θ∗

)′
σRσ

′
R

(
θ̄ − θ∗

)
.

The proof is in appendix A.2.2. Points (i) and (ii) are the standard portfolio results

for a passive agent with recursive preferences. Note that active agents do not choose a

consumption policy distinct from that of passive agents, because the only determinant

of consumption is the marginal utility of wealth. The consumption policy has to be

the same, active or passive, because agents are indifferent between occupations at all

levels of wealth.

The formula for the fee ft is similar to the stationary case, proportional to relative

risk aversion and the volatility of the portfolio θ̄−θ∗. One can note that it is purely a
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compensation for risk taken as a departure from the optimal portfolio. In particular,

it does not depend on the covariance of returns with the state variables, because in a

diffusion framework, hedging demands are linear in the amount of risk. Therefore, the

already larger equilibrium returns from the levered position exactly offset the additional

loading on the state variables the agent has to take. Another way to state this result

is to notice that, if active agents would be allowed to hedge some risk, they would be

indifferent as to which source of risk they lower to get closer to their optimal portfolio.

3.4 Equilibrium

As in the stationary model, the demand of active capital from firms pins down the

fee to be constant, equal to the marginal productivity: f(st) = λ. Note that because

hedging assets are in zero net supply and all passive investors take the same position,

this position has to be zero. The optimal portfolio takes the form θ∗ = [θ∗, 0, . . . , 0] in

equilibrium. We can therefore simplify the supply of active capital to obtain

(3.1) λ =
1

2θ̄
(1− γ)(θ̄ − θ∗)2σ2

R,1.

In the stationary model, this condition was sufficient to pin down the equilibrium

portfolio θ∗, because the volatility of returns corresponded to the fundamental volatility

σD. Now, because time-varying conditions are present, this quantity is endogenous and

depends on the quantity of active capital. To see this result, first apply Ito’s lemma to

the asset returns:

(3.2)
dR

R
=
Dt

Pt
dt+

dDt

Dt

+
dVt
Vt

+
< dDt, dVt >

Pt
.

The volatility comes from fluctuations in cash-flow dDt as well as fluctuations in the

price–cash-flow ratio dVt. Any changes in the properties of the stochastic discount

factor or in expected future cash flow affect this valuation ratio. Fluctuation in the

fraction of active investors amplifies these changes. To see this effect, consider, for

instance, a change tomorrow in the volatility of cash flow. If we happen to be in a

high-volatility state, the price will be lower than in a low-volatility state for three

reasons. First, future cash flows are riskier and as such are discounted more. Second,

because the environment is more riskier, the risk price for cash-flow shocks is larger.

Finally, again because the environment is riskier, less active capital will be present;

therefore, the risk price will be even larger as passive investors bear more of the risk.

This third channel, present only with an active sector, creates additional price volatility.
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Going back to equation (3.1), we can see, however, this endogenous channel creates

an important self-limiting force on the development of the active investment sector. If

the active sector is developed and is at risk of fluctuations, returns are more volatile.

Therefore, agents are less willing to provide this large quantity of active capital in the

first place.

Finally, the market-clearing conditions for the occupation and asset markets can

be combined to pin down the fraction of active capital:

M

θ̄
+

1−M
θ∗

= 1.

3.5 Summarizing the solution

Putting together all the previous results, we can narrow down the model to only

one partial differential equation, characterizing the price–cash-flow ratio, equal to the

wealth–consumption ratio. I assume σs to be diagonal to save space, the extension to

correlated shocks is trivial.

Proposition 3.3. The price–cash-flow ratio solves:

0 =1 + µDρV − βV − µs · Vs +
1

2
tr (σsVssσ

′
s)

− 1

2
V σ2

Dρ (1− γ)
(
1− (θ∗ − 1)2

)
+

1

V
VsσsσsVs

(
1

2

(
γ

ρ
− 1

)
+

1

2
ρ (1− γ) (θ∗ − 1)2

)
,

where the optimal portfolio θ∗ is the unique solution lower than 1 to

λ =
1

2θ̄
(1− γ)(θ̄ − θ∗)2

(
σ2
D +

V ′s
V
σ′sσs

Vs
V

)
.

This proposition shows clearly the tractability of the problem. The first partial

differential equation (PDE) is similar to the case of an endowment economy. The only

difference is changes in the risk adjustments (the last two lines of the equation) to

account for the fact that marginal agents on asset markets do not hold the aggregate

portfolio. In particular, when θ∗ = 1, we obtain the solution to the homogenous-agent

endowment economy. This characterization of the solution actually extends beyond

this model. As long as all agents in the economy have the same consumption–wealth

ratio and the optimal portfolio is given by θ∗, this PDE determines the aggregate price

of capital and the stochastic discount factor.
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The second part of the proposition is more specific to the model of this paper. It

reflects the economics of the markets for active capital. As emphasized before, even

though the determination of the quantity of active capital is static, it depends on the

equilibrium price and therefore the two equations have to be solved together. We can

just plug in the explicit solution for θ∗ in the PDE to obtain a standalone PDE. The

dimension of the PDE is the number of state variables. In particular in the case of a

unique state variable, the equation is an ordinary differential equation of degree 2.

Finally, in contrast to the standard heterogenous agent literature, this PDE does

not rely on any additional state variables than those specified in the fundamental

dynamics. Even if one adds fluctuations in the parameters governing the leveraged

positions (e.g. θ̄ or λ), no endogenous state variable appears. Therefore the boundary

conditions of this problem are the same as those of the corresponding endowment

economy, essentially determined by exogenous fluctuations.

3.6 Comparison with models of intrinsic heterogeneity

Before studying in more detail the asset-pricing implications of the model, let us com-

pare the approach of this paper to an approach of intrinsic heterogeneity. To do so, let

us start by an example. One can ask why both butchers and bakers exist in our society.

A first explanation is that having both bread and meat is useful. Therefore, even if

everybody is identical ex ante, we should see some people become butchers and others

bakers. Another explanation is that some people enjoy being bakers — or are better

skilled at it — whereas other people enjoy being butchers. Both explanations have

some truth in reality and have been considered, often jointly, for labor markets. In the

study of the role of heterogeneity for asset pricing and macroeconomics, an important

question is the role of agents taking different amounts of risk. Most of the literature has

focused on the second type of explanation, where heterogeneity is intrinsic. This paper

focuses on the first explanation. Beyond a conceptual difference, the two approaches

are also distinct in their conclusions.

From a static point of view, both approaches are similar. The distorted risk-sharing

effect is present regardless of the source of the heterogeneity. The relative weight of

active versus passive investors determines the risk premium in the economy. When

turning to the dynamics, similarities are also present, by the mere fact of the distorted

risk-sharing effect. If, for whatever reason, the relative wealth of active versus passive

investors changes, the risk premium changes. However, the essential difference between

the two approaches is in the source of these fluctuations. In models with intrinsic
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heterogeneity, all that matters is the evolution of relative wealth of various categories

of agents. When a group endures larger losses than others, the wealth distribution is

shifted. In my model, this effect does not necessarily happen. The only element that

matters is incentives to take on one activity rather than the other. For instance, in the

model of section 2, even though active and passive agents experience different wealth

shocks, the composition of ownership stays constant. As I describe in more detail in

the next section, the role of incentives to choose activity creates asymmetries in which

shocks are amplified. First-moment shocks do not affect the ownership composition,

whereas second-moment shocks do and are amplified.

The implications of this difference go beyond asset pricing. For instance, an object

of interest is the wealth distribution. Typically in asset-pricing models with heteroge-

neous agent, the wealth distribution is fundamentally non-stationary. Less risk-averse

(or more optimistic) agents accumulate more wealth on average and outweighs other

agents in the long-run.14 My model, because agent types are not uniquely pinned down,

does not feature a unique wealth distribution. In appendix A.3, I discuss various im-

plementations of the equilibrium. I show that some simple implementations keep a

stationary wealth distribution.

The effect of various policies will also be affected depending on the modeling ap-

proach. With exogenous heterogeneity, if the goal is to push asset prices up, an effective

policy is to transfer wealth to natural risk takers. Indeed, such a policy increases the

risk capacity of the economy and pushes the premium down. In an economy with

investment, this policy can help stimulate the growth of the economy. In my model,

such transfers are completely ineffective. Indeed, the equilibrium composition of own-

ership is determined by incentives rather than the wealth distribution. Providing more

wealth to current active investors only results in some of them exiting their activity

and switching back to passive. As such, my model is an important warning on the

generality of the result of a necessary transfer to risk takers during crisis periods, even

ex post. On the other hand, effective policies in my model are those shifting incentives

to be active rather than passive. I discuss such an example in section 5.1.

14A notable exception to this general result is Borovicka (2013) for particular parameter combina-

tions of Epstein-Zin preferences.
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4 Asset-Pricing Implications with rich fundamental

shocks

I now turn to the asset-pricing implications of the model. I present a particular case of

the results of the previous section for a commonly studied long-run-risk economy. This

framework allows me to study the interaction of distinct types of fundamental shocks

with active capital provision. In particular, I focus on the consequences of fluctuations

in the quantity of active capital for the volatility of returns and the price of various

sources of risk. This allows me to illustrate how the deleveraging effect following

increases in risk occurs along the equilibrium path and interacts with prices. Further,

I show that the irrelevance of instantaneous cash-flow shocks extends to changes in the

expected growth rate of the economy.

4.1 Setup

I study a continuous time version of the long-run risk model of Bansal and Yaron

(2004), as in Hansen et al. (2007). Two state variables are present: st = (Xt, σ
2
t ). The

dynamics of cash-flow growth are given by

dDt

Dt

= (µD +Xt + λmt)dt+ σtdZ
D
t

dXt = −κXXtdt+ φσtdZ
X
t

dσ2
t = −κ(σ2

t − σ2
0)dt+ νσtdZ

σ
t ,

where ZD, ZX , and Zσ are independent Brownian motions. The variable Xt controls

the persistent component of cash-flow growth, and σt controls the volatility of shocks.

For σ2
t to stay positive, I impose the parameter restriction 2κσ2

0 > ν2.

To illustrate the theoretical results, I follow the calibration of Bansal and Yaron

(2004) I report in Table 1. All parameters are at the monthly frequency. An important

feature of this calibration is that the intertemporal elasticity of substitution is larger

than 1, making the price increasing in expected cash flow. For the active investment

parameters, I use θ̄ = 1.2 and λ = µD.

I compare the solution of my model to the case of no active capital, which is

equivalent to set θ∗ = 1 and m = 0 in all previous calculations. I call the latter model

the baseline model.
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Table 1: Preferences and consumption dynamics

Preferences Consumption State Variables

β RRA IES µD σ0 κX κσ φX ν

0.0013 10 1.5 0.13% 0.79% 0.0212 0.0131 5.64 0.0003

4.2 Price–cash-flow ratio and quantity of active capital

First, note the price is always larger with active capital than without. Indeed, the first-

order condition of passive agents for consumption tells us the utility level is increasing

in the price. Agents in the economy can choose at any moment to use their shares of

risky assets to finance the consumption plan they would have in an economy without

active capital. Indeed, we proved the price of the risky asset is the same as that of a

firm employing no active investors, which is the output consumed in the baseline case.

The fact that agents choose not to do this trade tells us they are better off in this

equilibrium.

I now look separately at the asset price and the quantity of active capital along

changes in the two state variables.

4.2.1 Role of the fundamental growth rate

As shown in the stationary case, the cash-flow growth rate does not affect active capital,

because the cash-flow growth rate does not affect the volatility of returns. This property

still holds approximately in the long-run-risk model. Bansal and Yaron (2004) obtain

this property exactly in their log-linear approximation, and the result is fairly robust in

this parameter region. The reason changes in growth rate do not change the volatility

is that the corresponding changes in the timing of risk are small.

The absence of an impact of the growth rate on return volatility translates into an

absence of dependence on Xt of the portfolio of passive agents. Figure 4 confirms this

result. This figure represents, for various levels of the volatility state, the portfolio of

passive agents as a function of the growth rate Xt.

4.2.2 Role of the fundamental volatility

Fundamental volatility has a much more important impact on the active capital market.

In figure 5, we see important variations in the portfolio of passive agents with changes
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in volatility. This result corresponds to the idea that fundamental volatility is reflected

in the volatility of returns and subsequently in the supply of active capital. When

volatility is low, agents are more willing to supply active capital relative to passive

investment. These active agents buy a larger fraction of the assets, and the remaining

agents are left holding less risky assets.

Interestingly, we observe that θ∗ is a concave function of σt. The portfolio of passive

agents changes more in response to a volatility change at lower levels of fundamental

volatility than at higher levels. This result corresponds to the idea that the economy

is more susceptible to large waves of deleveraging when large amounts of concentrated

investments are present. Naturally, this deleveraging affects prices. Figure 6 shows the

price–cash-flow ratio V as a function of fundamental volatility σt for the model and the

baseline case. As volatility increases and active capital disappears, the price converges

to the baseline case. Though risky allocations are the same in both models when θ∗

reaches 1, the two prices are not equalized. Indeed, risky allocations will depart from

each other when mean-reversion and shocks brings σt down. Corresponding to the

concavity of θ∗, the price converges in a concave way to that in the baseline model.

However, when reaching very low volatility states, because passive agents do not bear

much risk, the price becomes less sensitive to changes in volatility.
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4.3 Return volatility and fundamental volatility

As fluctuations in active capital affect prices, they create additional volatility for the

asset. The risky-asset returns dynamics are

dRt

Rt

= µR(st)dt+ σtdZ
D + φσt

∂ log V

∂X
(st)dZ

X
t + νσt

∂ log V

∂σ2
(st)dZ

σ.

The volatility of returns comes from the three shocks affecting the economy: the

instantaneous cash-flow shock dZD, the shock to expected cash-flow growth dZX , and

the shock to uncertainty dZσ. First note that direct shocks to cash flow, as in the

baseline model, are directly transmitted to returns. They do not affect the active

capital market; therefore, their impact on prices is left unchanged. Similarly, because

the sensitivity of the valuation ratio to the growth rate is unchanged, the volatility

from changes in future expectations of cash flow is the same as in the baseline model.

Finally, the volatility shock now has a larger effect on prices: the sensitivity

∂ log V/∂σ2 is larger than in the baseline case. This larger volatility comes through

the deleveraging effect. When volatility increases, the asset becomes less attractive to

passive agents, and they must absorb the assets sold off by active agents who change

occupations. From these results, we see active capital not only increases the volatility

of returns but also changes the composition of its sources. In particular, it puts rela-

tively less weight on cash-flow shocks than on volatility shocks. Figure 7 illustrates this

effect. We can see the volatility shocks explain a larger part of returns variance. Ad-

ditionally, as we noticed for the sensitivity of prices, this distortion of the composition

of risk is larger in low-volatility states.

The source of return volatility has been a puzzle for the asset-pricing literature

since Campbell and Shiller (1988). They point out the volatility of returns appears

to be too large relative to the volatility of cash flow. The long-run-risk model of

Bansal and Yaron (2004) explains this puzzle by the presence of small persistent shocks

affecting consumption growth that have a large impact on the utility of agents with

recursive preferences. However, Beeler and Campbell (2009) point out that the model

still generates a counter-factual level of cash-flow predictability. In other words, it

creates too tight a link between prices and expected cash flow. Volatility shocks do not

affect the level of future cash flows but create variation in prices through variation in

discount rates and therefore have the potential to explain return volatility. Bansal et al.

(2007) present a calibration of the long-run-risk model in which volatility shocks are

extremely persistent, and avoid the excess cash-flow predictability. My model offers

an endogenous channel that gives more importance to volatility shocks. This effect
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left panel: active capital; right panel: baseline case)

comes through the endogenous variation in risk-sharing between active and passive

investors. In particular, we should observe that variations in prices, due to changes

in risk premia, coincide with variation in the quantity of active capital. In a similar

vein, Adrian et al. (2010) find that intermediary leverage is negatively related to the

macroeconomic risk premium. Also, Haddad et al. (2011) find the quantity of leveraged

buyouts, a transaction concentrating ownership of risky assets, is strongly negatively

correlated with a measure of the equity risk premium.

4.4 Price of risks

As we saw when examining the firm problem, the price of the risky asset is equal to that

of a similar firm employing no active capital. Because active capital has no effect on

payoff of the risky asset in equilibrium, all changes in valuation relative to the baseline

model must come through changes in the stochastic discount factor, particularly risk

prices. For these prices, the two effects described in section 2 play a role.

The risk prices for the three shocks are
rpD = (1− γ)θ∗σt

rpX = φσt
∂ log V
∂X

[(1− γ)θ∗ − γρ
1−ρ ]

rpσ = νσt
∂ log V
∂σ2 [(1− γ)θ∗ − γρ

1−ρ ].

The first effect is risk dampening. In equilibrium, passive agents hold fewer risky

assets than in the baseline model: θ∗ < 1. Because agents hold less risk, they require a
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lower compensation for marginal risk. The dampening is direct for the instantaneous

shock price rpD. For the other two shocks, the dampening is less important, because

γρ/(1−ρ) < 0. The reason for this property is that with recursive preferences, the long-

run impact of shocks on utility affects risk prices. The first term in brackets for rpX and

rpσ comes from the instantaneous loading on risk. Passive agents instantaneously bear

less risk than in the baseline case, causing dampening. However, at the next instant,

all agents are identical again. Therefore, they all have the same value functions and

all have to bear equally the long-run consequences of shocks. The long-run component

of risk prices is not dampened.

The second effect is deleveraging risk. Shocks to fundamental volatility are riskier

because they increase not only the riskiness of the asset, but also the fraction of

risky assets passive agents hold. This extra risk corresponds to the larger sensitivity

∂ log V/∂σ2 relative to the baseline case. As for the volatility of returns, deleveraging

only occurs with volatility shocks and as such this amplification only affects the risk

price of volatility rpσ. A consequence of this phenomenon is a change in the relative

values of risk prices for the various sources of risk. Active capital affects not only the

price of shocks, but also the nature of priced shocks. The volatility risk price becomes

relatively more important than the other two risk prices.

These last results have implications for understanding the cross section of expected

returns. Indeed, though I assume firms are identical, in reality, they have different load-

ings on the various sources of risk. If the volatility risk price is relatively large, exposure

to volatility risk is likely to be an important determinant of the cross-section. Ang et al.

(2006), or, in a more structural framework, Bansal et al. (2012) and Campbell et al.

(2012), find exposure to shocks to aggregate volatility lines up with expected returns.

Additionally, because conditional expected returns move in tandem with volatility in

this model, measuring exposure to shocks to expected returns should provide a good

proxy for exposure to this long-run volatility shock. Kozak and Santosh (2012) con-

firm this result using a model-free measure of expected returns: stocks that covary

positively with aggregate expected returns earn lower average returns.

The specific prediction of this model is that the shocks to volatility correspond to

changes in the quantity of levered investors. Larger exposure to measures of leveraged

investment should correspond to larger expected returns. Adrian et al. (2011) measure

covariance of returns with the leverage of broker-dealers and find this exposure is able

to predict returns.
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5 Extensions

In this section, I present a few extensions of the model. First I discuss the efficiency of

the equilibrium. I show that taxing firms for the use of active capital increases welfare

in a static framework. Then I discuss the effect of specific financial shocks, represented

by changes in the productivity of active investment. To do so, I relax two assumptions:

constant returns to scale and no dependence on the state variables. I also show how

to incorporate firm-level uncertainty can also fuel financial crisis. Finally I discuss

the real implications of changes in active ownership by adding investment in physical

capital to the model.

5.1 Tax on active capital

One can wonder whether the equilibrium allocation of this model is efficient. In-

deed, the presence of the portfolio constraint for active investors is a source of market

incompleteness. In such frameworks, pecuniary externalities are generically sources

of externality. Changing asset prices affects different agents differently and generate

redistribution. Gromb and Vayanos (2002) study such welfare implications in an ex-

ogenously segmented market framework.

I focus on the following intervention: a tax on firms per unit of active capital, given

back to them as a lump-sum payment. This intervention is equivalent to reducing the

fee firms pay to active investors. An interesting aspect of this policy is that it does not

affect the agents’ side of the markets. In particular, agents in the two categories still

have to be indifferent. This way, the policy will be unambiguously Pareto ranked with

the market equilibrium. I only look at the first-order effect of an increase in tax from

the market equilibrium. Additionally I focus on a small interval dt of the stationary

model.

The tax affects the conditions of the agents’ problem in three ways: a direct effect of

reduction of the fee f and indirect effects on the relative valuation of risky and risk-free

payoffs and on the cash flow of the firm through a different level M of active capital.

This last effect has no first-order impact because in the market equilibrium, the fee f

and the marginal productivity λ cancel each other out. The effect of the reduced fee is

to increase the utility of passive investors and reduce that of active investors. To equate

the two utilities again, the relative price of risky assets has to decrease. Indeed, passive

agents, as sellers of risky assets, lose from this change, and active agents, as buyers

of risky assets, gain. If markets were complete, as marginal rates of substitutions are

33



equalized across agents, the total first-order effect of all these changes would be exactly

zero. Alternatively, this result can be seen as a direct consequence of the first welfare

theorem.

In our incomplete market framework, as active agents are constrained to own more

risky assets than they would desire, they value risky assets relatively less than passive

agents. Thus the effect of a change in the fee relative to a change in the relative price of

risky assets is larger for passive agents than active agents. The net effect is an increase

in the utility level of both agents. The first unit of tax creates welfare; therefore, too

much active capital is present in the market equilibrium.

This conclusion is specific to the stationary model in which no intertemporal link in

the decision to provide active investment is present. In the general case, future changes

in the level of active capital affects the present decision to enter active investment,

potentially creating other inefficiencies. Another concern before taking this result as

a policy implication is the exogeneity of the contract. Practically, policy interventions

could affect the contracts offered on markets.

5.2 Financial shocks

Up until now, I restrained the analysis to fundamental shocks in order to isolate the

endogenous effects of the presence of concentrated ownership. It is natural to assume

that the “active” technology is not constant over time, and in particular the produc-

tivity of active capital could change over time. I study two sources for this variation:

decreasing returns to scale and exogenously time-varying productivity.

5.2.1 Decreasing returns to active capital

Up until now, I have assumed active capital exhibits constant returns to scale. How-

ever, as the number of active investors increases, their quality could decrease, and the

opportunities to create value are lower. A way to model this phenomenon is to assume

decreasing returns to scale at the firm level. This approach complicates the resolution

of the model beca8se it creates surplus at the firm level: the residual payoff increases

from the use of active capital.

To avoid this issue, we can use decreasing returns to scale at the aggregate level, but

constant returns at the individual level. This approach corresponds to a decrease in

the quality of active capital when more firms use it. Individual firms see no difference

34



in returns as a function of the individual quantity they use.15 This model corresponds

to the following dynamics of cash flow:

dDt

Dt

= (µD(st) + λ(Mt)mt)dt+ σD(st)dZt,

where λ(.) is a decreasing function. This specification leaves the individual demand of

firms perfectly elastic, but makes the aggregate demand a decreasing function, given

by the first-order condition of the individual firm problem:

λ(Mt) = f.

The decreasing aggregate demand mitigates deleveraging. When the supply of active

capital is lowered, both a decrease in the quantity and an increase in the fee for active

investment absorb this change. Fluctuations in the fee have no impact on risk sharing

and therefore do not affect risk premia. Panels (a) and (b) of Figure 8 show the effect

of an increase in volatility in the standard model and in the decreasing returns case,

respectively. The more inelastic the aggregate demand for active capital is, the smaller

the fluctuations in the quantity of active capital are. The limiting effect of productivity

increase on the deleveraging decision can be seen, for instance, in the Q1:2009 letter

to investors of Pershing Square Capital, a large activist hedge fund. They explain that

they exited some of their positions due to their “inability to accurately forecast with

confidence the duration and depth of the current recessionary environment.” However,

they note, “The fact that a number of our competitors have closed their doors or with-

drawn from an activist approach obviously makes for a less competitive environment

for the surviving participants.[...] Judged by these standards, the ingredients for prof-

itable shareholder activism are more present than ever before, and we continue to be

highly capable of implementation.”

5.2.2 Dependence on state-variables

Alternatively, the productivity of active capital varies in and of its own or with economic

conditions. It corresponds to assuming marginal productivity is a function λ(st) of the

state variables. This assumption does not affect the resolution of the model. If λ(st)

changes independently from other conditions, it corresponds to shifts in the demand

for active capital. The fee is always equal to the marginal productivity, and quantity

15Empirically, the evidence is mixed. Some have argued the impact of active capital on firm value

is hump shaped.
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Figure 8: Changes in active capital market equilibrium following an increase

in volatility (a: standard model; b: decreasing returns; c: negative relation of λ and

σ; d: positive relation)

changes along the supply curve clear the market. When the productivity increases,

the fee and the fraction of active capital increase. When active capital becomes more

productive, its quantity increases, more agents lever up, and risk prices decrease. Such

fluctuations would be priced in equilibrium.

If λ(st) is correlated with economic conditions, the corresponding demand shocks

can amplify or dampen the endogenous fluctuations in supply. If λ(st) is negatively

related to fundamental volatility, deleveraging cycles are amplified. In times of high

volatility, neither are agents willing to provide active capital nor do firms demand it.

This case corresponds to panel (c) of Figure 8. However, if the relation is positive

and active capital is more effective in volatile periods, deleveraging is dampened. If

the productivity gains are large enough, they could suppress deleveraging altogether or

even create more active capital in volatile times (panel (d) of Figure 8). Empirically,

the sign of this correlation is an open question.

5.3 Idiosyncratic risk

Another important feature left out is idiosyncratic risk. Indeed, firms’ output depends

not only on aggregate conditions, but also on individual-level shocks. A simple way

to modify the model is to introduce firm-specific shocks to cash-flow growth. This
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assumption corresponds to changing the dynamics of the static model to

dDj
t

Dj
t

= (µD + λmt)dt+ σDdZ
D + σjdZ

j,

where Zj is a Brownian motion specific to firm j, independent from all other shocks

of the economy. Idiosyncratic shocks do not affect the price–cash-flow ratio; they are

directly reflected into returns. The supply of active capital is then

θ̄f =
1

2
(1− γ)(θ̄ − θ∗)2(σ2

D + σ2
j ).

We see idiosyncratic risk causes agents to require a larger compensation than in the

basic model. In equilibrium, the lower supply generates a decrease in the quantity of

active capital. Because less active capital is present, and active capital is less sensitive

to aggregate conditions at low levels, the excess sensibility to the level of volatility

will be milder. However, empirically, idiosyncratic volatility correlates positively with

aggregate volatility, as Campbell et al. (2001) and Bloom (2009) show. In this case,

fluctuations in the two types of volatility concur and increase the magnitude of fluctu-

ations in the level of active capital.

5.4 Physical investment

A last extension is to include physical investment in the model. Indeed, so far the

variation in prices due to fluctuations in active capital did not translate to variations

in quantities. In practice, firms respond to prices in deciding their investment policies.

This mechanism is well-known, and I highlight here only a potential new dimension

of it, the potential complementarity of active capital and physical capital. We can

introduce physical investment without loosing tractability of the mode. To do so, I

introduce a CES aggregator of active investment and physical investment in the the

cash-flow dynamic:
dDt

Dt

= (µD + λ(mt, it)) dt+ σDdZ
D
t

λ(m, i) = λ0(am
r + (1− a)ir)

1
r ,

where it is the level of physical investment. The investment it is directly taken out of

the cash flow of the firm. The first-order conditions of the firm problem become: ∂λ
∂m

(m, i) = f

∂λ
∂i

(m, i) = 1/V.
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Because λ is homogenous of degree 1, these conditions pin down only the ratio of active

capital to physical investment. Also, as in the standard model, this homogeneity implies

all gains are used to pay for the two resources: active capital and investment goods.

The price of the firm does not depend on the scale of its investment and all effects of

active capital come through changes in the stochastic discount factor.

This model naturally generates comovement between active capital and physical

investment. The elasticity of substitution between m and i is 1/(1 − r). If they are

complements, active investment and physical investment can both decrease in periods of

high volatility. The decrease in physical investment now has two rationales. First, the

standard q-theory rational yields that in times of high uncertainty, valuations are low,

investment is not valuable. This effect can be seen in the right-hand side of first-order

condition for physical capital. Second, the novel rationale I introduce is that, in times

of high uncertainty, little active investment is used and therefore physical investment is

less valuable. This effect corresponds to the left-hand side of the first-order condition

for physical capital. This extra complementarity could be an explanation for the depth

of recessions following financial crisis.

6 Conclusion

In this paper, I introduced a tractable model of asset pricing in the presence of con-

centrated ownership. In particular, I showed the price of risky assets and the provision

of active capital are strongly tied. Variations in risk premia affect the supply of active

capital, thereby generating the documented negative relation between expected returns

and the amount of active capital. The quantity of active capital feeds back into ag-

gregate risk sharing. As active investors deleverage to get out of their positions in

times of high volatility, passive investors must bear the risk exactly when they do not

want to. This feedback is a source of amplification for shocks to risk premia. On the

other hand, cash-flow shocks, because they are borne by active agents, are less costly

for passive investors and command a lower risk premium. This mechanism can help

us understand better why cash-flow shocks are not necessarily the key determinant

of expected returns. On the other hand, fluctuations in risk premia might command

a higher risk price than the standard model, due to their amplification because they

cause variations in the quantity of active capital. Similarly, a large fraction of the

volatility of asset prices might be due to fluctuations in fundamental volatility.

Importantly, these conclusions differ significantly from the standard models in which
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heterogeneity is intrinsic rather than the result of agents’ choices. Opposite to the rest

of the literature, the model of this paper makes the different extreme assumption of

complete flexibility in activity choice. Further, I showed differences extend from the

behavior of asset prices to the evolution of the wealth distribution as well as the results

of various policy interventions. These important qualitative distinctions in terms of

predictions call for more theoretical and quantitative analysis of the dynamic properties

of heterogenous-agent models. Just as for any other economic choices, understanding

heterogeneity in practice will need a combination of intrinsic heterogeneity and agents’

choices. Proposition 3.3 suggests the framework this paper introduces could help for

this task. Indeed, I showed one can disentangle solving for prices given the equilibrium

heterogeneity from the determination of this heterogeneity.
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A Proofs for the general model

A.1 Firm problem

The sequence problem for the valuation of the firm is:

Pt = sup
{mt+τ}0≤τ<∞

Et
[∫ ∞

0

St+τ
St

(Dt+τ − ft+τmt+τPt+τ )dτ

]
s.t.

dDt+τ

Dt+τ
= (µD(st+τ ) + λmt+τ ) dt+ σD(st+τ )dZt+τ .

Time consistency Though the payments of the fee depend of current and future values of the

price Pt, this problem is time consistent. To see this result, we can rewrite ∀t < T :

Pt
Dt

= sup
{mt+τ}0≤τ<T−t

Et

[∫ T−t

0

St+τ
St

(
Dt+τ

Dt
− ft+τmt+τ

Pt+τ
Dt

)
dτ +

ST
St

DT

Dt
ṼT

]

s.t.
dDt+τ

Dt+τ
= (µD(st+τ ) + λmt+τ ) dt+ σD(st+τ )dZt+τ , 0 ≤ τ ≤ T − t

ṼT = sup
{mt+τ}0≤τ<∞

ET

[∫ ∞
0

ST+τ

ST

(
DT+τ

DT
− fT+τmT+τ

ṼT+τ

ṼT

)
dτ

]

s.t.
dDT+τ

DT+τ
= (µD(sT+τ ) + λmT+τ ) dt+ σD(sT+τ )dZT+τ , 0 ≤ τ <∞,

where ṼT+τ for τ > 0 is defined similarly to ṼT . Examining the problems for {ṼT+τ}0≤τ<∞ shows it

exactly corresponds to the problem for {PT+τ/DT+τ}0≤τ<∞, which confirms time consistency.

Hamilton-Jacobi-Bellman problem Because of the homogeneity of the problem, the

price–cash-flow ratio Vt = Pt/Dt is just a function V (st) of the state variables st. We can trans-

form the sequence problem in a HJB equation. After dividing by StDtVt, we get:

0 = max
m

1

V
− fm+

E[d(SDV )]

SDV dt
.

Expanding, we obtain:

0 = max
m

1

V
− fm+

E[dS]

Sdt
+

E[dD]

Ddt
+

E[dV ]

V dt

+
< dS, dV >

[SV dt]
+
< dS, dD >

[SDdt]
+
< dD, dV >

[DV dt]
.

Optimal quantity of active capital The activity level only appears in the flow term

1/V − fm and the drift of the size of the firm E[dD]/Ddt = µD(s) + λm. The optimization in m is

therefore linear. This linearity gives us two key implications in the case of an interior optimum. First

the slope of the equation in m has to be 0; this relation links the equilibrium fee for active capital to

its productivity:

(A.1) f(s) = λ.
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Irrelevance of active capital for pricing Second, has the slope is zero, all terms in m

cancel out in the HJB. The equation determining V corresponds to:

0 = max
m

1

V
+

E[dS]

Sdt
+

E[dD̃]

D̃dt
+

E[dV ]

V dt

+
< dS, dV >

[SV dt]
+
< dS, dD̃ >

[SD̃dt]
+
< dD̃, dV >

[D̃V dt]
,

where
dD̃t+τ

D̃t+τ

= µD(st+τ )dt+ σD(st+τ )dZt+τ .

This equation corresponds to the price of a firm that never uses any amount of active capital.

A.2 Agent problem

A.2.1 Rescaling the HJB

The HJB equation determining the value function of an agent in any equation is the standard formu-

lation for recursive preferences:

0 = max
C≥0,θ∈Θ

g(C,U) + E(dU)/dt.

First, using the homogeneity of the utility function and the linearity of wealth dynamics, we can

express U as a separated function of wealth and the state variables:

U =
(W i

t )
γ

γ
G(st).

Then, using the homogeneity of the aggregator g, we simplify:

0 = max
c≥0,θ∈RK

f(γ1/γc, F )
W γ

γ
+ E

[
d

(
W γ

γ
F

)]
/dt.

Dividing, by W γ gives directly the equations of Proposition 3.1.

A.2.2 Solving for consumption and the fee

First compute the various derivatives of the value function U :

U =
W γ

γ
G, UW = γ

W γ−1

γ
G, UWW = γ(γ − 1)

W γ−2

γ
G, and UWs = γ

W γ−1

γ
Gs.

Let us focus first on the HJB of the passive agent:

0 = max
C,θ

g(C,U) +
E[dU ]

dt
.

Expanding gives:

0 = max
C,θ

g(C,U) + UW [W (θ′(µR − rf ) + rf )− C] + U ′sµs

+
1

2
UWWW

2θ′σRσ
′
Rθ +Wθ′σRσ

′
sUWs +

1

2
(σ′sσs) ∗ Uss,
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where ∗ is the elementwise multiplication. The first-order condition for consumption is:

gC(C,U) = UW .

The first-order condition for the portfolio share is:

θ∗ = − UWW
UWWW 2

(σRσ
′
R)−1(µR − rf )− (σRσ

′
R)−1σRσS

UWsW

UWWW 2
.

Plugging in using the formulas for the derivatives, we get:

c = C/W = β
−1

(ρ−1)G
ρ

(ρ−1)γ

θ∗ =
1

1− γ
(σRσ

′
R)
−1

(µR − rf ) +
1

1− γ
(σRσ

′
R)−1σRσ

′
sGs.

These formulas are the first two points of Proposition 3.2. Now we can turn to the problem of the

passive agent. It is:

0 = max
C

f(C,U) + UW
[
W (θ̄′(µR − rf ) + rf + θ̄f)− C

]
+ U ′sµs

+
1

2
UWWW

2θ̄′σRσ
′
Rθ̄ +W θ̄′σRσ

′
sUWs +

1

2
(σ′sσs) ∗ Uss.

The first order condition for consumption is clearly the same as for the active agent which proves that

they pick the same consumption wealth ratio. To solve for the fee, just substract this HJB from that

of the passive investor. It gives:

UW θ̄f =

[
UWW θ∗ ′ (µR − rf ) +

1

2
UWWW

2 θ∗ ′ σRσ
′
Rθ
∗ +W θ∗ ′ σRσ

′
sUWs

]
−
[
UWW θ̄′(µR − rf ) +

1

2
UWWW

2θ̄′σRσ
′
Rθ̄ +W θ̄′σRσ

′
sUWs

]
.

The right-hand side is the difference of two values of an affine-quadratic form where one of the

evaluation points is the optimum. It is therefore exactly quadratic, and equal to, after dividing by

UW :

θ̄f =
1

2
(1− γ)(θ∗ − θ̄)′σRσ

′
R(θ∗ − θ̄)

which concludes the proof.

A.3 Individual policies and the wealth distribution

Let us consider possible wealth distribution evolutions in the population. Let us first recapitulate

properties of wealth trajectories and then examine a couple of possible implementations of the equi-

librium.

At each point in time, active investors receive on average a higher wealth increase than passive

investors. This difference comes through two channels: they take on more leverage and therefore

receive extra asset returns, and they receive the fee. Active investors are also more exposed to

shocks than passive investors. Therefore, when returns are good, active investors gain relatively more

wealth; when returns are bad, active investors lose relatively more wealth. These differences in wealth
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evolution will create dispersion in wealth across agents. However, because agents can choose their

occupation at each point in time, and preferences are homothetic, this wealth heterogeneity does

not create a related heterogeneity in behavior. The individual policies are not pinned down by the

equilibrium conditions, and many occupation-choice trajectories are consistent with the evolution of

aggregate quantities. To get a better idea of how much switching is necessary at equilibrium, consider

two simple implementations.

Remember we have a continuum of agents indexed by i on [0, 1], and note wit = W i
t /Wt their

fraction of total wealth at time t. A fraction M(st)/θ̄ must be in the active sector. A first imple-

mentation is that the agents with the lowest indices are active. To determine which agents are active,

define implicitly the threshold It by ∫ It

0

witdi =
M(st)

θ̄
.

A unique solution to this equation always exists, as all individual wealth fractions wit clearly stay

strictly positive and integrate to 1, which is strictly larger than the right-hand side. Also, because

all individual wealth fractions wti and M(st) follow a diffusion, It does as well. Using properties of

diffusion processes, we can derive local properties of career dynamics in this implementation:

Proposition A.1. At each point in time t:

(i) For almost every agent i, ε > 0 almost surely exists such that i does not change occupation in

[t, t+ ε),

(ii) Agent It, for any interval [t, t+ε), almost surely changes occupation an uncountable set of times,

without isolated points.

This proposition is a direct consequence of the properties of the zeros of the Brownian motion

found, for instance, in Morters and Peres (2010). In other words, the proposition tells us most

agents do not change jobs on any finite interval. Only the agents at the border will go back and

forth an infinite number of times. Because these agent only represent an infinitesimal fraction of

aggregate wealth, their back-and-forth do not affect aggregate dynamics. This implementation of the

equilibrium has the undesirable effect of not allowing a stationary distribution of wealth. To see this

result, consider the wealth of agent 0 relative to any other agents. Because he is always active, his

wealth has a larger drift than that of any other agent; therefore, the ratio of his wealth relative to any

other agent tends to increase, and in the limit diverges to infinity almost surely.

An alternative implementation that insures the wealth distribution does not diverge is to make

the group of active agents change over time. For instance, given ζ > 0, we can choose the subset

[ζt, ζt+ I ′t] mod 1, where I ′t is now defined by:∫ ζt+I′t

ζt

w
(i mod 1)
t di =

M(st)

θ̃A
.

As the group of active agents cycles through the population, no individual wealth can drift permanently

over that of the rest of the population. Relative to proposition A.1, we now have two agents switching

occupation at each point in time. Agent ζt mod 1 becomes passive, and agent (ζt + I ′t) mod 1

switches an infinite number of times.

Finally, note that in both implementations considered here, neither the wealth distributions nor

the threshold It are deterministic functions of the state st. Indeed, past shocks affect the relative
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wealth evolutions of the two groups and modify the fraction of agents to include in order to obtain

the equilibrium fraction of active capital.

B Solving the model of section 4

Stochastic discount factor

The stochastic discount factor evolution is given by

dSt
St

= −rf (st)− rpD(st)dZ
D
t − rpX(st)dZ

X
t − rpσ(st)dZ

σ
t .

Firm problem

The HJB detemining the price–cash-flow ratio V (s) is

0 =
1

V
+

E[d(SDV )]

SDV dt
.

Expanding, we obtain:

− 1

V
=
E[dS]

Sdt
+

E[dD]

Ddt
+

E[dV ]

V dt
+
< dS, dD >

SDdt
+
< dS, dV >

SV dt

=− rf + µD − κXXt
VX
V
− κσ(σ2

t − σ2
0)
Vσ
V

+
1

2
ν2σ2

t

Vσσ
V

+
1

2
φ2σ2

t

VXX
V

− rpDσt − rpXφσt
VX
V
− rpσνσt

Vσ
V
.

To obtain a single partial differential equation in V , we need to express the risk-free rate and all

three risk prices as functions of V and the state variables. To do so, we first use the optimal portfolio

of the passive agent

Stock return

The stock return for the firm’s share is given by:

dR

R
=

(
1

V
+ µD − κX

VX
V
Xt − κσ

Vσ
V

(σ2
t − σ2

0) +
1

2

VXX
V

φ2σ2
t +

1

2

Vσσ
V

ν2σ2
t

)
dt

+ σt

(
dZD + φ

VX
V
dZX + ν

Vσ
V
dZσ

)
.

The expected return is:

Et
[
dR

Rdt

]
=

1

V
+ µD − κX

VX
V
Xt − κσ

Vσ
V

(σ2
t − σ2

0) +
1

2

VXX
V

φ2σ2
t +

1

2

Vσσ
V

ν2σ2
t

= rf + rpDσt + rpXφσt
Vσ
V

+ rpσνσt
VX
V
.
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Return dynamics for state variable insurance claims

The other two assets of the economy are zero-cost assets that pay off rpXdt+ dZX and rpσdt+ dZσ

We need to check that their price is indeed zero. For the volatility shock insurance this corresponds

to

E
[
St+dt
St

Xt+dt

]
= E [Xt+dt] + E

[
dSt
St

Xt+dt

]
= rpσdt− rpσdt = 0.

Portfolio problem of a passive agent

We can directly replace by the results of the general model.

Consumption-wealth ratio c:

Market-clearing imposes the consumption-wealth ratio to equal the cash-flow–price ratio:

1

V
= c = β

−1
(ρ−1)G

ρ
γ(ρ−1) .

Volatility insurance position θσ:

In equilibrium, agents do not take any position in the insurance claims.

0 = γrpσ + γ(γ − 1)θ∗ν
Vσ
V
σt + γ

Gσ
G
νσt

rpσ = νσt

[
(1− γ)θ∗

Vσ
V
− Gσ

G

]
= νσt

Vσ
V

[
(1− γ)θ∗ − γρ

1− ρ

]
,

where the last equality is obtained by using the market-clearing condition for consumption linking V

and G.

Growth-rate insurance position θX :

Similarly, we obtain:

rpX = φσt
VX
V

[
(1− γ)θ∗ − γρ

1− ρ

]
.

Stock position θ∗

We invert the formula for the optimal position θ∗ to find the risk price of the shock dZD.

0 = (µR − rf ) + (γ − 1)

[
θ∗σ2

t + θ∗ν2

(
Vσ
V

)
+ θ∗φ2

(
VX
V

)2

σ2
t

]
+ φ2GX

G

VX
V
σ2
t + ν2Gσ

G

Vσ
V
σ2
t .

Plugging in for µR − rf as a function of risk premia and recognizing the formulas for the other risk

prices, we obtain:

rpD = (1− γ)θ∗σt.

Risk-free rate

The risk-free rate rf is obtained by plugging in all the quantities just derived in the HJB of the

passive agent.

At this stage, we have expressed all the risk prices and the risk-free rate as functions of V (st) and

the optimal portfolio θ∗(st). The equilibrium of the market for active capital provides us this last

quantity.
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Market clearing in the active capital market

From the firms’ FOC, we know the fee f must equal the marginal productivity of active capital λ.

Equating this with the indifference condition between agents of different occupations gives:

θ̄λ =
1

2
(1− γ)(θ̄ − θ∗)2σ2

t

[
1 + ν2

(
Vσ
V

)2

+ φ2

(
VX
V

)2
]

The only unknown quantity is therefore V (st). It is determined by the valuation equation of the

firm.
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