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Introduction

Economic Uncertainty and Monetary Policy

Much work links the levels of economic dynamics with monetary policy

– Macro variables and the short term interest rate (New Keynesian models)
– Yield levels and monetary regimes (eg. Gallmeyer et al. (2009))

We explore the link between economic uncertainty and monetary policy

We develop an economically-founded term structure model to infer the
relationship of policy and macro-volatility

Focus on the quantitative contribution of monetary policy towards risk
premia movements, including the macro-uncertainty channel
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Introduction

Our Paper

A novel asset pricing framework

– Flexible dynamics of short rates and macroeconomy
– Pricing restrictions of recursive-utility based models

Macroeconomic dynamics

– Persistent movements in expected growth and inflation
– Monetary policy affects inflation uncertainty

Time-varying monetary policy rule

– Regime-dependent response of short rates to expected growth and expected
inflation
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Introduction

Historical Works

This paper connects to many strands of literature. . .

Macro and MP Regime Shifts
(Hamilton (1988), Sims and Zha (2006), Among Many Others)

Time Variation in Asset Risk Premia
(Ang and Bekaert (2002), Bansal and Zhou (2003), Ang and Piazzesi (2003),
Bansal and Yaron (2004), Hasseltoft (2011), Bansal and Shaliastovich (2013))

Links b/w Term Structure and Monetary Policy
(Gallmeyer et al. (2009), Ang et al. (2011), Campbell et al. (2013), Chernov
and Bikbov (2013), Song (2014), Backus et al. (2015))

=⇒ Our model accounts for links between macro volatility and policy
=⇒ Monetary risks are accounted for in the joint solution of Euler equation,
quantities, and financial prices
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Model

Model
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Model

Ingredients

Representative Investor with Epstein and Zin (EZ) Preferences

Novel SDF specification that allows for flexible modeling of consumption,
inflation, and interest rate dynamics

Regime-shifting Taylor Rule for one-period nominal interest rates

Explore Financial Market implications with resulting Nonlinear Term
Structure Model
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Model

Modeling Challenges

We know from:

Lucas (1978) : Preferences + πt Process =⇒ y1
t

Gallmeyer et al. (2009) : Preferences + Rule for y1
t =⇒ πt Process

Ideally, we would like to have a more flexible form of the SDF that can allow
us to have an exogenous expression of preferences, a short rate rule, and
inflation, yet maintain tractability

In this framework, we utilize an SDF that prices the risks of cash flow, real
rate, and “volatility” news
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Model

Nominal Economy

The EZ agent maximizes lifetime utility (Ut) under endowment uncertainty:

Ut = Max
...

[
(1− δ)C

1−γ
θ

t + δ
(
Et

[
U1−γ
t+1

]) 1
θ

] θ
1−γ

Equilibrium solution to log nominal SDF can be written as:

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1 − πt+1

where 4c is log consumption growth, rc is return on aggregate wealth
portfolio, and π is inflation
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Model

Dynamic-CAPM SDF

The Euler restriction gives us that:

Et [mt+1 + it+1] = 1

and the log-linearized wealth constraint:

rc,t+1 = log
Wt+1

Wt − Ct
≈ κ0 + wct+1 −

1

κ1
wct +4ct+1

Using forward recursions of these two equations and the EZ pricing kernel we
can derive the SDF as a function of innovations to future news
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Model

Dynamic-CAPM SDF (II)

Following Bansal et al. (2013) and Campbell et al. (2013), we formulate the
SDF as a function of cash flow, real interest rate, and vol news:

mt+1 = −it − Vt − γNCF,t+1 +NR,t+1 +NV,t+1

Vt = logEt (exp (mt+1 − Et(mt+1)))

NCF,t+1 = (Et+1 − Et)
∑
j=0

κj14ct+j+1

NR,t+1 = (Et+1 − Et)
∑
j=0

κj1(it+j − πt+j+1)

NV,t+1 = (Et+1 − Et)
∑
j=0

κj1Vt+j

We exogenously specify consumption, inflation, and interest rate dynamics;
volatility news is solved endogenously
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Model

Economic Dynamics

Denote the regime of monetary policy as st, which is governed by an N -state
Markov switching process. Transition from state j to state i will be given by
probability πij .

The consumption / inflation processes are given by:

4ct+1 = µc + xct + σ∗c εc,t+1

πt+1 = µπ + xπt + σ∗πεπ,t+1

where we model the expected components of endowments with stochastic
volatility
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Model

Economic Dynamics (II)

The joint, demeaned VAR process Xt = [xct, xπt]
′ will be given by:

Xt+1 = ΠXt + Σtεt+1

where Σt is given by:

Σt =

(
σc0 0
0 σπ,t

)
=

(
σc0 0

0
√
δπ(st) + σ̃2

π,t

)

and the transient, continuous portions of volatility are given by:

σ̃2
πt = σ̃2

π,0 + ϕπσ̃
2
π,t−1 + ωπησπ,t

Notice that the inflation variance is a linear combination of (1) a monetary
policy portion and (2) a smooth variance component
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Model

Economic Dynamics (III)

We have specified consumption and inflation dynamics; the last thing to
specify is the rule for the short rate:

it = i0 + αc(st) (xct + µc)︸ ︷︷ ︸
Expected Growth

+απ(st) (xπt + µπ)︸ ︷︷ ︸
Expected Inflation

= α0(st) + α(st)
′Xt

Regime, st, links movements in Taylor rule coefficients to those in inflation
volatilities
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Model

Model Solution

Recall that the log-SDF is given by :

mt+1 = −it − Vt − γNCF,t+1 + (NI,t+1 −Nπ,t+1) +NV,t+1

We take into account the risks associated with monetary regime switches and
continuous state movements when computing each type of news Details
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Model

Model Solution (II)

To receive Vt we guess and verify by conjecturing a nonlinear form:

Vt(st) = V0(st) + V1(st)
′Xt + V2π(st)σ̃

2
π,t

Solve using 1 period Euler relation:

1 = Et [exp(mt+1 + it)]

=⇒ exp (Vt) = Et [exp(mt+1 + it + Vt)]

= Et [exp(−γNCF,t+1 +NI,t+1 −Nπ,t+1 +NV,t+1)]

For every set of parameters, we can solve for a Vt process that satisfies
no-arbitrage restriction
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Model

Nominal Term Structure

With solution to Vt we can re-express the SDF as:

mt+1 = S0 + S′1,XXt + S1,σπσ̃
2
πt

+ S′2,εΣtεt+1 + S2,ηπωπηπ,t+1

where we have regime-dependent loadings and time-varying quantities of risks

We can now show that log bond prices and hence yields, ynt , take a nonlinear
structure in states

ynt (st) = − 1

n
pnt = An(st) + Bn

′

X (st)Xt + Bnσπ(st)σ̃
2
πt

Risk premia in this economy will take a similar form as well:

rpnt = Et

[
Pn−1
t+1

Pnt

]
− y1

t = r0(st) + rσπ(st)σ̃
2
πt
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Estimation

Estimation
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Estimation

Empirical Implementation

2 monetary regimes

Filtered Time Series: {xct, xπt, σ̃2
πt, st} using Bayesian MCMC methods

Estimation is from 1969 onwards at a quarterly basis using bond yields
{3M, 1Y - 5Y} from Fed & CRSP

Nondurables and Services Consumption and GDP Deflator Inflation from the
BEA

Expectations data from Survey of Professional Forecasters
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Estimation

State Space

Our state space for estimation is given by (indicates measurement error):

(Measurement) y
1:N
t+1 = A1:N

(st+1) + B1:N
X (st+1)Xt+1 + B1:N

σπ (st+1)σ̃
2
π,t+1 + ut+1,y

4ct+1 = µc + e
′
1Xt + σ

∗
c εc,t+1

πt+1 = µπ + e
′
2Xt + σ

∗
πεπ,t+1

XSPF,t+1 = Xt+1 + ut+1,X

⇐⇒ Y
DATA
t+1 = fY (Zt,Zt+1) + Σu,Y ut+1,Y

(Transition) Xt+1 = ΠXt + Σt(σ̃
2
πt, st)εt+1

σ̃
2
πt = σ̃

2
π,0 + ϕπσ̃

2
π,t−1 + ωπησπ,t

st ∼ Discrete Markov Process with T (Ps)

The set of parameters (θ) is given by:

{Π, δαπ, σ̃2
c0, σ̃

2
π0, ϕπ, ωπ, σ

∗
c , σ
∗
π, i0, κ1, γ, µc, µπ, α

1:2
c , α1:2

π ,Ps}

Keep in mind, each θ −→ {A,BX ,Bσπ}, so state space coefficients are all
model-based
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Estimation

Estimation Technique

We draw parameters using a Bayesian MCMC algorithm, using
Particle-Filter evaluation of the likelihood function

The posterior distribution of the parameter vector, θ, satisfies

P
(
θ|Y DATA

)︸ ︷︷ ︸
Posterior

∝ P
(
Y DATA|θ

)︸ ︷︷ ︸
Likelihood

×P (θ)︸ ︷︷ ︸
Prior

To evaluate the likelihood, we need to take into account state uncertainty.
We use a particle filter approach. That is to say for J “particles” of the
exogenous states we use:

P
(
Y DATA|θ

)
≈ 1

J

J∑
j=1

P
(
Y DATA|Statesj , θ

)
Statesj can be drawn individually, for given θ, and we evaluate each set’s
probabilities using particle weights
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Estimation

Estimation Technique (II)

To draw parameters we can use Random-Walk Metropolis-Hastings algorithm
where we draw:

θ∗ = θj−1 + Σdrawε

Accept w/Prob α =
P
(
θ∗|Y DATA

)
P (θj−1|Y DATA)

After getting sufficient number of draws, remove burn-in and report results
across draws of θ
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Results

Results

Model Fit

Parameter Estimates

Counterfactuals, among which:

Within-Regime Characteristics
Risk Premia Movements
Role of MP Shifts
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Results

Model Fit (In-Sample Yields)

Data, Posterior Median (Solid), 90% Credible Sets (shaded)

(i) In-Sample y1Yt
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(ii) In-Sample y3Yt
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(iii) In-Sample y5Yt
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=⇒ We fit bond yields with low measurement error
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Results

Latent States (Filtered Expectations)

Data, Posterior Median (Solid), 90% Credible Sets (shaded)
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=⇒ Model measures of macroeconomic expectations are close to the data
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Results

Latent States (Filtered Expectations)

Data, Posterior Median (Solid), 90% Credible Sets (shaded)

(i) Filtered σ̃2
πt
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=⇒ Non-policy related inflation volatility jumps in levels in the 1980’s and
declines to very low value recently
=⇒ Regimes are consistent with anecdotal evidence and other literature Details
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Results

Parameter Values

Posterior medians are provided. Values in parentheses are (10%, 90%) credible sets.

Π Π

xct .991 -.011
(.972, .998) (-.032, -.004)

xπt 0.00 .955
(.920, .978)

σ̃2i,0
1−ϕi

× 105 ϕi ωi × 106

σ̃2
ct .025 – –

(.013, .068)
σ̃2
πt .021 .976 .190

(.009,.043) (.962, .992) (.186, .194)

=⇒ The inflation non-neutrality is key to receive upward sloping yield levels and
risk premia levels!
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Results

Parameter Values (II)

Posterior medians are provided. Values in parentheses are (10%, 90%) credible sets.

δπ(i)× 105 αc(i) απ(i) πii

Regime i = 1 0.00 .091 .791 .975
(.023, .274) (.622, 1.01) (.945, .994)

Regime i = 2 .0083 .315 1.90 .929
(.0063, .0099) (.174, .524) (1.66, 1.99) (.893, .971)

γ i0 µc µπ σ∗c σ∗π

Other Pars 24.38 .013 .0045 .0091 .0038 .0039
(22.81, 26.09) (.0029, .0050) (.0029, .0054)

=⇒ We can interpret regime 1 as an “Aggressive Policy” state while regime 2
exhibits a “Passive Policy.”
=⇒ Aggressive regimes generate more macroeconomic volatility (about one
quarter of total inflation vol in levels!)
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Results

Within-Regime Characteristics

We take median parameters and fix policy variables at each regime’s values.

(i) Yield Levels
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(ii) Volatilities
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=⇒ Aggressive regimes are associated with higher levels and volatilities.
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Results

Risk Premia Movements

Figure: Model-Implied, In-Sample Risk Premia
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=⇒ Upward sloping RP term structure, model breaks Expectation Hypothesis
=⇒ Estimates also capture recent negative risk premia period
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Results

Risk Premia Movements (II)

Figure: Risk Premia Loadings
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(i) Constant Coef
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(ii) Loading on σ̃2
π

=⇒ Aggressive regimes identify with higher risk premia levels and volatilities
=⇒ Recent negative risk-premia period, identified through low σ̃2

πt
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Results

Experiments

What is the marginal contribution of non-policy volatility? Of policy
volatility? Of time-varying coefficients?

We test this by examing risk premia moments with four specifications:

(a) Keep constant all regime shifting constants (Infl Vol Only)
(b) Allow variation in απ(st) (Infl vol + απ)
(c) Allow variation in δπ(st) (Infl vol + απ + δ)
(d) Allow all variations (Baseline)
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Results

Experiments (II)

Figure: Risk Premia Volatilities (II)
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=⇒ Vol effects are sizeable. {απ, δπ} both raise overall RP Vol by ∼ 20% each.
=⇒ Variation in growth sensitivity, αc decreases it
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Results

Differing Signs of Volatility Movements

We can rewrite the risk premia as:

rpnt = Cons(st) + rσc(st)︸ ︷︷ ︸
<0

σ̃2
c0 + rσπ(st)︸ ︷︷ ︸

>0

σ̃2
πt

where the second portion denotes the piece from growth-related volatility

Variation in αc largely affects rσc while απ variation affects rσπ

Growth sensitivity variation decreases risk premia volatility

Signs of risk premia loadings are consistent with empirical results
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Conclusion

Conclusion

We propose a theory-based, flexible asset pricing model that disentangles
slow-moving components of stochastic volatility from monetary policy
aggresiveness

Through an estimation of a two-regime monetary setup, we show the
importance of the monetary channel in stochastic volatility and asset risk
premia

Aggressive monetary policies increase macro-volatility
Aggressive regimes are associated with higher yield levels, more volatility, and
greater risk premia variability
The policy portion of fundamental inflation vol increases risk premia volatility
in conjunction with movements in the inflation sensitivity of the Taylor rule.

=⇒ Thank you for attending! Comments and questions are very much welcome.
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Appendix

Appendix
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Appendix

Details on Model Solution

We can show that Cash Flow (NCF ), Inflation News (Nπ) , and Interest Rate
News (NI) are given by:

NCF,t+1(st, st+1) = (Et+1 − Et)
∞∑
j=0

κj1∆ct+j+1

= FCF,0(st, st+1) + FCF,ε(. . . )
′Σtεt+1 + σ∗c εc,t+1

Nπ,t+1(st, st+1) = (Et+1 − Et)
∞∑
j=0

κj1πt+j+1

= Fπ,0(st, st+1) + Fπ,ε(. . . )
′Σtεt+1 + σ∗πεπ,t+1

NI,t+1(st, st+1) = (Et+1 − Et)
∞∑
j=0

κj1it+j

= FI,0(st, st+1) + FI,X(. . . )′Xt + FI,ε(. . . )
′Σtεt+1

where F... are functions of model primitives (parameters of state governance,
regime transition matrix, etc.) Back
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Appendix

Use of Output Gap

Chernov and Bikbov (2013) uses output gap in a New Keynesian setting to
identify regimes.

Estimation of active regime in their work is very similar. Picks up in 1980’s, and
mid 2000’s. Also increases in ZLB period. Back
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