# "Monetary Policy Risks in the Bond Markets and Macroeconomy"

Ivan Shaliastovich and Ram Yamarthy The Wharton School, University of Pennsylvania

> NYU Volatility Institute April 24, 2015

# Economic Uncertainty and Monetary Policy

- Much work links the levels of economic dynamics with monetary policy
  - Macro variables and the short term interest rate (New Keynesian models)
  - Yield levels and monetary regimes (eg. Gallmeyer et al. (2009))
- We explore the link between economic uncertainty and monetary policy

# Economic Uncertainty and Monetary Policy

- Much work links the levels of economic dynamics with monetary policy
  - Macro variables and the short term interest rate (New Keynesian models)
  - Yield levels and monetary regimes (eg. Gallmeyer et al. (2009))
- We explore the link between economic uncertainty and monetary policy
- We develop an economically-founded term structure model to infer the relationship of policy and macro-volatility
- Focus on the quantitative contribution of *monetary policy towards risk* premia movements, including the macro-uncertainty channel

## Our Paper

- A novel asset pricing framework
  - Flexible dynamics of short rates and macroeconomy
  - Pricing restrictions of recursive-utility based models
- Macroeconomic dynamics
  - Persistent movements in expected growth and inflation
  - Monetary policy affects inflation uncertainty
- Time-varying monetary policy rule
  - Regime-dependent response of short rates to expected growth and expected inflation

#### Historical Works

This paper connects to many strands of literature...

- Macro and MP Regime Shifts (Hamilton (1988), Sims and Zha (2006), Among Many Others)
- Time Variation in Asset Risk Premia
   (Ang and Bekaert (2002), Bansal and Zhou (2003), Ang and Piazzesi (2003),
   Bansal and Yaron (2004), Hasseltoft (2011), Bansal and Shaliastovich (2013))
- Links b/w Term Structure and Monetary Policy
  (Gallmeyer et al. (2009), Ang et al. (2011), Campbell et al. (2013), Chernov
  and Bikbov (2013), Song (2014), Backus et al. (2015))

#### Historical Works

This paper connects to many strands of literature...

- Macro and MP Regime Shifts (Hamilton (1988), Sims and Zha (2006), Among Many Others)
- Time Variation in Asset Risk Premia
   (Ang and Bekaert (2002), Bansal and Zhou (2003), Ang and Piazzesi (2003),
   Bansal and Yaron (2004), Hasseltoft (2011), Bansal and Shaliastovich (2013))
- Links b/w Term Structure and Monetary Policy
  (Gallmeyer et al. (2009), Ang et al. (2011), Campbell et al. (2013), Chernov
  and Bikbov (2013), Song (2014), Backus et al. (2015))
- ⇒ Our model accounts for links between macro volatility and policy
- ⇒ Monetary risks are accounted for in the joint solution of Euler equation, quantities, and financial prices



# Model



#### Ingredients

- Representative Investor with Epstein and Zin (EZ) Preferences
- Novel SDF specification that allows for flexible modeling of consumption, inflation, and interest rate dynamics
- Regime-shifting Taylor Rule for one-period nominal interest rates
- Explore Financial Market implications with resulting Nonlinear Term Structure Model

## Modeling Challenges

• We know from:

```
Lucas (1978): Preferences + \pi_t Process \Longrightarrow y_t^1
Gallmeyer et al. (2009): Preferences + Rule for y_t^1 \Longrightarrow \pi_t Process
```

 Ideally, we would like to have a more flexible form of the SDF that can allow us to have an exogenous expression of preferences, a short rate rule, and inflation, yet maintain tractability

## Modeling Challenges

• We know from:

```
Lucas (1978): Preferences + \pi_t Process \Longrightarrow y_t^1
Gallmeyer et al. (2009): Preferences + Rule for y_t^1 \Longrightarrow \pi_t Process
```

- Ideally, we would like to have a more flexible form of the SDF that can allow us to have an exogenous expression of preferences, a short rate rule, and inflation, yet maintain tractability
- In this framework, we utilize an SDF that prices the risks of cash flow, real rate, and "volatility" news

## Nominal Economy

• The EZ agent maximizes lifetime utility  $(U_t)$  under endowment uncertainty:

$$U_t = \mathop{\rm Max}_{\dots} \left[ (1-\delta) C_t^{\frac{1-\gamma}{\theta}} + \delta \left( E_t \left[ U_{t+1}^{1-\gamma} \right] \right)^{\frac{1}{\theta}} \right]^{\frac{\theta}{1-\gamma}}$$

• Equilibrium solution to log nominal SDF can be written as:

$$m_{t+1} = \theta \log \delta - \frac{\theta}{\psi} \Delta c_{t+1} + (\theta - 1)r_{c,t+1} - \pi_{t+1}$$

where  $\triangle c$  is log consumption growth,  $r_c$  is return on aggregate wealth portfolio, and  $\pi$  is inflation



# Dynamic-CAPM SDF

• The Euler restriction gives us that:

$$E_t \left[ m_{t+1} + i_{t+1} \right] = 1$$

and the log-linearized wealth constraint:

$$r_{c,t+1} = \log \frac{W_{t+1}}{W_t - C_t} \approx \kappa_0 + wc_{t+1} - \frac{1}{\kappa_1} wc_t + \triangle c_{t+1}$$

 Using forward recursions of these two equations and the EZ pricing kernel we can derive the SDF as a function of innovations to future news



# Dynamic-CAPM SDF (II)

• Following Bansal et al. (2013) and Campbell et al. (2013), we formulate the SDF as a function of cash flow, real interest rate, and vol news:

$$m_{t+1} = -i_t - V_t - \gamma N_{CF,t+1} + N_{R,t+1} + N_{V,t+1}$$

$$V_t = \log E_t \left( \exp \left( m_{t+1} - E_t(m_{t+1}) \right) \right)$$

$$N_{CF,t+1} = (E_{t+1} - E_t) \sum_{j=0} \kappa_1^j \triangle c_{t+j+1}$$

$$N_{R,t+1} = (E_{t+1} - E_t) \sum_{j=0} \kappa_1^j (i_{t+j} - \pi_{t+j+1})$$

$$N_{V,t+1} = (E_{t+1} - E_t) \sum_{j=0} \kappa_1^j V_{t+j}$$

# Dynamic-CAPM SDF (II)

• Following Bansal et al. (2013) and Campbell et al. (2013), we formulate the SDF as a function of cash flow, real interest rate, and vol news:

$$m_{t+1} = -i_t - V_t - \gamma N_{CF,t+1} + N_{R,t+1} + N_{V,t+1}$$

$$V_t = \log E_t \left( \exp \left( m_{t+1} - E_t(m_{t+1}) \right) \right)$$

$$N_{CF,t+1} = (E_{t+1} - E_t) \sum_{j=0} \kappa_1^j \triangle c_{t+j+1}$$

$$N_{R,t+1} = (E_{t+1} - E_t) \sum_{j=0} \kappa_1^j (i_{t+j} - \pi_{t+j+1})$$

$$N_{V,t+1} = (E_{t+1} - E_t) \sum_{j=0} \kappa_1^j V_{t+j}$$

We exogenously specify consumption, inflation, and interest rate dynamics;
 volatility news is solved endogenously

## **Economic Dynamics**

• Denote the regime of monetary policy as  $s_t$ , which is governed by an N-state Markov switching process. Transition from state j to state i will be given by probability  $\pi_{ij}$ .

## **Economic Dynamics**

- Denote the regime of monetary policy as  $s_t$ , which is governed by an N-state Markov switching process. Transition from state j to state i will be given by probability  $\pi_{ij}$ .
- The consumption / inflation processes are given by:

$$\Delta c_{t+1} = \mu_c + x_{ct} + \sigma_c^* \epsilon_{c,t+1}$$
  
$$\pi_{t+1} = \mu_{\pi} + x_{\pi t} + \sigma_{\pi}^* \epsilon_{\pi,t+1}$$

where we model the expected components of endowments with stochastic volatility



# Economic Dynamics (II)

• The joint, demeaned VAR process  $X_t = \left[x_{ct}, x_{\pi t}\right]'$  will be given by:

$$X_{t+1} = \Pi X_t + \Sigma_t \epsilon_{t+1}$$



# Economic Dynamics (II)

• The joint, demeaned VAR process  $X_t = [x_{ct}, x_{\pi t}]'$  will be given by:

$$X_{t+1} = \Pi X_t + \Sigma_t \epsilon_{t+1}$$

where  $\Sigma_t$  is given by:

$$\Sigma_t = \begin{pmatrix} \sigma_{c0} & 0 \\ 0 & \sigma_{\pi,t} \end{pmatrix} = \begin{pmatrix} \sigma_{c0} & 0 \\ 0 & \sqrt{\delta^{\pi}(s_t) + \tilde{\sigma}_{\pi,t}^2} \end{pmatrix}$$

and the transient, continuous portions of volatility are given by:

$$\tilde{\sigma}_{\pi t}^2 = \tilde{\sigma}_{\pi,0}^2 + \varphi_{\pi} \tilde{\sigma}_{\pi,t-1}^2 + \omega_{\pi} \eta_{\sigma\pi,t}$$

# Economic Dynamics (II)

• The joint, demeaned VAR process  $X_t = [x_{ct}, x_{\pi t}]'$  will be given by:

$$X_{t+1} = \Pi X_t + \Sigma_t \epsilon_{t+1}$$

where  $\Sigma_t$  is given by:

$$\Sigma_t = \begin{pmatrix} \sigma_{c0} & 0 \\ 0 & \sigma_{\pi,t} \end{pmatrix} = \begin{pmatrix} \sigma_{c0} & 0 \\ 0 & \sqrt{\delta^{\pi}(s_t) + \tilde{\sigma}_{\pi,t}^2} \end{pmatrix}$$

and the transient, continuous portions of volatility are given by:

$$\tilde{\sigma}_{\pi t}^2 = \tilde{\sigma}_{\pi,0}^2 + \varphi_{\pi} \tilde{\sigma}_{\pi,t-1}^2 + \omega_{\pi} \eta_{\sigma\pi,t}$$

• Notice that the inflation variance is a linear combination of (1) a monetary policy portion and (2) a smooth variance component



# Economic Dynamics (III)

 We have specified consumption and inflation dynamics; the last thing to specify is the rule for the short rate:

$$\begin{array}{rcl} i_t & = & i_0 + \frac{\alpha_c(s_t)}{\epsilon_{tot}} \underbrace{(x_{ct} + \mu_c)}_{\text{Expected Growth}} & + \frac{\alpha_\pi(s_t)}{\epsilon_{tot}} \underbrace{(x_{\pi t} + \mu_\pi)}_{\text{Expected Inflation}} \\ & = & \alpha_0(s_t) + \alpha(s_t)' X_t \end{array}$$



# Economic Dynamics (III)

 We have specified consumption and inflation dynamics; the last thing to specify is the rule for the short rate:

$$\begin{array}{rcl} i_t & = & i_0 + \frac{\alpha_c(s_t)}{\epsilon_{tot}} \underbrace{(x_{ct} + \mu_c)}_{\text{Expected Growth}} & + \frac{\alpha_\pi(s_t)}{\epsilon_{tot}} \underbrace{(x_{\pi t} + \mu_\pi)}_{\text{Expected Inflation}} \\ & = & \alpha_0(s_t) + \alpha(s_t)' X_t \end{array}$$

ullet Regime,  $s_t$ , links movements in Taylor rule coefficients to those in inflation volatilities



#### Model Solution

• Recall that the log-SDF is given by :

$$m_{t+1} = -i_t - V_t - \gamma N_{CF,t+1} + (N_{I,t+1} - N_{\pi,t+1}) + N_{V,t+1}$$

• We take into account the risks associated with monetary regime switches and continuous state movements when computing each type of news • Details



# Model Solution (II)

• To receive  $V_t$  we guess and verify by conjecturing a nonlinear form:

$$V_t(s_t) = V_0(s_t) + V_1(s_t)' X_t + V_{2\pi}(s_t) \tilde{\sigma}_{\pi,t}^2$$

• Solve using 1 period Euler relation:

$$\begin{array}{rcl} 1 & = & E_t \left[ \exp(m_{t+1} + i_t) \right] \\ \Longrightarrow \exp\left( V_t \right) & = & E_t \left[ \exp(m_{t+1} + i_t + V_t) \right] \\ & = & E_t \left[ \exp(-\gamma N_{CF,t+1} + N_{I,t+1} - N_{\pi,t+1} + N_{V,t+1}) \right] \end{array}$$

 $\bullet$  For every set of parameters, we can solve for a  $V_t$  process that satisfies no-arbitrage restriction



#### Nominal Term Structure

ullet With solution to  $V_t$  we can re-express the SDF as:

$$m_{t+1} = S_0 + S'_{1,X} X_t + S_{1,\sigma\pi} \tilde{\sigma}_{\pi t}^2 + S'_{2,\epsilon} \Sigma_t \epsilon_{t+1} + S_{2,\eta\pi} \omega_{\pi} \eta_{\pi,t+1}$$

where we have regime-dependent loadings and time-varying quantities of risks

#### Nominal Term Structure

ullet With solution to  $V_t$  we can re-express the SDF as:

$$m_{t+1} = S_0 + S'_{1,X} X_t + S_{1,\sigma\pi} \tilde{\sigma}_{\pi t}^2 + S'_{2,\epsilon} \Sigma_t \epsilon_{t+1} + S_{2,\eta\pi} \omega_{\pi} \eta_{\pi,t+1}$$

where we have regime-dependent loadings and time-varying quantities of risks

 $\bullet$  We can now show that log bond prices and hence yields,  $y_t^n$ , take a nonlinear structure in states

$$y_t^n(s_t) = -\frac{1}{n}p_t^n = \mathcal{A}^n(s_t) + \mathcal{B}_X^{n'}(s_t)X_t + \mathcal{B}_{\sigma\pi}^n(s_t)\tilde{\sigma}_{\pi t}^2$$

#### Nominal Term Structure

ullet With solution to  $V_t$  we can re-express the SDF as:

$$m_{t+1} = S_0 + S'_{1,X} X_t + S_{1,\sigma\pi} \tilde{\sigma}_{\pi t}^2 + S'_{2,\epsilon} \Sigma_t \epsilon_{t+1} + S_{2,\eta\pi} \omega_{\pi} \eta_{\pi,t+1}$$

where we have regime-dependent loadings and time-varying quantities of risks

 $\bullet$  We can now show that log bond prices and hence yields,  $y_t^n$ , take a nonlinear structure in states

$$y_t^n(s_t) = -\frac{1}{n}p_t^n = \mathcal{A}^n(s_t) + \mathcal{B}_X^{n'}(s_t)X_t + \mathcal{B}_{\sigma\pi}^n(s_t)\tilde{\sigma}_{\pi t}^2$$

Risk premia in this economy will take a similar form as well:

$$rp_t^n = E_t \left[ \frac{P_{t+1}^{n-1}}{P_t^n} \right] - y_t^1 = r_0(s_t) + r_{\sigma\pi}(s_t)\tilde{\sigma}_{\pi t}^2$$



# Estimation



#### **Empirical Implementation**

- 2 monetary regimes
- Filtered Time Series:  $\{x_{ct}, x_{\pi t}, \tilde{\sigma}_{\pi t}^2, s_t\}$  using Bayesian MCMC methods
- Estimation is from 1969 onwards at a quarterly basis using bond yields {3M, 1Y - 5Y} from Fed & CRSP
- Nondurables and Services Consumption and GDP Deflator Inflation from the BEA
- Expectations data from Survey of Professional Forecasters



Our state space for estimation is given by (indicates measurement error):

$$\begin{split} \text{(Measurement)} \qquad y_{t+1}^{1:N} &= \mathcal{A}^{1:N}(s_{t+1}) + \mathcal{B}_{X}^{1:N}(s_{t+1}) X_{t+1} + \mathcal{B}_{\sigma\pi}^{1:N}(s_{t+1}) \tilde{\sigma}_{\pi,t+1}^2 + u_{t+1,y} \\ & \qquad \triangle c_{t+1} = \mu_c + e_1' X_t + \sigma_c^* \epsilon_{c,t+1} \\ & \qquad \pi_{t+1} = \mu_\pi + e_2' X_t + \sigma_\pi^* \epsilon_{\pi,t+1} \\ & \qquad X_{SPF,t+1} = X_{t+1} + u_{t+1,X} \\ & \iff \qquad Y_{t+1}^{DATA} = f_Y \left( \mathbb{Z}_t, \mathbb{Z}_{t+1} \right) + \Sigma_{u,Y} u_{t+1,Y} \end{split}$$

Our state space for estimation is given by (indicates measurement error):

$$\begin{aligned} & \text{(Measurement)} & y_{t+1}^{1:N} = \mathcal{A}^{1:N}(s_{t+1}) + \mathcal{B}_{X}^{1:N}(s_{t+1}) X_{t+1} + \mathcal{B}_{\sigma\pi}^{1:N}(s_{t+1}) \tilde{\sigma}_{\pi,t+1}^2 + u_{t+1,y} \\ & \qquad \qquad \triangle c_{t+1} = \mu_c + e_1' X_t + \sigma_c^* \epsilon_{c,t+1} \\ & \qquad \qquad \pi_{t+1} = \mu_\pi + e_2' X_t + \sigma_\pi^* \epsilon_{\pi,t+1} \\ & \qquad \qquad X_{SPF,t+1} = X_{t+1} + u_{t+1,X} \end{aligned} \\ & \iff \qquad Y_{t+1}^{DATA} = f_Y\left(\mathbb{Z}_t, \mathbb{Z}_{t+1}\right) + \sum_{u,Y} u_{t+1,Y} \\ \end{aligned} \\ & \text{(Transition)} & \qquad X_{t+1} = \Pi X_t + \sum_t (\tilde{\sigma}_{\pi t}^2, s_t) \epsilon_{t+1} \\ & \qquad \qquad \tilde{\sigma}_{\pi t}^2 = \tilde{\sigma}_{\pi,0}^2 + \varphi_\pi \tilde{\sigma}_{\pi,t-1}^2 + \omega_\pi \eta_{\sigma\pi,t} \\ & \qquad \qquad s_t \sim \quad \text{Discrete Markov Process with } T(\mathbb{P}_s) \end{aligned}$$

Our state space for estimation is given by (indicates measurement error):

$$\begin{aligned} & \text{(Measurement)} & y_{t+1}^{1:N} = \mathcal{A}^{1:N}(s_{t+1}) + \mathcal{B}_X^{1:N}(s_{t+1}) X_{t+1} + \mathcal{B}_{\sigma\pi}^{1:N}(s_{t+1}) \tilde{\sigma}_{\pi,t+1}^2 + u_{t+1,y} \\ & \qquad \qquad \triangle c_{t+1} = \mu_c + e_1' X_t + \sigma_c^* \epsilon_{c,t+1} \\ & \qquad \qquad \pi_{t+1} = \mu_\pi + e_2' X_t + \sigma_\pi^* \epsilon_{\pi,t+1} \\ & \qquad \qquad X_{SPF,t+1} = X_{t+1} + u_{t+1,X} \end{aligned} \\ & \iff \qquad Y_{t+1}^{DATA} = f_Y \left( \mathbb{Z}_t, \mathbb{Z}_{t+1} \right) + \sum_{u,Y} u_{t+1,Y} \\ & \text{(Transition)} & \qquad X_{t+1} = \Pi X_t + \sum_t (\tilde{\sigma}_{\pi t}^2, s_t) \epsilon_{t+1} \\ & \qquad \qquad \tilde{\sigma}_{\pi t}^2 = \tilde{\sigma}_{\pi,0}^2 + \varphi_\pi \tilde{\sigma}_{\pi,t-1}^2 + \omega_\pi \eta_{\sigma\pi,t} \\ & \qquad \qquad s_t \sim \quad \text{Discrete Markov Process with } T(\mathbb{P}_s) \end{aligned}$$

• The set of parameters  $(\theta)$  is given by:

$$\{\Pi, \delta^{\alpha\pi}, \tilde{\sigma}_{c0}^2, \tilde{\sigma}_{\pi0}^2, \varphi_\pi, \omega_\pi, \sigma_c^*, \sigma_\pi^*, i_0, \kappa_1, \gamma, \mu_c, \mu_\pi, \alpha_c^{1:2}, \alpha_\pi^{1:2}, \mathbb{P}_s\}$$



Our state space for estimation is given by (indicates measurement error):

$$\begin{aligned} & \text{(Measurement)} & y_{t+1}^{1:N} = \mathcal{A}^{1:N}(s_{t+1}) + \mathcal{B}_{X}^{1:N}(s_{t+1}) X_{t+1} + \mathcal{B}_{\sigma\pi}^{1:N}(s_{t+1}) \tilde{\sigma}_{\pi,t+1}^2 + u_{t+1,y} \\ & \qquad \qquad \triangle c_{t+1} = \mu_c + e_1' X_t + \sigma_c^* \epsilon_{c,t+1} \\ & \qquad \qquad \pi_{t+1} = \mu_\pi + e_2' X_t + \sigma_\pi^* \epsilon_{\pi,t+1} \\ & \qquad \qquad X_{SPF,t+1} = X_{t+1} + u_{t+1,X} \end{aligned} \\ & \iff \qquad Y_{t+1}^{DATA} = f_Y \left( \mathbb{Z}_t, \mathbb{Z}_{t+1} \right) + \sum_{u,Y} u_{t+1,Y} \\ \end{aligned} \\ & \text{(Transition)} & \qquad X_{t+1} = \Pi X_t + \sum_t (\tilde{\sigma}_{\pi t}^2, s_t) \epsilon_{t+1} \\ & \qquad \qquad \tilde{\sigma}_{\pi t}^2 = \tilde{\sigma}_{\pi,0}^2 + \varphi_\pi \tilde{\sigma}_{\pi,t-1}^2 + \omega_\pi \eta_{\sigma\pi,t} \\ & \qquad \qquad s_t \sim \quad \text{Discrete Markov Process with } T(\mathbb{P}_s) \end{aligned}$$

• The set of parameters  $(\theta)$  is given by:

$$\{\Pi, \delta^{\alpha\pi}, \tilde{\sigma}_{c0}^{2}, \tilde{\sigma}_{\pi0}^{2}, \varphi_{\pi}, \omega_{\pi}, \sigma_{c}^{*}, \sigma_{\pi}^{*}, i_{0}, \kappa_{1}, \gamma, \mu_{c}, \mu_{\pi}, \alpha_{c}^{1:2}, \alpha_{\pi}^{1:2}, \mathbb{P}_{s}\}$$

• Keep in mind, each  $\theta \longrightarrow \{A, B_X, B_{\sigma\pi}\}$ , so state space coefficients are all model-based

MP Risks in Bond Markets & Macroeconomy

## Estimation Technique

 We draw parameters using a Bayesian MCMC algorithm, using Particle-Filter evaluation of the likelihood function



## Estimation Technique

- We draw parameters using a Bayesian MCMC algorithm, using Particle-Filter evaluation of the likelihood function
- ullet The posterior distribution of the parameter vector,  $\theta$ , satisfies

$$\underbrace{P\left(\theta|Y^{DATA}\right)}_{\text{Posterior}} \propto \underbrace{P\left(Y^{DATA}|\theta\right)}_{\text{Likelihood}} \times \underbrace{P\left(\theta\right)}_{\text{Prior}}$$

## Estimation Technique

- We draw parameters using a Bayesian MCMC algorithm, using Particle-Filter evaluation of the likelihood function
- ullet The posterior distribution of the parameter vector, heta, satisfies

$$\underbrace{P\left(\theta|Y^{DATA}\right)}_{\text{Posterior}} \propto \underbrace{P\left(Y^{DATA}|\theta\right)}_{\text{Likelihood}} \times \underbrace{P\left(\theta\right)}_{\text{Prior}}$$

To evaluate the likelihood, we need to take into account state uncertainty.
 We use a particle filter approach. That is to say for J "particles" of the exogenous states we use:

$$P\left(Y^{DATA}|\theta\right) \approx \frac{1}{J} \sum_{j=1}^{J} P\left(Y^{DATA}|States^{j},\theta\right)$$

 $States^j$  can be drawn individually, for given  $\theta$ , and we evaluate each set's probabilities using particle weights

# Estimation Technique (II)

 To draw parameters we can use Random-Walk Metropolis-Hastings algorithm where we draw:

$$\theta^* = \theta^{j-1} + \Sigma_{draw} \varepsilon$$

$$\mathsf{Accept}\ \mathsf{w}/\mathsf{Prob}\ \alpha \quad = \quad \frac{P\left(\theta^*|Y^{DATA}\right)}{P\left(\theta^{j-1}|Y^{DATA}\right)}$$

• After getting sufficient number of draws, remove burn-in and report results across draws of  $\theta$ 



## Results

- Model Fit
- Parameter Estimates
- Counterfactuals, among which:
  - Within-Regime Characteristics
  - Risk Premia Movements
  - Role of MP Shifts

## Model Fit (In-Sample Yields)

Data, Posterior Median (Solid), 90% Credible Sets (shaded)



⇒ We fit bond yields with low measurement error



### Latent States (Filtered Expectations)

Data, Posterior Median (Solid), 90% Credible Sets (shaded)



⇒ Model measures of macroeconomic expectations are close to the data



## Latent States (Filtered Expectations)

Data, Posterior Median (Solid), 90% Credible Sets (shaded)



⇒ Non-policy related inflation volatility jumps in levels in the 1980's and declines to very low value recently

⇒ Regimes are consistent with anecdotal evidence and other literature • Details

#### Parameter Values

Posterior medians are provided. Values in parentheses are (10%, 90%) credible sets.

|                                                    | П                                                       | П                                 |                        |  |
|----------------------------------------------------|---------------------------------------------------------|-----------------------------------|------------------------|--|
| $x_{ct}$                                           | .991                                                    | 011                               |                        |  |
| $x_{\pi t}$                                        | (.972, .998)<br>0.00                                    | (032,004)<br>.955<br>(.920, .978) |                        |  |
|                                                    | $\frac{\tilde{\sigma}_{i,0}^2}{1-\varphi_i}\times 10^5$ | $arphi_i$                         | $\omega_i \times 10^6$ |  |
| $\tilde{\sigma}_{ct}^2$                            | .025                                                    | -                                 | -                      |  |
| $\tilde{\sigma}_{ct}^2$ $\tilde{\sigma}_{\pi t}^2$ | (.013, .068)<br>.021<br>(.009,.043)                     | .976<br>(.962, .992)              | .190<br>(.186, .194)   |  |

#### Parameter Values

Posterior medians are provided. Values in parentheses are (10%, 90%) credible sets.

|                                                    | П                                                       | П                                 | -                      |  |
|----------------------------------------------------|---------------------------------------------------------|-----------------------------------|------------------------|--|
| $x_{ct}$                                           | .991                                                    | 011                               |                        |  |
| $x_{\pi t}$                                        | (.972, .998)<br>0.00                                    | (032,004)<br>.955<br>(.920, .978) |                        |  |
|                                                    | $\frac{\tilde{\sigma}_{i,0}^2}{1-\varphi_i}\times 10^5$ | $arphi_i$                         | $\omega_i \times 10^6$ |  |
| $\tilde{\sigma}_{ct}^2$                            | .025                                                    | -                                 | -                      |  |
| $\tilde{\sigma}_{ct}^2$ $\tilde{\sigma}_{\pi t}^2$ | (.013, .068)<br>.021<br>(.009,.043)                     | .976<br>(.962, .992)              | .190<br>(.186, .194)   |  |

 $\Longrightarrow$  The inflation non-neutrality is key to receive upward sloping yield levels and risk premia levels!



# Parameter Values (II)

Posterior medians are provided. Values in parentheses are (10%, 90%) credible sets.

|                | $\delta_{\pi}(i) \times 10^5$         | $\alpha_c(i)$                        | $\alpha_{\pi}(i)$                    | $\pi_{ii}$                           | -                       |                  |
|----------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------|------------------|
| $Regime\; i=1$ | 0.00                                  | .091                                 | .791                                 | .975                                 |                         |                  |
| $Regime\; i=2$ | . <mark>0083</mark><br>(.0063, .0099) | (.023, .274)<br>.315<br>(.174, .524) | (.622, 1.01)<br>1.90<br>(1.66, 1.99) | (.945, .994)<br>.929<br>(.893, .971) |                         |                  |
|                | γ                                     | $i_0$                                | $\mu_c$                              | $\mu_{\pi}$                          | $\sigma_c^*$            | $\sigma_{\pi}^*$ |
| Other Pars     | 24.38<br>(22.81, 26.09)               | .013                                 | .0045                                | .0091                                | .0038<br>(.0029, .0050) | .0039            |
|                |                                       |                                      |                                      |                                      |                         |                  |

# Parameter Values (II)

Posterior medians are provided. Values in parentheses are (10%, 90%) credible sets.

|                | $\delta_{\pi}(i) \times 10^5$ | $\alpha_c(i)$        | $\alpha_{\pi}(i)$    | $\pi_{ii}$           | _                       |                      |
|----------------|-------------------------------|----------------------|----------------------|----------------------|-------------------------|----------------------|
| $Regime\; i=1$ | 0.00                          | .091                 | .791                 | .975                 |                         |                      |
| $Regime\; i=2$ | .0083                         | (.023, .274)<br>.315 | (.622, 1.01)<br>1.90 | (.945, .994)<br>.929 |                         |                      |
|                | (.0063, .0099)                | (.174, .524)         | (1.66, 1.99)         | (.893, .971)         |                         |                      |
|                | $\gamma$                      | $i_0$                | $\mu_c$              | $\mu_\pi$            | $\sigma_c^*$            | $\sigma_\pi^*$       |
| Other Pars     | 24.38<br>(22.81, 26.09)       | .013                 | .0045                | .0091                | .0038<br>(.0029, .0050) | .0039<br>(.0029, .00 |
|                |                               |                      |                      |                      |                         |                      |

 $\Longrightarrow$  We can interpret regime 1 as an "Aggressive Policy" state while regime 2 exhibits a "Passive Policy."



# Parameter Values (II)

Posterior medians are provided. Values in parentheses are (10%, 90%) credible sets.

|                | $\delta_{\pi}(i) \times 10^5$         | $\alpha_c(i)$                        | $\alpha_{\pi}(i)$                    | $\pi_{ii}$                           | _                       |                      |
|----------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------|----------------------|
| $Regime\; i=1$ | 0.00                                  | .091                                 | .791                                 | .975                                 |                         |                      |
| $Regime\; i=2$ | . <mark>0083</mark><br>(.0063, .0099) | (.023, .274)<br>.315<br>(.174, .524) | (.622, 1.01)<br>1.90<br>(1.66, 1.99) | (.945, .994)<br>.929<br>(.893, .971) |                         |                      |
|                | γ                                     | $i_0$                                | $\mu_c$                              | $\mu_{\pi}$                          | $\sigma_c^*$            | $\sigma_{\pi}^{*}$   |
| Other Pars     | 24.38<br>(22.81, 26.09)               | .013                                 | .0045                                | .0091                                | .0038<br>(.0029, .0050) | .0039<br>(.0029, .00 |
|                |                                       |                                      |                                      |                                      |                         |                      |

 $\Longrightarrow$  We can interpret regime 1 as an "Aggressive Policy" state while regime 2 exhibits a "Passive Policy."

⇒ Aggressive regimes generate more macroeconomic volatility (about one quarter of total inflation vol in levels!)

### Within-Regime Characteristics

We take median parameters and fix policy variables at each regime's values.



⇒ Aggressive regimes are associated with higher levels and volatilities.



#### Risk Premia Movements

Figure: Model-Implied, In-Sample Risk Premia



- ⇒ Upward sloping RP term structure, model breaks Expectation Hypothesis
- ⇒ Estimates also capture recent negative risk premia period

# Risk Premia Movements (II)

Figure: Risk Premia Loadings



- ⇒ Aggressive regimes identify with higher risk premia levels and volatilities
- $\Longrightarrow$  Recent negative risk-premia period, identified through low  $\tilde{\sigma}_{\pi t}^2$



#### Experiments

- What is the marginal contribution of non-policy volatility? Of policy volatility? Of time-varying coefficients?
- We test this by examing risk premia moments with four specifications:
  - (a) Keep constant all regime shifting constants (Infl Vol Only)
  - (b) Allow variation in  $\alpha_{\pi}(s_t)$  (Infl vol +  $\alpha_{\pi}$ )
  - (c) Allow variation in  $\delta^{\pi}(s_t)$  (Infl vol +  $\alpha_{\pi} + \delta$ )
  - (d) Allow all variations (Baseline)



# Experiments (II)

Figure: Risk Premia Volatilities (II)



- $\implies$  Vol effects are sizeable.  $\{\alpha_{\pi}, \delta^{\pi}\}$  both raise overall RP Vol by  $\sim 20\%$  each.
- $\Longrightarrow$  Variation in growth sensitivity,  $\alpha_c$  decreases it

### Differing Signs of Volatility Movements

• We can rewrite the risk premia as:

$$rp_t^n = Cons(s_t) + \underbrace{r_{\sigma c}(s_t)}_{<0} \tilde{\sigma}_{c0}^2 + \underbrace{r_{\sigma \pi}(s_t)}_{>0} \tilde{\sigma}_{\pi t}^2$$

where the second portion denotes the piece from growth-related volatility

- Variation in  $\alpha_c$  largely affects  $r_{\sigma c}$  while  $\alpha_{\pi}$  variation affects  $r_{\sigma \pi}$
- Growth sensitivity variation decreases risk premia volatility
- Signs of risk premia loadings are consistent with empirical results



# Conclusion

- We propose a theory-based, flexible asset pricing model that disentangles slow-moving components of stochastic volatility from monetary policy aggresiveness
- Through an estimation of a two-regime monetary setup, we show the importance of the monetary channel in stochastic volatility and asset risk premia
  - Aggressive monetary policies increase macro-volatility
  - Aggressive regimes are associated with higher yield levels, more volatility, and greater risk premia variability
  - The policy portion of fundamental inflation vol increases risk premia volatility in conjunction with movements in the inflation sensitivity of the Taylor rule.
- ⇒ Thank you for attending! Comments and questions are very much welcome.



# **Appendix**



#### Details on Model Solution

We can show that Cash Flow  $(N_{CF})$ , Inflation News  $(N_{\pi})$  , and Interest Rate News  $(N_I)$  are given by:

$$N_{CF,t+1}(s_{t}, s_{t+1}) = (E_{t+1} - E_{t}) \sum_{j=0}^{\infty} \kappa_{1}^{j} \Delta c_{t+j+1}$$

$$= F_{CF,0}(s_{t}, s_{t+1}) + F_{CF,\epsilon}(\dots)' \Sigma_{t} \epsilon_{t+1} + \sigma_{c}^{*} \epsilon_{c,t+1}$$

$$N_{\pi,t+1}(s_{t}, s_{t+1}) = (E_{t+1} - E_{t}) \sum_{j=0}^{\infty} \kappa_{1}^{j} \pi_{t+j+1}$$

$$= F_{\pi,0}(s_{t}, s_{t+1}) + F_{\pi,\epsilon}(\dots)' \Sigma_{t} \epsilon_{t+1} + \sigma_{\pi}^{*} \epsilon_{\pi,t+1}$$

$$N_{I,t+1}(s_{t}, s_{t+1}) = (E_{t+1} - E_{t}) \sum_{j=0}^{\infty} \kappa_{1}^{j} i_{t+j}$$

$$= F_{I,0}(s_{t}, s_{t+1}) + F_{I,2}(\dots)' X_{t} + F_{I,\epsilon}(\dots)' \Sigma_{t} \epsilon_{t+1}$$

where  $F_{...}$  are functions of model primitives (parameters of state governance, regime transition matrix, etc.)

### Use of Output Gap

Chernov and Bikbov (2013) uses output gap in a New Keynesian setting to identify regimes.



Estimation of active regime in their work is very similar. Picks up in 1980's, and mid 2000's. Also increases in ZLB period.

