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Motivation

• Financial frictions prevent the efficient allocation of capital to those who have

the highest productivity operating it.

• The wealth distribution, which is irrelevant in models where a version of the

Modigliani-Miller result hold, becomes a state of the economy.

• However, most models that investigate the relation between financial frictions

and aggregate fluctuations deal with between-agents heterogeneity: Bernanke

et al. (1999), Kiyotaki and Moore (1997), He and Krishnamurthy (2013),

Brunnermeier and Sannikov (2014), ....

• No within-agents heterogeneity.

• This limits usefulness of models regarding:

1. Quantitative and welfare implications.

2. Range of questions and policy issues addressed.

3. Estimation.
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Our paper

• We postulate a continuous-time model à la Basak and Cuoco (1998) and

Brunnermeier and Sannikov (2014) with a non-trivial distribution of wealth

among households.

• “Proof of concept” of how to compute and estimate such model:

1. Computation: we use tools from machine learning.

2. Estimation: we use tools from inference with diffusions.

• We document 5 nonlinear features of the model:

1. Multiple SSS(s) that depend on the volatility of economy.

2. Ergodic distribution not centered around the DSS or SSS(s).

3. Only mild bimodality.

4. Acute state-dependence of the GIRFs and DIRFs.

5. Heterogeneity matters!
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The firm

• Representative firm with technology:

Yt = Kα
t L

1−α
t

• Competitive input markets:

wt = (1− α)Kα−1
t L1−α

t

rct = αKα
t L
−α
t

• Aggregate capital evolves:

dKt

Kt
= (ιt − δ) dt + σdZt

• Instantaneous return rate on capital drkt :

drkt = (rct − δ) dt + σdZt
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The expert I

• Representative expert holds capital K̂t and issues risk-free debt B̂t at rate rt to

households.

• Expert can be interpreted as a financial intermediary.

• Financial friction: expert cannot issue state-contingent claims (i.e., outside

equity) and must absorb all risk from capital.

• Expert’s net wealth (i.e., inside equity): N̂t = K̂t − B̂t .

• Together with market clearing, our assumptions imply that economy has a risky

asset in positive net supply and a risk-free asset in zero net supply.
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The expert II

• The law of motion for expert’s net wealth N̂t :

dN̂t = K̂tdr
k
t − rtB̂tdt − Ĉtdt

=
[
(rt + ω̂t (rct − δ − rt)) N̂t − Ĉt

]
dt + σω̂tN̂tdZt

where ω̂t ≡ K̂t

N̂t
is the leverage ratio.

• The law of motion for expert’s capital K̂t :

dK̂t = dN̂t + dB̂t

• The expert decides her consumption levels and capital holdings to solve:

max
{Ĉt ,ω̂t}

t≥0

E0

[∫ ∞
0

e−ρ̂t log(Ĉt)dt

]
given initial conditions and a NPG condition.
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Households I

• Continuum of infinitely-lived households with unit mass.

• Heterogeneous in wealth am and labor supply zm for m ∈ [0, 1].

• Gt (a, z): distribution of households conditional on realization of aggregate

variables.

• Preferences:

E0

[∫ ∞
0

e−ρt
c1−γ
t − 1

1− γ
dt

]

• We could have more general Duffie and Epstein (1992) recursive preferences.

• ρ > ρ̂. Intuition from Aiyagari (1994) (and different from standard model with

financial constraints!).
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Households II

• zt units of labor valued at wage wt .

• Labor productivity evolves stochastically following a Markov chain:

1. zt ∈ {z1, z2} , with z1 < z2.

2. Ergodic mean of zt is 1.

3. Jump intensity from state 1 to state 2: λ1 (reverse intensity is λ2).

• Households save at in the riskless debt issued by experts with an interest rate

rt . Thus, their wealth follows:

dat = (wtzt + rtat − ct) dt = s (at , zt ,Kt ,Gt) dt

• Borrowing limit:

at ≥ 0

• Optimal choice: ct = c (at , zt ,Kt ,Gt).
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Market clearing I

1. Total amount of debt of the expert equals the total households’ savings

Bt ≡
∫

adGt (da, dz) = B̂t

2. Total amount of labor rented by the firm is equal to labor supplied:

Lt =

∫
zdGt = 1

Then, total payments to labor are given by wt .

3. If we define total consumption by households as

Ct ≡
∫

c (at , zt ,Kt ,Gt) dGt (da, dz)

we get:

dB̂t = dBt = (wt + rtBt − Ct) dt
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Market clearing II

4. The total amount of capital in this economy is owned by the expert,

Kt = K̂t

Thus, dKt = dK̂t and ω̂t = Kt

Nt
, where Nt = N̂t = Kt − Bt .

5. With these results, we can derive

dKt =
(

(rt + ω̂t (rct − δ − rt)) N̂t − Ĉt

)
dt + σω̂tN̂tdZt + dB̂t

=
(
Yt − δKt − Ct − Ĉt

)
dt + σKtdZt

where we have used Yt = rctKt + wt .

6. Since we had

dKt = (ιt − δ)Ktdt + σKtdZt

we get

ιt =
Yt − Ct − Ĉt

Kt
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Density

• The households distribution Gt (a, z) has density (i.e., the Radon-Nikodym

derivative) gt(a, z).

• The dynamics of this density conditional on the realization of aggregate

variables are given by the Kolmogorov forward (KF; aka Fokker–Planck)

equation:

∂git
∂t

= − ∂

∂a
(s (at , zt ,Kt ,Gt) git(a))− λigit(a) + λjgjt(a), i 6= j = 1, 2

where git(a) ≡ gt(a, zi ), i = 1, 2.

• The density satisfies the normalization:

2∑
i=1

∫ ∞
0

git(a)da = 1
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Equilibrium

An equilibrium in this economy is composed by a set of prices
{
wt , rct , rt , r

k
t

}
t≥0
,

quantities
{
Kt ,Nt ,Bt , Ĉt , cmt

}
t≥0

, and a density {gt (·)}
t≥0

such that:

1. Given wt , rt , and gt , the solution of the household m’s problem is

ct = c (at , zt ,Kt ,Gt).

2. Given rkt , rt , and Nt , the solution of the expert’s problem is Ĉt , Kt , and Bt .

3. Given Kt , firms maximize their profits and input prices are given by wt and rct .

4. Given wt , rt , and ct , gt is the solution of the KF equation.

5. Given gt and Bt , the debt market clears.
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Characterizing the equilibrium I

• First, we proceed with the expert’s problem. Because of log-utility:

Ĉt = ρ̂Nt

ωt = ω̂t =
rct − δ − rt

σ2

• We can use the equilibrium values of rct , Lt , and ωt to get the wage:

wt = (1− α)Kα
t

the rental rate of capital:

rct = αKα−1
t

and the risk-free interest rate:

rt = αKα−1
t − δ − σ2 Kt

Nt
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Characterizing the equilibrium II

• Expert’s net wealth evolves as:

dNt =

(
αKα−1

t − δ − ρ̂− σ2

(
1− Kt

Nt

)
Kt

Nt

)
Nt︸ ︷︷ ︸

µN
t (Bt ,Nt)

dt + σKt︸︷︷︸
σN
t (Bt ,Nt)

dZt

• And debt as:

dBt =

(
(1− α)Kα

t +

(
αKα−1

t − δ − σ2 Kt

Nt

)
Bt − Ct

)
dt

• Nonlinear structure of law of motion for dNt and dBt .

• We need to find:

Ct ≡
∫

c (at , zt ,Kt ,Gt) gt (a, z) dadz

∂git
∂t

= − ∂

∂a
(s (at , zt ,Kt ,Gt) git(a))− λigit(a) + λjgjt(a), i 6= j = 1, 2
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The DSS

• No aggregate shocks (σ = 0), but we still have idiosyncratic household shocks.

• Then:

r = rkt = rct − δ = αKα−1
t − δ

and

dNt = [(rct − δ)Kt − rtBt − ρ̂Nt ] dt

=
(
αKα−1

t − δ − ρ̂
)
Ntdt

• Since in a steady state the drift of expert’s wealth must be zero, we get the

steady state capital

K =

(
ρ̂+ δ

α

) 1
α−1

and the risk-free rate

r = ρ̂ < ρ

• The value of N is given by the dispersion of the idiosyncratic shocks (no

analytic expression). 14



How do we find aggregate consumption in the general case?

• As in Krusell and Smith (1998), households only track a finite set of n

moments of gt(a, z) to form their expectations.

• No exogenous state variable (shocks to capital encoded in K ). Instead, two

endogenous states.

• For ease of exposition, we set n = 1. The solution can be trivially extended to

the case with n > 1.

• More concretely, households consider a perceived law of motion (PLM) of

aggregate debt:

dBt = h (Bt ,Nt) dt

where

h (Bt ,Nt) =
E [dBt |Bt ,Nt ]

dt
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A new HJB equation

• Given the PLM, the household’s Hamilton-Jacobi-Bellman (HJB) equation

becomes:

ρVi (a,B,N) = max
c

c1−γ − 1

1− γ
+ s

∂Vi

∂a
+ λi [Vj(a,B,N)− Vi (a,B,N)]

+h (B,N)
∂Vi

∂B
+ µN (B,N)

∂Vi

∂N
+

[
σN (B,N)

]2
2

∂2Vi

∂N2

i 6= j = 1, 2, and where we use the shorthand notation

s = s (a, z ,N + B,G )

• We solve the HJB with a first-order, implicit upwind scheme in a finite

difference stencil.

• Sparse system.

• Alternatives for solving the HJB? Finite volumes, fem, meshfree methods, ....

• I am working on developing a complex-step differentiation scheme.
16



An algorithm to find the PLM

1) Start with h0, an initial guess for h.

2) Using current guess for h, solve for the household consumption, cm, in the HJB

equation.

3) Construct a time series for Bt by simulating the cross-sectional distribution over

time. Given Bt , we can find Nt and Kt using their laws of motion.

4) Use a universal nonlinear approximator to obtain h1, a new guess for h.

5) Iterate steps 2)-4) until hn is sufficiently close to hn−1 given some pre-specified

norm and tolerance level.
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Simulation

• We simulate J periods of the economy with a constant time step ∆t (starting

at DSS and with a burn-in).

• Our simulation:
(

S, ĥ
)

.

• Inputs for universal nonlinear approximator:

S = {s1, s2, ..., sJ}

where sj =
{
s1
j , s

2
j

}
=
{
Btj ,Ntj

}
are samples of aggregate debt and expert’s

net wealth at J times tj ∈ [0,T ].

• Outputs for universal nonlinear approximator:

ĥ =
{
ĥ1, ĥ2..., ĥJ

}
where

ĥj ≡
Btj+∆t − Btj

∆t
are samples of the growth rate of Bt .
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A universal nonlinear approximator

• We approximate the PLM with a neural network (NN):

h (s; θ) = θ2
0 +

Q∑
q=1

θ2
qφ

(
θ1

0,q +
D∑
i=1

θ1
i,qs

i

)
where D = 2 and φ(·) is an activation function.

• We choose the softplus function: φ(x) = log(1 + ex). Robustness to ReLUs.

• Q (i.e. number of nodes) is an hypercoefficient that determines the size of the

hidden layer.

• Q = 16 is set by regularization.

• When we have many hidden layers, the network is called deep.

• However, to approximate a two-dimensional function, a single layer is enough.
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Two classic (yet remarkable) results

Universal approximation theorem: Hornik, Stinchcombe, and White (1989)

A neural network with at least one hidden layer can approximate any Borel

measurable function mapping finite-dimensional spaces to any desired degree of

accuracy.

• Assume, as well, that we are dealing with the class of functions for which the

Fourier transform of their gradient is integrable.

Breaking the curse of dimensionality: Barron (1993)

A one-layer NN achieves integrated square errors of order O(1/Q), where Q is the

number of nodes. In comparison, for series approximations, the integrated square

error is of order O(1/(Q2/D)) where D is the dimensions of the function to be

approximated.

• We actually rely on the theorems by Leshno et al. (1993) and Bach (2017).

• What about Chebyshev polynomials? Splines? Problems of convergence and

extrapolation.
20



Determining coefficients

• θ is selected to minimize the quadratic error function E
(
θ; S, ĥ

)
:

θ∗ = arg min
θ
E
(
θ; S, ĥ

)
= arg min

θ

J∑
j=1

E
(
θ; sj, ĥj

)

= arg min
θ

1

2

J∑
j=1

∥∥∥h (sj ; θ)− ĥj

∥∥∥2

• We use minibatch gradient descent (a variation of stochastic gradient descent).

• In practice, we do not need a global min ( 6= likelihood).

• You can flush the algorithm to a graphics processing unit (GPU) or a tensor

processing unit (TPU) instead of a standard CPU.
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Stochastic gradient descent

• Random multi-trial with initialization from a proposal distribution Θ (typically a

Gaussian or uniform):

θ0 ∼ Θ

• θ is recursively updated:

θm+1 = θm − εm∇E
(
θ; sj, ĥj

)
where:

∇E
(
θ; sj, ĥj

)
≡

∂E
(
θ; sj, ĥj

)
∂θ2

0

,
∂E
(
θ; sj, ĥj

)
∂θ2

1

, ...,
∂E
(
θ; sj, ĥj

)
∂θ1

2,Q

>

is the gradient of the error function with respect to θ evaluated at
(

sj, ĥj
)

until:

‖θm+1 − θm‖ < ε

• In a minibatch, you use a few observations instead of just one.

22



Some details

• We select the learning rate εm > 0 in each iteration by line-search to minimize

the error function in the direction of the gradient.

• We evaluate the gradient using back-propagation (Rumelhart et al., 1986):

∂E
(
θ; sj, ĥj

)
∂θ2

0

= h (sj ; θ)− ĥj

∂E
(
θ; sj, ĥj

)
∂θ2

q

=
(
h (sj ; θ)− ĥj

)
φ

(
θ1

0,q +
2∑

i=1

θ1
i,qs

i
j

)
, for ∀q

∂E
(
θ; sj, ĥj

)
∂θ1

0,q

= θ2
q

(
h (sj ; θ)− ĥj

)
φ′

(
θ1

0,q +
2∑

i=1

θ1
i,qs

i
j

)
, for ∀q

∂E
(
θ; sj, ĥj

)
∂θ1

i,q

= s ij θ
2
q

(
h (sj ; θ)− ĥj

)
φ′

(
θ1

0,q +
2∑

i=1

θ1
i,qs

i
j

)
, for ∀i , q

where φ′(x) = 1
(1+e−x ) .
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Estimation with aggregate variables I

• Let Xt ≡ [Bt ;Nt ]
′ a vector of aggregate state variables.

• We have D observations of Xt at fixed time intervals [0,∆, 2∆, .., (D − 1) ∆].

• More general case where the states are not observed: sequential Monte Carlo

approximation to the Kushner-Stratonovich equation (Fernández-Villaverde and

Rubio Raḿırez, 2007).

• We are interested in estimating a vector of structural parameters Ψ.

• Likelihood:

L
(
XD

0 |Ψ
)

=
D∏

d=1

pX
(
Xd∆|X(d−1)∆; Ψ

)
where

pX
(
Xd∆|X(d−1)∆; Ψ

)
= fd∆(Bd∆,Nd∆)

is the conditional density of Xd∆ given X(d−1)∆.
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Estimation with aggregate variables II

• ft(B,N) follows the KF equation in interval [(d − 1)∆, d∆]:

∂ft
∂t

= − ∂

∂B
[h(B,N)ft(B,N)]− ∂

∂N

[
µN
t (B,N)ft(B,N)

]
+

1

2

∂2

∂N2

[(
σN
t (B,N)

)2
ft(B,N)

]
f(d−1)∆ = δ

(
B − B(d−1)∆

)
δ
(
N − N(d−1)∆

)
and δ (·) is the Dirac delta function (Lo, 1988).

• The operator in the KF equation is the adjoint of the infinitesimal generator

generated by the HJB.

• Therefore, the solution of the KF equation amounts to transposing and

inverting a sparse matrix that has already been computed.
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Estimation with aggregate variables III

• Our approach provides a highly efficient way of evaluating the likelihood once

the model is solved.

• If the KF becomes numerically cumbersome, we can construct Hermite

polynomials expansions of the (exact but unknown) likelihood as in Äıt-Sahalia

(2002).

• Easy to maximize likelihood or perform Bayesian inference.

• Conveniently, retraining of the neural network is easy for new parameter values.
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Figure 1: Loglikelihood over σ.
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Parametrization

Parameter Value Description Source/Target

α 0.35 capital share standard

δ 0.1 yearly capital depreciation standard

γ 2 risk aversion standard

ρ 0.05 households’ discount rate standard

λ1 0.986 transition rate u.-to-e. monthly job finding rate of 0.3

λ2 0.052 transition rate e.-to-u. unemployment rate 5 percent

y1 0.72 income in unemployment state Hall and Milgrom (2008)

y2 1.015 income in employment state E (y) = 1

ρ̂ 0.0497 experts’ discount rate K/N = 2

σ 0.015 volatility of shocks -
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Concluding remarks

• We have shown how a continuous-time model with a non-trivial distribution of

wealth among households and financial frictions can be built, computed, and

estimated such model.

• We have taken advantage of some recent developments in theory and

computation.

• Our model today was a prototype of the class of models that can be handled.

• Large scalability through massive, dedicated parallelism (GPUs and TPUs).

• We have learned important features about the nonlinear structure of the

solution and how it matters for assessing aggregate dynamics.
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