Uncertainty and International Capital Flows

Gourio, Siemer, Verdelhan
Discussion by Robert Richmond
UCLA Anderson/NYU Stern
April 2016
What drives cross-sectional differences in capital flows?

Uncertainty

- Uncertainty measured as (quarterly) realized variance:

\[
\frac{1}{\tau + 1} \sum_{k=t-\tau}^{t} (R_k^i)^2
\]

- Uncertainty explains capital flows

\[
CF_t^i = \alpha^i + \beta_1 Vol_{t-1}^i + \beta_2 X_{t-1} + \epsilon_t^i
\]
Uncertainty explains future capital flows

- Uncertainty \(\uparrow\) (relative to other emerging)
- Capital inflows \(\downarrow\)
 - Foreigners disinvest in the high uncertainty domestic market
- Capital outflows \(\downarrow\)
 - Domestic residents bring capital home
The need for an asymmetry

- Domestic uncertainty \(\uparrow \Rightarrow \text{rebalance} \)
- **Issue:** Not everyone can rebalance the same direction
- **Data:**
 - Foreign residents revert to foreign assets
 - Domestic residents revert to domestic assets
- **Asymmetry:** Expropriation risk
- Increase in expropriation risk leads to less demand for domestic tree
 - \(\Rightarrow \text{capital flows back to foreign} \)
 - Market clearing leads to retrenchment of domestic investors
Expropriation risk in the data

- Expropriation risk ↗
 - Gross inflows ↘
 - Gross outflows ↘
- Uncertainty (vol.) forecasts political/expropriation risk
- “Instrumented” expropriation risk also explains capital flows
- Is the magnitude of the expropriation risk high enough to drive the capital flows?
 - Ballpark the magnitudes given that part of the risk index is quantitative!
Global uncertainty decomposition

\[(R_k^i)^2 = \alpha^i + \beta^i (R_w^i)^2 + \epsilon_k^i \]

Total variance:
\[\frac{1}{\tau + 1} \sum_{k=t-\tau}^{t} (R_k^i)^2 \]

Country specific:
\[\frac{1}{\tau + 1} \sum_{k=t-\tau}^{t} (\alpha^i + \epsilon_k^i) \]

Global component:
\[\frac{1}{\tau + 1} \sum_{k=t-\tau}^{t} \beta^i (R_w^i)^2 \]
Global uncertainty decomposition

Date

Uncertainty Beta

Uncertainty Beta

Bulgaria Chile Colombia Czech Republic Egypt

Hungary India Indonesia Korea, Republic of Malaysia

Mexico Morocco Philippines Poland Portugal

Romania Singapore Slovenia South Africa Taiwan, Province of China

Thailand
Global uncertainty decomposition

- What are these really capturing?
 - Short horizon increases in global integration?

\[\text{vuut} + 1_t \sum_{k=t}^t 1_f R_{ik} > 0 \quad g(R_{ik})^2 \]

\[\text{vuut} + 1_t \sum_{k=t}^t 1_f R_{ik} < 0 \quad g(R_{ik})^2 \]
Global uncertainty decomposition

• What are these really capturing?
 • Short horizon increases in global integration?
• Factor ARCH?
Global uncertainty decomposition

- What are these really capturing?
 - Short horizon increases in global integration?
- Factor ARCH?
- Idiosyncratic variance?
 - Squared residuals of a global CAPM
Global uncertainty decomposition

- What are these really capturing?
 - Short horizon increases in global integration?
- Factor ARCH?
- Idiosyncratic variance?
 - Squared residuals of a global CAPM
- Good Volatility/Bad Volatility

\[
\text{Good: } \sqrt{\frac{1}{\tau + 1} \sum_{k=t-\tau}^{t} 1\{R^i_k > 0\}(R^i_k)^2}
\]

\[
\text{Bad: } \sqrt{\frac{1}{\tau + 1} \sum_{k=t-\tau}^{t} 1\{R^i_k < 0\}(R^i_k)^2}
\]
Good Volatility/Bad Volatility

<table>
<thead>
<tr>
<th></th>
<th>In</th>
<th>Out</th>
<th>Net</th>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Volatility</td>
<td>−6.809**</td>
<td>−4.728*</td>
<td>−2.669</td>
<td>2.831</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(−2.040)</td>
<td>(−1.820)</td>
<td>(−1.386)</td>
<td>(0.663)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Good Volatility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.831</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.663)</td>
<td>(0.000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bad Volatility</td>
<td></td>
<td></td>
<td></td>
<td>−13.590***</td>
<td>−4.717</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(−3.284)</td>
<td>(−1.283)</td>
</tr>
<tr>
<td>R²</td>
<td>0.370</td>
<td>0.500</td>
<td>0.442</td>
<td>0.377</td>
<td>0.457</td>
</tr>
<tr>
<td>Num. obs.</td>
<td>1503</td>
<td>1503</td>
<td>1503</td>
<td>1503</td>
<td>1503</td>
</tr>
</tbody>
</table>
Whose Capital?

- Currently comparing emerging countries to other emerging countries
 - We know that developed and emerging capital flows are very different
- Trading partners?
- Developed countries?
- All of the controls are about the country itself:
 - Try an index of trading partners relative volatility
Conclusion

• Nice paper!
• Interesting empirical facts explained with a simple theoretical mechanism
• Leads to many interesting questions about uncertainty in international markets