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Abstract 

We propose an extension with leverage effect of the discrete time stochastic volatility model of 
Darolles et al. (2006). This extension is shown to be the natural discrete time analog of the Heston 
(1993) option pricing model. It shares with Heston (1993) the advantage of structure preserving change 
of measure: with an exponentially affine stochastic discount factor, the historical and the risk neutral 
models belong to the same family of joint probability distributions for return and volatility processes. 
This allows computing option prices in semi-closed form through Fourier transform. The discrete time 
approach has several advantages. First, it allows relaxing the constraints on higher order moments 
implied by the specification of a diffusion process. Second, it makes more transparent the role of 
various parameters: leverage versus volatility feedback effect, connection with daily realized volatility 
measure on high-frequency intraday returns, closed-form formulas for affine dynamics of the first two 
moments of return and volatility that are robust to temporal aggregation, impact of leverage on the 
volatility smile, etc. This sheds some new light on the identification issue of the various risk premium 
parameters. An empirical illustration is provided. 
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1 Introduction 

Affine Jump-Diffusion models have been put forward by Duffie et al. (2000) as a convenient model for 
state variable to get closed- or nearly-closed form expressions for derivative asset prices. Their model nests 
in particular the popular Cox et al. (1985) model for interest rates as well as Heston (1993) stochastic 
volatility model for currency and equity prices for the purpose of option pricing. Duffie et al. (2000) 
synthesized this strand of literature to show that generally speaking the use of Fourier transform allows 
not only to define the affine model through conditional moment restrictions but also to derive nearly-closed 
form expressions for option prices. 

Since then, Affine Jump-Diffusion models have often been criticized for their poor empirical fit. The 
key intuition is that they maintain an assumption of local conditional normality, up to jumps. Jumps 
are to some extent the only degree of freedom to reproduce the pattern of time-varying skewness and 
excess kurtosis commonly observed in asset returns. As a response to this criticism, at least two strands 
of literature have promoted specifications of discrete time models that remain true as much as possible 
to the affine structure. The goal is to use the additional degree of freedom provided by discrete time 
modeling to get a better empirical fit of higher order moments while keeping closed- or nearly-closed form 
expressions for securities prices. While Duan (1995), Heston & Nandi (2000) have initiated a strand of 
literature on closed-form GARCH option pricing (see Christoffersen et al. (2010a, 2012), and references 
therein for the most recent contributions), the paper by Darolles et al. (2006) has been seminal to provide 
a class of discrete time affine stochastic volatility models as general as the class of Affine Jump-Diffusion 
models for continuous time arbitrage pricing. 

The stochastic volatility model provides a versatile framework to capture asymmetric volatility 
dynamics with possibly different parameters for historical and risk-neutral dynamics. While a similar 
exercise has been performed by Barone-Adesi et al. (2008) in a GARCH framework (thanks to 
calibration of option prices data), Meddahi & Renault (2004) have shown that affine discrete-time 
volatility dynamics may be seen as a relevant weakening of the GARCH restrictions. This weakening 
restores robustness to temporal aggregation, at least for the affine specification of the first two moments. 
However, Meddahi & Renault (2004) approach is only semi-parametric while a complete specification of 
the conditional probability distributions is warranted for option pricing. Compound AutoRegressive 
(Car) models of Darolles et al. (2006) provide exactly the relevant framework for doing so. However, the 
focus is only on volatility dynamics and there is no attempt to specify a joint model for volatility and 
return process, incorporating the leverage effect as in particular in Heston (1993) model. Bertholon 
et al. (2008) move in the direction of joint return and volatility modeling within Car-type framework. 
As an example, they develop the model with asymmetric GARCH volatility to produce the leverage 
effect. They also note the theoretical possibility to introduce instantaneous correlation between returns 
and volatility by considering Car framework. 

The main contribution of this paper is to extend the framework of Darolles et al. (2006) to a bivariate 
model of return and volatility that allows for leverage effect and volatility feedback as well. This provides 
a convenient large class of affine models for option pricing, nesting Heston (1993) model as a particular 
continuous time limit. Moreover, by contrast with the debates about the right way to define continuous 
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time limits of GARCH models, our limit arguments are underpinned by temporal aggregation formulas 
and as such, are immune to the criticism of ad hoc specification. The challenge to provide a versatile 
discrete time extension of Heston (1993) option pricing with stochastic volatility and leverage effect is 
twofold: 

First, the discrete time approach complicates the separate identification of Granger causality and 
instantaneous causality (see e.g. Renault et al., 1998). This is especially important in the context of 
stochastic volatility models since, as documented by Bollerslev et al. (2006), the only way to disentangle 
leverage effect (as defined by Black, 1976) from volatility feedback due to risk premium, is to assess the 
direction of causality between volatility and return. While Bollerslev et al. (2006) enhanced the usefulness 
of high frequency data to do so, our parametric modeling must carefully leave room for a mixture of these 
two effects in discrete time. Note that, on the other hand, we maintain the assumption that returns do 
not Granger cause volatility. This assumption is key (see Renault, 1997) to get option pricing formulas 
which, like Black and Scholes are homogeneous of degree one with respect to underlying stock price and 
strike price and as a result, allow us to see the volatility smile as a function of moneyness. The lack of 
such homogeneity property is another weakness of GARCH option pricing (see Garcia & Renault, 1998). 

Second, we want to keep in discrete time the main features of Heston (1993), namely volatility dynamics 
that are affine for both the historical and the risk-neutral distribution, while keeping the same leverage 
effect. To the best of our knowledge, the only attempt to do so in the extant literature has been recently 
proposed by Feunou & Tedongap (2012). However, we show that their affine specification with leverage 
effect cannot work simultaneously for the historical and the risk neutral distribution, More precisely, a 
general exponentially affine pricing kernel is not structure preserving in their context. They can use their 
model either for risk neutral distribution or for the historical one, but not both. Our specification is 
structure preserving (while keeping the same leverage effect) with a general exponential affine stochastic 
discount factor. While the shape of volatility smile without leverage effect is well-known (see Renault 
& Touzi, 1996) our closed form expressions allow us to give new insights on distortions of volatility 
smiles produced by leverage. Moreover, these formulas also provide conditional moment restrictions for 
econometric inference as a discrete time extension of the work of Pan (2002). Finally, we are also able 
to characterize the information content of option price data, in particular their crucial role in statistical 
identification of risk neutral dynamics. This paves the way for an extension of Gagliardini et al. (2011) 
to general discrete time affine models with leverage effect. 

The rest of the paper is organized as follows. Section 2 sets up a general model. Section 3 introduces 
stochastic discount factor and shows how to construct risk neutral distributions of return and volatility. 
Section 4 derives the generalized Black-Scholes option price formula, and analyzes the effect of leverage 
on implied volatilities. Section 5 shows how to estimate the joint model of returns and volatility with 
leverage effect using the moment restrictions based on Laplace transform. Section 6 concludes. 
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2 Affine Historical Probability Measure 

2.1 General framework 

Let St be the price for a stock at time t. The observed time series of interest will be the continuously 
computed rate of return in excess of the risk free rate: 

rt+1 = log (St+1/St) − rf,t, 

where rf,t stands for the risk-free rate over period [t, t + 1]. 
We will assume throughout that the return volatility is driven by one factor, that is a stochastic 

process denoted by σt. We do not need to be more specific at this stage regarding the exact connection 
between the process σt and the volatility of the return process rt. Let us just say that the (t + 1)’th ( )2rt+1, σt+1“observation” has a joint conditional distribution given past information characterized by its 
Laplace transform: ⎡ ⎛ ⎞| ⎤|

L (u, v |It ) ≡ E exp −uσt
2
+1 − vrt+1 | It ,

where u and v are complex arguments and It stands for the natural filtration of the state variables: 

It = {rs, rf,s, σs; s ≤ t} 

Note that this setting is fully general since the Laplace transform can always be used to characterize the 
probability distribution, for instance by letting the arguments u and v be purely imaginary numbers, so 
that we get the characteristic function of the distribution. 

However, we want to remain true to a well-founded tradition in option pricing (see Renault, 1997; 
Garcia & Renault, 1998 and references therein for a discussion) to see option prices as homogeneous 
functions of degree one with respect to the pair (St,K) of the underlying stock price and the strike price. 
Since Black and Scholes pricing formula fulfills this homogeneity property, assuming that our option 
pricing model is also homogeneous amounts to see Black-Scholes implied volatilities as depending only on 
the moneyness St/K, in line with a common tradition of representation of the volatility smile. As shown 
in Renault (1997), this homogeneity assumption is tantamount to the conjunction of two assumptions: 

• First, we preclude any kind of Granger causality from return to volatility. The conditional
probability distribution of 2σt+1 given It depends on conditioning information only through the
past of the volatility factor. Adding a common Markov assumption, we will simply write:⎛ | ⎞ ⎡ ⎛ ⎞| ⎤| |

L (u, 0 |It ) = Lσ u |σ2 = E exp −uσ2 |σ2 .t t+1 t

Note that the Markov assumption could be relaxed by considering several volatility factors. The non-
causality assumption from return to volatility, albeit common in the stochastic volatility literature, 
is at odds with some popular models of GARCH option pricing, as initiated by Duan (1995). For 
this reason, GARCH option pricing is not homogeneous (see Garcia & Renault, 1998). 
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( )
⎡ ⎛ ⎞ ⎛ ||| ||L (u, v |It ) = E exp −uσ2 Lr v σ

2, σ2 σ2 ,t+1 t t+1 t 

⎞| ⎤
⎛ ||| ⎞

Lr v σ
2, σ2 ≡ E [ exp (−vrt+1)| Iσ] ,t t+1  t 

⎛ ||| || ||Lr v σ
2, σ2 ) = E v σ2, σ2 σ2 .= L (0, v |It Lrt t+1 t t+1 t 

⎞ ⎡ ⎛ | ⎞| ⎤

⎛ ||| ⎞
L (u, v |It ) = Lσ,r u, v σ2 .t 

⎛ |||Lσ,r u, v σt 
2 = exp −l (u, v) σt 

2 − g (u, v) .  
⎞

⎛ |||Lσ u σ
2 = exp −a (u) σ2 − b (u) ,  t t 

⎞

⎛ |||Lr v σt 
2, σt

2
+1 = exp −α (v) σt

2
+1 − β (v) σt 

2 − γ (v) .
⎞

• Second, we assume that stock returns are conditionally serially independent given the volatility path.
The conditional probability distribution of return rt+1 given It and 2σt+1 depends on conditioning
information only through past and current values 2σt 

 and 2σt+1 of the volatility factor. Adding a
joint Markov assumption for the process 2rt+1, σt+1 , we will simply write: 

where: 

and Iσ
t 

 stands for the augmented filtration: 

Iσ = {rs, rf,s, σs+1; s ≤ t} .t 

The focus of our interest is precisely the possible difference between two conditional distributions 
of returns: 

/

This difference, that could be dubbed instantaneous causality between return and volatility factor, 
is known to have several economic interpretations like “leverage effect” or “volatility feedback”. 

Of course, the above maintained assumptions imply in particular the following restriction on the joint 
Laplace transform: 

Following Darolles et al. (2006), we will assume throughout that this Laplace transform defines a 
bivariate compound autoregressive process of order one (Car(1)), that is: ⎰ ⎱

(2.1) 

It implies in particular a univariate Car(1) model for the volatility factor: ⎰ ⎱
(2.2)

while we also assume a similar structure for the conditional distribution of rt+1 given It and 2σt+1: ⎰ ⎱
(2.3) 

In summary, our model is specified through the definition of five functions a (·), b (·), α (·), β (·), and γ (·) 
in definitions of Laplace transforms (2.2) and (2.3). The functions a (·), b (·), α (·), β (·), and γ (·) are all 
defined on some neighborhood of zero in the complex plan, and we have by definition: 

a (0) = b (0) = α (0) = β (0) = γ (0) = 0. 
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⎰ ⎱

β′′ (0) σ2 + γ′′ (0)tσ̃t
2
+1 = σt

2
+1 + .

α′′ (0) 

⎡ ||| ||2
V [rt+1| It] = α′ (0) V σ̃2 It − α′′ (0) E σ̃2 It .t+1 t+1 

⎤ ⎡ | ⎤

⎡ || ⎤ ⎡ || ⎤
V [rt+1 − E [rt+1| Itσ]| It] = −α′′ (0) E σ̃t

2
+1 It ≤ E σ̃t

2
+1 It .

| |

We will assume throughout the existence of the first and second derivatives at zero of these five functions. 
Note that our joint model for return and volatility factor, as defined by (2.2) and (2.3) is akin to 

impose the following constraint on the bivariate Car(1) defined by (2.1): 

l (u, v) = a [u + α (v)] + β (v) , 
(2.4) 

g (u, v) = b [u + α (v)] + γ (v) . 

2.2 Return volatility 

From the conditional Laplace transform of return given Iσ
t :

E [ exp (−vrt+1)| Itσ] = exp −α (v) σt
2
+1 − β (v) σ2 − γ (v)t 

we deduce the first two conditional moments: 

E [rt+1| Iσ] = α′ (0) σt
2
+1 + β′ (0) σ2 + γ′ (0) ,t t 

V [rt+1| Iσ] = −α′′ (0) σt
2
+1 − β′′ (0) σ2 − γ′′ (0) .t t 

This suggests that the missing link between the volatility factor 2σt+1 and the return (squared volatility) 
V [rt+1| It] goes through the modified volatility factor: 

(2.5)

More precisely, the variance decomposition allows us to write: 

[ ]
In other words, volatility dynamics is created by the conjunction of two effects: 

• First a time varying risk premium, leading to a variance of the expected return equal to[ |2 ]
[α′ (0)]  V σ̃2 |

t+1 It , 

• Second the expected integrated (squared) volatility, dampened by leverage effect.

We mean that we interpret the modified volatility factor ˜2σt+1 as integrated variance (in continuous time): 

⌠ t+1
σ̃2 = σ2 (u) du,t+1 

t

while its effect on return volatility is dampened by leverage effect: 
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⎡ ||| ||V [rt+1| It] = ψ2V σ̃t
2
+1 + 1 − φ2 E σ̃2 It .It t+1 

⎤ ⎛ ⎞ ⎡ | ⎤

⎡ ||| ⎤ [ || ]
[ || ] [ || ] [ || ]Corr ψσ̃t

2
+1, σ̃t

2
+1 ItCorr rt+1, σ̃t

2
+1 It = √ √ ,

V σ̃2 It ψ2V σ̃2 It + (1 − φ2) E σ̃2 Itt+1 t+1 t+1 

⎡ ||| ⎤
σ2 φ

Corr rt+1, ˜t+1 It = √ ,
tφ2 + (1 − φ2) k

k̃

2

2 

[ ||[ || ]E σ̃2 
t+1 Itψ = ˜ k2 .kφ, = t V σ̃t
2
+1 It

]

⎡ ||| ⎤
Corr rt+1, σ̃t

2
+1 It ≈ φ,⎡ |||V [rt+1| It] ≈ E σ̃t

2
+1 It .

⎤

Hence the parameterization: 

α ′ (0) = ψ, 

−α ′′ (0) = 1 − φ2 , |φ| < 1, 

so that: 

It is worth noting that, by contrast for instance with Feunou & Tedongap (2012), we do not want to 
maintain a decomposition: 

rt+1 = E [rt+1| Itσ] + σ̃t+1εt+1, V [εt+1| Itσ] = 1, 

because it would impose φ = 0, meaning that all possible leverage effect is confused with volatility feedback 
inside expected return. By contrast, both parameters ψ and φ play a role in our measure of leverage effect 
since the conditional correlation between return and volatility is: 

that can be written: 

where: 

For sake of subsequent discussion, it will be worth recalling that, if for whatever reason, the random 
variable 2kt 

 takes values quite concentrated around 2k̃ , then we have:

We will actually discuss the parameterization further with these approximations in mind: we want to 
see the return conditional variance V [ rt+1| It] as the conditional expectation of the “integrated variance” [ | ]2σ̃t+1 and the conditional correlation coefficient  2Corr r |

t+1, σ̃t+1 It that measures the leverage effect as 
almost equal to the parameter φ. In particular, we will always see this parameter as lying in the interval 
(−1, 0]. 
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⎡ ||| ′ (0) σ2  
t + b ′ (0) ,E  σ2 

+1 Itt = a  
⎤

⎡ ||| = −a ′′ (0) σ2  
t − b ′′ (0) .V  σ2 

+1 Itt

⎤

a ′′ (0) 
c = −2a ′ (0) 

> 0,
′ (0) b ′ (0)

δ = −2a > 0, 
a ′′ (0)  

−4b 
′′ (0) [a ′ (0)]   

ω = > 0,
[a ′′ (0)]2 

⎡ || ⎤
t= ρσ2 + δc,  E tσ

2 
+1 It
|

⎡ ||| t= 2cρσ2 + ωc2V tσ
2 
+1 It .

⎤

tβ ′′ (0) σ2 + γ ′′ (0) 
tσ̃
2 
+1 t= σ2 

+1 + α ′′ (0) 

2.3 Affine Volatility Dynamics 

2.3.1 Model specification 

As already discussed in Darolles et al. (2006), the Car modeling of volatility nicely fits into the affine 
framework, as of popular use in financial econometrics (see e.g. Duffie et al., 2000, 2003; Meddahi & 
Renault, 2004). To see that, note that we immediately deduce from (2.2) that: 

(2.6)  

We can then without loss of generality characterize the conditional mean and variance of the volatility 
factor through four parameters ρ, c, δ, and ω defined as follows: 

ρ = a ′ (0) ∈ (0, 1) , 

2

such that the affine volatility dynamics are parameterized as follows: 

(2.7) 

Note that the positive parameter c is nothing but a scale parameter for the volatility factor 2 σt+1. In
particular, this volatility factor 2σt+1 is endowed with AR(1) dynamics characterized by the correlation 
coefficient ρ ∈ [0, 1). Note that in general the modified volatility factor, that we interpret as integrated 
variance: 

will be endowed with ARMA(1,1) dynamics.  
More precisely, 2σ̃t+1 is ARMA(1,1) (resp. AR(1)) when we have a non-zero (resp zero) β ′′ (0), for 

instance depending whether the function β (·) is linear or not. If one realizes that integrated variance is 
almost “observed” through realized variance computed with high frequency data, this model specification 
issue is germane with considering squared returns that are AR(1) (as in the ARCH(1) model) or simply 
ARMA(1,1) (as in the GARCH(1,1) model). 
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a (u) = 
ρu

, b (u) = δ log (1 + cu) , 1 + cu

( )
• The conditional distribution of 2  σt+1 given 2σt , Zt is gamma with degree of freedom (δ + Zt).

⎡ ||| ⎤ ⎡ ||| ⎤
σ2 

t ttσ
2 = δ + ρσ2 = E δ + ZtE  σ2+1t ,

( 2σt

)4 σtModel (2.6) specifies the joint process  , as a vector auto-regressive VAR(1) process. This setting  
is robust to temporal aggregation.  

⎡ |||| t= ρσ2 + cδ,  E tσ
2 
+1 It 

⎤
⎡ || tt= ρ2σ4 + aσ2 + b, E tσ

4 
+1 It 

⎤

⎛ ⎞
b = c 2 ω + δ2 , 

a = 2cρ (1 + δ) , 

2.3.2 Leading example: ARG(1) volatility process 

Following Gourieroux & Jasiak (2006), we will pay a special attention to the so-called autoregressive 
gamma process ARG(1) which is defined by: 

(2.8)

with 
ρ ∈ [0, 1) , c > 0, δ > 0. 

Obviously, this model fits within the general class of affine volatility models (2.7) discussed above, while 
imposing the constraint δ = ω. For c = 1, this model can be interpreted by introducing a latent variable 
with integer values Zt such that: 

• The conditional distribution of 2σt
 2ρσtis Poisson with parameter   ,  Zt given 

Note, in particular, that we have in this case:  

such that the condition ρ ∈ [0, 1) is devised to ensure both persistence and mean reversion for the process 
of the volatility factor. 

If we consider more generally that the above Poisson-mixture of gamma distributions actually ( ) ( )
characterizes the conditional probability distribution of  2σt+1/c given 2 σt /c ,  we end up with a 
conditional distribution of  2σt+1 giv   2σt

 en corresponding to the Laplace transform defined by (2.8). 
Again, c is nothing but a scaling volatility factor. 

2.4 Temporal Aggregation and Continuous Time Limit 

2.4.1 Temporal aggregation of the volatility factor as a Markov state 

Proposition 1 (Volatility factor aggregation). The affine volatility dynamics defined in (2.7) implies that  

with: 
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⎡ |||E σ2 It = ρH σ2 + cδ (H) ,t+H t 

⎤
⎡ |||E σ4 It = ρ2H σ4 + aρH−1 1 − ρH

σ2 + d (H) ,t+H t t1 − ρ 

⎤

 − ρH

δ (H) = δ ,1 − ρ 
1 − ρH−1 1 − ρ2H 

d (H) = ac δ (H) + b .1 − ρ2 1 − ρ2 

⎡ |||| = ρ1/N σ2E σt
2
+1/N It t + δN c, 

⎤
⎡ ||σ4 = ρ2/N σ4E t+1/N It t + aN σ

2 + bN ,t 

⎤

1 − ρ1/N

δN = δ ,1 − ρ
1 − ρ1/N 

ρ−1+1/N = a ,aN 1 − ρ 
1 − ρ1/N ρ−1+1/N − 11 − ρ2/N 

bN = b − acδ ,1 − ρ2 (1 − ρ) (1 − ρ2) 

⎛ ⎞ ⎛ ⎞

⎡ ⎤

and then, for any integer H ≥ 2 : 

where 

1  

Proof. See Appendix C.1. 

A byproduct of temporal aggregation formulas is to display without ambiguity what should be the 
disaggregation formulas, that is the formulas for small time intervals of length Δ < 1 that are subsets 
of the unit time interval considered so far. Therefore, we can revisit for instance Le et al. (2010) when 
(see p. 2203) they “put the model parameters in connection with the time interval Δ.” By contrast with 
them, we do not need to resort to any approximation by Euler discretization and just write: 

Proposition 2 (Volatility factor disaggregation). For any integer N ≥ 2 : 

where 

Proof. This proposition is proven (see Appendix C.2) by checking that, when aggregating these formulas
over N consecutive periods (just applying Proposition 1 with H = N and parameters 1ρ /N , δN , aN , bN 

instead of [ρ, δ, a, b]), one gets the initial formulas (2.7). 

2.4.2 Temporal aggregation of integrated volatility 

As far as option pricing or hedging is concerned (see e.g. Mykland, 2000), the key challenge is to take a 
stab at predicting the cumulative volatility. In other words, for option pricing at maturity H, the object 
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HN∑
σ2 (N) = 

1 
σ2 

t,H t+n/N ,HN 
n=1

⎡ |||E σ2 (N) − ρH σ2 (N) − cδ (H) ˜ = 0,t+H,H t,H F  
⎤

⎡ |||E σ4 (N) − ρ2H σ4 (N) − a (H; N) σ2 (N) − b (H; N) F̃t = 0,t+H,H t,H t,H 

⎤

⎡ |||lim E σ2 (N) It = σt 
2 , t,H

H→0 

⎤
|| ||1 1 1lim V σ2 (N) It = lim V σ2 (N) It . t,H t+H,H 

H→0 H 2 H→0 H 

⎡ | ⎤ ⎡ | ⎤

(2.9)

where N is the number of subintervals in a unit interval. Our normalization by the factor HN allows up 
to keep the interpretation of each 2 σt,H (N ) as a volatility factor on a given (the smallest possible) unit of 
time. 

It is well known (see e.g. Bollerslev & Zhou, 2002; Meddahi, 2003; Meddahi & Renault, 2004) that 
with a spot volatility process that is autoregressive AR(1), the cumulative volatility process (also called 
integrated variance) will be ARMA(1,1). In other words, the expectation equations (2.7) should be 
only understood for a minimum period of time while, for any longer period, additional errors would be 
MA(1) instead of martingale difference sequences. The price to pay for discrete time modeling is some 
arbitrariness on what we call the “minimum period of time”. Proposition 4 below will show that we 
could actually consider an infinitesimal period, in a continuous time framework. In order to define non-
ambiguously a continuous time limit of our model, it is worth checking first its robustness to temporal 
aggregation, at least as regards the ARMA(1,1) specification of the dynamics of cumulative volatility 

2σt
 
 (H; N) as well as its square, as implied by the two equations in (2.7).

Proposition 3 (Volatility factor as ARMA process). The aggregated volatility in (2.9) satisfies two 
ARMA(1,1)-type conditional moment restrictions: 

t
(2.10) 

for deterministic coefficients δ (H), a (H; N), and b (H; N), are given in (C.2), (C.13), and (C.14),⎰ ⎱
respectively, for any H, N = 1, 2, . . ., and information set ˜ 2Ft =  σt−kH,H (N ) , k ≥ 1 .

Proof. See Appendix C.3. 

2.4.3 Continuous time limit 

A byproduct of the temporal (dis)aggregation formulas given in the former subsection is to provide an 
unambiguous definition of the continuous time limit of our model. It is obviously about the limit of the 
above formulas when N goes to infinity. However, for the sake of getting the instantaneous analog of 

2 σt,H (N ), we will also consider that the horizon H may go to zero, while always assuming HN ≥ 1 and
(for sake of notational simplicity) maintaining the assumption that HN is an integer. 

The following lemma, directly deduced from Proposition 2, will be useful to get the continuous time 
limit of our model: 

Lemma 1. It is true that 

(2.11)

(2.12)
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⎡ ||| ⎤ ⎛ ⎞
lim 

1 
E σt

2
+H,H (N) − σt,H 

2 (N) F̃t = − log (ρ) cδ − σt
2 , 

H→0 H 1 − ρ ⎡ ||| ⎤1 log (ρ) δ − ωlim V σ2 (N) ˜ = −2c σ2 + c .t,H Ft t
H→0 H 1 − ρ 1 + ρ

⎛ ⎞ √
dσ2 = κ σ̄2 − σ2 dt + ν + ησ2dWtt t t 

cδ
σ̄2 = = E σ2 > 0,t1 − ρ 

⎡ ⎤
2κ 

η = σ̄2 ,
δ
δ − ω 

ν = ηc ≥ 0, if δ ≥ ω. 1 + ρ

/

We can then prove: 

Proposition 4 (Continuous-time limit). The ARMA(1,1)-type model (2.10) for all integer N and H ∈ 
[1/N, +∞), jointly with the regularity conditions (2.11) and (2.12) implies that: 

⎛ ⎞
Proof. See Appendix C.5. 

In other words, in terms of local behavior of the first two moments, the spot volatility factor 2σt 
 can

be seen as a Brownian diffusion process driven by the stochastic differential equation: 

for some Wiener process Wt and: 

κ = − log (ρ) > 0, 

Therefore, if ω = δ we get for 2σt
 
 a square root process of Feller (1951), as used for interest rate by ( )

Cox et al. (1985) and for volatility by Heston (1993). The three parameters 2κ, σ̄ , η are unconstrained 
(up to standard inequality constraints) as one-to-one functions of the three initial parameters ρ, δ, and 
c. Therefore, as far as the first two moments are concerned, any square root process can be seen as a
continuous time limit of our volatility factor model. In particular, this volatility factor will never hit the 
zero barrier when δ (1 − ρ) ≥ −2c log (ρ), since it is tantamount to the classical necessary and sufficient 
condition 2 ¯2  2κσ ≥ η  . More generally, any affine process in continuous time (Duffie et al., 2000) can be 
seen as the continuous time limit of our discrete time model thanks to the degree of freedom ω = δ. Recall 
that the ARG(1) model of Gourieroux & Jasiak (2006) maintains the constraint ω = δ, the reason why 
they only get the square root process as continuous time limit. Even in the particular case ω = δ, our 
result is more general since it is semi-parametric in nature; we do not maintain the ARG (1) parametric 
specification. This actually means that our continuous time limit must be interpreted only as regards the 
first two moments. The advantage of the discrete time specification is that, by contrast with Brownian 
diffusions, the specification of the first two conditional moments does not constrain us regarding higher 
order moments. This may allow us in particular to accommodate stylized facts that take jumps both in 
returns and in volatility (see e.g. Bandi & Reno, 2015) to be captured by a continuous time model. 
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⎡ ⎛ ⎞|||Ct = E Mt,t+1 (θ) H rt+1, σt
2
+1, It It .

⎤

⎡ ⎛ ⎞|||Ct = exp (−rf,t) E ∗ H rt+1, σt
2
+1, It It

⎤

⎡ ⎛ ⎞|||E ∗ exp −uσ2 σ2 = exp −a ∗ (u) σ2 − b ∗ (u) ,t+1 t t 

⎤ ⎰ ⎱
⎡ |||E ∗ exp (−vrt+1) σt 

2, σ2 = exp −α ∗ (v) σt
2
+1 − β ∗ (v) σt 

2 − γ ∗ (v) .t+1 

⎤ ⎰ ⎱

⎡ ⎛ ⎞|||exp (rf,t) E Mt,t+1 (θ) exp −uσt
2
+1 − vrt+1 It = exp −l ∗ (u, v) σt 

2 − g ∗ (u, v) ,
⎤ ⎰ ⎱

⎰ ⎱

3 Affine Risk-neutral Probability Measure 

3.1 Structure-preserving change of measure 

A pricing kernel Mt,t+1 (θ), function of some preference parameters θ, would allow to characterize the ( )
price Ct at time t of any payoff at time (t + 1) function H 2rt+1, σt+1, It of the state variables as: 

(3.1) 

Then, a risk-neutral probability measure should allow to compute these prices as discounted expected 
payoffs: 

(3.2) 

where  E∗ [· |It ] stands for the conditional expectation operator with respect to the risk-neutral probability 
distribution. This change of measure between historical and risk-neutral will be dubbed “structure
preserving” if the specification of risk-neutral dynamics goes through the specification of some functions 

, , a∗  (·) b∗ (·) α∗ (·), ∗ β (·), and ∗ γ (·) in a way similar to (2.2) and (2.3): 

By comparing (3.1) and (3.2), the structure preserving property is tantamount to the following conditions 
for any complex numbers (u, v) in a convenient neighborhood of zero: 

l ∗ (u, v) = a ∗ (u + α ∗ (v)) + β ∗ (v) , 

g ∗ (u, v) = b ∗ (u + α ∗ (v)) + γ ∗ (v) , 

in order to preserve the structure (2.1) with (2.4) described in Section 2. 
This existence of functions  l∗ (u, v) and   g∗ (u, v) to deduce a risk-neutral bivariate Car(1) from the 

historical one is obviously achieved by an exponential affine pricing kernel: 

Mt,t+1 (θ) = exp (−rf,t) exp m0 (θ) + m1 (θ) σt 
2 − θ1σt

2
+1 − θ2rt+1 , (3.3) 

where: 

• θ1 and θ2 are the two preference parameters corresponding to the two sources of risk. Parameter
θ1, expected to be non-positive, characterizes the price of volatility risk, while θ2, expected to be
nonnegative, characterizes the price of equity risk.

• The functions m0 (θ) and m1 (θ), with θ = (θ1, θ2), are defined in order to match the exogenously
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⎡ ⎰ ⎱| ⎤

⎡ ⎰ ⎱ ⎰ ⎱|| ⎤

⎡ ⎛ ⎞|||E ∗ exp −uσt
2
+1 − vrt+1 It = exp −l ∗ (u, v) σt 

2 − g ∗ (u, v) ,
⎤ ⎰ ⎱

specified dynamics of interest rate, which is akin to the following restriction:  

||E exp m0 (θ) + m1 (θ) σt 
2 − θ1σt

2
+1 − θ2rt+1 It = 1,

or equivalently, by the law of iterated expectations: 

|E exp m0 (θ) + m1 (θ) σt
 − θ1σt+1 exp −α (θ2) σt+1 − β (θ2) σt 

 − γ (θ2) It = 1, 2 2 2 2

meaning that: 

m0 (θ) = γ (θ2) + b [α (θ2) + θ1] , 
(3.4) 

m1 (θ) = β (θ2) + a [α (θ2) + θ1] , 

that is, from (2.4): 
m0 (θ) = g (θ) , m1 (θ) = l (θ) . 

The characterization of functions  a∗ (·),  b∗ (·), ∗ α (·),  β∗ (·), and  γ∗ (·) to achieve the right decompositions 
of functions  l∗ (u, v) and  g ∗ (u, v) will be discussed in Section 3.2 below. 

3.2 Risk-neutral parameters 

As usual, the risk-neutral dynamics as defined by functions  a∗ (·),  b∗ (·),  α∗ (·),  β∗ (·), and  γ∗ (·) are fully 
known when we know both the historical dynamics, that is the functions a (·), b (·), α (·), β (·), and γ (·), 
and the price of risk parameters θ1 and θ2. More precisely we can prove: 

Proposition 5. Assume that historical dynamics are defined by a constrained bivariate Car(1) as in 
Section 2 (equations 2.1 and 2.4), and we have an exponential affine pricing kernel as described in Section 
3.1 (equation 3.3). Then, risk-neutral dynamics are defined by the following constrained bivariate Car(1): 

l ∗ (u, v) = a ∗ [u + α ∗ (v)] + β ∗ (v) , 

g ∗ (u, v) = b ∗ [u + α ∗ (v)] + γ ∗ (v) , 

where: 

α ∗ (v) = α (θ2 + v) − α (θ2) ,  

β ∗ (v) = β (θ2 + v) − β (θ2) , (3.5)  

γ ∗ (v) = γ (θ2 + v) − γ (θ2) ,  

and: 

a ∗ (u) = a [u + θ1 + α (θ2)] − a [θ1 + α (θ2)] , 
(3.6) 

b ∗ (u) = b [u + θ1 + α (θ2)] − b [θ1 + α (θ2)] . 
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⎡ ⎰ ⎱|||E exp −θ1σt
2
+1 − (θ2 − 1) rt+1 It = exp −m0 (θ) − m1 (θ) σt 

2 ,
⎤ ⎰ ⎱

Proof. See Section C.6 of the Appendix. 

We note that the wedge between historical (resp. risk neutral) return dynamics (given the volatility 
path) as described by the difference between functions α (·), β (·), and γ (·) (resp. ∗ α (·),  β∗ (·), and  γ∗ (·)) 
depends only on the (arguably positive) price θ2 of the equity risk but not on the (arguably negative) price 
θ1 of the volatility risk. However, it would be premature to conclude that the historical return dynamics 
is not informative about the price θ1 of the volatility risk. The key remark is that return dynamics entail 
volatility dynamics and for the latter, the wedge between risk neutral and historical dynamics depends 
in general on both risk premium parameters through the function ξ (θ) = θ1 + α (θ2). It is only when 
the leverage function is identically nil that the role of the two parameters is clearly disentangled: price of 
equity risk in return dynamics, price of volatility risk in volatility dynamics. 

Finally, it is worth noting that Proposition 5 shows that the functions α (·), β (·), γ (·), a (·), and 
b (·) and their risk neutral analog are tightly related by a shape restriction: their derivatives should 
coincide up to a translation of the variables. This means that the change of measure can be “structure 
preserving”, that is allowing the econometrician to use the same parametric model for historical and 
risk-neutral dynamics, only when functions α (·), β (·), γ (·), a (·), and b (·) are defined by polynomials, 
and/or ratio and logarithms of these polynomials. In this respect, the inverse Gaussian distribution whose 
Laplace transform involves a square root function and that may be well suited to accommodate return 
skewness does not fulfill the restriction of structure preserving change of measure. This leads Feunou 
& Tedongap (2012) to use it separately for historical and risk-neutral modeling, while the two models 
cannot be consistent together. 

3.3 Identification of prices of risk 

The stock pricing equation encapsulates the identification information brought by the observation of 
underlying asset return data: 

E [ Mt,t+1 (θ) exp (rt+1)| It] = 1, 

that can be rewritten: 

with m0 (θ) and m1 (θ) defined by (3.4). By the law of iterative expectations again, these equations are 
equivalent to the two following equations about the two unknown parameters θ1 and θ2: 

γ (θ2 − 1) + b [α (θ2 − 1) + θ1] = γ (θ2) + b [α (θ2) + θ1] , 
(3.7) 

β (θ2 − 1) + a [α (θ2 − 1) + θ1] = β (θ2) + a [α (θ2) + θ1] . 

It is worth realizing that the two equations (3.7) may lead to two very different identification schemes: 

• One can find a price θ2 of equity risk which solves the three equations:

α (θ2) = α (θ2 − 1) , β (θ2) = β (θ2 − 1) , γ (θ2) = γ (θ2 − 1) , (3.8) 
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⎛ 1 
α (θ2) − α (θ2 − 1) ≈α ′ (0) + α ′′ (0) θ2 − 2

⎞
⎛ ⎞⎛ 1 =ψ − 1 − φ2 θ2 − .2 

⎞

⎛ ⎞⎛
ψ = 1 − φ2 θ2 − 

1 
.2 

⎞

/

⎛ ⎞⎛ 1 
ψ = kφ + 1 − φ2 θ2 − 2 .

⎞

⎰ ⎡ |||E [ rt+1| Iσ] − E [rt+1| It] = ψ σ2 σ2 It .t t+1 − E t+1 

⎤⎱

Then, the two equations (3.7) are fulfilled for this value of θ2, irrespective of the value of the price θ1 

of volatility risk. This price is not constrained at all by the observed value of the stock price. This 
lack of identification result is actually consistent with a common belief. It takes derivative asset 
prices to identify the price of volatility risk. This price is not identified by the stock price alone. 

• However, it is worth keeping in mind that there is another possible identification scheme where the
solution (θ1, θ2) of (3.7) does not fulfill (3.8), that is θ1 is also constrained by (3.7).

In order to elicit the right identification scheme, it helps to get started by answering the following question: 
“Is the solution θ2 of the equation α (θ2) = α (θ2 − 1) a reasonable value for the price of equity risk?” 
Our answer to this question will be yes if and only if there is no leverage effect (φ = 0). To see that, we 
can investigate the case where the function α (·) is well approximated by its quadratic Taylor expansion 
in the neighborhood of zero (true at least in the conditionally Gaussian case). Then: 

Therefore, the question asked amounts to wonder whether it sounds reasonable to assume that: 

(3.9)

The answer is obviously negative if there is some leverage effect. We have understood in Section 2 
that, when there is some leverage effect (φ = 0), the parameter ψ should rather be equal to kφ, up to risk 
premium effect and Jensen effect. The simplest possible way to elicit a parameterization able to aggregate 
the three components respectively due to leverage effect, risk premium effect and Jensen effect is to use 
an additive aggregator as follows: 

(3.10) 

We will now argue that the answer must be negative when there is genuine leverage effect, that is a 
non-zero parameter φ. To see that, it is worth recalling that the parameter  ψ = α ′ (0) has been devised 
to encapsulate the role of current volatility in the return forecast equation. It follows directly from this 
equation that: 

In other words, when forecasting at horizon 1 from date t, the knowledge of future volatility 2σt+1 may help 
to improve the forecast of the future return rt+1 in due proportion of the parameter ψ. As well reminded 
by Bollerslev et al. (2006), this forecast improvement stems from two different economic phenomenons 
that are impossible to disentangle in discrete time: 

• First, volatility feedback,
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⎛ ⎞⎛
ψ = H 1 − φ2 θ2 − 2 , kφ

⎞
/

[ ][ ]k2 E σ̃t
2
+1=  

V σ̃t
2
+1

[ ||[ || ]Itk2 E σ̃t
2
+1= 

V σ̃2 .t Itt+1 

]

1 
ψ ≈ θ2 − 2 .

/

• Second, leverage effect.

While the importance of the former effect is directly drawn by the size of the equity risk price θ2, the 
latter should on the contrary be proportional to the leverage effect parameter φ. This leads us to consider 
that the value of ψ should be an aggregate computed as follows: ⎡  1 ⎤ 

(3.11) 

In particular, when φ = 0, this aggregation formula implies that the constraint (3.9) will be violated. 
Note that we assume that this aggregate depends on the two key parameters only through their rescaled ( )
impact (3.9) and kφ. For the former, the dampening by 1 − 2φ  due to the effect of conditioning by the 
volatility path and the Jensen effect (θ2 − 1/2 instead of θ2) are taken into account. For the latter, the 
impact of leverage must be rescaled by a parameter k as explained in Section 2. Typically, the constraint 
(3.11) with be implemented with the specification: 

(3.12)

in order for the component kφ of ψ to match as well as possible the natural impact ktφ of leverage on 
coefficient ψ with, as discussed in Section 2: 

Irrespective of this specific parameterization, the bottom line of this subsection is that: 

• On the one hand, when there is no genuine leverage effect (φ = 0), the stock return data are
uninformative about the volatility risk price θ1. The only identification content of stock return data
about prices of risk is encapsulated in the three identities:

(θ2) =  (θ2 − 1) ,  (·) ∈ {α (·) , β (·) , γ (·)} .  (3.13) 

In particular, if the function α (·) is well approximated by its quadratic expansion around zero: 

• On the other hand, when there is leverage effect (φ = 0), the constraints (3.13) are likely to be
violated. On the contrary the two prices of risk (θ1, θ2) are likely to be jointly determined as
solutions of the two equations (3.8) stemming from stock pricing. In particular, we don’t expect
the parameter ψ to be conformable to its approximation (3.9) implied by (3.13), but rather to be
an aggregate of two effects according to (3.11).

While Gagliardini et al. (2011) had drawn the implications in terms of identification of the volatility 
risk price from option data in the former case, Bandi & Reno (2015) have more recently provided some 
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  ∗ (v) = (θ2 + v) , (·) ∈ {α (·) , β (·) , γ (·)} ,  

    ∗′ (0) = ′ (θ2) = ′ (0) + θ2 
′′ (0) , 

  ∗′′ (0) ′′ (θ2) ,= 

 (·) ∈ {α (·) , β (·) , γ (·)} , 

⎛ ⎞

⎡⎛ ⎞⎛ 1 1 
H 1 − φ2 θ2 − 2 , kφ = 1 − φ2 θ2 − 2 + H̃ (kφ) .

⎞ ⎤ ⎛ ⎞⎛ ⎞

evidence that in the latter case, due to leverage effect, the volatility risk price can be identified from return 
data only. However, they stress that this identification is fragile and obtained by a sophisticated inference 
strategy from high-frequency return data as well as a careful study of possible jumps in both return and 
volatility process. While the value of the leverage effect parameter is known to be hard to estimate (the 
so-called “leverage effect puzzle”, see Ait-Sahalia et al., 2013) it is not surprising that identification of 
volatility risk price that relies completely upon this effect (through the impact of in the second component 
of the aggregation (3.11)) can never be very strong. 

3.4 Parameterization for conditionally Gaussian returns 

Conditionally Gaussian returns are characterized by a Laplace transforms with functions α (·), β (·), γ (·) 
that are all quadratic. It is worth stressing that this does not imply thin tails and/or zero skewness for the 
marginal distribution of returns. Even the conditional distribution of return rt+1 given past information It
(including stochastic volatility) may be skewed and leptokurtic after integrating out the current volatility. 
Since risk-neutral Laplace transforms are related to historical ones by formulas: 

we must have: 

and in particular: 

ψ ∗ =ψ − 1 − φ2 θ2, 
(3.14)

1 − φ ∗2 =1 − φ2 . 

Two conclusions can be drawn from formulas (3.14): 

• First, as it is the case in common continuous time models, the amount of genuine leverage effect is
the same for historical and risk-neutral dynamics:

φ ∗ = φ. 

• Second, the consistency condition imposing that the risk neutral volatility feedback parameter ψ∗ 

does not depend on equity risk price θ2 implies that the aggregator (3.11) is additive with respect
to this risk price:
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⎛ ⎞⎛ 1 
ψ = kφ + 1 − φ2 θ2 − ,2 

⎞
1 

ψ ∗ = kφ − 1 − φ2 ,2 

⎛ ⎞
[ ][ ]E σ̃t

2
+1k2 = 

σ2 .
V ˜t+1 

⎰ ⎱

⎰ ⎱ ⎰ ⎱

1 
α (−1) = −ψ − 2 1 − φ2 = −kφ − θ2 1 − φ2 .

⎛ ⎞ ⎛ ⎞

   ∗ (u) = (ξ (θ) + u) , (·) ∈ {a (·) , b (·)} , 

Since we also want to see the volatility feedback parameter directly drawn by kφ with k defined by (3.12), 
we will elicit the following specification: 

It is worth making explicit how this volatility feedback specification impacts the expected return: 

E [ exp (rt+1)| Iσ] = exp −α (−1) σt
2
+1 − β (−1) σt 

2 − γ (−1) ,t 

and thus: 

E [ exp (rt+1)| It] = exp −β (−1) σ2 − γ (−1) exp −a (α (−1)) σ2 − b (α (−1)) ,t t 

with: 

Therefore, the net return exp (rt+1) will have a zero conditional expectation when the equity risk price 
θ2 is nil if and only if the two following conditions are fulfilled:  

β ∗ (−1) = − a ∗ (−kφ) , 
(3.15) 

γ ∗ (−1) = − b ∗ (−kφ) . 

In other words, the equity risk compensation introduces a wedge between the specification of the return 
dynamics and the risk neutral volatility dynamics. The restriction (3.15) will be maintained throughout. 
Note that the value of k will be implied by the specification of the volatility dynamics as described below. 

3.5 Risk Neutral Parameters for ARG(1) dynamics: 

Besides conditionally Gaussian returns, we set a special focus on ARG(1) volatility dynamics defined 
in Section 2.3.2. Even though our continuous-time limit results show that our most general model is 
consistent with continuous time affine diffusions, it is worth considering discrete time distributions that 
exactly fit what is implied by the continuous diffusion. Moreover, with ARG(1) volatility dynamics jointly 
with conditionally Gaussian returns we have an appealing example where the constraint of structure 
preserving change of measure is fulfilled. 

Since risk-neutral Laplace transforms are related to historical ones by formulas: 

ξ (θ) = θ1 + α (θ2) , 
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   ∗′ (0) = ′ (ξ (θ)) , (·) ∈ {a (·) , b (·)} . 

a ′ (u) = 
ρ

b ′ (u) = 
δc
.

(1 + cu)2 , 1 + c 

ρ c∗ ρ ∗ = c = δ ∗ = δ. 
χ2 (θ) , χ (θ) ,

⎡ ⎛ ⎛ ⎞ ⎞⎤

1log ξt,t+1 =EQ [rt+1| Iσ] + 2V Q [rt+1| Iσ]t t ⎡ ⎛ ⎞||| ⎤

⎛ log (S/K) 1 log (S/K) 1 
BS (S, V, K) = SΦ + − KΦ − ,2V 2VV V

⎞ ⎛ ⎞

we must have:  
(3.16) 

We have: 

Therefore, the change of measure will be based on the quantity: 

χ (θ) = 1 + cξ (θ) = 1 + c [θ1 + α (θ2)] . 

We deduce directly from (3.16) and the formulas above for  a′ (·) and  b ′ (·) that risk-neutral volatility 
dynamics are also ARG(1) with parameters: 

4 Option pricing 

4.1 Generalized Black and Scholes 

Provided that the log return is conditionally normal, as in Section 3.4, we compute the option price in 
the following proposition. 

Proposition 6 (Option price with leverage). The price of a one-period call option with payoff 
(Ste

rt+1 − K)+ is given by 

Ct (xt, φ) = Et
Q BS Stξt,t+1, 1 − φ2 σt

2
+1,K , (4.1) 

where xt = log (K/St) is the log-moneyness of the option, price adjustment ξt,t+1 is defined by 

=φkσt
2
+1 − log EQ exp φkσ2 It ,t+1 

and BS (·) is the standard Black-Scholes formula: 

with Φ (·) being the cumulative standard normal distribution function. 

Proof. See Section C.7. 

Note that in the above proposition the price of the option is computed only for one period ahead. 
This formula is easily extended to a multi-period horizon by replacing volatility factor by its sum over 
several periods. 

19  



⎡ ⎛ |||1 
Ct (0, φ) ≈ EQ [BS (St, σt+1, St)| It] + kφ · CovQ σt

2
+1, Φ 2σt+1 It .

⎞| ⎤

⎡ ⎛1 
kφ · CovQ σt

2
+1, Φ 2σt+1 It ≤ 0.

⎞|||| ⎤

⎛ ⎞

⎡ ⎛ ⎞|||E exp −uσt
2
+1 σt 

2 = exp −a (u) σ2 − b (u) ,t 

⎤ ⎰ ⎱

The central question of this section is to determine the effect of leverage effect on option prices and 
implied volatility in particular. The following proposition is a key result that allows us to evaluate such 
an effect analytically. 

Proposition 7 (Option price around zero leverage). The option price in (4.1) at zero moneyness, xt = 0, 
and current price normalized at one, St = 1, is approximately (around zero leverage parameter φ) 

Proof. See Section C.8. 

In the above result it is immediately clear that the first order effect of the leverage parameter on 
at-the-money option price is negative since 

Implied volatility is the solution of 

BS St, σ
imp,K = Ct (x, φ) . 

Since the Black-Scholes option pricing formula is a monotone function of volatility it leads to the same 
conclusion regarding the effect of leverage parameter on the at-the-money implied volatility. Moreover, 
all the effect comes directly from the price effect, that is the adjustment in the stock price by a factor ( )
ξt,t+1 with unit risk neutral expectation. The reduction of volatility by a factor 1 − 2φ  is negligible at 
the first order approximation. 

5 Empirical results 

In this section we illustrate estimation and option pricing performance of the simple ARG(1)-Normal 
model.1 In Section 5.1 we start by stating the exact model that we work with in this empirical exercise. 
Next, we outline two estimation methods applicable for the model parameters. In particular, we use 
both full information Maximum Likelihood (Section 5.2) and Spectral Generalized Method of Moments 
(Section 5.3). Data and estimation results are described in Section 5.4. Finally, we discuss the option 
pricing performance of the model in Section 5.5. 

5.1 ARG(1)-Normal model 

The statistical model for volatility factor 2σt
 
 is the standard autonomous ARG(1) process defined through 

the Laplace transform (see Section 2.3.2 for more details): 

1For this paper we used Python and scientific libraries SciPy/NumPy for numerical implementation of our estimation 
methods. The code is partially available here: https://github.com/khrapovs/argamma. 
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a (u) = 
ρu

, b (u) = δ log (1 + cu) ,1 + cu 

⎡ |||E exp (−vrt+1) σt 
2, σt

2
+1 = exp −α (v) σt

2
+1 − β (v) σt 

2 − γ (v)
⎤ ⎰ ⎱

1  2 1 − φ2α (v) = ψv − , β (v) = va ∗ (−φk) , γ (v) = vb ∗ (−φk) ,2v 
⎛ ⎞
⎛ ⎛ ⎞

ψ = φk + θ2 − 
1 1 − φ2 , k = [c (ρ + 1)]−1/2 .2 

⎞

ρ∗ u ∗ a ∗ (u) = , b ∗ (u) = δ log (1 + c u) ,∗1 + c u 

⎛ ⎞

⎡ ||||E rt+1 σt 
2, σt

2
+1 = ψσt

2
+1 + a ∗ (−φk) σt 

2 + b ∗ (−φk) ,
⎤

⎡ ||V rt+1 σt 
2, σt

2
+1 = 1 − φ2 σt

2
+1.

⎤ ⎛ ⎞

with  

which gives us the first three parameters θσ = [c, ρ, δ], scale, persistence, and overdispersion. Note that 
this model imposes the restriction w = δ in (2.7). 

The model for the excess log return rt is characterized by the conditional Laplace transform 

with 

where 

Modified versions of functions a and b in the above Laplace transform are obtained from the risk-neutral 
model of the volatility factor. To be more specific, 

with 
∗ ρ ∗ = ρχ−2 (θ) , c = cχ−1 (θ) , χ (θ) = 1 + c [θ1 + α (θ2)] . 

Note that this conversion imposes the restriction on model parameters. To preserve stationarity of the 
risk-neutral volatility, ∗ ρ < 1, we need  1 2χ (θ) > ρ / , which is equivalent to 

θ1 > ρ1/2 − 1 /c − α (θ2) . 

Given that, positivity of χ (θ) is satisfied automatically. Three additional parameters above are leverage, 
φ, price of volatility risk, θ1, and the price of equity risk, θ2. 

The above Laplace transform for returns is equivalent to saying that the excess log return rt+1 is 
normal conditional on volatility factor 2σt

 
 and 2σt+1 with conditional mean and variance given below: 

This model is obtained from a more general setting described in Section 2.2. There are at least three 
reasons behind this formulation: 

• First, and most importantly, this restriction equalizes the latent volatility factor 2σt+1, and
observable, or rather measurable, σ̃2

t+1 as seen in (2.5). The immediate benefit from econometric
perspective is that we do not have to deal with latent factors, it substantially simplifies our
estimation strategy, and option pricing methodology as well.
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⎛ ||| || ||f rt+1, σt
2
+1 σ

2; c, ρ, δ, φ, θ1, θ2 = f rt+1 σt
2
+1, σt 

2; c, ρ, δ, φ, θ1, θ2 f σ2 σt 
2; c, ρ, δ .t t+1 

⎞ ⎛ | ⎞ ⎛ | ⎞

• Second, fewer parameters makes a more parsimonious model and prevents overfitting especially in
option pricing applications. As a consequence, the empirical exercise becomes more conservative.

• Finally, it helps with numerical identification and robustness of estimation results.

The return is observable and, as argued in Section 2.2, we can proxy the volatility factor with the 
intraday realized volatility which makes it effectively observable (Andersen & Bollerslev, 1998; Meddahi, 
2002). The statement of the model completely characterizes joint parametric distribution of the observable 
data. This suggests to estimate the parameters of the model using full information Maximum Likelihood 
(MLE). As we will see later, it turns out that this estimation method does not allow us to reproduce some 
of the salient features of the data, especially long persistence of the volatility. Hence, in addition to MLE, 
we also apply a less efficient but more flexible estimation method based on the Generalized Method of 
Moments (Hansen, 1982) with moment restrictions obtained directly from conditional Laplace transforms. 

5.2 Maximum Likelihood 

As we mentioned above, the distribution of returns and (observed) volatility factor is completely 
parameterized. The distribution of scaled volatility factor, 2σt /c, conditional on its own previous value, ( )
as shown by Gourieroux & Jasiak (2006), is given by non-central gamma distribution 2γ δ, ρσt /c . The( )2 f σ | 2

t+1 σt ; c, ρ, δ is also given in 
|

density of this distribution, Gourieroux & Jasiak (2006). Conditional 
on the volatility path the return is normal. If we denote the conditional density of the return by ( )

 2 2f rt+1|σt+1, σt ; φ, θ1, θ2 we can write the joint conditional density of the return and volatility as 

For this paper we implemented two ML estimation strategies. First strategy utilizes the fact that 
the likelihood function is additive. So it is a two-step maximization of the likelihood for each of the 
two series separately. On the first step we obtain the parameters of the volatility process, 

⎡ ⎤
θ̂σ = c,̂ ρ,̂ δ̂ .

On the second step we estimate parameters of the return process given the first stage estimates, θ̂r =⎡ ⎛ ⎞ ⎛ ⎞⎤
φ̂ θ̂σ , θ̂2 θ̂σ . Price of volatility risk θ1 is not estimated and obtained later on from calibration to

option prices described below in Section 5.5. This approach reduces the dimensionality of the optimization 
problem. 

The second strategy uses the joint likelihood and simultaneously optimizes over all five parameters of⎡ ⎤
the historical model to obtain ĉ, ρ̂, δ̂, φ̂, θ̂2 . Here we also the price of volatility risk θ1 fixed and obtain
it from calibration to option prices. 

As we said already, both estimation strategies rely on the price of volatility risk, θ1, obtained from 
the outside of the estimation process. This feature of the model was discussed in detail in Section 3.3.⎡ ⎤
Ideally, an iterative procedure should be applied: estimate ĉ, ρ̂, δ̂, φ̂, θ̂2 given θ̂1, then calibrate θ̂1 given⎡ ⎤
ĉ, ρ̂, δ̂, φ̂, θ̂2 , and repeat until convergence. In our empirical exercise we varied θ1 inside sufficiently wide

bounds and did not notice any effect on the estimates of other parameters. So, as expected, the price 
of volatility risk is almost exclusively identified from option prices, and the iterative procedure converges 
very fast. 
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⎡ ⎛ ⎞ ⎛ ⎞⎤

5.3 Spectral GMM 

As an alternative to full information ML, we employ spectral GMM proposed by Singleton (2001) and 
Chacko & Viceira (2003). The main idea of this method is to utilize conditional characteristic function 
as a moment restriction for a certain grid of its arguments. Although our model was formulated in terms 
of Laplace transforms, they are easily converted into characteristic functions by a simple replacement of 
a real argument with a complex one. Since a characteristic function is a on-to-one mapping with the 
density, with the number of grid points going to infinity the efficiency of the estimator reaches that of 
ML. On the other hand, the standard GMM methodology does not allow for this limit since the efficient 
weighting matrix becomes singular with neighboring moments becoming perfectly correlated. Although 
the solution to this problem is well known (Carrasco & Florens, 2000; Carrasco et al., 2007) we do not 
chase efficiency in this empirical exercise but rather point estimates used later for option pricing. The 
main selling point of the spectral GMM is that it works best in situations where characteristic function 
is known while the likelihood function is not or hard to obtain in closed form, for example in the context 
of affine jump diffusion models. 

The model stated in Section 5.1 implies the following set of moment functions ⎡ { } { } ⎤
exp −uσ2 − exp −a (u) σ2 − b (u)

gt (u, θ) = Zt ⊗ t+1 { t } , 
exp {−urt+1} − exp −α (u) σt

2
+1 − β (u) σt 

2 − γ (u)

with instruments given by 
Zt = 1, exp −iσ2 , . . . , exp −iσ2 ,t t−l 

for lag order l = 1, 2, complex unity i = −1, and u ∈ ℂ. These instruments bear some resemblance to 
the optimal instruments proposed by Carrasco et al. (2007). The unconditional moment restrictions are 

√

⎡ ⎤
Re {gt (u, θ)}

E = 0,
Im {gt (u, θ)}

The complex grid, where characteristic function is evaluated, is comprised of equally spaced 5 points 
between [i, 10i]. This grid was chosen after multiple experiments with both simulated and real data. 
These experiments have shown that the corresponding moments are sufficiently apart from each other 
and sufficiently informative for the estimation algorithm to be robust to initial parameter values. 

Real and complex parts of the unconditional moments, three instruments, five grid points, all give us 
in total 60 unconditional moment restrictions. These moments jointly identify the vector of 5 parameters 
θ = (c, ρ, δ, φ, θ2) given the price of volatility risk, θ1. Same as in the ML estimation strategy, this 
parameter will be identified from option price data as described in Section 5.5. Further on we estimate 
model parameters in two steps similarly to MLE. Each step would use only half of components of function 
g. 
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5.4 Data and results 

The data for the estimation (S&P500 index, realized volatility) is obtained from Oxford-Man Institute2. 
The descriptive statistics of daily log returns, rt, and realized volatility, 2σt , both annualized, are given in 
Table 1 on page 32. The data is plotted in Figure 1 on page 31. 

Estimation results both for MLE and Spectral GMM are given in Table 2 on page 32. We show 
parameter estimates, corresponding standard errors, and t-statistics. Besides that the table contains 
some statistics which we will come back to in Section 5.5 when we discuss option pricing performance of 
our model. For a rough visual check of the model fit we plot actual and expected volatility and returns 
in Figure 2 on page 33. 

Most importantly, notice that the point estimate of the leverage parameter is −0.17 for MLE and 
−0.3 for GMM. What we see in the data and also noted by others on a similar data set (i.e. Bollerslev 
et al., 2012), the sample correlation between the returns and next day volatility is actually not far from 
−0.2. This parameter value is very similar to the result of Garcia et al. (2011) who estimate Heston 
(1993) model on observed returns and realized volatility. On the other hand, studies that use option 
data to estimate the leverage parameter (i.e. Christoffersen et al., 2010b) estimate it much closer to the 
range from −0.6 to as low as −0.75. Hence, we also estimate the model under the restriction that the 
leverage parameter is no larger than −0.7. Corresponding GMM estimation results are reported in Table 
2 on page 32. The necessity for this restriction is coming from the need to reproduce asymmetric implied 
volatility smile observed in the data. As we can see in Figure 4 on page 34, the model is perfectly capable 
of reproducing the smirk and the term structure of implied volatility for some parameters. So, later in 
Section 5.5 we will use the restricted set of parameter estimates to reproduce the asymmetry of implied 
volatility more accurately. 

Another important parameter is the persistence of the volatility factor, ρ. In our model it coincides 
with the first order autocorrelation. From the descriptive statistics in Table 1 on page 32 we see that the 
sample first order autocorrelation is 0.772. In contrast, our ML estimates are much closer to 0.69. This 
outcome is not surprising given the likelihood which is based on first order Markov assumption. Now if 
we take the power 4 of autocorrelation 0.69 it produces 0.23 which is well below sample autocorrelation 
of the fourth order, 0.608. For 90 days, 0.6990 is hardly distinguishable from zero while realized volatility 
autocorrelation at this horizon is still above 0.15. Hence, a more flexible estimation method is better 
suited to reproduce long range persistence of the observed volatility. 

For spectral GMM estimation, besides parameter estimates, standard errors, and their ratios, we also 
report J-statistics with a corresponding p-value of asymptotic Chi-squared distribution. The estimation 
is performed in two steps similarly to separable MLE, hence the actual number of moments is not 60, 
as it would have been in joint estimation, but 30. On the first step we fit volatility model and obtain 
estimated of θσ = (c, ρ, δ). On the second step we fit the return model to estimate θr = (φ, θ2) using 
the first stage estimates of θσ as given. The price of volatility risk, θ1, is set at −7 which is close to the 
optimum in calibration exercise. 

Unfortunately, the model is rejected by the data, but this is not too surprising given the extreme 
2Oxford-Man Institute’s “realized library”, http://realized.oxford-man.ox.ac.uk 
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simplicity of our combination of ARG(1) and conditional log-normal distribution of returns. Besides, the 
large number of moments contributes to the bias in the computation of J-statistic. At the same time 
the standard errors are very small and allow us to interpret precisely the parameter estimates of the 
model. In particular, note that parameter ρ matches the long-term autocorrelation of the realized daily 
volatility much better than the estimate of MLE. Parameter δ points to the marginal overdispersion of 
the volatility process (see Proposition 4 in Gourieroux & Jasiak, 2006). The central parameter of this 
study, the leverage parameter φ, is negative and statistically significant. Equity risk price has the positive 
sign which is natural from theoretical standpoint. 

In order to assess the degree of misspecification of our model for the realized volatility we perform 
analysis in terms of persistence. In particular, in Figure 3 on page 34 we plot autocorrelation function 
(ACF) for the data, and theoretically implied by the following models: AR(1), ARMA(1,1), and our 
preferred ARG(1). The first two models are estimated using QML, and the last one is estimated using 
spectral GMM. The results are as follows. 

ACF for the realized volatility drops to 0.6 very quickly (only a few days) and then continues its 
descend very slowly. The persistence parameter in AR(1) model is estimated to be 0.77. The theoretical 
ACF is simply 0.77h as a function of horizon h. It decays exponentially. On the Figure 3 on page 34 this is 
the lowest line. Clearly, it is inadequate for the data at hand. Persistence parameter of ARMA(1,1) model 
is 0.94 and MA parameter is −0.47. The corresponding theoretical ACF drops after the first lag and then 
decays exponentially. On the figure it is the second line from below. In comparison to RV it gets the first 
few correlations right, but then dies out too quickly. Persistence parameter in ARG(1) model estimated 
via spectral GMM is equal to 0.95. The model itself implies first order autoregressive conditional mean 
for the volatility factor. Hence, the ACF is expected to be close to 0.95h, still exponential rate of decay. 
This is exactly what we see on Figure 3 on page 34. The theoretical ACF is above all other theoretically 
implied and crosses its RV counterpart around two weeks mark. 

To conclude, we see that the simplest AR(1) model is furthest away from the data if judged only based 
on its persistence properties. ARG(1) model estimated using GMM seems to be the closest. Finally, 
ARMA(1,1) model takes the second place in this comparison. 

Finally, we report the estimates of expected equity risk premium (see ERP row in Table 2 on page 
32). 

5.5 Option pricing performance 

Our option pricing exercise is similar in spirit, for example, to Christoffersen et al. (2008), Feunou & 
Tedongap (2012), Corsi et al. (2013). The data is obtained from OptionMetrics database. It covers the 
period from Jan 1996 to Aug 2013. The descriptive statistics including number of observations, mean 
option premium, and mean Black-Scholes implied volatility may be found in Table 5 on page 36 together 
with the corresponding data implied by our model. 

In Section C.9 of the Appendix we show that the risk-neutral Laplace transform (or characteristic 
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∑n 
rt,n ≡ log (St+n/St) = rt+i

i=0 

⎡ ⎤ ⎰ ⎱

∑⎛ ⎞⎢
1⎢√IV RMSE = 

N 2 
IV Market − IV Model 

j j (θ)
N 

j=1
,

function) of the cumulative log return  

is 
E ∗ exp (−vrt,n)| σ2 = exp −Ψn (v) σ2 − Υn (v) . t t (5.1)

This formula gives us a direct way to compute model implied option prices using the inverse Fourier 
transform3 given the set of model parameters θ = (c, ρ, δ, φ, θ2, θ1), and the series of daily volatility factor. 
Just for an illustrative example we plot implied volatility smiles for some specific set of parameter values 
in Figure 4 on page 34. From the left plot we can see that the leverage parameter φ is responsible for 
the shape of the smile. Specifically, for more negative φ the smile becomes more skewed and shifted to 
the right and down. On the right side of the panel we see that the smile flattens with an increase of an 
option maturity. 

The first five parameters in parameter vector θ are estimated, while the price of volatility risk θ1 

was held constant. This parameter is chosen by minimizing implied volatility root mean squared error 
(IVRMSE) put forward by Renault (1997) and computed as ⎡

with j being the index of an option contract available in the data. Each implied volatility IVj is obtained 
by simple inversion of Black-Scholes option pricing formula given a corresponding option premium. As it 
was described in the end of Section 5.5, the estimation and calibration can be recursively repeated until 
convergence. But in practice, we did not notice any substantial impact of calibrated parameter θ1 on the 
estimation step, hence collapsing the procedure to one iteration only. 

The description below is based on parameter estimates obtained from restricted Spectral GMM 
estimation. Calibration of θ1 given this set of parameters produces the optimal choice of approximately 
−7 as seen on the plot of IVRMSE for different risk prices, Figure 5 on page 35. The resulting minimal 
value of IVRMSE is equal to 4.54%. We did the same calibration for each set of parameter estimates 
and reported the resulting pair of volatility risk price and IVRMSE in corresponding rows of Table 2 on 
page 32. There we see that the set of parameters produced by restricted GMM (φ ≤ −0.7) produces the 
best results in terms of implied volatility fit. The resulting IVRMSE is a good result given the simplicity 
of our model especially in comparison to more sophisticated models.4 

All of the option pricing results can be found in Section 5.5. Implied prices and volatilities grouped only 
3For numerical implementation we use methodology proposed in Fang & Oosterlee (2009). The code written in Python 

is available at https://github.com/khrapovs/fangoosterlee 
4Feunou & Tedongap (2012) compares a multitude of discrete option pricing model such as Heston & Nandi (2000), 

Christoffersen et al. (2006), Christoffersen et al. (2008), as well as continuous-time models by Pan (2002), Andersen et al. 
(2002), Chernov et al. (2003), and Bates (2006). They show that the best IVRMSE among them is in vicinity of 2.5%. Corsi 
et al. (2013) with the model of long memory in volatility produce 3.8%. Christoffersen et al. (2009) are close to 2% with 
several volatility factors. 
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by moneyness, maturity, and current VIX level are given in Table 3 on page 35, Table 4 on page 36, and 
Table 5 on page 36, respectively. For a more in-depth understanding of where the model performs worse 
we compute aggregate statistics for option pricing errors inside several groups of two dimensions (log
moneyness and maturity) and present the results in Table 6 on page 37 and Figure 6 on page 38. There,⎛ ⎞

j   I ar  V M ket − IV Model
 j  in addition to the implied volatility error , we compute price error normalized by 

the spot price, 
⎛ ⎞

 P Market del  − P Mo
j j /S. Two kinds of statistics are given: bias which is the average of the 

pricing errors, and Root Mean Squared Error (RMSE). 
In the Figure 7 on page 39 we can observe the average premium and implied volatility both in the 

data and in the model grouped by log-forward-moneyness and maturity. Here we see that the implied 
volatility smile is almost exactly matched on average by our model for the short term options. At the 
same time, the smile flattens out too fast to match the data at long horizons. This result is not surprising 
given one factor volatility model such as ours (see e.g. Christoffersen et al., 2009 for multifactor option 
pricing model). 

Time series of average implied volatilities at-the-money seen in the data and the model are shown in 
Figure 8 on page 40. One can see that the overall dynamics coming from realized volatility is carried over 
to the dynamics of implied volatility. 

Figure 9 on page 41 reflects the terms structure of implied volatilities for three different current levels 
of VIX. Notice that the speed of convergence of the implied volatility to its long-run level is somewhat 
faster for the model against that of the data. This observation confirms our previous conclusion that one 
factor volatility model is insufficient to match quantitatively the term structure of implied volatility. 

Given all of the above estimates, including the risk prices, we can estimate volatility risk premium of 
-0.2% by evaluating 

⎛ ⎞ ⎛ ⎞
ˆ [ ] 1 2 [ ] 1 2

P 2 / /QE σ − Ê 2 
t t+1 t σt+1 and scaling it appropriately to the annual interval. 

This number can be found in Table 2 on page 32 together with analogous statistics for other estimation 
methods in the row called V RP . 

6 Conclusion 

[TO BE COMPLETED] 
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Appendix 

A Estimation results 

Figure 1: S&P500 index, log returns, realized volatility, and VIX  
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[ ] E σ2
t 0.03 

(0.00) 
0.03 

(0.00) 
0.02 

(0.00) 
0.02 

(0.00) 
[31.02] [31.55] [243.55] [243.55] 

ρ 0.69 0.69 0.95 0.95 
(0.01) (0.01) (0.01) (0.01) 

[60.38] [60.63] [150.97] [150.97] 
δ 1.22 1.24 1.25 1.25 

(0.03) (0.03) (0.07) (0.07) 
[43.47] [44.29] [18.98] [18.98] 

φ -0.17 -0.17 -0.30 -0.70 
(0.01) (0.01) (0.01) (0.02) 

[-15.44] [-15.41] [-31.03] [-45.76] 
θ2 0.50 0.50 0.53 0.54 

(0.09) (0.09) (0.08) (0.11) 
[5.75] [5.65] [6.45] [5.01] 

Table 1: Descriptive statistics returns and realized volatility 
Daily log return (annualized) and realized volatility (annualized). Data sample is from January 3, 1996 
to August 30, 2013. 

N Mean Std Min Max γ1 γ2 γ3 γ4 . . . γ90 

rt × 100 4314 0.04 20.59 -150.63 165.15 

σ2 × 100 t 4314 2.97 5.55 0.10 89.08 0.77 0.69 0.63 0.61 . . . 0.15 

Table 2: Estimated parameters of ARG(1)-Normal model 
Data sample is from January 3, 1996 to August 30, 2013. Standard errors are given in parenthesis, the 
ratio of the parameter and its standard error is given brackets. 

Unrestricted φ ≤ −0.7 
MLE step MLE joint GMM step GMM step 

Vol Ret Vol Ret 

log L 
J

-3.34 -3.34 
299 179 299 241 

df 27 28 27 28 
p-value 0.0 0.0 0.0 0.0 
θ1 -7. -7. -7. -7. 
ERP 1.71 1.70 2.24 2.11 
V RP -0.78 -0.78 -0.15 -0.20 

IV RMSE 6.26 6.27 5.15 4.54 
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Figure 2: Returns and volatility: data and model.  
Realized volatility and returns with their model predicted values in time series representation (left panel), 
and scatter representation (right panel). Data sample is from January 3, 1996 to August 30, 2013. 
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[ ]
Default parameter values are φ = 0, T = 30/365, 2 E σt = cδ/ (1 − ρ) = 0 2.2 /365, δ = 1.1 and ρ = 0.9.
Risk prices are set at θ1 = −1 and θ2 = 0.5. 

Figure 4: Implied volatility smile of ARG(1)-Normal model

Figure 3: ACF for realized volatility (RV) and model implied values.  
The models are AR(1) with persistence 0.77; ARMA(1,1) with 0.94 and −0.47 for AR and MA part, 
respectively; and our preferred ARG with persistence 0.95. 
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Figure 5: Calibration of volatility risk price  
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Table 3: Option pricing performance by moneyness 

Log-Moneyness, log (K/F ), % 
<-4 (-4, -2] (-2, 2] (2, 4] >4 All 

Number of obs. 16633 10174 24218 12347 20252 83624 
Premium (data) 2.85 3.37 3.30 2.60 2.38 2.89 
std 1.69 2.19 1.96 1.87 1.62 1.89 
Premium (model) 2.72 3.31 3.54 2.95 2.70 3.06 
std 1.49 1.95 1.93 1.89 1.58 1.80 
IV (data) 22.69 20.44 17.67 17.17 18.35 19.10 
std 6.32 6.18 5.67 5.59 5.58 6.17 
IV (model) 21.65 19.95 18.47 18.42 19.25 19.46 
std 4.51 4.68 4.39 4.40 4.42 4.62 
IV bias -1.04 -0.49 0.79 1.25 0.90 0.37 
std 4.51 4.36 4.22 4.44 4.69 4.53 
IVRMSE 4.62 4.39 4.30 4.61 4.78 4.54 
std 6.75 6.62 6.34 6.51 7.17 6.71 
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Table 4: Option pricing performance by maturity 

Maturity, days 
≤30 (30, 90] (90, 180] (180, 270] >270 All 

Number of obs. 12140 11944 33272 10072 16196 83624 
Premium (data) 1.29 1.85 2.70 3.48 4.90 2.89 
std 0.73 1.01 1.41 1.66 2.10 1.89 
Premium (model) 1.23 1.82 2.80 3.72 5.45 3.06 
std 0.80 0.97 1.19 1.23 1.40 1.80 
IV (data) 19.35 19.29 19.04 18.96 18.96 19.10 
std 7.70 6.83 5.92 5.49 5.21 6.17 
IV (model) 18.57 19.00 19.44 19.80 20.31 19.46 
std 7.72 5.78 3.85 2.81 1.99 4.62 
IV bias -0.78 -0.30 0.40 0.84 1.34 0.37 
std 4.99 4.64 4.34 4.25 4.34 4.53 
IVRMSE 5.05 4.65 4.36 4.34 4.55 4.54 
std 8.65 7.34 5.98 5.42 5.50 6.71 

Table 5: Option pricing performance by current VIX 

VIX level 
≤15 (15, 20] (20, 25] (25, 30] >30 All 

Number of obs. 21653 23943 21881 8705 7442 83624 
Premium (data) 1.97 2.57 3.17 3.69 4.86 2.89 
std 1.19 1.52 1.78 1.96 2.66 1.89 
Premium (model) 3.03 2.88 2.92 3.27 3.87 3.06 
std 1.66 1.71 1.74 1.91 2.25 1.80 
IV (data) 13.14 17.05 21.00 24.38 31.23 19.10 
std 2.15 2.66 2.73 2.94 7.28 6.17 
IV (model) 17.41 18.02 19.53 22.29 26.53 19.46 
std 2.41 2.39 2.66 5.26 8.54 4.62 
IV bias 4.27 0.97 -1.47 -2.09 -4.69 0.37 
std 2.26 2.69 2.81 5.33 6.88 4.53 
IVRMSE 4.84 2.86 3.17 5.73 8.33 4.54 
std 4.75 3.45 3.96 8.53 10.12 6.71 
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Table 6: Option pricing performance by moneyness and maturity  

Maturity 
Log-Moneyness (., 30] (30, 90] (90, 180] (180, 270] (270, .) 

BiasP 
(−∞, −0.04] -0.27 -0.25 -0.18 -0.12 0.04 
(−0.04, −0.02] -0.11 -0.07 -0.07 -0.07 0.02 
(−0.02, +0.02] -0.01 0.09 0.27 0.39 0.71 
(+0.02, +0.04] -0.06 0.12 0.38 0.58 0.95 
(+0.04, +∞) -0.04 -0.14 0.10 0.38 0.85 

RMSE
(−∞, −0.04] 0.59 0.68 0.86 1.00 1.36 
(−0.04, −0.02] 0.48 0.68 0.93 1.18 1.45 
(−0.02, +0.02] 0.48 0.67 0.97 1.21 1.66 
(+0.02, +0.04] 0.48 0.65 1.01 1.29 1.85 
(+0.04, +∞) 0.75 0.72 0.88 1.11 1.71 

BiasIV 
(−∞, −0.04] -3.45 -2.10 -0.98 -0.53 -0.08 
(−0.04, −0.02] -1.11 -0.45 -0.38 -0.36 -0.20 
(−0.02, +0.02] -0.08 0.52 1.10 1.23 1.66 
(+0.02, +0.04] -0.71 0.86 1.72 2.01 2.35 
(+0.04, +∞) -1.13 -1.31 0.43 1.49 2.35 

IV RMSE 
(−∞, −0.04] 6.80 5.22 4.38 4.10 4.09 
(−0.04, −0.02] 4.68 4.53 4.32 4.39 4.13 
(−0.02, +0.02] 4.31 4.23 4.26 4.30 4.45 
(+0.02, +0.04] 4.66 4.33 4.57 4.66 4.92 
(+0.04, +∞) 7.89 5.29 4.32 4.38 4.90 
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Figure 6: Option pricing performance 
The plot is a graphical representation of the bias and RMSE given in Table 6 on page 37. 
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Figure 7: Premium and implied volatility in the data and in the model  
The plot is a graphical representation of the average out-of-the-money premium normalized by asset price 
(left column) and implied volatility (right column) both in the data (blue lines) and derived from the 
model (green lines) sorted by maturity (rows) and moneyness (horizontal axis). 
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Figure 8: Data and model implied volatility  
Implied volatilities are computed at the money, that is averages of all implied volatilities with log
moneyness between -2% and 2%. 

199
7

199
9

200
1

200
3

200
5

200
7

200
9

201
1

201
3

date

10

20

30

40

50

60

70

%

impvol_data
impvol_model

40  



Figure 9: Implied volatility term structure  
Three levels of the current VIX. Top panel refers to the high level of volatility, bottom - low level.  

22

24

26

28

30

32

34

36

(3
0,
 7
5.
26

]

impvol_data
impvol_model

19.5

20.0

20.5

21.0

21.5

22.0

22.5

(2
0,
 3
0]

impvol_data
impvol_model

50 100 150 200 250 300 350
Maturity, days

14

15

16

17

18

19

20

(8
.8
9,
 2
0]

impvol_data
impvol_model

41  



⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎡ ⎤
⎡ ⎤

⎡ ⎤ ⎡ ⎤ ⎛ ⎞
⎡ ⎤ 1 − ρH

=ρH Et σ
2 + cδ  t 1 − ρ ⎡ ⎤

=ρH Et σ
2 + cδ (H) ,t 

1 − ρH

δ (H) = δ .1 − ρ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎡ ⎤ ⎡ ⎤

C Proofs 

C.1 Proof of Proposition 1 (Volatility factor aggregation) 

C.1.1 Proof for the first moment of volatility 

Everywhere below we use the following notation: 

Et [X] = E [X |It ] . 

The first equation in the theorem statement is trivially 

Et σt
2
+1 = ρEt σt 

2 + cδ.

Taking conditional expectation analogously: 

Et σt
2
+2 = ρEt σt

2
+1 + cδ.

Hence, by the law of iterated expectations and plugging the former formula in the latter: 

Et σt
2
+2  = ρEt σt

2
+1 + cδ

= ρ2Et σ
2 + cδ (1 + ρ) .t 

By iterating H times the same argument, we get: 

Et σt
2
+H =ρH Et σt 

2 + cδ 1 + ρ + ... + ρH−1 

(C.1)

with 
(C.2)

C.1.2 Proof for the second moment of volatility 

Since (2.10) is assumed to be valid at least for H = 1, we have: 

Et σt
4
+1 = ρ2Et σt 

4 + aEt σt 
2 + b.

But, for the same reason, 

Et+1 σt
4
+2 = ρ2Et+1 σt

4
+1 + aEt+1 σt

2
+1 + b.
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⎡ ⎤ ⎡ ⎤ ⎛ ⎡ ⎤ ⎡ ⎤⎞ ⎛ ⎞

⎡ ⎤ ⎡ ⎤ ∑ ∑H−1 H−1 
σ4 = ρ2H Et σ

4 ρ2(H−1−h)Et σ
2 ρ2hEt t+H + a + b .t t+h 

h=0 h=0 

⎡ ⎤

∑ ∑H−1 H−1 
ρ2(H−1−h)Et σ

2 ρ2(H−1−h) σ2= ρhEt + cδ (h)t+h t 
h=0 h=0 

⎡ ⎤ ⎛ ⎡ ⎤ ⎞
ρH−1 1 − ρH 

= Et σ
2 + C1,t1 − ρ

⎡ ⎤

∑H−1 1 − ρH−1 1 − ρH 1 − ρH−1 
ρ2(H−1−h) 1 − ρh 

C1 = cδ = cδ = cδ (H) .1 − ρ (1 − ρ) (1 − ρ)2 1 − ρ 
h=0 

⎛ ⎞ ⎛ ⎞

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
Et σ

4 = ρ2H Et σ
4 + aρH−1 1 − ρH 

Et σ
2 + d (H) ,t+H t t1 − ρ 

∑H−1
d (H) =aC1 + b ρ2h 

h=0 

1 − ρH−1 1 − ρ2H 
=acδ (H) + b .1 − ρ 1 − ρ2 

⎛ ⎞ ⎛ ⎞

1 − ρ1/N 1 − ρH/N 1 − ρ̃H

δ (H) = δN = δ = δ, 
1 − ρ1/N 1 − ρ̃ 1 − ρ 

Hence, by the law of iterated expectations and plugging the former formula in the latter:  

Et σt
4
+2 = ρ4Et σt 

4 + a Et σt
2
+1 + ρ2Et σt 

2 + b 1 + ρ2 .

By iterating H times the same argument, we get: 

By applying (C.1) to the second term in the above equation separately, we get: 

where 

(C.3)

Hence: 

where 

(C.4)

C.2 Proof of Proposition 2 (Volatility factor disaggregation) 

Assume that model (2.7) is given with parameters: 

ρ,̃ ˜ a, ̃b = ρ1/N , δN , aN , bN .δ, ̃

Then, by Proposition 1, we can compute the parameters of this model aggregated over H = N periods. 
We get: 

ρ (H) = ρ̃H = ρ, 
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ρH−1 1 − ρ̃H

a (H) = ã˜ 1 − ρ̃
1 − ρ1/N 1 − ρH/N 

ρ−1+1/N ρ(H−1)/N = a = a,
1 − ρ1/N 1 − ρ 

ρH−1 ρ2H1 − ˜ 1 − ˜
d (H) = ac b˜ δ (H) + ̃1 − ρ̃2 1 − ρ̃2 

1 − ρ1/N 1 − ρ(H−1)/N 
ρ−1+1/N = acδ 

1 − ρ2/N 1 − ρ 

1 − ρ1/N ρ−1+1/N − 1 1 − ρ2/N 1 − ρ2H/N 
+ − acδ⎣b 1 − ρ2 (1 − ρ) (1 − ρ2) 

⎦ 
1 − ρ2/N 

⎛ ⎞ ⎛ ⎞⎡ ⎤ 

⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎡ ⎤
⎡ ⎤
⎡⎛ ⎞ ⎤

and:  

as well as: 

= b. 

C.3 Proof of Proposition 3 (Volatility factor as ARMA process) 

C.3.1 Proof for the first moment of volatility 

Continuing from equation (C.1) in Section C.1.1, for any real h ≥ 0: 

Et+h σt
2
+H+h = ρH Et+h σt

2
+h + cδ (H) .

and, by the law of iterated expectations: 

Et σt
2
+H+h = ρH Et σt

2
+h + cδ (H) .

Adding all above equations for 1h =  , 2 , . . . ,HN − 1, HN , and dividing by HN , we get: N N 

σ2 σ2Et t+H,H (N) = ρH Et t,H (N) + cδ (H) ,

or 
σ2 (N) − ρH σ2 (N) − cδ (H) = 0,Et t+H,H t,H

or 
Et 1 − ρ L σt+H,H (N) = cδ (H) ,H 2

with: 
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⎡ ⎤ ⎡ ⎤
Et σ

4 = ρ2H Et σ
4 + aρH−1 1 − ρH 

Et σ
2 + d (H) .t+H+h t+h t+h1 − ρ 

⎡ ⎤

⎡⎛ ⎞ ⎤
Et 1 − ρ2H LH σ4 = aρH−1 1 − ρH 

Et σ
2 + d (H) .t+H+h t+h1 − ρ 

⎡ ⎤

⎡⎛ ⎞ ∑HN 1 
Et 1 − ρ2H LH σ4 = aρH−1 1 − ρH 

Et σ
2 (N) + d (H) .t+H+n/N t,HHN 1 − ρ 

n=1

⎤ ⎡ ⎤
⎡ ⎤

⎡ ∑ 2HN 
σ4 (N) = 

1
σ2 

t,H t+n/N HN
n=1 

⎤
∑ ∑ ∑HN HN−1 HN−j1 2 = σ4 + σ2 σ2 

t+n/N t+n/N t+(n+j)/N . H2N2 H2N2 
n=1 j=1 n=1 

∑ ∑ ∑HN HN−1 HN−j 

σ4 σ2 σ21 
t+H+n/N = HNσt

4
+H,H (N) − 

2
t+H+n/N t+H+(n+j)/N . HN HN

n=1 j=1 n=1 

⎡⎛ ⎞ ⎤ HN−
1 − ρ2H LH σ4 ⎣ 1 − ρ2H LH σ2 σ2 ⎦Et t+H,H (N) =Et 

H2
 
N2 t+H+n/N t+H+(n+j)/N 

j=1 n=1 

∑ ∑ ⎛ ⎞
⎡ ⎤

+ a0 (H; N) Et σ
2 (N) + 

1
d (H) ,t,H HN

1 
a0 (H; N) = aρH−1 1 − ρH 

.
HN 1 − ρ  

⎡ ⎤ ⎡ ⎤

C.3.2 Proof for the second moment of volatility  

Continuing from where we left off in Section C.1.2, for any h ≥ 0 (with an additional application of the 
law of iterated expectations) we have: 

This equation can be rewritten using lag operator L as 

(C.5)

Adding all of the above equations for 1h =  2, , . . . ,HN N   1 − N , H, and dividing by N we get: 

(C.6)
 

We are actually interested in computing 4Et σt+H,H (N) , where: 

This means, after multiplying by HN and shifting time by H, that 

Making the corresponding substitution in (C.6), and dividing by HN , we can write ⎡ ⎤ 
 1 HN−j 2

where 
(C.7)

Note that (C.1) can be rewritten in terms of δ (H) defined in (C.2), and H can be fractional:  

Et σt
2
+H = ρH Et σt 

2 + cδ (H) . (C.8) 
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⎡ ⎤ ⎡ ⎡ ⎤⎤
⎡ ⎤ ⎡ ⎤

⎡⎛ ⎞ ⎤
Et 1 − ρ2H LH σ4 = aρH−1 1 − ρH 

Et σ
2 + d (H) .t+H+n/N  t+n/N 1 − ρ 

⎡ ⎤
⎡ ⎤
⎡⎛ ⎞ ⎤ ⎡ ⎤ ⎡ ⎤

⎛ ⎞ ⎡ ⎤
⎛ ⎞

⎡⎛ ⎞ ⎤
⎡⎛ ⎞ ⎤ ⎡⎛ ⎞ ⎤

⎡
aρj/N ρH−1 1 − ρH

= + cδ (j/N) ρH 1 − ρH Et σt
2
+n/N + C3 (j) ,1 − ρ 

⎛ ⎞⎤ ⎡ ⎤

⎡
1 − ρH−1 1 − ρ2H 

2δ2 1 − ρj/N 1 − ρH

=ρj/N acδ (H) + b + c .1 − ρ 1 − ρ2 1 − ρ 1 − ρ 

⎤
⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎡ ⎤

By the law of iterated expectations and (C.8) the expectation of cross-term is:  

σ2 σ2 σ2  σ2Et t+H+n/N t+H+(n+j)/N  =Et t+H+n/N Et+H+n/N t+H+(n+j)/N 

=ρj/N Et σ
4 σ2 
t+H+n/N + cδ (j/N) Et t+H+n/N . 

For h = n/N equation (C.5) is 

Applying (C.8) to 2 Et σt+H+n/N gives us

Et 1 − ρ2H LH σt
2
+H+n/N =Et σt

2
+H+n/N − ρ2H Et σt

2
+n/N 

=ρH 1 − ρH Et σt
2
+n/N + cδ (H) . 

Hence, the expectation of the cross-term multiplied by 1 − 2ρ H LH is 

Et 1 − ρ2H LH σt
2
+H+n/N σt

2
+H+(n+j)/N = 

=ρj/N Et 1 − ρ2H LH σ4 1 − ρ2H LH σ2 
t+H+n/N + cδ (j/N) Et t+H+n/N (C.9) 

where we denoted 

C3 (j) =ρj/N d (H) + c 2δ (j/N) δ (H) 
(C.10) 

Next we need to express 2 Et  σt+n/N  in terms of 2 Et σt,H (N) . For that purpose apply (C.8) again: 

= ρn/N EtEt σt
2
+n/N σt 

2 + cδ (n/N) . 
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⎡ ⎤ ∑HN

Et σ
2 (N) = 1 

Et σ
2

t,H t+n/N HN
n=1 

⎡ ⎤
∑HN 

ρn/N Et= 1 
σ + cδ (n/N)

HN t 
n=1 

⎛ ⎡ ⎤ ⎞
∑ ∑HN HN 1 
ρn/N Et σ

2 1= + cδ (n/N)
HN t HN

n=1 n=1 

⎡ ⎤
⎡ ⎤ρ1/N 1 − ρH 

= Et σ
2 + C4,1 − ρ1/N HN t 

∑ ( )1 − ρ1/N − ρ1/N HN 1 − ρH1 cδ
C4 = cδ (n/N) = .

HN 
n=1 HN (1 − ρ) 1 − ρ1/N 

⎛ ⎞ ⎛ ⎞
[ 2 Et σt 
]

we have Solving for 

⎡ ⎤ ⎛ ⎡ ⎤ ⎞1 − ρ1/N HN 
Et σ

2 = Et σ
2 (N) − C4 .t ρ1/N t,H1 − ρH

⎡ ⎤ ⎡ ⎤
1 − ρ1/N 

=HNρ(n−1)/N Et σ
2 (N) − C4 + cδ (n/N) .1 − ρH t,H 

⎛ ⎡ ⎤ ⎞

⎡⎛ ⎞ ⎤
⎞

aρj/N ρH−1 1 − ρH

= + cδ (j/N) ρH 1 − ρH

1 − ρ 

⎛
⎛ ⎡ ⎤ ⎞1 − ρ1/N  

× HNρ(n−1)/N Et σ
2 (N) − C4 + cδ (n/N) + C3 (j) 1 − ρH t,H 

⎛ ⎞
⎛ ⎞ ⎡ ⎤1 − ρ1/N 

aρj/N ρH−1 1 − ρH

ρ(n−1)/N = + cδ (j/N) ρH 1 − ρH HNEt σ
2 (N) + C5 (j, n) ,1 − ρ 1 − ρH t,H 

⎛ ⎞
aρj/N ρH−1 1 − ρH

1 − ρHC5 (j, n) = + cδ (j/N) ρH 
1 − ρ 

1 − ρ1/N 
× cδ (n/N) − HNρ(n−1)/N C4 + C3 (j) .1 − ρH

⎛ ⎞
⎛ ⎞

From the definition of the aggregated variance we easily find that  

  

2 

where 

(C.11)

At the same time we also have 

σ2 =ρn/N Et σ
2Et t+n/N t + cδ (n/N)

Substituting this result to the expression (C.9) for the cross-terms we obtain 

1 − ρ2H LH σ2 =Et t+H+n/N σt
2
+H+(n+j)/N ⎛ ⎞

⎛ ⎞

where 

(C.12)
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⎛ ⎞ ∑ ∑ ⎛ ⎞HN−1 HN−j2 ρH 
1 − ρ1/N ρj/N a 1 − ρH

1 − ρn/N ρ(n−1)/N + + cδ (H) ,
HN 1 − ρH ρ 1 − ρ 

j=1 n=1 

⎛ ⎞a (H; N) =a0 (H; N) 

∑ ∑HN−1 HN−j2 
b (H; N) = C5 (j, n) , 

H2N2 
j=1 n=1 

⎡ ||| ⎤
σ2 ρ1/N σ2lim E t,1/N (N) It = lim t + cδN = σt 

2 , 
N→∞ N→∞

1 − ρ1/N 
δN = δ ⇒ lim δN = 0.1 − ρ N→∞

⎡ |||V σt
2
+1/N It = aN − 2cδN ρ

1/N σt 
2 + bN − c 2δ2 

N ,
⎤ ⎡ ⎤

1 − ρ1/N 
ρ−1+1/N a log (ρ)lim NaN = lim Na = − 

N→∞ N→∞ 1 − ρ ρ (1 − ρ) ,

1 − ρ1/N δ log (ρ)lim NδN ρ
1/N = lim NδN = lim Nδ = − ,

N →∞ N→∞ N→∞ 1 − ρ 1 − ρ 

δ log (ρ)lim Nδ2 = − lim = 0,N δN 
N →∞ N →∞ 1 − ρ 

Collecting the terms we find that the coefficient in (2.10) is  

(C.13) 

and 

(C.14)

with a0 (H; N) defined above in (C.7), δ (H) defined in (C.2), coefficients C1 through C5 defined in (C.3), 
(C.4), (C.10), (C.11), and (C.12). 

C.4 Proof of Lemma 1 

We simplify the proof by doing it only for the case H = 1/N . The general case follows by linear 
aggregation. We have: 

σt,
2

1/N (N) = σt
2
+1/N ,

and thus: 

since: 

We deduce from Proposition 2 that: 

with: 
(C.15)

and, 

and, 

48  



1 − ρ2/N 
lim NbN =  b lim N 

N→∞ N→∞ 1 − ρ 
acδ 1 − ρ1/N ρ−1+1/N − 1−  lim N(1 − ρ) (1 − ρ2) N→∞

⎛ ⎞ ⎛ ⎞
2b log (ρ) acδ log (ρ)= −  +1 − ρ ρ (1 − ρ2) 

.

⎡ ||| ⎤1 − ρ  a acδlim V σt
2
+1/N  It = − + 2cδ σt 

2 − 2b +log (ρ) N→∞  ρ ρ (1 + ρ) .
⎡ ⎤

⎡ ||| || || || ||V σt
2
+2/N It  = E V σt

2
+2/N It+1/N It + V E σt

2
+2/N It+1/N It

⎤ ⎡ ⎡ | ⎤| ⎤ ⎡ ⎡ | ⎤| ⎤
⎡⎡ ⎤ ||||= E aN − 2cδN ρ

1/N σ2 + bN − c 2δ2 Itt+1/N N ⎡ ||ρ1/N σ2+V  + cδN Itt+1/N 

⎤
⎤

⎡ ⎤ ⎡ ⎤
⎛⎡ ⎤ ⎞aN − 2cδN ρ

1/N ρ1/N σ2 2δ2= + cδN + bN − ct N

+ρ2/N aN − 2cδN ρ
1/N σ2 + bN − c 2δ2 

t N⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎛ ⎞
⎡ ⎤= aN − 2cδ ρ1/N ρ1/N + ρ2/N σ2 + 2δ2 1 + ρ2/N 

t bN − c N N 

+cδN aN − 2cδN ρ
1/N . 

⎡ ⎤ ⎡ ⎤ ⎡
aN − 2cδN ρ

1/N ρ1/N + ρ2/N a log (ρ) + 2cδ log (ρ)lim N = 2 − ,
N→∞ ρ (1 − ρ) 1 − ρ 

⎤

⎡ ⎤
⎡ ⎤ ⎛ ⎞ ⎡ 2b log (ρ) acδ log (ρ)lim N bN − c 2δ2 1 + ρ2/N = 2 − + ,N

N→∞  1 − ρ ρ (1 − ρ2) 

⎤

||1 − ρ a 2acδlim V σt
2
+2/N  It = 2 − + 2cδ σt 

2 − 4b +log (ρ) N→∞ ρ ρ (1 + ρ) 

⎡ | ⎤ ⎡ ⎤
|1 − ρ= 2 lim V σ2 .t+1/N log (ρ) N→∞ 
It 

⎡ || ⎤

and, 

We deduce: 

Next, 
σt

2
+H,H (N) = σt

2
+2/N ,

with: 

We deduce from (C.15): 

and 
lim NcδN aN − 2cδN ρ

1/N = 0, 
N→∞

and 

so that: 
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⎛
1 ρH − 1 cδ (H)

σ2 (N) − σ2 σ2lim Et t+H,H t,H (N) = lim Et t,H (N) + lim 
H→0 H H→0 H H→0 H 

⎡ ⎤ ⎡ ⎤
cδ= log (ρ) σ2 (t) − ,1 − ρ 

⎞

δ (H) cδ 1 − ρH log (ρ)lim = lim = −cδ .
H→0 H H→0 1 − ρ H 1 − ρ 

⎡ ⎤ ⎛ ⎡ ⎤⎞ ⎡ ⎤ ⎡ ⎤
⎛ ⎡ ⎤⎞ ⎡ ⎤

⎡ ⎤
2 

= − ρH σ2 (N) + cδ (H) + ρ2H Et σ
4 (N)Et t,H t,H

+ a (H; N) Et σ
2 (N) + b (H; N)t,H ⎡ ⎤ ⎛ ⎞ ⎡ ⎤ ⎛ ⎞

1 1 a (H; N) − 2ρH cδ (H)lim σ (N) = lim ρ2H σ2 (N) + lim σ2 (N)Vt t+H,H Vt t,H Et t,H
H→0 H H→0 H H→0 H

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
b (H; N) − c2δ2 (H) + lim .

H→0 H

2 

1 1 2 ρ2H 
lim σ2 (N) − lim ρ2H σ2 (N) = lim σ2 (N) − lim σ2 (N)Vt t+H,H Vt t,H Vt t,H Vt t,H

H→0 H H→0 H H→0 H H→0 H  

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= lim 

1 
σ2 (N) 2 − ρ2Vt t,H

H→0 H 

⎡ ⎤ ⎛ ⎞
= lim 

1 
σ2 (N) .Vt t,H

H→0 H 

⎡ ⎤

1 a (H; N) − 2ρH cδ (H) b (H; N) − c2δ2 (H)
σ2 σlim Vt t,H (N) = lim Et t,H (N) + lim .

H→0 H H→0,N →∞ H H→0,N→∞ H

⎡ ⎤ ⎡ ⎤

C.5 Proof of Proposition 4 (Continuous-time limit for volatility) 

We deduce from the first equation in (2.10) and (2.11) from Lemma 1 that: 

since: 

Straight from definition of the variance and application of (C.8) the equation (2.10) is the same as 

2 
Vt σ

2 (N) = − Et σ
2 (N) + ρ2H Et σ

4 (N) + a (H; N) Et σ
2 (N) + b (H; N)t+H,H t+H,H t,H t,H 

=ρ2H Vt σ
2 (N) + a (H; N) − 2ρH cδ (H) Et σ

2 (N) + b (H; N) − c 2δ2 (H) .t,H t,H

Next, divide this expression on both sides by H and take the limit (N → ∞ implicitly since 2 σt,H (N)
is only defined for H ≥ 1/N): 

Using (2.12) from Lemma 1, we get that: 

H

and deduce that the above limit expression can be rewritten as: 

2
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2 ρH

1 − ρ1/N a (H; N) − a0 (H; N) = 
HN 1 − ρH

⎛ ⎞
∑ ∑ ∑HN−1 HN−j HN−j1 − ρ⎣ ρj/N a ρ(n−1)/N − ρ1/N cδ (H) ρ2(n−1)/N ⎦× + cδ (H) ,

ρ 1 − ρ 
j=1 n=1 n=1 

H
⎛ ⎞⎡ ⎤ 

∑HN−j 

ρ(n−1)/N =
n=1 

∑HN−j−1 1 − ρH−j/N 
ρn/N = ,

1 − ρ1/N 
n=0 

∑HN−j 1 − ρ2H−2j/N 
ρ2(n−1)/N = .

1 − ρ2/N 
n=1 

and 

⎛ ⎞2 ρH 
1 − ρ1/N a (H; N) − a0 (H; N) = 

HN 1 − ρH

∑ ⎡⎛ ⎞ ⎤
HN−1 1 − ρH 1 − ρH−j/N 1 − ρ2H−2j/N 

ρj/N a × + cδ (H) − ρ1/N cδ (H) ,
1 − ρ1/N 1 − ρ2/N ρ 1 − ρ 

j=1 

∑ ⎛ ⎞ ∑ ⎛ ⎞HN−1 HN −12 ρH a 1 − ρH ⎝ ρj/N − ρH 1 − ρH−j/N ⎠a (H; N) − a0 (H; N) = + cδ (H)
HN 1 − ρH ρ 1 − ρ 

j=1 j=1 ∑ ⎛ ⎞ρH ρ1/N HN−12 1 − ρ2H−2j/N − cδ (H) . 
N 1 − ρH 1 + ρ1/N 

j=1 

∑ ∑HN −1 HN−1 ρ1/N − ρH

ρH−j/N ρj/N = = ,
1 − ρ1/N 

j=1 j=1 

∑HN−1 ρ2/N − ρ2H 
ρ2H−2j/N = .

1 − ρ2/N 
j=1 

and 

ρ1/N − ρH2 a ρH

a (H; N) − a0 (H; N) = − ρH (HN − 1) − 
1 − ρ1/N HN ρ 1 − ρ 

⎛ ⎞
ρ1/N − ρH2 ρH

+ cδ (H) (HN − 1) − 
1 − ρ1/N HN 1 − ρH

⎛ ⎞
ρ1/N ρ2/N − ρ2H2 ρH

− cδ (H) (HN − 1) − ,
1 − ρ2/N HN 1 − ρH 1 + ρ1/N 

⎛ ⎞

Simplifying a (H; N). Before taking the limit with respect to N → ∞ we need to simplify a (H; N) by 
getting rid of summations in 

with a0 (H; N) defined in (C.7). Here the inner summations are reduced to 

So the coefficient becomes 

or ⎛ ⎞ 

In this expression we have three summations over j: 

Substituting these we have 

with a0 (H; N) defined in (C.7). 
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2 a ρH 1 − ρH

lim a (H; N) = − + ρH H 
N→∞ H ρ 1 − ρ log (ρ) 

ρH cδ (H) 1 − ρH

+ 2 H + 1 − ρH H log (ρ) 

⎛ ⎞
ρH cδ (H) 1 − ρ2H 

− H + ,1 − ρH H log (ρ2) 

⎛ ⎞

⎛ ⎞

1lim a0 (H; N) = lim aρH−1 1 − ρH 
= 0.

N→∞ N→∞ HN 1 − ρ 

1 ρH 1 1 − ρH

lim a (H; N) = − 2a + ρH

H N→∞ ρ 1 − ρ H H log (ρ) 

⎛ ⎞
ρH cδ (H) 1 − ρH

+ 2 1 + 1 − ρH H H log (ρ) 

⎛ ⎞
ρH cδ (H) 1 − ρ2H 

− 1 + .1 − ρH H H log (ρ2) 

⎛ ⎞

1 a log (ρ)lim a (H; N) = − + O (H) .
H N→∞ ρ 1 − ρ 

a (H; N) a log (ρ)lim = − .
H→0,N→∞ H ρ 1 − ρ 

b (H; N) a 2b cδ log (ρ)lim = − .
H→0,N→∞ H ρ cδ 1 − ρ2 

⎛ ⎞

⎛ ⎞2δ2 (H) δ (H)lim = lim H = 0. 
H→0 H H→0 H

Taking the limit with N → ∞. Taking the limit with respect to N → ∞, the coefficient becomes  

(C.16)

while keeping in mind that 

Now divide (C.16) by H : 

Series expansion of this expression around H = 0 gives the following result: 

Hence, 

Taking the limit of the constant we obtain5

Finally, 

5The analytical expression for b (H; N) after taking all summations is several pages long. Taking the limit of this expression 
by hand does not seem feasible. These operations were performed in Mathematica software and available upon request. 
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⎞ ⎛ ⎞1 a log (ρ) log (ρ) a 2b cδ log (ρ)lim Vt σ
2 (N) = − + 2cδ σ2 + −t,H t

H→0,N→∞ H ρ 1 − ρ 1 − ρ ρ cδ 1 − ρ2 

⎡ ⎤ ⎛
log (ρ) a a 2b cδ = − − 2cδ σ2 + − .t1 − ρ ρ ρ cδ 1 + ρ 

⎡⎛ ⎞ ⎛ ⎞ ⎤

⎛ ⎞

1 log (ρ) δ − ωlim Vt σ
2 (N) = −2c σ2 + c .t,H t

H→0,N→∞ H 1 − ρ 1 + ρ 

⎡ ⎤ ⎛ ⎞

1 log (ρ)lim Vt σ
2 (N) = −2c σt 

2 ,
H→0,N→∞ H t,H 1 − ρ 

⎡ ⎤

⎛ ⎞
⎡ ⎛ ⎞|||= exp (rf,t) E Mt,t+1 (θ) exp −uσt

2
+1 − vrt+1 It 

⎤
⎛ ⎞ ⎡ ⎛ ⎞|||= exp g (θ) + l (θ) σt 

2 E Mt,t+1 (θ) exp − (θ1 + u) σt
2
+1 − (θ2 + v) rt+1 It

⎤
⎛ ⎞

This result concludes the proof and shows explicitly that  

In case of affine first two moments as in (2.7), we have 

2 a = 2cρ (1 + δ) , b = c δ2 + ω , 

hence the limit becomes 

For the ARG(1) case, where ω = δ, the same limit becomes 

as expected from a particular case of Gourieroux & Jasiak (2006, p. 137). 

C.6 Proof of Proposition 5

We have seen in Section 3.1 that: 

exp −l ∗ (u, v) σ2 − g ∗ (u, v) = t 

= exp (g (θ) − g (θ1 + u, θ2 + v)) exp [l (θ) − l (θ1 + u, θ2 + v)] σ2 .t 

Therefore: 

g ∗ (u, v) = g (θ1 + u, θ2 + v) − g (θ1, θ2) , 

l ∗ (u, v) = l (θ1 + u, θ2 + v) − l (θ1, θ2) . 

We want to check that these formulas coincide with the formulas for g ∗and l∗ given in Proposition 5. Let 
us then compute, while plugging in (3.5) and (3.6): 

a ∗ [u + α ∗ (v)] + β ∗ (v) = a [u + α ∗ (v) + θ1 + α (θ2)] − a [θ1 + α (θ2)] + β (θ2 + v) − β (θ2) 

= a [u + θ1 + α (θ2 + v)] − a [θ1 + α (θ2)] + β (θ2 + v) − β (θ2) 

= (a [θ1 + u + α (θ2 + v)] + β (θ2) + v) − (a [θ1 + α (θ2)] + β (θ2)) 

= l (θ1 + u, θ2 + v) − l (θ1, θ2) = l ∗ (u, v) . 
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⎛ ⎞⌠ ∞
µ+ 12 σ

2 µ − k
g (k) = xφ (x) dx = e Φ σ + .

k σe

⎡ |||Ct =StE
Q (e rt+1 − e xt )+ It 

⎤
⎡ ||| ⎤ ⎡ ||| ⎤

=StE
Q e rt+1 1{e rt+1 >ext } It − KEQ 1{e rt+1 >ext } It⎡ ||| ⎤

=StE
Q e rt+1 1{rt+1>xt} It − KP Q [rt+1 > xt| It] . 

⎡ |||EQ e rt+1 1{rt+1>xt} It 
⎤

⎡ ⎛ ⎞ ||||⎡ ⎛ ⎞| ⎤
1 1/2 EQ [rt+1| Itσ] − xt=EQ exp EQ [rt+1| Itσ] + 2V Q [ rt+1| Itσ] Φ V Q [rt+1| Itσ] + It

(V Q [rt+1| Itσ])1/2 

⎛ ⎞| ⎤
⎛ ⎞ |||1/2 EQ rt+1| Itσ  − xt=EQ ξt,t+1Φ V Q [rt+1| Itσ] + It , 

(V Q [rt+1| Itσ])1/2

|

⎛ ⎞
1log ξt,t+1 =EQ [ rt+1| Itσ] + 2V Q [rt+1| Itσ] ⎛ ⎞ ⎡ ⎛ ⎞|| ⎤ ⎛ ⎞

|= φk − 
1 1 − φ2 σt

2
+1 − log EQ exp φkσ2 It + 1 1 − φ2 σ2 

t+1 t+12 2 

|
⎡ ⎛ ⎞||=φkσt

2
+1 − log EQ exp φkσt

2
+1 It .

⎤

⎡ ⎤ ||||EQ [rt+1| Itσ] − xt
P Q = EQrt+1 > xt| σt

2
+1, It Φ It . 

(V Q [ rt+1| Iσ])1/2
t 

⎡ ⎛ ⎞| ⎤

⎰ ⎱ 

A similar computation would obviously give:  

b ∗ [u + α (v)] + γ ∗ (v) = g ∗ (u, v) . 

C.7 Proof of Proposition 6 (Option price with leverage) 

Recall that for log-normal random variable 

Say we want to price an option written on the asset with strike K. The moneyness is xt = log (K/St). 
The payoff function is then (Ste

rt+1 − + K)  or ( +St e
rt+1 − ext ) . 

Next, write two expectations separately conditionally on volatility path: 

 [ ]

where 

Same for the second expectation: 
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⎡ ⎛ ⎛ ⎞ ||||1/2EQ [ rt+1| Itσ] − xt EQ [rt+1| Itσ] − xt
Ct (xt, φ) =EQ Stξt,t+1Φ V Q [rt+1| Iσ] − KΦ Itt(   [  σ])1/2 +

(   [ t+1| Iσ])1/2
t 

⎞ ⎛ ⎞| ⎤
⎡ ⎛ ⎛ ⎞ ||||log Stξt,t+1 − log K 1 1/2 

=E Stξt,t+1Φ + V Q [rt+1| Itσ] It 
(V Q [ rt+1| Itσ])1/2 2  ⎡ ⎛ ||| Stξt,t+1 − log K 1 1/2 

− E KΦ − V Q [ rt+1| Itσ] It 
(V Q [ rt+1| Itσ])1/2 2

⎛ ⎞ ⎞|| ⎤
⎡ ⎛ ⎞⎤

log

⎞| ⎤

⎛ ⎞
⎛ log (S/K) 1 log (S/K) 1 

BS (S, V, K) = SΦ + 2V − KΦ − 2V .
V V

⎞ ⎛ ⎞

⎡ ⎛ ⎛ ⎞ ⎞||||1/2 
Ct (x, φ) ≈E BS St, V Q [ rt+1| Iσ] ,K Itt ⎡ ||| |||∂ 1/2 

+ φE BS Stξt,t+1, V Q [ rt+1| Itσ] ,K It . 
∂φ φ=0 

⎛ ⎛ ⎞ ⎞| || ⎤
⎤

◟ ◝◜ ◞ ◟ ◝◜ ◞
∂ ∂ 
BS Stξt,t+1, (V [ rt+1| Iσ])1/2 ,K =Δ 

∂
ξt,t+1 + ν (V [ rt+1| Iσ])1/2 ,

∂φ t ∂φ ∂φ t 

price effect volatility effect 

⎛ ⎞

Δ (S, V, K) = 
∂BS (S, V, K) = Φ (d) ≥ 0,
∂S

ν (S, V, K) = 
∂BS (S, V, K) = Sϕ (d) ≥ 0,
∂V

where  log(S/K)d = + 1VV 2  . Differentiate the price adjustment:

||∂ ∂
ξt,t+1 =ξt,t+1 φkσt

2
+1 − log EQ exp φkσt

2
+1 It∂φ ∂φ

⎛ ⎡ ⎛ ⎞| ⎤⎞
⎛ ⎡ ⎤⎞

|||∂
ξt,t+1 = kσt

2
+1.∂φ φ=0 

|

So, the option price is  

V Q rt+1| I V Q rt

1/2  
=Et BS Stξt,t+1, V Q [rt+1| Itσ] ,K ,

where 

C.8 Proof of Proposition 7 (Option price around zero leverage) 

Linearize option price around no leverage case, φ = 0: 

Compute the derivative of BS price separately: 

where option delta and vega are 

=ξt,t+1 kσt
2
+1 − k a ∗′ (−φk) σt 

2 + b ∗′ (−φk) .

Evaluate the derivative of price adjustment at zero leverage parameter: 
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∂ ∂ 1/2
(V [ rt+1| Iσ])1/2 = 1 − φ2 σ2 

t t+1∂φ ∂φ

⎛⎛ ⎞ ⎞
⎛ 1/2 

= − .1 − 
φ2 

φ2 σt
2
+1 

⎞

|||∂ (V [rt+1| Itσ])1/2 = 0. 
∂φ φ=0 

|

⎡ |||(x, φ) ≈EQ [BS (St, σt+1,K)| It] + kφEQ Φ (d) σ2Ct t+1 It
⎤

⎡ |||=EQ [BS (St, σt+1,K)| It] + kφCovQ σt
2
+1, Φ (d) It .

⎤

⎡ ⎛ |||1 
Ct (0, φ) ≈ E [BS (St, σt+1, St)| It] + kφCovQ σt

2
+1, Φ 2σt+1 It .

⎞| ⎤

⎡ ⎰ ⎱|||E exp −uσt
2
+n It = exp −an (u) σt 

2 − bn (u) .
⎤ ⎰ ⎱

⎡ ⎰ ⎱|||E exp −uσt
2
+n+1 It = exp −a (an (u)) σt 

2 − b (an (u)) − bn (u) .
⎤ ⎰ ⎱

⎰ ⎱

Compute the derivative of volatility: 

Evaluate at zero leverage parameter: 

Collecting the terms we deduce that the option price is approximately 

For zero moneyness: 

C.9 Proof of equation (5.1) (Laplace transform for the aggregated return) 

Recursive volatility characteristic function is 

One step further 

Hence, it is clear that 

a1 u  a u  , ( ) = ( )

b1 (u) = b (u) , 

an+1 (u) = a (an (u)) , 

bn+1 (u) = b (an (u)) + bn (u) . 

Recursive return characteristic function is 

E [ exp {−vrt+1}| It] = exp −h (v) σ2 − k (v) .t 
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⎰ ⎱
⎰ ⎱

∑ ||||
n 

E [ exp {−vrt,t+n}| It] =E ⎣ exp −v rt+j It ⎦ ⎩ ⎭ 
j=1 

||
∑ |||n−  ⎦=E ⎣ exp −v rt+j E [ exp {−vrt+n}| It+n−1] It⎩ ⎭ 
j=1 

||
|

∑ ||||
n−

=E ⎣ exp −v rt+j exp −l (0, v) σt
2
+n−1 − g (0, v) It ⎦⎩ ⎭ 

j=1 

⎰ ⎱||
∑ ⎰ ⎱||||
n−  ⎦=E ⎣ exp −v rt+j exp −Ψ1 (v) σt

2
+n−1 − Υ1 (v) It⎩ ⎭ 

j=1 

||
∑ ⎡ ⎰ ⎱||| ⎤||||

⎨ n−2 ⎬ ⎦=E ⎣ exp −v rt+j E exp −vrt+n−1 − Ψ1 (v) σt
2
+n−1 − Υ1 (v) It+n−2 It⎩ ⎭ 

j=1 

||
∑ ⎰ ⎱||||

⎨ n−2 ⎬ ⎦=E ⎣ exp −v rt+j exp −l (Ψ1 (v) , v) σt
2
+n−2 − g (Ψ1 (v) , v) − Υ1 (v) It⎩ ⎭ 

j=1  

||
⎰ ⎱

One step further 
E [ exp {−vrt+2}| It] = exp −a (h (v)) σ2 − b (h (v)) − k (v) .t 

In general, 
E [ exp {−vrt+n}| It] = exp −hn (v) σ2 − kn (v) ,t 

where 

h1 (v) = l (0, v) 

k1 (v) = g (0, v) 

hn+1 (v) = a (hn (v)) 

kn+1 (v) = b (hn (v)) + kn (v) 

Recursive cumulative return characteristic function ⎡ ⎧ ⎫ ⎤  ⎨ ⎬  

⎡ ⎧ ⎫ ⎤ ⎨ 1 ⎬ 

⎡ ⎧ ⎫ ⎤ ⎨ 1 ⎬ 

⎡ ⎧ ⎫ ⎤ ⎨ 1 ⎬ 

⎡ ⎧ ⎫ ⎤ 
  

⎡ ⎧ ⎫ ⎤ 

= exp −Ψn (v) σ2 − Υn (v) , t 

with 

Ψ1 (v) = l (0, v) , 

Υ1 (v) = g (0, v) , 

Ψn+1 (v) = l (Ψn (v) , v) , 

Υn+1 (v) = g (Ψn (v) , v) + Υn (v) . 
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