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ABSTRACT 

A statistical model is developed to generate probability based 
scenarios for forecasting and risk management of long term risks. 
The model forecasts transformed daily forward interest rates over 
a 10 year horizon. The model is a reduced rank vector 
autoregression with time varying volatilities and correlations. A 
quasi-differencing version reduces the impact of autocorrelated 
measurement errors. 

Risk managers with a large book of fixed income assets are typically challenged to estimate the 
risk over both short and long run horizons. Familiar measures of market risk such as Value at Risk, VaR, 
are based on factor exposures to extreme events and will be time varying.  This literature has been 
nicely surveyed by Gourieroux and Jasiak(2010) who also focus on longer term credit risks.  Following 
this discussion, longer run risks involve estimates of what the term structure might look like in a year or 
in ten years. Most term structure models are not adequate to this task, so scenario analysis is used. 
However, designing scenarios is an art form which is particularly complicated in the fixed income asset 
class as the scenario should be internally consistent and arbitrage free and must have a probability 
assessment that motivates the response to risk. It furthermore will be useless if it does not stress the 
assets that are held in the firms portfolio. 

An alternative way to generate scenarios is to use probability based scenarios as described by 
Christensen, Lopez and Rudebusch(2014).  The strategy is to construct a large number of equally likely 
scenarios which are drawn from the joint predictive distribution of the term structure. The value of the 
portfolio of assets can be calculated from each scenario over time and a Profit and Loss distribution 
computed at different horizons.   Because each scenario has a known probability of occurring, the risks 
at different horizons in the future can be assessed. Their application is to the management of the FED’s 
enormous fixed income portfolio, but it could similarly be applied jointly to any financial firm’s assets 
and liabilities. 

This is essentially the proposal embodied in the Solvency II Directive, a new regulatory 
framework for the European insurance industry that adopts a more dynamic risk-based approach and 
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implements a non-zero failure regime. The directive mandates market valuation of assets and liabilities 
and a maximum 1 in 200 probability of failure over a long horizon.  Both assets and liabilities incur risk 
and all risks may be correlated. 

This paper proposes an econometric approach to generating scenarios for the US treasury term 
structure.  These scenarios can be interpreted as a predictive distribution for the term structure in the 
near or distant future.  These predictions should be arbitrage free and should have sufficient range that 
the scenarios stress all realistic outcomes. 

2.   Literature Survey 

There is a vast literature on the term structure on non-defaultable  securities.  It is the main 
subject of countless books, courses and careers.  The purpose of most of this literature is however 
different from the purpose of this paper. Most of the literature is concerned with estimating the fair 
market prices of securities that don’t have an observable price in terms of others that do.  This is 
extremely important as fixed income securities and their derivatives trade only occasionally but must be 
evaluated based on other securities that do trade.  Thus the goal is estimating the yield curve at a 
moment of time based on other prices recorded at that moment.  Part of this analysis requires 
estimating the price at which a bond would trade and how this is decomposed into term and risk 
premiums.  This analysis formally constrains the yield curve to be arbitrage free. Early models of this 
form treat the short rate as the state variable and by postulating a dynamic relation, derive the entire 
term structure. These include the Vasicek(1977), Cox, Ingersoll and Ross(1985), Ho and Lee(1986), and 
Hull and White(1990) among many others. Today short rate models are particularly problematic with 
the extended period of nearly zero short rates. A popular multi-factor specification is the affine 
structure which allows closed form expressions for these objects.  See for example Duffie and Kan(1996) 
and a recent survey by Piazzesi(2010). 

Two features of these models are generally in conflict.  To avoid arbitrage opportunities, 
nominal interest rates must be non-negative, at least if cash can be stored costlessly.  However, to 
ensure that there are no arbitrage opportunities, it is sufficient to construct a risk neutral measure that 
prices all assets. Bjork(2009) shows that the affine family is the only tractable family that satisfies both 
conditions. Yet it is a very restricted specification which is claimed to be unable to model important 
features of the data such as the very low short interest rates we see today. See Duffee(2002) and 
Christensen and Rudebusch(2013) for example of these criticisms. 

To compute term premiums, it is necessary to compute the expectation of the future instantaneous 
short rate, r(s) 

⎡ T

− r (s ) ds ⎤∫
term premium ⎢ t ⎢= P t T,   − E e .  

⎢ ⎢ 
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The difference between this expectation and the current bond price is interpreted as a term or risk 
premium.  The standard approach to estimating bond prices is to specify a risk neutral measure, Q which 
satisfies 

⎡ T 

− ∫ r (s ) ds ⎤ 
P = Q ⎢ t ⎢

t T,  Et  e 
⎢ ⎢ 
⎢⎣ ⎢⎦ 

(2) 

The estimation of a term structure involves estimating both an empirical measure often called P as in 
(1), and a risk neutral measure, Q. The risk premium embedded in some security such as a forward rate, 
is the difference between the risk neutral and empirical specification. 

(3) Risk Pr emium = E Q ( f i P i 
t h= )  - E ( ft h= ) 

This can be done tractably with positive rates, only for members of the affine class.  Yet affine processes 
are widely recognized as being restricted representations of the data which require some adjustment for 
the zero lower bound on rates.  A recent extension of the affine models by Monfort, Pegararo, Renne 
and Roussellet(2014) is a promising approach. 

Forecasting applications such as Diebold and Rudebusch(2013),  and Diebold and Li(2006) and 
risk management applications like Christensen, Lopez and Rudebusch(2013) and Muller, Dacorogna and 
Blum(2010) focus on good statistical representations of the data without requiring that the term premia 
be computable.  The term structures from these methods are approximately arbitrage free but do not 
allow closed form solutions for the pricing kernel. The forecasting applications are focused on the mean 
of the future distribution of yields, while the risk management applications are more focused on the 
range and probability of extreme outcomes. 

We follow this route. We develop an econometric model that is suitable for forecasting and 
scenario generation in the risk management context. Like the Heath Jarrow and Morton(1992) model, 
we focus on forecasting models for the forward yields that restrict them to be non-negative and mean 
reverting.  The model implies term premia but these cannot be calculated in closed form. 

3. Econometric Specification 

Yields of zero coupon bonds are carefully estimated by Gurkaynak, Sack and Wright(2006) using 
a generalization of the Nelson Siegel term structure model due to Svenson to infer zero rates from 
detailed historical quotes from off the run treasuries.  These yield curves are constructed daily and 
updated weekly for a range of maturities greater than a year.  We supplement their data with a six 
month series from the FED’s form H-15. We focus on the widely reported maturities that are most 
actively traded although the model can easily be extended to cover more maturities. We analyze nine 
maturities from 1993 to May 2015 which is roughly 5000 observations per series.  These are six months, 
one year, two years, three years, five years, 7 years, 10 years, 20 years and 30 yearsi. We denote these 



 

 

zero coupon yields as ri 
t , the yield to maturity observed on day t for maturity τi at the set of 

maturities 

τ ={τ1,...,τ9 }={0.5,1, 2,3,5,7,10, 20,30} . (4) 

The data are transformed into forward rates. These rates are the natural forwards with 
maturities given by the difference between successive yields. Thus there is a six month, forward which 
starts in six months and a one year forward starting in one year and one starting in two years. These will 

be labeled for the ending date.  Thus f i 
t is the forward rate observed on day t for a contract starting 

at t + τi-1 and ending at the next higher yield maturity, t + τi .

Forward rates are computed assuming continuous compounding.  These match the cash flows 
from investing in a zero coupon bond of maturity τi-1 and then putting the proceeds into a forward of

maturity τ τi , i-1 , with the cash flow from investing in a single zero coupon bond of maturity τi .

f i r iτ - r i-1
t i t τ

= i-1
t τi -τi-1 

(5)

The same relation is easily inverted to compute the yields as a function of predicted forwards. 

An arbitrage free term structure model must have a zero probability that a forward rate is 
negative. ii To ensure this condition, the forward rates are transformed before modeling.  The common 
transformation is the log transform which is simply to model the natural log of the forward rates. Thus 

yi 
t = log( f i 

t ) (6) 

An alternative is to use a linear transform for higher rates and a log transform for low rates, 
constraining the transform so that it is continuously differentiable at the switch point. This 
transformation has the advantage that it only affects very low rates and does not magnify the volatility 

of high rates by exponentiating the predicted values. Thus if the switch is given by f , then   

⎪⎰⎪ f i 

y ⎪
t =

t if f i 
t > 

i 
f 

 ⎨  
⎪ ⎪a +b log i i

⎪ ( f t ) if f ≤ f⎱ t 

(7) 

and   

a = f (1 - log ( f )) , b = f (8)

which will make the function continuously differentiable and strictly monotonic for all positive f.  The 
function is easily inverted so that simulations of y can be transformed into simulations of f.  Because 



these transformations are non-linear, expectations will not transform directly but quantiles will.  Closed 
form solutions for term premiums will not be available but confidence intervals and medians will be. 

This transformation serves the same function as the popular shadow rate model. The process 
that is modeled, in this case y, can go negative but the effective forward rate cannot.  Future rates can 
go very close to zero and because the process is very persistent, they will remain there for substantial 
time as y becomes quite negative.  However, the process is ultimately mean reverting so rates will adjust 
to historical averages. 

In the empirical work, a switching point for the transformation must be assumed.  With very 
little experimentation, we will use 1% so that all rates above 1% are used linearly and rates below 1% 
are transformed into logs. In this case we simply have a=b=1 in (8). 

The transformed forward rates are modeled as a reduced rank vector autoregression with errors 
that are allowed to have asymmetric volatility processes and time varying correlations. The vector 
autoregression has reduced rank to reflect the factor structure.  The model is specified as follows: 

(9) y t - =μ A( y  -μ ) +H  1/2 
t-1 t εt  , A=ϕθ ', H t = Dt Rt D  t , εi  ~ i i. . d  . N  (0, I ) 

The matrices (ϕ θ, ) are 9x3 matrices that reflect the factor loadings of the three factors and ensure the 

factor structure of the model.  The theta matrix just reflects the Nelson-Siegel regression. The three 
factors are interpreted as level, slope and curvature in the NS framework and are estimated by a cross 
sectional regression which has the same regressors every day. To be precise, consider the model 

yi y τ i
t  = t  = L S  t + t (exp ( −λτ )) + C (λ τ exp (−λτ )) + ετ

i t i i t (10) 

Consequently, each factor is just a time invariant linear combination of the y’s which we denote by 
theta.  We use the value λ = 0.0609 following Diebold and Li(2006) and others. An alternative to the 
NS factor structure is to use principle components. The performance is very similar and is reported in 
some cases below. The matrix phi is estimated in equation (9).  The matrix D is diagonal with 
asymmetric GARCH volatilities on the diagonal, each specified to be GJR-GARCH.  The correlation matrix 
is specified to be a DCC correlation process with just two parameters determining the 9x9 correlation 
matrix which gets updated every day. 

The DCC specification makes it easy to estimate this model equation by equation.  Defining the 

factors as Ft = θ ' yt , there are nine equations that look as follows: 

y i t = +μi ϕi F t-1 +ei t, e = hi
i t, t  εi t , , (11) 

h i = +ω α e 2 2 i
t  i  i  i t  , 1- +γ i  ei t  , 1- I e  +βi i , t  -<1 0  

ht  -1

These are simply univariate GARCH models with lagged factors as regressors. The standardized 

residuals, {εi t, }are then fitted with a standard DCC to estimate the conditional correlations. 



Once the model has been estimated, it is straight forward to simulate it.  The shocks can be 
drawn from the historical distribution or simulated with a standardized distribution such as the 
Gaussian.  If they are drawn from the historical distribution, then it may be natural to allow them to be 
generated by a non-parametric copula as in Brownlees and Engle(2010).  The results presented below 
use normal random variables for the simulations. For some sample periods, the VAR in (9), has a 
maximum root that is greater than or equal to one.  This would make the entire process non-stationary 
and lead to confidence intervals that grow with the horizon of the simulation.  Consequently the A 
matrix will be slightly adjusted as follows 

A* = -A ξI (12) 

The value of ξ is chosen so that the maximal eigenvalue of A* is equal to .999 or else is just its 
estimated value. In the implementation of equation (11), the mean of y is computed initially and the 
entire analysis is done on demeaned data.  The means are then added back after the simulation.  This 
insures that the shrinkage in (12) does not also affect the mean of the forecasts, only the rate of decay. 

4. Results 

The model described in equation (11) is estimated using daily data from Gurkaynak, Sack and 
Wright(2006) from October 1993 through March 2015. Forward rates are constructed from their zero 
coupon bond yields.  The forwards are then transformed with either log or log-linear transformations. 
The factors are computed from a cross sectional Nelson Siegel regression and then are used as lagged 
explanatory variables in the main equation.  This is estimated allowing for asymmetric 
heteroskedasticity and cross equation dynamic conditional correlation.  A Gaussian quasi likelihood 
function is used in each case. 

The parameter estimates for the factor loadings in the log forward reduced rank VAR are given in Table 
1A below. The GJR GARCH parameters are presented in table 1B and the DCC parameters are given in 
Table 1C. 

Table 1. about here 

These parameter estimates are generally highly significant.  The factor loadings are almost all 
very significantly different from zero.  The GARCH parameters are somewhat different from those 
expected in equity markets. The asymmetric term is often not significant and the alpha is larger usual.   
The persistence is generally quite high and when combined with these larger alphas, implies a high 
volatility of volatility.  Correlations are estimated to be changing dynamically but with more volatility 
than is typical of equity market data. 

An important feature of this model – and many popular models in the literature, is that the 
residuals have substantial autocorrelation. The first lag of the residuals from these 9 equations for the 
forward maturities is given in Table 2. 



Table 2 about here 

Similar results are found for the log linear transformation. The parameters are apparently well 
estimated but the residual autocorrelation is very substantial. 

A natural solution to this problem is to add lagged factors or lagged dependent variables. 
Unfortunately, adding lagged factors makes little difference and adding lagged dependent variables 
reduced the factor structure as the lagged dependent variable becomes by far the most significant 
variable. 

In order to develop a better model, it is essential to determine the source of the 
autocorrelation. 

5. Measurement Errors 

A more conventional approach to forecasting the yield curve is to forecast the factors and then 
compute the yields assuming no errors. Thus the model is specified as 

yt = µ δ+ ' F t
(13) 

F = AF + H 1/2 
t t −1 t ε t 

The first equation in (13) models the relation between the contemporaneous value of the factors and 
the forwards.  Whether the factors are generated by a Nelson-Siegel procedure, by principle 
components or by a specific economic assumption such as the short rate, this equation maps factor 
forecasts onto all the yields. The yields are assumed to be exact linear combinations of the factors.  In 
this case the forecast errors observed in equation (11), are simply the errors in forecasting the factors in 
(13).  

However, there may be errors in the first equation of (13) which we shall call measurement 
errors or in the language of equity analysis, idiosyncratic errors. Then the residuals from (11) are a 
combination of measurement errors and factor forecast errors. We define the vector u as the 
measurement error in 

yt -δF t - =μ ut  (14) 

A regression of transformed forwards on the factors has residuals that are estimates of the 
measurement errors. These measurement errors are generally assumed to be small and are ignored in 
the simulation and forecasting of the model.  See for example Diebold and Li(2006) and Christensen 
Lopez, and Rudebusch(2012). 

With our data, the R2 of the time series regressions on the first equation, whether estimated 
with NS or PC, is typically greater than 95% and often above 99%. However, the errors are still 
significant.   These errors affect not only the yields on date t but also affect the factors in t+1 and later, 
which would affect the yields in the future.  Furthermore, the measurement errors have persistence that 
further influences multi-period forecasting. 



To assess the importance of the measurement errors, we now compare the specifications in (11) 
and (13).  The forecast errors in the reduced rank model are composed of both forecasting errors for the 
factors and measurement errors.  Thus it is interesting to compare the variance of the measurement 
errors with the variance of the reduced rank forecast errors.  In Table 3 below, we examine these ratios 
by comparing the square of the standard error of the measurement errors with the average of the 
GARCH variance of the reduced rank equation. The results are similar but even more striking when the 
equation in (11) is estimated with least squares. 

Table 3  about here 

Not only are the measurement errors big relative to the total forecast errors, but they are also 
highly persistent.  The first order autocorrelation from the 3PC model is given in Table 5 below. The 
column AR(1) is estimated jointly with the factor loadings using 3 Principle Components.  The 
AUTOCOR(1)is simply the first order autocorrelation of the residuals from the least squares fit. Both 
estimates clearly show how persistent these measurement errors really are. 

Table 4 about here 

6.  Quasi-Differenced Factor Models 

A solution to this modeling problem is to quasi difference the transformed forward rates before 
projecting them onto the Factors.  This simple procedure reduces the serial correlation dramatically and 
yet allows the factors to shape the yield curve and its dynamics. 

Let u be the measurement error and 𝜈 be the factor forecast error. Then (9) becomes 

y t =ϕF t-1 + +μ u t  +ϕ𝜈 t (15) 

Assume that u is autocorrelated but that 𝜈 is not. Then 

u t = ρu t-1 +η t (16) 

and consequently, from (14) (15) and (16), 

y t =ϕF t-1 + +μ ρu t-1 +ηt +δ𝜈  t 
y t =ϕF t-1 + +μ ρ( y t-1 -δF t-1 -μ)+η t +δ𝜈  t 
y t -ρ yt-1 = μ(1 -ρ)+(ϕ  -ρδ  )Ft-1 + +η t δ𝜈 t

(17) 

Thus by simply quasi-differencing the transformed forwards, we can eliminate the impact of the 
measurement errors.  The estimated factor loadings will have a somewhat different interpretation; 
however the model can be estimated and simulated as before. 



Thus we estimate the following model as the quasi-difference model 

y − −µ ρ ( y − µ) = φ* F + H 1/2 
t t−1 t −1 t ε t (18) 

where H is a GARCH-DCC process and θ* = -ϕ ρδ .  The key feature of this model is that ρ is the same 

for each equation and is specified in advance.  The quasi differencing of each forward reduces the 
importance of the measurement errors but retains the impact of the factors. This model is completely 

easy to estimate and to simulate.  Remembering that the factors are defined by Ft = θ ' yt , it is clear 

that the evolution of the factors is governed by 

 F = (ρ I +θ φ' * )F +θ ' H 1/ 2 
t t−1 t ε t (19) 

Thus the factors will be stationary if the maximum eigenvalue of (ρ I +θ φ' *  ) = ( ρ I +θ φ' −  ρθ ' )δ  is 

less than one and this is sufficient for all the yields to be stationary. 

In the implementation here, rho=.9.  This value could easily be improved but it is a 
compromise between whitening the residuals and forecasting the factors.  It is clear that if rho=1 and 
delta is very similar to phi, then the effect of the factors is eliminated and the pricing model will just be a 
set of independent random walks. For the same data set and the log linear transformation, the 
estimated parameters are given in table 5.  The three parts again are the factor loadings in 5A, the 
GARCH parameters in 5B and the DCC in 5C. 

Table 5 about here 

The same model has been estimated for the log but the parameter estimates will not be 
reported. These models have much better residual properties than the base models without quasi-
differencing.  This can be seen by comparing the autocorrelations and squared autocorrelations in Table 
6. Although some of these correlations are significant statistically because of the large sample size, they 
are economically small. 

Table 6 about here 

7.  Simulated Forwards 

For each forward rate, 1000 simulations are carried out for a 10 year horizon.  The simulation is 
done with the estimated reduced rank VAR with DCC-GARCH errors in equation (11).  The data are 
demeaned so that each series has mean zero. The process is as follows: 

1) Gaussian shocks for day 1 of the simulation are drawn for each maturity. 

2) To match the correlation structure, these shocks are multiplied by the Cholesky decomposition of the 
predicted correlation matrix. 



3) The shocks are multiplied by the conditional standard deviation 

4) The errors are then added to the predicted mean based on the factors and factor loadings to give the 
day 1 values of the transformed forwards. 

5) These values are used to update the factors, the volatilities and the correlations. 

6) The cycle continues with step 1 again. 

Then 

a) The mean is added back to get predicted transformed forwards. 

b) The inverse transform is invoked to obtain scenarios of forwards 

c) The forwards are combined to get yields 

d) The 5%, 50% and 95% quantiles of the yields and forwards are recorded 

Figure 1, shows the simulation of the 6month forward rate from the quasi-differenced log-linear 
forward reduced rank VAR model.  Over the next 10 years this model expects the short rate to rise to a 
median value of about 2.2% by 2024.  However the confidence interval between the 5% and 95% 
probabilities is quite wide. There remains a sizeable probability of very low short rates over the next ten 
years and the upper level stabilizes at about 5.2%.  After 10 years it is unlikely that the distribution of 
short rates will depend upon anything except the historical data.  In fact the historical 5% and 95% 
quantiles are (.06, 6.08). 

In Figure 2, the forward rate from 7 to 10 years, is simulated for the next ten years based on the 
quasi-differenced, log linear transformation and the RRVAR. The rate today is under 3% but the steady 
state is about 5.5% with a confidence interval of approximately (3%,7%).  In the data, this interval was 
(3.4%, 8.1%).  Again, the steady state appears to be reached by 2018.  This however is not true of all 
maturities or models. For this model, the short rate does not reach its steady state until 2025. 

Combining the forwards together to generate yields allows us to look at a confidence interval for 
the whole yield curve at a given horizon.  In figures 3-6 the ten year yield curve forecasts are presented 
for the four models considered. These are the Quasi-Differenced Log-Linear Transform of forwards with 
RRVAR, and the Quasi-Differenced Log forward model as well as the base Log Linear Transform and the 
base log transform.  All four of these plots include the unconditional quantiles of the data.  At the 10 
year horizon, one might expect that the model quantiles should match the data quantiles.  If the model 
quantiles are too tight, then it is likely that the risk management role will be to underestimate risks. 
However if the intervals are too wide, then it may be that the risks will be overestimated. 

From these four plots it appears that the model intervals are generally smaller than the data but 
this downward bias is smallest for the Quasi-Differenced models and for the log-linear transformation. 
Thus from this point of view the best model is the Log Linear Transformed Quasi-Differenced model. 



8. Model Validation 

Model validation can be done be examining the fit of individual pieces of the model or by 
examining the historical performance through a backtest.  Ideally both would be employed in choosing 
the superior model. As discussed above, we have done many diagnostic tests of the residuals from the 
model and find that they are not as well behaved as they should be if the model is correctly specified. 
There is apparently a moderate amount of serial correlation at a daily level in the yield curve, 
conditional on the yield factors.  

Because we have estimated the model recursively, we can examine whether future confidence 
intervals formed at a time in the past are accurate representations of the uncertainty in the model 
forecasts.  For example, 10 years ago, what would be the confidence interval for the short rate?  Would 
it include zero or a value close to zero.  Five years ago this would still be a challenge. 

As there are many forecast dates and many horizons, it may be useful to have a systematic 
approach to backtesting this model.  Let the forecast of quantile q of yield maturity i made at date t for 

date h be denoted ri q, 
h t/ .  Then define two indicators of whether the realization is contained within a 

specific confidence interval. 

⎰⎪ 
i ⎪1 if r i i ,.95 i ,.05 ⎱ 

h ∈(rh t/ , r ⎪ 
I = ⎨ h t/ )⎪

h t/ ⎬⎪ ⎪ 0 otherwise ⎪
⎱ ⎪⎰ (20) 
⎰⎪ i i ,.50 ⎱⎪

i ⎪ 1 if r h ≤(rh t/ ) ⎪B h t, =⎨ ⎬⎪ ⎪⎪-⎱ 1 otherwise⎪⎰ 

If forecasts are initiated at T dates and evaluated at future values of these same dates, there will be 
NT(T-1)/2 values of these indicators.  For a perfect model, the mean of indicator, I should average .9.  If 
the mean is above .9 then the confidence intervals are too wide and if it is below .9, they are too small. 
Examination of the combinations of t,h and i would indicate where the model is deficient. If the mean 
of I is less than .9 when t-h is large, then the model is too confident at long horizon forecasts and if it is 
less than .9 for short maturities, then it is too confident at short maturities. 

The mean of B will indicate whether the data are above the median or below.  If the mean of B is 
positive, it means that the predicted median is greater than the realized data and conversely. 

The values of I and B will not be independent and therefore the sampling properties are not 
simple to assess. For a particular i and a particular t-h there will be non-overlapping forecasts that could 
be considered independent.  In most cases, there will be only a very small number of independent 
forecasts.  However, for different maturities and overlapping forecasts, the dependence structure is 



complex to derive and estimate. Consequently we will use the simple mean of I and B to assess the 
backtest performance of competing models. 

One important source of bias for these models is the failure to account for other features of the 
macroeconomy. The fact that interest rates are generally lower than they were forecast to be 10 years 
ago, is due to the slowing of the US economy and the financial crisis. This information is not in the term 
structure model and its inclusion would improve forecast performance.  For this reason, the main focus 
of the backtests is on the width of the confidence intervals rather than the level.  In future versions of 
the model, macro variables will be incorporated as in Ang and Piazzessi among others. 



Maturity F1 F2 F3 
6m 1.0111 0.7141 0.2662 

(1305.50) (1460.20) (796.50) 
1yr 0.9766 0.4368 0.3309 

 (700.50)  (483.30)  (535.40) 
 2yr  1.0045  0.2477  0.323 

 (964.20)  (372.90)  (744.70) 
 3yr  1.0232  0.1222  0.2545 

 (875.30)  (157.30)  (462.00) 
 5yr  0.9796  0.0355  0.1483 

 (772.40)  (45.20)  (272.20) 
 7yr  0.9762  0.0176  0.0397 

 (686.50)  (22.20)  (67.60) 
 10yr  0.9189  -0.0266  0.0084 

 (602.60)  -(29.20)  (14.60) 
 20yr  1.0055  0.045  -0.0459 

 (685.20)  (52.00)  -(89.30) 
 30yr  0.7802  -0.0424  -0.0075 

 (489.80)  -(49.20)  -(11.90) 
 

  

TABLES  

Table 1A.  

Coefficients and T-Statistics for Reduced Rank VAR on Log Forwards  

Factors constructed from Nelson Siegel on  

Daily data from 1993 to 2015 May  

Factor Loadings  



Maturity Omega Alpha Gamma Beta 
 6m  0.0002  0.1943  0.0153  0.7927 

 (14.06)  (20.32)  (3.10)  (91.96) 
 1yr  0.0005  0.2341  0.0061  0.7445 

 (17.62)  (26.66)  (1.40)  (97.27) 
 2yr  0.0001  0.0645  0.0066  0.9189 

 (12.89)  (17.77)  (3.54)  (235.31) 
 3yr  0.0001  0.0859  -0.0038  0.907 

 (16.29)  (24.97)  -(2.75)  (266.72) 
 5yr  0.0003  0.1703  -0.0044  0.8132 

 (28.35)  (43.54)  -(2.26)  (225.43) 
 7yr  0.0003  0.2149  0.0027  0.7759 

 (28.96)  (56.20)  (1.26)  (258.84) 
 10yr  0.0006  0.2871  0.0086  0.6908 

 (27.41)  (51.26)  (2.53)  (140.25) 
 20yr  0.001  0.3703  0.0143  0.5965 

 (22.36)  (35.52)  (2.54)  (68.67) 
 30yr  0.0009  0.4364  0.008  0.5596 

 (16.42)  (33.73)  (1.31)  (53.10) 
 

 Alpha  0.1378 
 (91.68) 

Beta   0.8563 
 (557.32) 

 

  

Table 1B  

GARCH Parameters  

Table 1C   

DCC Parameters   



  
     
   

  

 
 
 
 
 

 

Table 2   

First  Order Residual Autocorrelation of  log forward RR  VAR   

Mat Auto 
6M  0.5198  
1YR  0.6080   
2YR  0.2877  
3YR  0.3745    
5YR  0.5911    
7YR  0.7207    
10YR  0.6893    
20YR  0.7264    
30YR  0.8227  



 
      

            6m  0.995  0.635  0.914  0.373  0.567  
1yr  0.941  0.789  0.682  0.659  0.768  
2yr  0.897  0.867  0.705  0.445  0.407  
3yr  0.952  0.914  0.908  0.567  0.540  
5yr  0.933  0.849  0.859  0.756  0.763  
7yr  0.570  0.492  0.545  0.812  0.898  
10yr  0.848  0.792  0.713  0.780  0.893  
20yr  0.938  0.623  0.694  0.872  0.891  
30yr  0.758  0.637  0.535  0.850  0.745  

 

 

 
   

 6m  0.9973  0.9819 
1yr   0.9694  0.9684 
2yr   0.9973  0.9862 
3yr   0.9990  0.9965 
5yr   0.9991  0.9973 
7yr   0.9947  0.9809 

 10yr  0.9990  0.9970 
 20yr  0.9982  0.9916 
 30yr  0.9984  0.9926 

 
 

  

Table 3   

Measurement Error Variance Relative to Total Forecast  Error Varianceiii

NAME LS_PC_LOG PC_LOG PC_TRANS NS_LOG NS_TRANS 

Table 4   

Autocorrelation o f measurement Errors   

NAME AR(1) AUTOCOR(1) 



 Maturity  F1  F2  F3 
 6m  0.102  0.070  0.027 

 (220.07)  (224.83)  (140.91) 
 1yr  0.097  0.045  0.032 

 (109.00)  (83.88)  (92.92) 
 2yr  0.100  0.025  0.032 

 (130.92)  (51.66)  (100.99) 
 3yr  0.101  0.012  0.026 

 (124.88)  (23.33)  (75.17) 
 5yr  0.102  0.003  0.016 

 (125.29)  (6.59)  (47.47) 
 7yr  0.100  0.001  0.005 

 (121.69)  (2.87)  (14.62) 
 10yr  0.098  0.002  -0.002 

 (116.99)  (3.77)  -(5.28) 
 20yr  0.099  0.004  -0.005 

 (141.97)  (8.71)  -(17.41) 
 30yr  0.085  -0.002  -0.002 

 (89.60)  -(3.31)  -(5.34) 
 

  

Table 5A   

Parameter Estimates for  Quasi-differenced Log-Linearly Transformed Forwards   



 Maturity  Omega  Alpha  Gamma Beta  
 6m  0.0000472  0.0728  0.1173  0.8685 

 (14.17)  (6.98)  (9.14)  (149.23) 
 1yr  0.0000534  0.0399  0.0175  0.9441 

 (7.47)  (8.01)  (3.65)  (187.85) 
 2yr  0.000055  0.0292  0.0197  0.9518 

 (11.25)  (9.49)  (5.79)  (300.98) 
 3yr  0.0000461  0.0405  -0.0001  0.9519 

 (11.99)  (13.32)  -(.05)  (315.52) 
 5yr  0.0000354  0.0396  0.0015  0.9536 

 (9.72)  (12.79)  (1.50)  (295.74) 
 7yr  0.0000242  0.04  0.0028  0.9546 

 (6.76)  (13.83)  (2.64)  (299.18) 
 10yr  0.0000397  0.0443  0.0007  0.9474 

 (5.82)  (14.73)  (.62)  (244.37) 
 20yr  0.0000359  0.0365  0.0081  0.9494 

 (5.49)  (10.64)  (4.03)  (211.84) 
 30yr  0.0001654  0.091  -0.022  0.905 

 (9.53)  (6.44)  -(2.94)  (79.98) 
 

 Alpha  0.0386 
 (12.65) 

Beta   0.9592 
 (328.97) 

 

  

Table 5B   

GARCH Estimates  for  Quasi Differenced Log Linearly Transformed Model   

Table 5C   

DCC Parameter Estimates   



 

 
   

 6_m  0.012  0.004 
 1_yr  -0.043  -0.013 
 2_yr  0.037  0.001 
 3_yr  0.034  -0.008 
 5_yr  0.056  -0.016 
 7_yr  0.108  0.022 

 10_yr  0.132  0.030 
 20_yr  0.102  -0.015 
 30_yr  0.157  -0.002 

 
 

 

 

  

Table 6   

Autocorrelation of Residuals in Quasi-Difference  Log  Lin Model   

MATURITY AUTO1 AUTOSQ1 



FIGURES  

Figure 1  

Simulated Short Rate from quasi-differenced log-linear transformed forward in Reduced  
Rank VAR  



Figure 2  

Simulated 10 year forwards from quasi-differenced log-linear transformed forward in  
Reduced Rank VAR  



Figure 3  

Simulated yield curve after 10 years from quasi-differenced log-lin transformed forwards  
in RRVAR  

Plot includes quantiles of the original data as well  



Figure 4  

Simulated yield curve after 10 years from quasi-differenced log forward RRVAR  

Plot includes quantiles of the original data as well  



Figure 5  

Simulated yield curve after 10 years from log forward RRVAR  

Plot includes quantiles of the original data as well  



Figure 6  

Simulated yield curve after 10 years from log-lin transformed forwards in RRVAR  

Plot includes quantiles of the original data as well  
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i 

 

 

As the thirty year bond was discontinued for part of the sample period, we use the Treasury’s interpolation based  
on the 20 year bond prices. 
ii This assumes that the nominal yield on holding cash is zero.   If indeed, this is negative because of storage costs,  
then this lower bound would be slightly negative. 
iii These models use three principle components as the factors.  Results with Nelson Siegel are similar or slightly  
worse as the Nelson Siegel factors are not quite as effective at reducing measurement errors as principle  
components.  
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