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Abstract 
This paper proposes a two-stage method for estimating parameters in the frac­

tional Ornstein–Uhlenbeck model based on discrete-sampled observations. In the 
first stage, two “diffusion” parameters (i.e. the Hurst parameter and the volatility 
parameter) are estimated based on the second order differences obtained at two dif­
ferent time scales. Their asymptotic theory is established under an in-fill asymptotic 
scheme. In the second stage, the two drift parameters are estimated based on the 
ergodic theorem. Their asymptotic theory is established under a double asymptotic 
scheme. Extensive simulation studies show that the proposed estimators perform 
well. Two empirical studies are carried out. The first empirical study, based on 
the daily VIX data over 2004-2017, shows that VIX is rough. The Hurst parameter 
is slightly but statistically significantly less than one half. It also shows that the 
persistence parameter is much larger than one divided by the time span, suggesting 
that a commonly adopted assumption in the literature can be too strong. The sec­
ond empirical study, based on the daily realized volatility of S&P 500, DJIA and 
Nasdaq over 2011-2017, shows that the Hurst parameter is much less than one half 
and the persistence parameter is significantly larger than one divided by the time 
span. 
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1 Introduction 
Over the last few decades, the phenomenon of long-range dependence has been found 
in data from hydrology, geophysics, climatology and telecommunication, economics and 
finance. Consequently, several time series models have been proposed to capture long-  
range dependence, both in discrete time and in continuous time. In economics and finance, 
a partial list of references include Granger and Joyeux (1980), Lo (1991), Ding et al. 
(1993), Cheung (1993), Baillie (1996), Baillie et al. (1996), Andersen et al. (2003) in the 
domain of discrete time and Comte and Renault (1996, 1998), Aӧ1t-Sahalia and Mancini 
(2008), Comte et al. (2012) in the domain of continuous time. Comte and Renault (1996) 
established the connection between the two classes of models. Typically in continuous 
time, to capture long-range dependence, the standard Brownian motion (W  t  ) is replaced 
with a fractional Brownian motion (B H  

t  , fBm hereafter) where H ∈ (0, 1) is the Hurst  
parameter. When H is greater than one half, B H  

t generates long-range dependence. Some  
surveys on fBm can be found in Biagini et al. (2008), Mishura (2008) and Kubilius et al. 
(2017). 

When H is greater than or equal to one half, the smoothness of the sample path of 
B H  

t is the same as that of W  t. Namely both B  H  
t and W  t are 1/2 − ∈-Hӧolder continuous,  

for any ∈  > 0. However, in a seminar study, Gatheral et al. (2018) shows that the  
logarithm of realized volatility is too rough for B H  

t with H  ≥ 1/2.  Instead Gatheral  
et al. (2018) proposes to model volatility using the fractional Ornstein–Uhlenbeck (fOU  
hereafter) process driven by B H  

t with H           < 1/2 and called it the rough volatility model. To  
see the difference between the smoothness of B  H  

t with different values of H, Figure 1 plots  
three simulated paths from B  H  

t , with H =             0.5, 0.7, 0.15. Also plotted is the logarithm of 
daily realized volatility of S&P 500. It can be seen clearly that the sample path of B H  

t 
with H =              0.15 is rougher than those with H =              0.5, 0.7. The real data also exhibits the 
feature of roughness. 

Moreover, Gatheral et al. (2018) shows that when the persistence parameter (κ) 
in fOU is much smaller than one divided by the time span, fOU behaves locally as a 
fBm. Based on this assumption, Gatheral et al. (2018) documents the evidence that 
the logarithm of realized volatility behaves essentially as a fOU with H ≈ 0.1 at any 
reasonable time scale. Moreover, Livieri et al. (2018) finds the strong support to fOU 
with H   < 1/2 using implied volatility-based approximations of spot volatility while Bayer 
et al. (2016) found the strong support to fOU with H   < 1/2 using the SPX volatility 
surface and variance swaps. Gatheral et al. (2018) and Bennedsen, et al (2017) reports 
the superior forecasting performance of fOU with H   < 1/2 relative to the heterogeneous 
autoregressive (HAR, hereafter) model of Corsi (2009). Not surprisingly, rough volatility 
models have found in many applications, including option pricing (Bayer et al. (2016) 
and Garnier and Sølna (2017)), portfolio choice (Fouque and Hu, 2018), and dynamic 
hedging (Euch and Rosenbaum, 2017). 

Consequently, parameter estimation of fOU has been of great interest in theory and 
in applied work. In particular, under the assumption of a known H and a known long 
term mean (set to zero), tremendous efforts have been made to estimate the persistence 
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Figure 1: Plot of fBm with different Hurst parameter and the time series of log(RV) for S&P 
500 

parameter (κ) in fOU and to develop the asymptotic theory when a continuous record over 
an increasing time span is available. Alternative estimation methods include maximum 
likelihood estimation (MLE hereafter) (Kleptsyna and Le Breton (2002), Tudor and Viens 
(2007), Tanaka (2014)), least squares estimation (LSE hereafter) (Hu and Nualart (2010), 
Hu et al. (2018), Xiao and Yu (2018a)), minimum contrast estimation (Tanaka, 2013), 
and ergodic-type estimation (Hu and Nualart (2010), Xiao and Yu (2018a)). However, in 
practice, it is only possible to have discrete-sampled observations rather than a continuous 
record of observations. With discrete-sampled data, Tudor and Viens (2007) studies MLE 
of κ and develops its in-fill asymptotic distribution. Es-Sebaiy (2013) and Kubilius et al. 
(2015) study LSE of κ and develops its double asymptotic distribution. Brouste and Iacus 
(2013), Kubilius et al. (2015), Hu et al. (2018) study the ergodic-type estimator of κ and 
develops its double asymptotic distribution. Comte and Renault (1996) proposes to use 
the log-periodogram regression to estimate H and then estimate the other parameters by 
first obtaining the differentiated series based on the estimated H and second using the 
Bergstrom-type estimation technique. 

In practice, all parameters including H are unknown and have to be estimated. More­  
over, given the discussions above, it is desirable to develop an estimation method and 
asymptotic theory for a general value for H as H can be greater than one half or less than 
one half in practice. Furthermore, some important assumptions made in the literature are 
testable hypotheses. One example is the assumption about the value of H that H is either 
greater than one half or less than one half. To test the hypothesis that H =  1/2 (either 
left-sided or right-sided or two-sided), an asymptotic theory for H is needed. Another 
example is related to the assumption about κ that κ is much smaller than one divided by 
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B  H B  H  𝔼 = R  H (s, t)  = |t|  2H + |s|  2H −  |t − s|  2H  . t  s  2 

the time span. To test such a hypothesis, an asymptotic theory for κ is needed. 
In this paper, based on discrete-sampled observations, we estimate all four parame­  

ters in fOU for a complete range of Hurst parameter, namely H ∈ (0, 1). In particular, 
a two-stage approach is developed for parameter estimation. In the first stage, the two 
“diffusion” parameters (i.e. the Hurst parameter and the volatility parameter) are esti­  
mated based on the second order differences at two different time scales. Their asymptotic 
theory for these two parameters is established under an in-fill asymptotic scheme. In par­  
ticular, the proposed asymptotic theory for H covers all H ∈ (0, 1). In the second stage, 
the two drift parameters are estimated based on the ergodic theorem and the plug-in 
method. Their asymptotic theory is established under a double asymptotic scheme. The 
asymptotic theory for κ critically depends on regimes for H. 

The remainder of the paper is organized as follows. In Section 2, we introduce the 
model and our two-stage approach for parameter estimation. Asymptotic theory of the 
proposed estimators is developed in Section 3. Section 4 conducts Monte Carlo studies 
to check finite sample properties of the proposed estimators. Section 5 carries out two 
empirical studies using real data. Some important hypotheses are also tested in this 
section. Section 6 gives concluding remarks and discusses some open questions. The 
technical proofs are given in the Appendix. 

p  a.s.  𝓛  →, →, −→ We use the following notations throughout the paper: and ∼ denote conver­  
gence in probability, convergence almost surely, convergence in distribution and asymp­  
totic equivalence, respectively. For any matrix A, we denote its transpose by A  ' and its 
(i, j) component by A  ij . Moreover, let n, δ and T be the sample size, the sampling inter­  
val, and the time span of the data, respectively. In particular, we assume that T/δ = n 
is an integer and fOU is observed at the following discrete points in time, t  k = kδ with 
k =        0, 1, 2,        .        .        .        ,        n. Obviously T = nδ is the time span. Throughout the paper, we denote 
a generic constant by C, which maybe context-dependent. 

2 The Model and Estimators 
The fOU model that we are interested in is given by the following stochastic differential 
equation: 

 dX  t = κ (µ − X  t  ) dt + σdB  t  
H  , (2.1) 

where σ ∈ ℝ  + , µ ∈ ℝ, κ ∈ ℝ  +, the initial condition is set at X  0, and B  H 
t , a fBm with 

Hurst parameter H ∈ (0, 1), is a zero mean Gaussian process with covariance 

(2.2)

The process B  H 
t becomes the standard Brownian motion    W  t when H =   1/2. It is nega­  

tively correlated when (  0             ∑  <    H    <    1/2.    When  ) 1/2    <    H    <    1,    it  has    long-range  dependence  in  
the sense that  ∞ 𝔼 B  H (B  H − B  H 

n=1 1 n+1 n  )  = ∞. In this case, the positive (negative) incre­  
ments are likely to be followed by positive (negative) increments. The exact discrete-time 
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) ∫ lδ ( 
X  lδ = µ + e −κδ X  (l−1)δ − µ + σ  e −κ(kδ−s)  dB  H . s 

(l−1)δ 

 ∑
 ∑
T  /δ 

|X  iδ − 2X  (i−2)δ + X  (i−4)δ  |  2 

i=4 → 2  2H  p  
. 

T  /δ 
|X  iδ − 2X  (i−1)δ + X  (i−2)δ  |  2 

i=2 

representation of (2.1) is given by  

(2.3)

When κ  > 0, X  t is asymptotically stationary and ergodic. 
In Model (2.1), there are four parameters, two “diffusion” parameters, H and σ, and 

two drift parameters, κ and µ. 1 Parameter κ determines the persistence in X  t. Since we 
assume κ  > 0, X  t reverts to its long-run mean µ at the speed determined by κ. That is 
why sometimes κ is called the mean reversion parameter. Because of the ongoing debate 
about empirically relevant values for H in the volatility literature, in this paper, we set 
the parameter space for H to be (0, 1) and use discrete-sampled observations to estimate 
all four parameters, H, σ, µ and κ. 

In particular, we employ a two-stage estimation procedure in the same spirit as that 
in Phillips and Yu (2009b). However, in each stage the estimation method we will use is 
different from that in Phillips and Yu (2009b). In the first stage, we estimate H and σ 
based on the method of Barndorff-Nielsen et al. (2013). Consistent estimation of these 
two parameters does not require any knowledge about κ and µ. The key insight for this 
property is that as δ → 0, the order of magnitude of the “diffusion” term is larger than 
that of the drift term. Therefore, the development of asymptotic properties of estimators 
of H and σ only requires δ → 0. This asymptotic scheme is termed the in-fill scheme. 
In the second stage, following Hu and Nualart (2010) and Xiao and Yu (2018a, 2018b), 
we estimate κ and µ based on the ergodic theorem. As typically found in the literature, 
the development of asymptotic properties for drift parameters requires T →  ∞ as well 
as consistent estimation of “diffusion” parameters. Hence, a double asymptotic scheme is 
needed to obtain consistency and asymptotic theory for κ and µ. 

2.1 Estimating the “diffusion” parameters 
To explain the estimation procedure and to establish the asymptotic theory for the “dif­  
fusion” parameters, in the first stage, we make use of an important result derived in 
Barndorff-Nielsen et al. (2013) for the second order differences at two different time 
scales. According to Barndorff-Nielsen et al. (2013), for any fix T and any κ, µ and σ, as 
δ → 0, 

1Strictly speaking, fOU is not a diffusion process as it does not have the Markov property. 
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[√√√ 
T  /δ  

T  τ 
i=2  

 ∑|| || δ  2 
σ̂  = X  iδ − 2X  (i−1)δ + X  (i−2)δ  , 

Motivated by this result, we propose the following estimator for H  ( )  
T   ∑/δ {  |X  iδ − 2X  (i−2)δ + X  2  

(i−4)δ  |  {  1 ˆ  {  {  
H =  log  2 {  i=4  {  ,  

2  {  T   ∑/δ { 
|X  iδ − 2X  2 

(i−1)δ + X  (i−2)δ  |  
i=2 

(2.4) 

where log  2 is the base-2 logarithm. 
Based on the estimator of H  , we can obtain a plug-in estimator for σ using the 

quadratic variation of the second order difference, i.e., 

 where  Ĥ  Ĥ  
τ  =  4δ  2H  − (2δ)  2H . 

(2.5)  

Remark 2.1. Our estimator of H is not only related to Barndorff-Nielsen et al. (2013) 
but also to Barndorff-Nielsen and Podolskij (2009). Barndorff-Nielsen and Podolskij 
(2009); Barndorff-Nielsen et al. (2013) also proposed estimators of the volatility param­  
eter for Brownian semimartingale and Brownian semi-stationary processes using power, 
bipower, or multipower variations. In this paper, motivated by Podolskij and Wasmuth 
(2013), we extend the method to fOU, which lacks the semimartingale property. 

Remark 2.2. The estimators of the Hurst coefficient and the volatility parameter can be 
easily extended to a general stochastic differential equation 

dX  t = µ (t, X  t  ) dt + σdG  t , 

where G  t is a Gaussian process with stationary and centered increments with local be­  
haviour being the same as that of B  H 

t (see Podolskij and Wasmuth (2013) for detailed 
discussions about G  t) and µ (t, X  t) may not be a linear function. Under some mild con­  

ˆ  H ditions for µ (t, X  t), we can prove consistency of and σ̂. 

Remark 2.3. Corcuera et al. (2006) considered the asymptotic behavior of the realized 
power variation for the first order difference of fractional integral processes when H ∈ 
(0, 3/4]. The present paper removes the restriction and uses the quadratic variation of 
the second order difference. In fact, we conjecture that we can use the p  th (p ≥ 2) power 
variation (or multipower variation) of the m  th (m ≥ 2) order difference to estimate H for 
H ∈ (0, 1). It is unknown if there is any efficiency gain in using a different order power 
variation or a different order difference. 
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T T 
w  H P  H (t) dS  t − S  T  P  H (t) dw  H 

T  0  0 t  κ̂  MLE = )2 ,  ( ∫ T H 
 ∫ T 2  P  H (t) dw  H − w  (P  H (t))  dw  t  

H 
0 t  T  0 

 ∫ T  ∫ T  ∫ T  
P  H (t)dS  t  P  H (t)dw  t  

H − S  T  (P  H (t))  2  dw  t  
H 

0  0 0 µ̂  MLE =  ,  
H 
 ∫ T  ∫ T 

w  P  H (t) dS  t − S  T  P  H (t) dw  H 
T  0  0 t  ∫  ∫

∫  t 1 
S  t = κ  H (t, s)dX  s ,  

σ 0 

2HΓ(3 − 2H)Γ(H + 1 ) 
2  λ  H = ,  

Γ(  3  
2 − H) 

P  H (t)  = 
σ 
1 d  ∫ t 

κ  H (t, s)X  s  ds  , H  
t  0dω  

3  1 
κ  H =  2HΓ( − H)Γ(H +  ) ,   

2  2 

t  2−2H ω  H = λ  −1 
t  H ,

1 
2  

1 
κ  H (t, s)  = κ  −1 

H s −H (t − s) −H 
2  , 

2  
0 

2 
T X  X  T T t 

s  2H  −2  e  −κs  dsdt  − α  H σ  2  (X  T − X  0  )  X  t  dt − T  − 
0 2 2 0  0 

¯  κLSE = 
T  
 ∫ T 
0 X  2 

t dt −  
( ∫ T 

0 X  t  dt  
)2 , 

2  
0 

2 
T 

( ) ∫X  X   ∫ T  ∫ T  ∫ T t 
s  2H  −2  e  −κs  dsdt  X  2 

t − α  H σ  2  (X  T − X  0  )  dt − − X  t  dt  
0 0 2 2 0  0 

2  
0 

2 
T 

µ̄  LSE = ( )
X  X   ∫ T  ∫ T  ∫ ,  

t 
s  2H  −2  e  −κs  dsdt  − α  H σ  2  (X  T − X  0  )  X  t  dt − T  − 

0 2 2 0  0 ( ) ∫ ∫  ∫

2.2 Estimating the drift parameters 
We now turn to the problem of estimating the drift parameters in fOU. We first argue 
why it is difficult to use MLE and LSE before we propose the ergodic-type estimators. 

Perhaps the leading method for estimating the drift parameters is MLE. However, 
the non-Markov property of fOU makes calculations of the likelihood function difficult. 
This is because the transition density based on discrete-sampled observations depends on 
the entire history. Consequently, obtaining analytical expression for MLE is not possible. 
Moreover, Kleptsyna and Le Breton (2002) claimed that replacing the stochastic integrals 
in the continuous-record MLE by their corresponding Riemann sums is problematic. To 
illustrate this difficulty, considering H  > 1/2 and following the idea of Kleptsyna and Le 
Breton (2002), we can obtain the MLE of µ and κ based on a continuous record: 

where 

and Γ(·) denotes the gamma function. 
Unfortunately, the process P  H depends continuously on X. The discrete-sampled 

observations on X do not allow one to obtain directly the discrete-sampled observations 
on P  H . Moreover, note that both µ̂  MLE and κ̂  MLE relies on S, which is also not observable. 
Consequently, approximations to the continuous-record MLE are numerically challenging, 
if not impossible. 

Similarly, for H  > 1/2, the continuous-record LSE of µ and κ can be explicitly repre­  
sented as in Xiao and Yu (2018a) 
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 ∑  ∑  ∑ )
 ∑  ∑ )

 ∑  ∑ )
 ∑  ∑

]([n  n 
(X  nδ − X  0  ) X  lδ · δ − nδ · X  (l−1)δ X  lδ − X  (l−1)δ − J (κ̂  LSE )  

l=0 l=1  κ̂  LSE = ( )2 ,  
n n 

nδ X  2 
lδ · δ −  X  lδ · δ  

l=0 l=0 

]([
X  (l−1)δ X  lδ − X  (l−1)δ − J (κ̂  LSE )  

n n  n 
(X  nδ − X  0  ) X  lδ 

2 · δ − X  lδ · δ · 
l=0 l=0 l=1  µ̂  LSE = , ]([n  n 

(X  nδ − X  0  ) X  lδ · δ − nδ · X  (l−1)δ X  lδ − X  (l−1)δ − J (κ̂  LSE )  
l=0 l=1

( )  ∫  ∫
ˆ  ˆ  lδ (l−1)δ Ĥ  

J (κ̂  )  = H  2H  − 1 σ̂  2 e  −κĤ  2H  −2  
 LSE ((l−1)δ−s) 

LSE  −  (r −    s)  drds  
(l  1)δ  0

 ∑1 n 

µ̂  s = X  lδ , 
n 

l=0  ∑  ∑
( )

  ( )2 1  − 
2H  ˆ  

n 
n 

l=0 
X  2 

lδ −  
n 

l=0 
X  lδ  

n  2 ̂  σ2 ˆ  HΓ 2 ˆ  H 

{  {  {  {  

{  {  {  {  
κ̂  s =  .  

where α  H = H(2H − 1). However, κ̄  LSE depends on κ which is the parameter we wish to 
estimate. We can approximate µ̄  LSE and κ̄  LSE by 

with . Obviously, 
to calculate µ̂  LSE and κ̂  LSE , numerical methods are needed, which are cumbersome. 

Motivated by Hu and Nualart (2010), Hu et al. (2018), Xiao and Yu (2018a, 2018b), 
the present paper considers the ergodic-type estimators.   ∑ Since  κ   ∑> 0, X  t is stationary 
and ergodic. Hence, we can use functions of 1 n 

l=0 X  lδ n
1 n  

l=0 X  2 
n  lδ and to estimate κ 

and µ. More precisely, based on the consistent estimators of H (defined by (2.4)) and σ 
(defined by (2.5)), we introduce the following ergodic-type estimators for µ and κ based 
on discrete-sampled observations of X  lδ,      l =      0, 1,      .      .      .      ,      n: 

(2.6) 

( )
(2.7)  

Comparing them with the ergodic-type estimators of µ and κ based on a continuous record 
proposed in Xiao and Yu (2018a), our new ergodic-type estimators replace integrals with 
the corresponding Riemann sums and plug the estimated H and σ into the expressions. 

3 Asymptotic Theory 

3.1 The “diffusion” parameters 
This ˆ  H subsection develops asymptotic theory for and σ̂ under the in-fill asymptotic 
scheme. The following ˆ  H two theorems establish consistency and the asymptotic laws for 
and σ̂, respectively. 
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σ  H  𝓛  ˆ  √ H − H − 𝓝 (0, 1) ,  → 
δ

2 T 𝓛  σ  √ (σ̂ − σ) → 0, Γ  22 ,  −  𝓝 
δ 4 

√ ( )
( )

 ∑ || ||
 ∑ || ||

 ∑
 ∑
T  /δ 

|X  iδ − 2X  (i−2)δ + X  (i−4)δ  |  2 

F  δ  
n = i=4 ,  

T  /δ 
|X  iδ − 2X  (i−1)δ + X  (i−2)δ  |  2 

i=2 

T  /δ−2  √ 2 
δ log(64)F  δ  

n X  iδ − 2X  (i−1)δ + X  (i−2)δ 

σ  H =  √ i=2 , 
T  /δ−2 

(1, −F  δ  
n  ) Γ (1, −F  δ  

n  ) ' X  iδ − 2X  (i−1)δ + X  (i−2)δ 
4 

i=2 

 ∑|| ||∞ 

Γ  11 = 2  +  2  2−4H ρ  k+2 − 4ρ  k+1 +  6ρ  k − 4ρ  |k−1| + ρ  |k−2| 
2 
, 

k=1  ∑
 ∑

[ ] 1 2H 2H  ρ  k = − (k +  2)  +  4  (k + 1)  − 6k  2H +  4 |k − 1|  2H −  |k − 2|  2H . 
2 (4 − 2  2H )  ∑

Theorem 3.1. Let H ∈ (0, 1) and T be fixed. As δ → 0, we have  

p  ˆ  H → H  , (3.1) 
p  

σ̂  → σ  . (3.2) 

Theorem 3.2. Let H ∈ (0, 1) and T be fixed. As δ → 0, we have 

(3.3) 

(3.4) 

where 

and Γ = (Γ  ij )  1≤i,j  ≤2 are given by 

∞  

Γ  12 =  Γ  21 =  2  1−2H (ρ  1 − 1) + 2  2−2H |ρ  k+2 − 2ρ  k+1 + ρ  k  |  2 , 
k=0 

 

∞ 

ρ  2  Γ  22 = 2  +  4 k ,  
k=1  

with 

Remark 3.1. Using the formula (  1  α   ∞ +u)  =  1+  α(α−1)×···×(α−k+1)  
k=1 k! u  k for −1 <  u  < 1, 
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1  1 2H 2H  ρ  k =  −  |k − 2|  2H +  4 |k − 1|  2H − 6k  2H +  4  (k + 1)  − (k + 2)  
(4 − 2  2H )  2 [ ]

[  ]
2H 2H  2H 2H  

k  2H  1 2  1  1  2 
= − 1 − +  4  1 −  − 6  +  4 1  + − 1  + 

(4 − 2  2H )  2  k  k k  k 

( ) ( ) ( ) ( )
 ∑
m=1 

1 k  2H ∞ 
2H(2H − 1) ×  · ·  ·  × (2H − m + 1) 

= (−(−2)  m + 4(−1)  m +  4 − 2  m  ) k  −m 
(4 − 2  2H )  2  m!  ∑1 ∞ 

2H(2H − 1) ×  · ·  ·  × (2H − 2m + 1) 
k  2H =  (4 − 4  m  )k  −2m . 

(4 − 2  2H )  (2m)!  
m=1 

 ∑k  2H ∞ 
2H|2H − 1|(2 − 2H) ×  · ·  ·  × (2m − 1 − 2H)  |ρ  k  |  ≤  (4  m − 4)k  −2m 

4 − 2  2H  (2m)!  
m=1   ∑ ( ) ( ( ) ( ))

243 
k  2H  −4  ≤  . 

20 log 4 

k  2H ∞ 
4  m − 4 m 

k  2H 1  1  4 ≤ =  4  log 1 −  − log 1 − 
log 4 m  k  2 log 4 k  2  k  2 

m=2 

 ∑
(1 − u)  = − ∞ u  k 

if 0 ≤  k=1  u  < 1 
k 

) ))
) ))

)X  iδ − 2X  (i−2)δ + X  (i−4)δ =  (X  (  iδ − 2X  (i−1)δ + X  (i−2)δ  )  +  2 X  (i−1)δ − 2X  (i−2)δ + X  (i−3)δ 

+ X  (i−2)δ − 2X  (i−3)δ + X  (i−4)δ 

= O  p  (δ  H ). 

( )

we can rewrite ρ  k for any k ≥ 3 as 

Note that the sign of 2H(2H − 1) ×  ·  ·  ·  × (2H − 2m + 1) is the same as that of 2H − 1 and 

|2H(2H − 1) ×  · ·  ·  × (2H − 2m + 1)|  =  2H|2H − 1|(2 − 2H) ×  · ·  ·  × (2m − 1 − 2H)  
≤ 2(2m − 1)! .  

Using the inequality (1 − H) log 4 < 4 − 2  2H , we have, for any k ≥ 3, 

For the last inequality we have used log  and 4 (1 −  log
u) − log(1 − 4u) ≤ 243 u  2 if 0 ≤     u ≤ 1   

 . Moreover, a standard calculation implies 
20  6(  ( ( 

ρ  1 =  7 − 3  2H +  4 × 2  2H / 2  4 − 2  2H , 

and (  ( ( 
ρ  2 =  4 − 4  2H +  4 × 3  2H − 6 × 2  2H /  2  4 − 2  2H . 

Based on the discussion above, for any k ≥ 1, we have |ρ  |  ∼ k  2H  −4  
k

  ∑  ∑ , which implies 
∞ ρ  2 

k < ∞  k=1  . Figure 2 plots ∞ 2 
k=1 ρ  k as a function of H, which decreases monotonically 

in H. So the asymptotic variance of σ̂ decreases as H increases. 

Remark 3.2. From Barndorff-Nielsen et al. (2013), we know that X  iδ − 2X  (i−1)δ + 
X  H  

(i−2)δ = O  p  (δ   ). Consequently, 
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∑ ∑
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 ∑∞ ρ  2  
k=1 k Figure 2: Plot of as a function of H
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√

√ √  T O  p  (δ  2H )  
δ δ T O  p  (δ  2H )  T O  p  (δ  2H ) δ √ 

σ  H ∼ √ δ ∼  T  .  
T 2  
O  p  (δ  2H )  

δ T (δ  4H )  O  p  T O  p  (δ  2H ) δ 
δ 
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Remark 3.3. From the results in Remark 3.1 and Remark 3.2, we obtain 

ˆ  H Hence, the convergence rate of is T/δ. 

Remark 3.4. The development of asymptotic theory for the “diffusion” parameters only 
requires δ → 0, a feature shared by the two-stage method of Phillips and Yu (2009b). This 
is because as δ → 0, the “diffusion” term in both models dominates the drift term, mak­  
ing the drift term irrelevant in the development of asymptotic theory for the “diffusion” 
parameters. Since our model is driven by a fBm but the model of Phillips and Yu (2009b) 
is driven by a standard Brownian motion, the two sets of asymptotic distributions are 
different. 

Remark 3.5. When H =  1/2, we can easily obtain ρ  0 =  1, ρ  1 = −1/2 and ρ  k =  0 
for k ≥ 2. Consequently, a standard calculation yields Γ  11 = 135/2

√ 𝓛  T  3  2 σ  √  (σ̂ − σ) −→ 𝓝 0,  
δ 4 

(, Γ  12 =  ) Γ  21 =  7 and 
Γ  22 =  3. The limit distribution in (3.4) becomes which is the 
standard result. 
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∫  T  1 
µ̂  T  S = X  t  dt , 

T 0 (  ∫ ( ∫ ) ) 1  −  2 
T 

0 
T 
X  2  dt − 

0 
T 
X  t  dt  t 

T 2  σ  2  HΓ (2H) 

2H {  {  {  { κ̂T  S =  .  

(
T 1−H (µ̂  T  S − µ) −  𝓛  

0, 
σ  
κ  2  

2 
. →  𝓝 

)

T (κ̂  T  S − κ) −  𝓛  →  𝓝 (0, κφ  H ) , 

[  ]  

[  ]  φ  H =  

{ {  { {  {  

1 2Γ(2−4H)Γ(4H)  1  (4H − 1) + , when H ∈ (0, ),  
4H  2 Γ(2H)Γ(1−2H)  2 

4H  −1 1  + Γ(3−4H)Γ(4H  −1) 3 , when H ∈ [  1 , ).  
4H  2 Γ(2−2H)Γ(2H) 2  4 (√ )

( )√ 
T 

log(T ) 
(κ̂  T S − κ) 𝓛  −→ 𝓝 0, 

16κ 
9π 

. 

3.2 The drift parameters 
We now consider the asymptotic theory for µ̂  s and κ̂  s under the double asymptotic scheme. 
We first deal with consistency of µ̂  s and κ̂  s. (√ )

X  0 = o  p nδ Theorem 3.3. Let H ∈ (0, 1) and . Assume that δ → 0 and T →   ∞. 
Then we have 

p  
µ̂  s → µ  , (3.5) 

p  
κ̂  s → κ  . (3.6) 

To develop the asymptotic distributions for µ̂  s and κ̂  s, we first state the following 
technical lemma for the ergodic estimators of µ and κ based on a continuous record of 
observations. We omit the proof of the lemma as it follows directly from Xiao and Yu 
(2018a, 2018b). 

Lemma 3.1. Let µ̂  T  S and κ̂  T  S be the ergodic estimators of µ and κ based on a continuous 
record of observations over [0,    T ], that is, 

(3.7)

(3.8)  

Assuming H and σ are known, then for H ∈ (0, 1), X  H  
0 = o  p  (T  ), we have, as T →   ∞, 

(3.9)

Moreover, as T →  ∞. Then the following convergence results hold true. 
√ 

(i) If H ∈ (0, 3/4) and X  0 = o  p  ( T ), then 
√ 

(3.10)

where 

(3.11)  

(ii) If H = 3/4 and X  0 = o  p T log(T ) , then 
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∫∫

[ ]
[ ]
(√ )

( )



−κ  2H  −1 
T 2−2H (κ̂  T  S − κ) →  −𝓛 

R  , 
HΓ(2H + 1)

 ∑(  ) 
∞  

1  k a  k 
c(s) = exp (2isσ(H))  ,  

2  k 
k=2 

∫  ∫  ∫  1  1 1 
a  k = ·  ·  · |x  1 − x  2  |  H  −1 ·  ·  ·  |x  k−1 − x  k  |  H  −1 |x  k − x  1  |  H  −1 dx  1 ·  ·  · dx  k  . 

0  0 0 

(
T 1−H (µ̂  s − µ) −  𝓛  

0, 
σ  
κ  2  

2 
.  →  𝓝 

)

)
√  
T (κ̂  s − κ) −  𝓛  →  𝓝 (0, κφ  H ) , 

(√ ) )
( )√ 

T 𝓛  16κ 
(κ̂  s − 0,  .  − κ) →  𝓝 

log(T ) 9π )
𝓛  κ  2H  −1 

−  −  
T 2  2H  (κ̂  s − κ) − R  , → 

HΓ(2H + 1)

(iii)  If H ∈ (3/4, 1) and X  = o  (T 2H  −1  
0 p  ), then 

where R is the Rosenblatt random variable whose characteristic function is given by 

(3.12)

√ √
i = −1, σ(H)  = H(H − 1/2) with and 

The following theorem derives the asymptotic laws for µ̂  s and κ̂  s which mimic those 
of µ̂  T  S and κ̂  T  S. 

Theorem 3.4. Assume that X  = o  (T H 
0 p  ), δ → 0, T →   ∞ and nδ  p → 0 for some 

p ∈ (1, 2 ∧ (1 + H  
1−H )). Then, we have 

(3.13)

Moreover, as n →  ∞, the following convergence results hold true. 
√ 

X  0 = o  p  ( T ) (i) Let and when H ∈ (0, 3/4), nδ  p → 0 for some p 3+2H ∈ 1, ∧    (1 + 2H) 
1+2H

,  
we have 

( 
 

(3.14)

where φ  H is defined by (3.11). ( 
p ∈ 1, 9  

5 (ii)  Let X  0 = o  p T log(T ) and when p  
H   

=  3/4, nδ  →     0 
log(T  )

for some , we 
have 

( 
X  0 = o  T 2H  −1 

p 
( )
1, 3−H  

2−H (iii)  Let and when H ∈ (3/4, 1), nδ  p → 0 for some p ∈ , we 
have 

where R is the Rosenblatt random variable. 
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Figure 3: Plot of φ  H as a function of H. 

Remark 3.6. The asymptotic theory of κ̂  s depends on rrgions where the true value of 
H lies in. In particular, when H ∈ (0, 3/4), the asymptotic variance of κ̂  s depends on 
H via φ  H . Figure 3 plots φ  H as a function of H. It is important to point out that φ  H 
reaches its minimum (equals two) at H =       1/2, and monotonically decreases over (0, 1/2) 
but monotonically increases over (1/2, 3/4). When H =       1/2, the asymptotic distribution 
of κ̂  s is 𝓝 (0, 2κ), which is the same as that of MLE of κ when H =        1/2 and is known; see 
Theorem 3.2.2. in Tang et al. (2009). This result is very interesting as it suggests that the 
ergodic-type estimate of κ attains the Cramer-Rao lower bound asymptotically. Another 
interesting feature that can be observed is that the asymptotic variance of κ̂  s increases as 
H increase when H ∈ (1/2, 3/4) and tends to infinity as H approaches 3/4. Hence φ  H 
has a singularity at H =          3/4. 

4 Simulation Studies 
In this section, we study the finite sample properties of the proposed two-stage estimators 
via data simulated from fOU with different parameter values for H, σ, µ and κ and 
different values for δ and T . Several experiments are designed. 

Once data are simulated, the estimators are straightforward to obtain as they all 
have closed-form expressions. The main difficulty is to simulate a path from a fBm. In 
the literature, there are several methods to deal with the problem of simulating fBm 
(Coeurjolly, 2000). The present paper employs Paxson’s algorithm (Paxson, 1997). In 
particular, we first generate fractional Gaussian noises based on Paxson’s method by fast 
Fourier transformation at a grid that is finer than the target grid. Then, we obtain a 
path of fBm based on the result that fBm is a partial sum of fractional Gaussian noises. 
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)( 
X  (i+1)γ = X  iγ + κµγ − κhX  iγ + σ  B  H − B  H ,  (i+1)γ iγ 

Based on simulated fBm at the fine grid, the Euler discretization of fOU allows us to 
obtain simulated data from fOU at the fine grid. Data used for estimation are then 
extracted from the simulated fOU at the target (coarse) grid. For better understanding 
of our method, we describe all the steps for data simulation and parameter estimation as 
follows. 

(i)  Set the targeted sampling interval to δ, the time span to T , and the initial value to 
X  0. Hence, the target number of observations for parameter estimation is n = T/δ; 

(ii) Set values for four parameters H, µ, κ, σ; 

(iii)  Choose a fine grid {0, δ/M, 2δ/M, . . . , δ, (M + 1)δ/M, . . . , 2δ, . . . , nδ} with M  > 1 
so that the corresponding sampling interval is δ/M (denoted by γ) which is smaller 
than δ. Use the fast Fourier transform to generate fBm B  H 

t based on Paxson’s 
method at the fine grid; { }

X  (i+1)γ(iv)  Obtain  recursively from 

where i =  0, 1, . . . , M, M +  1,  .  .  .  , 2M, . . . , nM  ; Retain only n {X  iδ  }  i=0 for parameter 
estimation; 

ˆ  H (v) Calculate using (2.4); 

(vi)  Calculate σ̂ using (2.5); 

(vii)  Calculate µ̂  s using (2.6); 

(viii) Calculate κ̂  s using (2.7). 

In total we design three experiments. In all experiments, we set the number of repli­  
cations to 10,000. In the first experiment, we set the time span T = 16, δ =  1/256, 
M = 8, but vary H, σ, µ and κ. Note that δ =  1/256 corresponds approximately to the 
daily frequency for annualized data. Mean, median, 2.5 percentile, 97.5 percentile, and 
standard deviation (SD hereafter) for each of the four estimators are computed across 
10,000 replications. 

Table 1 reports simulation results for fixed values for σ, µ and κ, but varied values 
for H (from 0.1 to 0.7). All parameters, except κ, can be accurately estimated. The 
means and medians are always close to their respective true parameter values and the 
SDs are small. Judged by larger SDs, κ is estimated with a less precision. Moreover, 
there is a noticeable upward bias and skewness in κ̂  s in each case. This finding is not 
surprising as Phillips and Yu (2005, 2009a) documented the upward bias in the MLE of 
κ when H =   1/2. Yu (2012) obtained an analytical expression to approximate the bias 
in the MLE of κ when H =   1/2. However, when H is unknown, the simulation results 
suggest that the bias depends on both κ and H. Moreover, as the value of H changes, 
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Table 1: Performance of the two-stage estimates for different H with T = 16 and δ =  1/256  

H σ µ κ :::: H σ µ κ 

True value .10 1.00 2.80 5.00 .30 1.00 2.80 5.00 

Mean .0995 1.0064 2.8000 5.6398 .2993 1.0050 2.7997 5.1998 
Median .0997 .9981 2.8000 4.7396 .2994 .9978 2.7993 5.0043 
SD .0239 .1324 .0173 4.2998 .0226 .1285 .0289 1.8282 
2.5% .0522 .7689 2.7664 .1672 .2544 .7711 2.7441 2.1814 
97.5% .1453 1.2854 2.8339 16.1090 .3428 1.2750 2.8563 9.2865 

True value .50 1.00 2.80 5.00 .70 1.00 2.80 5.00 

Mean .4992 1.0037 2.8000 5.2745 .6990 1.0029 2.7996 5.6530 
Median .4995 .9969 2.7991 5.1378 .6989 .9933 2.7987 5.5572 
SD .0212 .1270 .0500 1.3392 .0196 .1218 .0865 1.2643 
2.5% .4570 .7758 2.7039 2.9904 .6598 .7674 2.6327 3.4721 
97.5% .5401 1.2723 2.8967 8.2455 .7368 1.2832 2.9695 8.4214 

the SD of σ̂ decreases, as predicted by the asymptotic theory given by (3.4); see Remark 
3.1. Furthermore, as the value of H changes, the SD of µ̂  s increases. This because the 
asymptotic theory given by (3.13) suggests that the rate of convergence is T 1−H and hence 
H negatively affects the precision of µ̂  s. 

Table 2 reports simulation results for fixed values for H, µ and κ, but varied values 
for σ (from 0.3 to 2). As the estimated value for H in our first empirical study based on 
VIX is around 0.45, we fix H =  0.45. The estimation results for H and κ stay the same 
when σ changes its value. This is expected and consistent with our asymptotic theory. 
As σ increases, both the SD of σ̂ and  the  SD  of µ̂  s increase, consistent with the prediction 
of asymptotic theory given by (3.3) and (3.13), respectively. 

Table 3 reports simulation results for fixed values for H, σ and κ, but varied values 
for µ (from 0.5 to 2). As expected, the estimation results for H, σ, κ stay the same when 
µ changes its value. When µ changes, both the mean and the median of µ̂  s change but 
the  SD  of µ̂  s stays the same. 

Table 4 reports simulation results for fixed values for H, σ and µ, but varied values 
for κ (from 1.0 to 10.0). The estimation results for H, σ are robust to the change in κ, 
consistent with the prediction of the asymptotic theory. However, as κ increases, the SD 
of µ̂  s decreases, consistent with (3.13). As κ increases, the SD of κ̂  s increases, consistent 
with (3.14). 

To see the influence of the sampling interval and M  , we design the second experi­  
ment by fixing T and all four parameters, but varying values of δ from 1/256 to 1/2048 
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Table 2: Performance of the two-stage estimates for different σ with T = 16 and δ =  1/256  

H σ µ κ :::: H σ µ κ 

True value .45 .30 2.80 5.00 .45 .50 2.80 5.00 

Mean .4492 .3012 2.7999 5.2383 .4492 .5020 2.7998 5.2383 
Median .4496 .2994 2.7997 5.0970 .4496 .4990 2.7996 5.0970 
SD .0215 .0381 .0131 1.4123 .0215 .0635 .0218 1.4123 
2.5% .4063 .2322 2.7749 2.8321 .4063 .3870 2.7581 2.8321 
97.5% .4910 .3811 2.8252 8.3794 .4910 .6351 2.8420 8.3794 

True value .45 1.00 2.80 5.00 .45 2.00 2.80 5.00 

Mean .4492 1.0040 2.7996 5.2383 .4492 2.0081 2.7992 5.2383 
Median .4496 .9981 2.7991 5.0970 .4496 1.9962 2.7983 5.0970 
SD .0215 .1271 .0436 1.4123 .0215 .2541 .0871 1.4123 
2.5% .4063 .7740 2.7162 2.8321 .4063 1.5481 2.6324 2.8321 
97.5% .4910 1.2703 2.8841 8.3794 .4910 2.5405 2.9682 8.3794 

Table 3: Performance of the two-stage estimates for different µ with T = 16 and δ =  1/256  

H σ µ κ :::: H σ µ κ 

True value .45 .30 .50 5.00 .45 .30 1.00 5.00 

Mean .4492 .3012 .4999 5.2383 .4492 .3012 .9999 5.2383 
Median .4496 .2994 .4997 5.0970 .4496 .2994 .9997 5.0970 
SD .0215 .0381 .0131 1.4123 .0215 .0381 .0131 1.4123 
2.5% .4063 .2322 .4749 2.8321 .4063 .2322 .9749 2.8321 
97.5% .4910 .3811 .5252 8.3794 .4910 .3811 1.0252 8.3794 

Mean .4492 .3012 1.4999 5.2383 .4492 .3012 1.9999 5.2383 
Median .4496 .2994 1.4997 5.0970 .4496 .2994 1.9997 5.0970 
SD .0215 .0381 .0131 1.4123 .0215 .0381 .0131 1.4123 
2.5% .4063 .2322 1.4749 2.8321 .4063 .2322 1.9749 2.8321 
97.5% .4910 .3811 1.5252 8.3794 .4910 .3811 2.0252 8.3794 

True value .45 0.30 1.50 5.00 .45 .30 2.00 5.00 
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Table 4: Performance of the two-stage estimators for different κ with T = 16 and δ =  1/256  

H σ µ κ :::: H σ µ κ 

True value .45 1.00 2.80 1.00 .45 1.00 2.80 3.00 

Mean .4494 1.0045 2.7978 1.2595 .4494 1.0045 2.7974 3.2483 
Median .4498 .9986 2.7953 1.1626 .4498 .9987 2.7986 3.1337 
SD .0215 .1271 .2123 .5612 .0215 .1271 .0724 1.0246 
2.5% .4065 .7746 2.3913 .4454 .4065 .7746 2.6608 1.5773 
97.5% .4913 1.2707 3.2109 2.5969 .4912 1.2707 2.9392 5.5608 

True value .45 1.00 2.80 5.00 .45 1.00 2.80 10.00 

Mean .4492 1.0040 2.7996 5.2383 .4485 1.0008 2.7998 10.1683 
Median .4496 .9981 2.7991 5.0970 .4489 .9950 2.7996 10.0188 
SD .0215 .1271 .0436 1.4123 .0215 .1267 .0218 2.2102 
2.5% .4063 .7740 2.7162 2.8321 .4065 .7713 2.7580 6.2109 
97.5% .4910 1.2703 2.8841 8.3794 .4903 1.2667 2.8420 14.8804 

and values of M from 16 to 32. Here, 1/256 corresponds roughly to daily observations 
while 1/2048 corresponds to hourly observations. Table 5 reports simulation results across 
10,000 simulated replications. It is clear that increasing M from 16 to 32 does not mate­  
rially change the performance of the proposed estimators. Note that M is used to control 
the discretization bias in the Euler discretization when simulating data. Our simulation 
results suggest that the discretization bias is very small. However, when δ changes from 

ˆ  H 1/256 to 1/2048, the frequency of data becomes higher and the performance of and σ̂ 
improves, as predicted by the asymptotic theory given in (3.3) and (3.4). 

In the last experiment, to evaluate the influence of time span, we fix the value of 
δ =  1/256, M = 16 and the four parameters, but vary T from 10 to 20. It can be seen 
that as T increases, the performance of all four estimators improves. In particular, the 
bias in κ̂  s approximately reduces by half when T doubles its value. All the standard √ 
deviations reduce by a factor of 2 or so when T doubles its value, consistent with the 
prediction of our asymptotic theory. 

5 Empirical Studies 
In this section, we carry out two empirical studies, applying the proposed estimation 
method and the new asymptotic theory for making statistical inference to volatility data 
in the risk-neutral measure and in the physical measure, respectively. In the first study, 
we fit fOU to daily VIX from CBOE. In the second study, we fit fOU to three daily 
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Table 5: Performance of the two-stage estimators for different δ and M with T = 16  

δ = 1/256 δ = 1/2048 

H σ µ κ :::: H σ µ κ 
True value .45 1.00 2.80 5.00 .45 1.00 2.80 5.00 

Panel A. M = 16 
Mean .4492 1.0037 2.8003 5.2301 .4498 1.0006 2.8004 5.2402 
Median .4493 .9953 2.7999 5.0811 .4500 .9995 2.8006 5.1518 
S.Dev. .0215 .1271 .0429 1.4179 .0076 .0601 .0434 1.0321 
2.5% .4074 .7795 2.7172 2.8915 .4352 .8888 2.7165 3.5075 
97.5% .4912 1.2752 2.8862 8.4212 .4644 1.1217 2.8865 7.5137 

Panel B. M = 32 
Mean .4494 1.0040 2.8007 5.2406 .4500 1.0010 2.7992 5.2232 
Median .4493 .9952 2.8004 5.1082 .4500 .9993 2.7992 5.1324 
S.Dev. .0213 .1262 .0432 1.4070 .0076 .0601 .0436 1.0189 
2.5% .4075 .7815 2.7181 2.9167 .4353 .8899 2.7136 3.4769 
97.5% .4905 1.2716 2.8864 8.4084 .4649 1.1259 2.8834 7.4461 

2The data were obtained from http://www.cboe.com/products/vix-index-volatility/vix-options-and­  
futures/vix-index/vix-historical-data. In 2003, the methodology for calculating VIX was revised. The 
new method is model-free, and uses European style options. Moreover, this new VIX is able to incorporate 
information from the volatility smile by using a wider range of strike prices. 
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VIX, the CBOE volatility index, attempts to track the volatility of S&P 500. As it is based 
on the implied volatility in the 30-day options of the S&P 500, a model of VIX can be 
regarded as a model in the risk-neutral measure. VIX was employed in our empirical study 
simply because it is widely accepted as the premier measure of stock market volatility and 
investor sentiment. The daily data utilized in our empirical investigation are extracted 
from the CBOE spanning from 01/02/2004 through 12/29/2017.  2 In total there are 3, 524 
trading days. Hence, we can set δ =   1/252, and T = 14 in estimation. Moreover, for the 
sake of comparison, we divide the whole sample into two subsamples and fit fOU to each 
subsample. The first subsample is from 01/02/2004 to 12/30/2011 (about 2, 015 data 
points with T = 8) while the second subsample is from 01/03/2012 to 12/29/2017 (about 
1, 509 data points with T = 6). Figure 4 plots the time series of log(VIX) in the whole 

5.1 VIX 

realized volatility series. 

http://www.cboe.com/products/vix-index-volatility/vix-options-andfutures/vix-index/vix-historical-data
http://www.cboe.com/products/vix-index-volatility/vix-options-andfutures/vix-index/vix-historical-data


Table 6: Performance of the two-stage estimators for different T  

T = 10 T = 20  

H σ µ κ :::: H σ µ κ  
True value .45 1.00 2.80 5.00 .45 1.00 2.80 5.00  

Mean .4487 .8139 2.7996 5.3850 .4491 .8148 2.8002 5.1764 
Median .4488 .8035 2.7994 5.1698 .4490 .8048 2.8001 5.0558 
SD .0273 .1312 .0447 1.8490 .0192 .0919 .0311 1.2522 
2.5% .3949 .5866 2.7116 2.4410 .4113 .6447 2.7408 3.0662 
97.5% .5020 1.0989 2.8884 9.6494 .4868 1.0046 2.8619 7.9525 

Table 7: Empirical results for VIX index  

Period H σ µ κ 1/T  
.4496 

(.4443, .4547) 
.3707 

(.3600, .3814) 
1.2325 

(1.1706, 1.2945) 
2.7434 

(2.6656, 2.8213) 
.0714 

2004–2017 

.4315  
(.4216, .4413) 

.3254 
(.3129, .3380) 

1.2842 
(1.1635, 1.4050) 

1.6194 
(1.5399, 1.6990) 

.1250 
2004–2011

.4710 
(.4601, .4819) 

.4336 
(.4145, .4527)

1.1635 
 (1.1334, 1.1936)

10.9451 
 (10.7085, 11.1818) 

.1667 
2012–2017 
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sample. 
Three sets of estimation results, including the point estimates and 95% confidence 

intervals for all four parameters (2.5% and 97.5% percentiles in brackets), and the value 
for 1/T , are reported in Table 7. Several important empirical results are found. First, 
in all cases, the estimated H is around 0.45, less than 0.5. The 95% confidence intervals 
suggest that we have strong evidence against the null hypothesis of H =  0.5. Hence, 
VIX is better modeled by a rough volatility model. This finding supports results found 
in Bayer et al. (2016), Gatheral et al. (2018) and Livieri et al. (2018). Second, the 
estimated κ is not very small. It is always much larger than 1/T , suggesting that we have 
strong evidence against the hypothesis of κ « 1/T . Therefore, we cannot use Proposition 
3.1 of Gatheral et al. (2018) to argue that fOU behaves locally as a fBm. 



01/02/2004 12/20/2007 12/08/2011 12/01/2015
Date

0.8

1

1.2

1.4

1.6

1.8

2

lo
g
(V

IX
)

Figure 4: Time series plot of log(VIX)  

3The data were obtained from https://realized.oxford-man.ox.ac.uk/. 
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We now fit fOU to the logarithm of three realized volatility (RV hereafter) series for S&P 
500, DJIA, and Nasdaq 100. A model of RV can be regarded as a model in the physical 
measure. The three RV series are obtained from Ox-Mann realized library and based on 
5-minute returns.  3 The √ sample period is from 01/03/2011 to 12/04/2017. Figure 5 plots 
three time series of 100 × log(RV × 252). 

Three sets of estimation results, including the point estimates and 95% confidence 
intervals for all four parameters, and the value for 1/T , are reported in Table 8. Several 
important empirical results are found. First, in all cases, the estimated H is much smaller 
than 0.5, ranging between .0946 for DJIA to .2550 for Nasdaq 100. The point estimates of 
H are very close to what was used in Gatheral et al (2018). The 95% confidence intervals 
suggest that we have strong evidence against the null hypothesis of H =  0.5. Hence, each 
of the RV series is better modeled by a rough volatility model. This finding once again 
supports results found in Bayer et al. (2016), Gatheral et al. (2018) and Livieri et al. 
(2018). Second, the estimated κ is always larger than 1/T , suggesting that we have strong 
evidence against the hypothesis of κ « 1/T . Once again, we cannot use Proposition 3.1 
of Gatheral et al. (2018). 

5.2 Realized volatility 

√

https://realized.oxford-man.ox.ac.uk/
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Figure 5: Time series plot of log(RV) for S&P 500, DJIA, Nasdaq 100 

Table 8: Empirical results for realized volatility of S&P 500, DJIA, Nasdaq 100  

Name H σ µ κ 1/T  
.1453 

(.1295, .1610) 
.8440 

(.8062, .8818) 
2.1960 

(1.9666, 2.4253) 
1.3810 

(1.2830, 1.4791) 
.1445  

S&P 500  

.0946 
(.0768, .1124) 

.6788 
(.6481, .7096) 

2.2019 
(1.2318, 3.1719) 

.2382 
(.1947, .2816) 

.1445  
DJIA 

.2550 
(.2432, .2668) 

1.2849 
(1.2289, 1.3408)

2.2220 
 (2.1819, 2.2621)

14.8874 
 (14.5993, 15.1755) 

.1445  
Nasdaq 100 
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6 Conclusion  
Over the past two decades, it has been a general consensus that volatility of financial 
asset displays the long-range dependence (see, for example, Comte and Renault (1998)). 
In the continuous time setting, long-range dependence can be modeled with the help of 
fBm when the Hurst parameter is greater than one half. However, Gatheral et al. (2018) 
shows that the logarithm of realized volatility behaves essentially as an fBm with the 
Hurst parameter taking a value of around 0.1 at any reasonable time scale. Using at-the­  
money options on the S&P500 index with short maturity, Livieri et al. (2018) further 
confirms that volatility is rough. 

This present paper makes contributions to the literature by proposing a novel es­  
timation method for all the parameters in the fOU model based on discrete-sampled 
observations when the parameter space for the Hurst parameter is (0, 1). We have also 
developed asymptotic theory for the proposed estimators which facilitate statistical infer­  
ence. By employing the property of different order of magnitude between the “diffusion” 
term and the drift term, the proposed method estimates the “diffusion” parameters in 
the first stage and the drift parameters in the second stage. In the first stage, using the 
asymptotic theory for the second order differences of fOU, we construct a two-time-scale 
estimator of H and an estimator of σ. In the second stage, by employing the property of 
stationarity and ergodicity, we propose ergodic-type estimators of κ and µ. Consistency 
and asymptotic laws for these estimators are established. Simulations suggest that our 
two-stage estimators perform well in finite samples. The method is applied to two empir­  
ical examples, VIX and realized volatility of S&P 500, DJIA, Nasdaq 100. The empirical 
studies show that the volatility is rough, reinforcing the findings in Gatheral, et al. (2018). 
However, we find the evidence that κ is larger than one divided by the time span, making 
Proposition 3.1 of Gatheral et al. (2018) not applicable. 

This study also suggests several important directions for future research. First, while 
our estimators are consistent and easy to use, they may not be asymptotically efficient. 
Finding an asymptotically more efficient estimation technique and obtaining the asymp­  
totic relative inefficiency of our two-stage estimators would be of great interest. Second, 
the fOU model considered in the present paper does not have any jump, even though fOU 
with H  < 1/2 can be rough. Although removal of a few jumps from data cannot change 
the feature of roughness, jumps may have implications for the magnitude of parameter 
estimates. Extending the estimate method and asymptotic theory to cover fOU with 
jumps is important and we leave it for further research. Third, this paper assumes that 
the Hurst parameter does not change over time. This assumption can be too restrictive. 
How to test if H changes its value in the sample and how to model time-varying H are 
some important questions to ask. Finally, when fitting fOU to RV series, we assume RV 
measures integrated volatility without measurement errors. This assumption is clearly 
too strong. How robust the empirical results to measurement errors in RV should be 
examined and will be explored in future research. 

23  



∫  t 
X  t = X  0 + κ (µ − X  s  ) ds + σB  t  

H . 
0 

 ∑|| || ∫  
δ T  /δ 

2 p  
T 

X  iδ − 2X  (i−2)δ + X  (i−4)δ → σ  2  ds = σ  2  T  , 
τ  2  0  i=4  ∑|| || ∫  
δ T  /δ 

2 p  
T 

X  iδ − 2X  (i−1)δ + X  (i−2)δ → σ  2  ds = σ  2  T  . 
τ  1  0  i=2 

 ∑
 ∑
T  /δ 

|X  iδ − 2X  (i−2)δ + X  (i−4)δ  |  2 

i=4 p  τ  2  → . 
T  /δ τ  1 |X  iδ − 2X  (i−1)δ + X  (i−2)δ  |  2 

i=2 

[ ] [ ]
4 · 2  2H − 2  2H 2  2H 

= =  2  2H . 
4 − 2  2H 

τ  2 4𝔼 |B  H − B  H |  2 − 𝔼 |B  H − B  H |  2 4 · 2  2H δ  2H − (4δ)  2H 
s+2δ  s s+4δ  s =  = 

τ  1 4𝔼 |B  H − B  H |  2 − 𝔼 |B  H − B  H |  2 4 · δ  2H − (2δ)  2H 
s+δ  s s+2δ  s 

[ ] [ ]

 ∑
 ∑
T  /δ 

|X  iδ − 2X  (i−2)δ + X  (i−4)δ  |  2 

i=4 → 2  2H  p  
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APPENDIX  

A.1. Proof of Theorem 3.1 
It is well known that fOU is defined as the unique solution of the following Langevin 
equation 

(A.1) 

Consequently, a standard but tedious calculation shows that Assumptions 1 and 2 of 
Barndorff-Nielsen et al. (2013) hold true. [  | |2 

R  t = 𝔼 |B  H − B  H |
t+s  s 

]
 k =  1, 2 and For t ≥ 0, let τ  k =  4R  ks − R  2ks with . Then, using 

Lemma 1 of Barndorff-Nielsen et al. (2013), we have 

(A.2)

(A.3)

Combining (A.2) with (A.3), we deduce that 

(A.4)

Using the polarization identities, we have 

(A.5)

Using (A.4) and (A.5), we have 

(A.6)

From the continuous mapping theorem and (A.6), we obtain (3.1). Similarly, using the 
continuous mapping theorem, (3.1) and (A.3), we obtain (3.2). 
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 ∑|| ||T  /δ 

δ 2 
= X  iδ − 2X  (i−1)δ + X  (i−2)δ . 

T · τ  1 i=2 

T  /δ 
δ 2 

σ  2  ˜  = X  iδ − 2X  (i−1)δ + X  (i−2)δ 
T 4 · δ  2H − (2δ)  2H  

i=2 

) ) )√  √  √ 
T ( T ( T ( √ σ̂  2 − σ  2 = √ σ̂  2 − σ̃  2 + √ σ̃  2 − σ  2 . 
δ δ  δ 

) ( ) ( ) ( )√  √ √ 
T ( ∂σ̃  2 T ∂σ̃  2 T 

σ  2 ˆ  √ σ̂  2 − ˜  = √ H  ˆ  − H + L H,  X  i √ H  ˆ  − H  , 
δ ∂H δ ∂H δ (

 L ˆ  H,  X  i 

)

)√ 
T ( p  √ σ̂  2 − σ̃  2 → 0 . 
δ 

) (  (   ∑ ))  √ ∞  
T ( 𝓛  √ ˜  −  0,  σ  4 2  +  4 ρ  2 

k . σ  2 − σ  2 →  𝓝 
δ 

k=1 

)  ∑√ ∞  
T ( 𝓛  √ σ̂  2 − σ  2 →  𝓝 0,  σ  4 2  +  4 ρ  2 .  −  k  
δ 

k=1 

(  (  ))

A.2. Proof of Theorem 3.2 
An elementary but tedious calculation shows that conditions of Theorem 2 and (30) in 
Barndorff-Nielsen et al. (2013) hold true. Then the result of (3.3) follows directly from 
(41) in Section 4.3 of Barndorff-Nielsen et al. (2013) and is omitted. 

Now, we are left with (3.4). For the sake of convenience, we define 

(A.7)

Note that 

(A.8) 

By Taylor’s theorem we have 

for some reminder function  which converges to zero as ˆ  p  
H → H. Therefore, by 

√  
ˆ  H − H = o  p  ( δ) 

 
the fact (see Eq. (46) or Eq. (51) in Barndorff-Nielsen et al. (2013)) 
and the assumption of a fixed T , we obtain 

(A.9)

Moreover, from Theorem 2 in Barndorff-Nielsen et al. (2013) and the properties of stable 
convergence, we can easily obtain 

(A.10)

Combining (A.8), (A.9), (A.10) with Slutsky’s theorem, we obtain 

By the delta method, we obtain (3.4). 
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( ∫ )

| | | | t |  
t   µ|    |X  −  X  s  |  ≤  |X  0 −  e −κt  − e −κs  |+ σ  |B  H  − B  H  | H  −κ(t−s)  

t  s + σκ B  s e ds  ∫  0 
t 

+σκ B  H  
v e −κ(s−v)  ds  

0 

≤  Y  H  −∈  
1 |t − s| + Y  2 |t − s|  + Y  3 |t − s| , 

∫

(A.12) 

( T  T  1  1 
µ̂  s − µ = µ̂  s − X  t  dt + X  t  dt − µ  , 

T  T  0  0 

∫ ) ( ∫ )

∫  
1 T 

a.s.  
X  t  dt → µ  , 

T 0 

(  ||||  ∑ ∫  ||||
)  ||||  ∑ ∫  ||||

q  n  T n  T  1  1 1  1  
ℙ X  lδ − X  t  dt >  η ≤ η  −q  𝔼 X  lδ − X  t  dt . 

n  T n  T  0  0  l=0 l=0 

| | | |

A.1. Proof of Theorem 3.3 
In order to avoid the integration with respect to the fBm for 0   <  H < 1 

2
, we write the 

solution of (2.1) as 

t 
−κt B  H  X  t = µ +  (X  0 − µ) e + σ t − κ  B  s  

H e −κ(t−s)  ds . 
0 

(A.11) 

Using (A.11), for any s, t ∈ [0,  T ] and s  <  t, we can obtain 

| |
Y  |B  H  |
3 := 2σκ sup s 

0≤s≤T
where   −  |  B  H −B  H |   Y  1 :=  κe  κs |X  0 − µ|, Y  :=  t  s 

2  σ sup H−∈ |t−s|  
t=s∈[0,T ] 

and . Moreover, 

from Remark 2.3 in Azmoodeh and Viitasaari (2015) and the self-similarity property of 
fBm, for all p ≥ 1 and a constant C, we have 

/

εp 𝔼 [Y  2  ] ≤ C (nδ)  , Hp 𝔼 [Y  1  ] ≤ C  , 𝔼 [Y  3  ] ≤ C (nδ)  , (A.13) 

for an arbitrarily small positive variable ε. 
Now, we consider (3.5). Obviously, we can write 

(A.14)

where first term is the discretization error and the second term is the “ergodic theorem” 
term. Using a similar argument as Xiao and Yu (2018a, b), we have 

(A.15)

for H ∈ (0, 1). Let ∈ be an arbitrarily small positive variable. Applying Markov’s inequal­  
ity for η  > 0, q  > 1 yields 

(A.16) 
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Moreover, applying Minkowski’s inequality and using (A.12) and (A.13), we obtain  

Plugging the above inequality to (A.16), we get 

(A.17) 

Obviously, | if the right-hand  |  side of the above inequality is sumable with respect to n, | 1   ∑  ∫|  n 1  T | a.s.  
X   

l=0 lδ − X  t  dt | →     0 
n  T  0

then by the Borel-Cantelli Lemma. In fact, the right-hand 
side of (A.17) can be written as 

q∈ qH γ  1 γ  2  Cη  −q δ  q + δ  (H  −∈)q (nδ)  + δ  q (nδ)  = Cn  −1−λ [(nδ  α  1 )  +  (nδ  α  2 )  +  (nδ  α  3 )  γ  3 ] , 

where   q    
 ,  1   α  1  =  γ  1 =  +  λ, α  =  qH  

2 , γ  = 1  + λ + q∈, α  q+qH  
2 3 1+  =  , γ  1 = 1  + λ + qH  

λ  1+λ+q∈ 1+λ+qH .
Note that the positive variables ∈ and λ can be arbitrarily small and q can be arbitrarily 

large. In this way, we have α  1 ∈ (1, +∞), α  2 ∈ (1, +∞) and α  3 ∈ (1, 1     + 1 
H  ). Hence, if 

nδ  p → 0 for some p ∈ (1, 1       + 1 
H ), then using (A.17) and the Borel-Cantelli Lemma, we 

obtain 
(A.18)

Consequently, combining (A.14), (A.15), (A.18) and the assumption X  0 = o  p  (n), we 
obtain (3.5). 

To prove (3.6), we can write 

(A.19) 
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Similar to Xiao and Yu (2018a, 2018b), for H ∈ (0, 1), we can easily obtain 

(A.20)

For η  > 0 and q  > 1, by applying Markov’s inequality, Minkowski’s inequality, Hӧolder’s 
inequality, the fact 𝔼  |X  p  

t  |  ≤ C for all t   > 0 and p   > 1, (A.12) and (A.13) yields 

Similarly, if nδ  p → 0 for some p ∈ (1, 1   + 1 
H ), then using the above result and the Borel-  

Cantelli Lemma, we obtain 

(A.21)

From (A.19)-(A.21) and the assumption X  0 = o  p  (n), we can see 

(A.22) 

Combining (3.1), (3.2), (3.5), (A.22) with the continuous mapping theorem, we obtain 
the desired result of (3.6). 
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A.1. Proof of Theorem 3.4 
From (A.14), we have 
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Using (A.23), (A.24), (A.25) and Slutsky’s theorem, we obtain (3.13). 
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In what follows, we show the asymptotic law of κ̂  s. For simplicity, let 
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Note that for x  > 0 and any ∈ → 0, the series expansion of the gamma function Γ(x + ∈) 
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Using (A.31) and (A.32), we can rewrite g  n  (y) as 
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Using (A.26), (A.28)-(A.30) and (A.31), we have 
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almost surely by the dominated convergence theorem. 
On the other hand, a standard calculation yields 
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From (A.34) and (A.35), we can see that f (nδ) (  κ̂  s − κ) converges in law to the same 
random variable as f (T ) (   κ̂  T  S − κ) when T tends to infinity. By Lemma 3.1 and Slutsky’s 
theorem, we finish the proof. 
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