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Abstract

Advanced economies have been experiencing productivity slowdowns, rising inequal-
ity, and low consumption-to-wealth ratios in recent decades. Using an analytically
tractable endogenous growth model with heterogeneous households, I emphasize a
channel that connects inequality with productivity growth through aggregate consump-
tion demand and the returns to R&D. Given realistic increases in wealth (inclusive of
income) inequality, the calibrated model generates transition dynamics featuring pro-
ductivity slowdowns, low aggregate demand, and low real interest rates, consistent with
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1 Introduction

Advanced economies have been experiencing productivity slowdowns and rising inequality in
recent decades. This paper investigates the relationship between these two trends by devel-
oping and analyzing an analytically tractable endogenous growth model with heterogeneous
households.

Demand intensity, defined as the aggregate consumption-to-wealth (inclusive of income)
ratio, connects rising inequality with productivity slowdowns. Intuitively, because rich house-
holds save more, rising wealth inequality yields a decrease in demand intensity. This change
has a negative effect on the size of the market in which firms operate and reduces profit
gains from improved production technology. As profit-maximizing firms have fewer incen-
tives to spend on R&D, productivity growth slows. I emphasize this channel based on simple,
tractable model equations and a quantitative investigation into the model dynamics.

R&D is the engine of productivity and economic growth, as in the seminal theories de-
veloped by Romer (1990), Grossman and Helpman (1991), and Aghion and Howitt (1992).
On the supply side of the model, profit-maximizing firms make R&D decisions by compar-
ing potential profits and costs. When aggregate consumption decreases, spending on R&D
becomes less attractive because the market size and potential profits decrease. Thus, R&D
intensity, defined as the ratio of R&D investments to the R&D stock following Benigno and
Fornaro (2018), decreases and economic growth endogenously slows.

Households are subject to uninsurable idiosyncratic income risk, as in Bewley (undated),
Huggett (1993), Aiyagari (1994), Krusell and Smith (1998), and Kaplan, Moll and Violante
(2018). In this framework of heterogeneous households with constant relative risk aversion
(CRRA) preferences, consumption is concave in wealth inclusive of income (see Carroll and
Kimball, 1996). Because rich households save more (see Dynan, Skinner and Zeldes, 2004),
an increase in wealth (inclusive of income) inequality generates a persistent decrease in
aggregate consumption relative to wealth. Then, in general equilibrium, the fall in demand
intensity on the household side affects productivity growth by altering market size and R&D
decisions.

I underscore this channel from rising wealth inequality through demand intensity and
R&D intensity to productivity growth at the aggregate level using an analytically tractable
characterization of the general equilibrium for the model economy. To embed the incomplete-
market framework with heterogeneous households into a general equilibrium endogenous
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growth model, I employ the analytically tractable representation of individual consumption
decisions and cross-sectional distributions of wealth inclusive of income from Lee (2021).
This framework allows me to investigate the aggregate implications of distributional elements
without oversimplifying household heterogeneity and sacrificing the tractability of the results.

For the quantitative analysis, I compute the transition dynamics from a low-inequality
economy in the early 1980s to a high-inequality economy in the late 2010s. This general
equilibrium transition path confirms the theoretical predictions. Given the realistic, gradual
increase in wealth (inclusive of income) inequality, demand intensity and economic growth
rates decrease, consistent with the empirical time series for advanced economies during the
same period (Section 2). Furthermore, because rising wealth inequality is induced by an
increase in idiosyncratic income risk in the model, households have a strong precautionary
motive in the high-inequality economy. This increased precautionary motive in combination
with growth slowdowns generates a secular downward trend in real interest rates, consistent
with the data (see Laubach and Williams, 2003, 2016). Finally, as consumption demand
decreases, savings increase relative to wealth. Thus, the capital-to-net national income ratio
increases, as documented by Piketty and Zucman (2014) for rich countries.

I document that the welfare cost of rising wealth inequality is substantial. To maintain
social welfare in the pretransition low-inequality equilibrium, individual consumption should
increase by 19% in every period along the general equilibrium transition path towards a high-
inequality economy. This cost originates from two sources: the direct effects on consumption
inequality and average consumption and the general equilibrium effects on slow growth. Note
that these variations are consistent with the empirical trends (see, e.g., Attanasio and Pista-
ferri, 2014; Attanasio, Hurst and Pistaferri, 2015; Fernald, 2015; Antolin-Diaz, Drechsel and
Petrella, 2017). I find that the welfare cost is nearly equally split between these two factors.
Thus, by looking through the lens of the heterogeneous household endogenous growth model,
I conclude that distributional factors have substantial productivity and welfare implications.

The mechanism emphasized in this paper features a channel that links demand-side
factors to firm R&D spending and productivity growth. This channel is consistent with em-
pirical evidence based on firm-level data (see, e.g. Acemoglu and Linn, 2004; Bustos, 2011;
Jaravel, 2019; Aghion et al., 2020). Ignaszak and Sedlácek (2021) develop an endogenous
growth model with heterogeneous firms and highlight the market size effects on firm incen-
tives to innovate. This paper complements the results in Ignaszak and Sedlácek (2021) and
focuses on the growth implications of heterogeneous households. My framework emphasizes
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the role of rising inequality as a source of aggregate variations in demand and business in-
vestments in R&D. Relatedly, Comin and Gertler (2006), Barlevy (2007), Anzoategui et al.
(2019), and Bianchi, Kung and Morales (2019) investigate the endogenous dynamics of R&D
investment and their business cycle implications. This paper supplements their results by
concentrating on secular, trend-level changes.

Productivity slowdowns are tightly related to low real interest rates and secular stag-
nation (see, e.g., Eichengreen, 2015; Gordon, 2015; Benigno and Fornaro, 2018; Eggertsson,
Mehrotra and Robbins, 2019; Lunsford and West, 2019). I present wealth inequality as
another relevant factor underlying these macroeconomic trends and complement other ex-
planations for the slow growth and low real interest rates observed in the data. In related
papers focusing on inequality, Straub (2018) and Mian, Straub and Sufi (2020, 2021) examine
the effects of income inequality on real interest rates. This paper focuses on the inequality
in wealth inclusive of income and its productivity implications as well as real interest rates.

I combine heterogeneous household models (e.g., Bewley, undated; Huggett, 1993; Aiya-
gari, 1994) with endogenous growth models. This framework enables me to connect demand-
side (household) trends to slow-moving components on the supply side (firm). Using an
AK-type production environment with heterogeneous households, Clemens and Heinemann
(2015) conduct a related quantitative exercise. In contrast, my model builds on R&D-
based productivity growth, as in Romer (1990), Grossman and Helpman (1991), and Aghion
and Howitt (1992). Additionally, I employ the analytically tractable model of heteroge-
neous households from Lee (2021). This paper utilizes the results in Lee (2021) to enhance
the tractability of a general equilibrium model with endogenously determined productivity
growth rates and wealth inequality, whereas Lee (2021) applies the framework to a neoclas-
sical growth model. The important precursors of this tractable heterogeneous household
model include Constantinides and Duffie (1996) and Heathcote, Storesletten and Violante
(2014). My model augments their no-trade equilibrium with a nontrivial amount of asset
trading among households and of the capital used in production.

The remainder of this paper is organized as follows. Section 2 describes the trend-level
changes in inequality, demand intensity, R&D intensity, and economic growth in advanced
economies since the 1980s. Section 3 develops a general equilibrium endogenous growth
model with heterogeneous households and incomplete financial markets. Section 4 character-
izes the general equilibrium of the model. I illustrate how demand intensity connects wealth
inequality with productivity growth using analytical results. Section 5 presents the quanti-
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tative analysis. Based on the calibrated model, I investigate the comovement of productivity
growth, demand intensity, real interest rates, and wealth inequality along the transition path
from a low-inequality economy to a high-inequality economy. Furthermore, I investigate the
welfare implications of rising wealth inequality. Section 6 concludes the paper. Proofs are
relegated to Appendix A.

2 Suggestive empirical evidence

This section presents the empirical evidence on long-run changes in advanced economies
since the 1980s. I show trends in macroeconomic time series for several rich countries to
provide an international perspective on the results. I illustrate that trend-level comovement
exists among the measures for wealth and income inequality, consumption demand relative to
wealth, R&D investment relative to the R&D stock, and economic growth in these countries.

Following Piketty and Zucman (2014), my sample of advanced economies includes the
G7 countries (Canada, France, Germany, Italy, Japan, the UK, and the US) and Australia.
Panels (a) and (b) show the top 10%’s wealth and income shares, respectively. Clearly, wealth
and income inequality have substantially increased since the 1980s in these countries, as noted
by, e.g., Piketty and Saez (2003), Atkinson, Piketty and Saez (2011), Saez and Zucman
(2016), and Garbinti, Goupille-Lebret and Piketty (2021). These changes in the cross-
sectional allocation of economic resources are accompanied by slowdowns in GDP growth
(panel (c)). Consistent with the results for the US and the Euro area in Fernald (2015),
Antolin-Diaz, Drechsel and Petrella (2017), and Fernald and Inklaar (2020), these downward
trends in GDP growth started prior to the global financial crisis in the late 2000s, implying
the existence of causes other than the recent recessions. Panel (d) illustrates the concurrent
significant decreases in the aggregate consumption-to-net private wealth ratio that represents
demand intensity. Finally, I show R&D intensity in panel (e), which is a major driver of
productivity growth in seminal endogenous growth models (e.g., Romer, 1990; Grossman
and Helpman, 1991; Aghion and Howitt, 1992) and in US data (Kung and Schmid, 2015).
During the sample period, R&D intensity, defined as the ratio of business investments in
R&D to the R&D stock as in Benigno and Fornaro (2018), gradually decreased by 3.4 p.p.
on average among the eight countries.1

1To emphasize the trend-level dynamics, in Figure 1, I show 9-year moving averages for the real GDP
per capita growth rates (panel (c)) and R&D intensity (panel (e)). Appendix B.1 contains data sources and
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Figure 1: Inequality, consumption, R&D, and growth in rich countries

Notes: Panels (a) and (b) show the top 10%’s wealth and income shares, respectively. In panel (c), I show
the 9-year moving averages for the growth rates in real GDP per capita to emphasize long-run dynamics.
The consumption-to-wealth ratios in panel (d) are based on private consumption and private net wealth.
Finally, R&D intensity in panel (e) is the ratio of business investments in R&D to the R&D stock. Similar
to panel (c), panel (e) depicts 9-year moving averages for the original series. Following Piketty and Zucman
(2014), my sample of advanced economies includes the G7 countries (Canada, France, Germany, Italy, Japan,
the UK, and the US) and Australia. Appendix B.1 contains data sources and the details on the construction
of these series.

This set of common stylized facts about advanced economies calls for a theoretical frame-
work that can illustrate the relationships among these macroeconomic trends. In the remain-
der of this paper, I develop an endogenous growth model with heterogeneous households and
emphasize a channel that links an increase in wealth and income inequality to GDP growth
slowdowns through a decrease in demand intensity and a fall in R&D intensity.

3 Model

This section presents an endogenous growth model with heterogeneous households. By incor-
porating household heterogeneity into an endogenous growth framework, I build a general

the details on the construction of these series.
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equilibrium model that relates cross-sectional inequality and aggregate economic growth.
In the model, productivity growth is endogenously determined by firms’ optimal hiring of
R&D workers. This optimal decision depends on the market size and the potential profit
from R&D. Note that when households are heterogeneous, market size (i.e., consumption
demand) relies on the cross-sectional distribution of economic resources as well as aggregate
quantities. Thus, in my model, wealth and income inequality may affect economic growth
through their effects on consumption demand and the profitability of R&D.

To focus on this productivity implication of household heterogeneity, I assume that eco-
nomic agents have perfect foresight regarding the aggregate variables. However, individual
households are subject to uninsurable idiosyncratic income risk as in standard incomplete
market models, such as those in Bewley (undated), Huggett (1993), and Aiyagari (1994) and
death shocks as in Yaari (1965) and Blanchard (1985). The economy is closed and populated
by a continuum of households and firms. When an agent dies, the government confiscates
accidental bequests and redistributes them to newly born agents. Time is discrete.

3.1 Firms

There exists a continuum of intermediate goods Yj,t, indexed by j ∈ [0, 1]. The final good Yt
in period t is produced by combining Yj,t in a competitive market:

Yt =
(∫ 1

0
Y

ω−1
ω

j,t dj
) ω
ω−1

,

where ω is the elasticity of substitution. The price of the final good, Pt, is given by

Pt =
(∫ 1

0
P 1−ω
j,t dj

) 1
1−ω

,

where Pj,t is the price of intermediate good j. Pt is normalized to 1 in each period. The
demand for intermediate good j follows from this structure:

Yj,t =
(
Pj,t
Pt

)−ω
Yt. (1)

Firm j produces Yj,t using the following production function:

Yj,t = K1−α
j,t (Aj,tLY,j,t)α, (2)

6



where Aj,t represents the productivity of firm j and LY,j,t is the labor input into production.
Capital Kj,t is rented at a rate of rt + δ, where δ is the depreciation rate. By spending labor
input LA,j,t on R&D, this firm can improve its production technology as follows:

Aj,t+1 = (1 + θLA,j,t)Aj,t, (3)

where θ measures the efficiency of R&D. Finally, firms pay a per-period administrative
overhead labor cost, WtLM , where Wt is the real wage rate. Firm j’s real profit in period t

is given by

Πj,t = Pj,t
Pt
Yj,t −Wt(LY,j,t + LA,j,t + LM)− (rt + δ)Kj,t. (4)

Firms discount future profits using the real interest rate r and maximize the present dis-
counted value of those future profits by choosing {Pj,τ , Kj,τ , LY,j,τ , LA,j,τ , Aj,τ+1 : τ ≥ t}
given Aj,t. In equilibrium, profits are zero, preventing the entry of new firms.

In this model, the engine of growth is productivity-enhancing R&D conducted by in-
cumbent firms. These firms spend on R&D in pursuit of additional profits originating from
monopolistic competition and a better production technology that decreases the marginal
cost of production.2

The productivity process (3) is nonstochastic. This nonstochastic specification is as-
sumed to induce a uniform evolution of productivity across symmetric firms rather than a
distribution of heterogeneous firms. This simple structure for the supply side enables me
to preserve the analytical tractability of the equilibrium with endogenous growth, although
incomplete markets and rich heterogeneity are introduced into the household side. Note
further that at the aggregate level, the productivity growth rate gt equals θLA,t, as in the
seminal R&D-based endogenous growth models developed by Romer (1990), Grossman and
Helpman (1991), and Aghion and Howitt (1992) (see also Jones, 1995, Section II).

3.2 Households

The household side consists of a continuum of heterogeneous households, indexed by i ∈ [0, 1].
In an otherwise standard incomplete market model similar to those in Bewley (undated),

2Relatedly, in the data, incumbent firms contribute substantially to productivity growth (see Bartelsman
and Doms, 2000, Section 3).
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Huggett (1993), and Aiyagari (1994), I introduce a judiciously chosen process for idiosyn-
cratic income risk that yields a simple but realistic optimal consumption function in wealth
(inclusive of income) at the household level. This consumption function, combined with the
tractable, realistic cross-sectional distributions of wealth, enables the analytical aggregation
of individual decision and state variables in this model. This tractable incomplete market
framework is adopted from Lee (2021). For exposition and completeness in this paper, I re-
capitulate several of the results from Lee (2021) although detailed discussions on the shape
of the consumption function and the interpretation of the individual income process are kept
to a minimum.

Preferences. Preferences are time-separable and feature CRRA:

Ui,t = Et

∑
τ≥t

βτ−t
C1−γ
i,τ − 1
1− γ

 ,
where C denotes consumption and γ is the relative risk aversion coefficient. As in Yaari
(1965) and Blanchard (1985), agents may die with probability pd in each period. The discount
rate β is given by β̃(1 − pd), where β̃ and 1 − pd reflect the subjective discount factor and
the survival probability, respectively.

Budget constraints. Utility is maximized subject to the budget constraint:

Ci,t +Ki,t+1 = (1 + rt)Ki,t +Wtεi,t, (5)

where Ki,t represents the assets owned by household i in period t, rt is the risk-free rate,
and Wt is the real wage rate per efficiency unit of labor. The endowment of labor with
idiosyncratic productivity εi,t is inelastically supplied. Mi,t denotes the total stochastic
income, Mi,t = Wtεi,t.

Let gt be the growth rate of labor-augmenting productivity at the aggregate level (gt =
At−At−1
At−1

). The gross growth rate is denoted by Gt = 1 + gt. I scale the variables by the
growth rates and write them in small letters, e.g., ci,t ≡ Ci,t

G1×G2×...×Gt and wt = Wt

G1×...×Gt .
I rewrite the budget constraint (5) in terms of gross wealth inclusive of income (i.e.,

cash-on-hand), which is denoted by Xi,t = (1 + rt)Ki,t +Mi,t. The total economic resources
available to household i in period t (Xi,t) are divided into consumption (Ci,t) and savings for
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the next period (Ki,t+1). In small letters due to scaling with {Gt}, xi,t evolves as follows:

xi,t+1 = Rt+1

Gt+1
(xi,t − ci,t) +mi,t+1, (6)

where Rt = 1 + rt. Specification (6) is consistent with standard consumption and savings
decision problems (see, e.g., Zeldes, 1989; Deaton, 1991; Carroll and Kimball, 1996). Finally,
the (scaled) borrowing limit is denoted by η:

xi,t+1 ≥ −η. (7)

Information structure. The economy is assumed to converge in the long run to a bal-
anced growth path equilibrium with a constant growth rate: gt → g as t → ∞. Economic
agents have perfect foresight regarding the aggregate variables, including the growth path
of productivity {gt}. However, households are exposed to uncertainty through their idiosyn-
cratic income risk εi,t and death shocks. This specification enables me to emphasize the
macroeconomic implications of household heterogeneity without oversimplifying household
heterogeneity and sacrificing the tractability of the model.

Optimality conditions. Household consumption and savings decisions are characterized
by two sufficient conditions for optimality, the consumption Euler equation and the transver-
sality condition (see, e.g. Stokey, Lucas and Prescott, 1989). Under CRRA preferences, the
consumption Euler equation is given by

1 ≥ Et

β (Ci,t+1

Ci,t

)−γ
Rt+1

 , (8)

where equality holds if the borrowing limit is not binding. When the financial market is
complete, this Euler equation simplifies to 1 = βG−γt+1Rt+1. However, when households face
uninsurable idiosyncratic income risk, consumption growth is not constant across households,
and Ci,t+1

Ci,t
is not equal to Gt+1 in general. The transversality condition is given by

lim
T→∞

Et
[
βT (Ci,T )−γXi,T

]
= 0. (9)

Idiosyncratic income risk. Because mi,t = wtεi,t and each household takes wt as given,
specifying an exogenous idiosyncratic labor productivity process {εi,t} is equivalent to char-
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acterizing the stochastic income process {mi,t}. I impose the following assumption, which is
judiciously chosen to yield tractable solutions to the household optimization problem in an
incomplete financial market with only a risk-free asset.

Assumption 1 (Idiosyncratic income risk). Consider a random variable zi,t that governs
idiosyncratic income risk. I assume that

(EE1) zi,t is independent across time and individuals, and

(EE2) 1 = E
[
βRt+1G

−γ
t+1 exp(−ξγzi,t+1)

]
for a constant 0 < ξ < 1 and all t.

I define an auxiliary exogenous process {x̃i,t} such that

(EE3) x̃i,0 = xi,0 > −η, and

(EE4) x̃i,t+1 + η = exp(zi,t+1)(x̃i,t + η) for all t.

For all t ≥ 0, the (scaled) income process {mi,t+1} is exogenously given by

(EE5) mi,t+1(x̃i,t, zi,t+1) = Rt+1
Gt+1

ζ (x̃i,t + η)ξ +
[
exp(zi,t+1)− Rt+1

Gt+1

]
(x̃i,t + η)− Gt+1−Rt+1

Gt+1
η.

I assume further that

(TVC1) gt → g, µz,t → µz, σz,t → σz, and rt → r for some constants g, µz, σz, and r as
t→∞,

(TVC2) zi,t is a Laplacian random variable with mean µz,t and variance σ2
z,t for all t; zi,t ∼

L(µz,t, σz,t), and

(TVC3) max{γL, 0} < γ < γU for some constants γL and γU that depend on µz, σz, β, ξ, g, and
η (see Appendix C for details).

Assumption 1(EE1-5) specifies the individual income process {mi,t+1}. This process is
exogenous to household decisions and is determined by an auxiliary exogenous process {x̃i,t}
(EE3-4) and idiosyncratic income shocks {zi,t} (EE1) that satisfy a moment condition (EE2).
Assumption 1(TVC1-3) imposes a bound on the feasible values of the relative risk aversion
coefficient γ. This bound depends on the balanced growth path that the economy converges
to in the long run (TVC1) and the distributional family of the idiosyncratic income shocks
zi,t (TVC2). I assume a Laplacian shock, which better matches the data than a Gaussian
shock, as shown in Lee (2021).
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Consumption function. Assumption 1 generates an environment that admits a highly
tractable representation of the consumption–savings decision of each household.

Proposition 1 (Consumption function). Consider the following consumption function ex-
pressed in terms of scaled consumption (ci,t) and of wealth inclusive of income (xi,t):

ci,t = c̄(xi,t) = ζ(xi,t + η)ξ for xi,t ≥ −η, (10)

where ζ > 0 and 0 < ξ < 1. Assumption 1(EE1-EE5) implies that this consumption function
satisfies the Euler equation (8) with equality for all t. Furthermore, Assumption 1(TVC1-
TVC3) is a sufficient condition for the transversality condition (9) to hold. Thus, the con-
sumption function (10) solves the households’ dynamic programming problem.

Individual consumption (ci,t) is determined by both asset holdings (ki,t) and income
(rtki,t+mi,t) because wealth inclusive of income (xi,t) is given by (1+rt)ki,t+mi,t. Addition-
ally, this highly tractable consumption function is characterized by only three parameters:
ζ, ξ, and η reflect the scale, shape, and borrowing limit, respectively. Because 0 < ξ < 1, the
consumption function (10) is strictly concave in x, implying that rich households save more.
This result is consistent with the empirical evidence in Dynan, Skinner and Zeldes (2004),
Johnson, Parker and Souleles (2006), Parker et al. (2013), and Zidar (2019). Furthermore,
cross-sectional relationships between consumption and wealth in the data are approximated
remarkably well by this simple function (see Section 5.1).

This model differs from other models with uninsurable income fluctuations that have only
numerical solutions. The important exceptions include Constantinides and Duffie (1996)
and Heathcote, Storesletten and Violante (2014), which feature a tractable equilibrium with
no trade among households. My model augments these seminal papers with a significant
amount of asset trading among households in equilibrium. Furthermore, in this paper, the
quantity of assets is non-trivial and equals the endogenously determined demand of capi-
tal used in production, whereas capital is not a factor of production in Constantinides and
Duffie (1996) and Heathcote, Storesletten and Violante (2014). Other approaches to build-
ing tractable incomplete-market models utilize either linear or piecewise-linear consumption
functions (e.g., Wang, 2003, 2007; Wen, 2015; Acharya and Dogra, 2020). In contrast, the
consumption function (10) is strictly concave in x, even for rich households with large x.

Cross-sectional distributions of wealth. Building on the optimal consumption and
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savings decisions at the household level, I specify the cross-sectional distribution of wealth
inclusive of income xi,t. By imposing certain assumptions, I induce simple, parameterized
wealth distributions based on three parameters. Furthermore, this model replicates the
Pareto right tails and rising wealth inequality observed in recent decades by using different
parameter values.

I start with the law of motion for household consumption and wealth. Under the opti-
mal consumption–savings decision in Proposition 1 and conditional on survival, individual
consumption and wealth have random growth processes driven by the idiosyncratic income
shocks {zi,t}.

Proposition 2 (Dynamics of individual consumption and wealth). When Assumption 1
holds and agent i does not die in period t+ 1, the following are true:

(1) xi,t+1 + η = exp(zi,t+1)(xi,t + η) for all t.

(2) xi,t = x̃i,t > −η for all t.

(3) ci,t+1 = exp(ξzi,t+1)ci,t for all t.

Wealth inclusive of income (augmented with the borrowing limit) randomly grows at the
individual level. Furthermore, the auxiliary exogenous variable x̃i,t coincides with xi,t, and
the borrowing constraint does not bind for all t. Finally, given the consumption function
(10), log consumption also has a random walk process, which is less volatile than the log
wealth process because ξ < 1.

Let ai,t denote the logarithm of wealth augmented with income and the borrowing limit
(and scaled by growth rates):

ai,t = log (xi,t + η) .

The random growth results in Proposition 2 imply that ai,t+1 = ai,t + zi,t+1 conditional on
surviving. An agent may die with probability pd after receiving income rt+1ki,t+1 +wt+1εi,t+1

but before making consumption–savings decisions. The government confiscates these acci-
dental bequests xi,t+1 and redistributes them to the agents newly born in each period. The
population mass of the newly born agents is pd, and the logarithm of their random endow-
ments augmented with the borrowing limit is denoted by ni,t+1. The distribution of ni,t+1

reflects nonmodeled redistribution mechanisms, such as estate taxes, public education, and
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social insurance, and the stochastic components of intergenerational transmission. Given
i.i.d. death shocks di,t ∼ Bernoulli(pd), the cross-sectional distribution of wealth evolves as
follows:

ai,t+1 = (1− di,t+1)(ai,t + zi,t+1) + di,t+1ni,t+1. (11)

In terms of probability density functions (pdfs), Equation (11) yields:

fa,t+1 = (1− pd)fa+z′,t+1 + pdfn,t+1, (12)

where the pdfs of ai,t+1, ai,t + zi,t+1, and ni,t+1 are denoted by fa,t+1, fa+z′,t+1, and fn,t+1,
respectively.

The following assumptions induce a Laplace distribution of ai,t in every period.

Assumption 2 (Cross-sectional distribution of wealth). I assume that

(1) ai,t ∼ L(µa,t, σ2
a,t),

(2) zi,t+1 ∼ L(µz,t+1, σ
2
z,t+1) is independent of ai,t, and

(3)
√

2 > σa,t > σz,t+1 > 0.

Let ai,t+1 have a mean of µa,t+1 and variance σ2
a,t+1. I assume further that

(4) σa,t ≤ σa,t+1, and

(5) pd > 1− 1
Ct+1

, where Ct+1 ≡ σa,tσa,t+1
σ2
a,t−σ2

z,t+1
exp

(
|µz,t+1|−µa,t+1+µa,t

σa,t/
√

2

)
≥ 1.

I start with a log Laplace distribution of wealth in period t (Assumption 2 (1)). For
the idiosyncratic income shock zi,t+1, which is independent of ai,t (Assumption 2 (2)), the
cross-sectional dispersion of log wealth is larger than the period-by-period idiosyncratic risk
(Assumption 2 (3)). Furthermore,

√
2 > σa is assumed to make aggregate wealth finite.

Assumption 2 (4) guarantees that this framework can be used to investigate the macroeco-
nomic implications of (weakly) rising wealth inequality. Finally, the probability of death pd

is not too low (Assumption 2 (5)). These conditions are sufficient to induce a log Laplace
wealth distribution in period t+ 1 with a carefully chosen pdf fn,t+1.
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Proposition 3 (Log Laplace distributions of wealth). Assumption 2 implies that there exists
a well-defined pdf fn,t+1 of the random endowment ni,t+1 for the newly born agents such that

ai,t+1 ∼ L(µa,t+1, σ
2
a,t+1). (13)

Thus, under a judiciously calibrated {fn,t}, this model generates a highly tractable cross-
sectional distribution of wealth log(xi,t+η) = ai,t ∼ L(µa, σ2

a,t) in every period. Furthermore,
this cross-sectional distribution of wealth is characterized by only three parameters: the
borrowing limit η, the central tendency of log wealth µa,t, and the measure of dispersion or
inequality σa,t. Note that rising wealth inequality can be modeled by an increase in σa,t.

In summary, the household side of this economy admits a tractable nonlinear consumption
function (10) and parametric cross-sectional distributions of wealth (13). Thus, it is possible
to summarize the equilibrium conditions from a continuum of heterogeneous households
with only a few analytically tractable equations. Because firm R&D investments depend on
the market size, which affects the profit gained from the improved production technology,
deriving an equation for aggregate demand intensity and relating it to the distributional
parameters of the economy plays a crucial role in the subsequent analysis.

4 Analytical characterization of the steady state

This section characterizes the general equilibrium of the model. Using analytical expressions,
I illustrate how demand intensity, defined as the ratio between aggregate consumption and
wealth inclusive of national income, connects productivity growth with wealth inequality.
For clarity of exposition, this section focuses on a balanced growth path equilibrium. In
Section 5, quantitative analysis is used to show that similar intuition and results are valid
for the transition dynamics.

4.1 Demand intensity and productivity growth

This section illustrates how demand intensity relates to the major supply-side components
of the economy. Specifically, demand intensity affects market size, R&D spending, and en-
dogenously determined productivity growth rates. Using the equilibrium conditions from
the firm side of the economy presented in Section 3.1, I show how demand intensity deter-
mines productivity growth rates and other major macroeconomic variables in this model.
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Because demand intensity summarizes the consumption–savings decisions of heterogeneous
households, it connects the demand side with the supply side of the economy in a succinct
manner.3

Let Ct, Kt, and Yt be aggregate consumption, capital, and output, respectively. Aggregate
wealth inclusive of income is denoted by Xt, where Xt includes capital and national income
net of capital depreciation:

Xt = (1− δ)Kt + Yt.

Reflecting the consumption–savings decisions of households, a portion of Xt is consumed
(Ct), and the remainder is saved (Kt+1). Then, demand intensity is defined as the ratio
between aggregate consumption and wealth inclusive of national income:

sC = Ct
Xt

.

Similarly, I express other variables that grow in terms relative to Xt, e.g., sY = Yt
Xt
,

sK = Kt
Xt

, sW = Wt

Xt
, and sA = At

Xt
. On the balanced growth path, these ratios are constant.

Proposition 4 (Endogenous growth). On a balanced growth path with symmetric firms, the
first-order conditions for firms’ optimization problem imply that

r =M−1(1− α)sY
sK
− δ, (14)

r = θLY + g, (15)

where M = ω
ω−1 > 1 is the gross markup. Given sY (sC , g) = sC + δ+g

1+g (1− sC), sK(sC , g) =
1−sC
1+g , LY (sC , sA, g) =

(
sY (sC ,g)

sαAsK(sC ,g)1−α

)1/α
, and sA, the following equation relates g to sC:

M−1(1− α)sY (sC , g)
sK(sC , g) − δ = θLY (sC , sA, g) + g. (16)

Equations (14) and (15) are obtained from the first-order conditions with respect to
capital (Kj,t) and R&D (LA,j,t and Aj,t+1), respectively. Note that the dependence of sY , sK ,

3The discussion below focuses on the endogenous determination of productivity growth rates in relation
to demand intensity. The results for other macroeconomic variables echo the findings in Lee (2021) for a
neoclassical model with exogenous growth.
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and LY on g is made explicit in Equation (16) because g is also endogenously determined.
To implicitly define g(sC , sA) using Equation (16), I first show that a unique g that satisfies
Equation (16) exists.

Proposition 5 (Unique existence of g). Fix sC ∈ (0, 1) and sA > 0. When 1−α
M(1−sC) < 1,

there exists a unique g satisfying Equation (16).

A sufficient condition for the above result is sC ≤ α because M > 1. Given α ≈ 0.6 and
sC ≈ 0.2, this sufficient condition is likely to hold for realistic parameter values. Therefore,
g(sC , sA) can be defined implicitly from Equation (16) for sC ∈ (0, α]. This result allows
me to rewrite sY (sC , g) as sY (sC , sA) ≡ sY (sC , g(sC , sA)). Similarly, other macroeconomic
variables, such as sK , LY , LA, sW , and r, can be written as a function of sC and sA only.4

Proposition 6 (Comparative statics of g(sC , sA)). Suppose that g(sC , sA) is defined as above
and 1−α

M(1−sC) < 1. Then, ∂g(sC ,sA)
∂sC

> 0 if and only if

M−1(1 + g) > 1− sC
α

(χ− g) + (1− δ)(1− sC)2

α(1− α)
χ− g

1 + g − (1− δ)(1− sC) , (17)

where χ = g + θ
sA

(1 − sC)α−1
α

(g+δ+(1−δ)sC)1/α

1+g . As a special case, when α > sC, α > 1
2 , and

g(sC , sA) > −
[
1 + (1−sC)M

2α−1

]−1
, the above condition holds for a sufficiently large δ.

When ∂g(sC ,sA)
∂sC

> 0, a decrease in demand intensity (a smaller sC) has negative supply-
side effects on productivity (a lower g). Although the general sufficient condition for this
result in Equation (17) is not highly tractable, it is not overly restrictive. At a minimum, the
three inequality conditions for the special case with a large δ are likely to hold. Furthermore,
Equation (17) is satisfied for the realistic parameter values used in this paper.

Intuitively, on a balanced growth path with lower consumption demand sC , the market is
smaller. Because of limited profit gains from an improved production technology, firms may
have fewer incentives to spend on R&D. Concurrently, a smaller sC and more savings sK
increase the wage rate sW and decrease the real interest rate r. As hiring researchers becomes
more expensive, spending on R&D is further deterred. In contrast, as firms discount future
profits at a lower rate, additional R&D and improved productivity become more attractive.

4For sY , sK , LY , and r, I use the expressions in Proposition 4. sK′(sC , sA) is given by [1 +
g(sC , sA)]sK(sC , sA). Because g = θLA, LA(sC , sA) = θ−1g(sC , sA). From the first-order condition for
LY,j,t, I have WLY =M−1αY ; therefore, sW (sC , sA) =M−1α sY (sC .sA)

LY (sC ,sA) .
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For the calibrated parameter values in this paper, the market size and wage effects dominate
the real interest rate effect. In short, g decreases in sC .

This model implies that the limited consumption demand observed in the data (panel
(d) in Figure 1) might have yielded substantial negative effects on supply-side trends. When
financial markets are incomplete, this decrease in demand intensity can result from an in-
crease in economic inequality. As shown in Section 3.2, uninsurable idiosyncratic income
risk implies that the consumption of individual households is a concave function in wealth
inclusive of income (see also Carroll and Kimball, 1996). Given this nonlinear consumption
function, demand intensity depends on the distributional elements of the model.5

4.2 Demand intensity and wealth inequality

This section presents the relationship between demand intensity and wealth inequality. The
tractable model of heterogeneous households presented in Section 3.2 allows for a straightfor-
ward aggregation of individual consumption and wealth. Then, demand intensity sC admits
an analytical representation that clearly illustrates how wealth inequality affects aggregate
consumption demand. As in Section 4.1, I focus on a balanced growth path equilibrium for
exposition.

Propositions 1 and 3 imply that wealth inclusive of income has a log Laplace distribution
and ci = ζ(xi + η)ξ. Using the properties of Laplace distributions, I obtain the following
results.

Proposition 7 (Demand intensity, sC). Suppose that ai = log(xi + η) ∼ L(µa, σ2
a) and

ci = c̄(xi) = ζ(xi + η)ξ. Then,

(1) The right tail of wealth xi follows a Pareto distribution.

(2) If σa <
√

2, aggregate wealth and consumption (scaled) are given by

x = Ei[exp(ai)]− η = exp(µa)
1− 1

2σ
2
a

− η, and

5This prediction of the incomplete market model does not hold when the financial markets are complete.
In a complete market economy, the Euler equation (8) simplifies to R = Gγ/β. In combination with Equation
(14), an additional equilibrium condition is obtained: M−1(1 − α) sY (sC ,g)

sK(sC ,g) − δ = (1+g)γ
β − 1. Then, this

equation and Equation (16) jointly determine the equilibrium values of sC and g, given sA. Because sC
is fixed regardless of the cross-sectional allocation of wealth, the comparative static results in Proposition
6 are less relevant in this environment. However, if the market is incomplete, there exists a gap between
individual consumption growth Ci,t+1

Ci,t
in the Euler equation (8) and the aggregate growth rate Gt+1 because

of the uninsurable idiosyncratic income shocks.
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c = Ei[ci] = ζ exp(ξµa)
1− 1

2ξ
2σ2

a

.

(3) Suppose σa <
√

2. Given a mean-preserving spread in xi induced by changes in µa and
σa, sC = c

x
decreases:

dsC
dσ2

a

|x = −DsC < 0,

where D = 1
2

1+0.5ξσ2
a

(1−0.5ξ2σ2
a)(1−0.5σ2

a)ξ(1− ξ) > 0.

This simple model of the cross-sectional distribution of wealth features only three param-
eters (η, µa, and σa). Despite being simple, this model successfully replicates the stylized
fact of a Pareto right tail in the distribution of wealth (Proposition 7 (1)), consistent with
the empirical evidence in Saez and Zucman (2016). Furthermore, aggregate consumption
and wealth (inclusive of income) admit analytically tractable representations, as shown in
Proposition 7 (2). Thus, demand intensity sC = c

x
is characterized by only five parame-

ters (Proposition 7 (3)): the two consumption function parameters (ζ and ξ) and the three
wealth distribution parameters (η, µa, and σa). To illustrate the effects of wealth inequality
on demand intensity, I consider a mean-preserving spread of {xi}. When σ2

a increases and
µa adjusts accordingly to keep aggregate wealth x constant, dsC

dσ2
a

|x < 0.6 Intuitively, rising
wealth inequality decreases aggregate consumption demand because rich households save
more.

Propositions 6 and 7 formalize the main insights from this model by connecting wealth
inequality through aggregate consumption demand to productivity growth. Through its
negative effects on demand intensity, an increase in wealth inequality can endogenously
generate productivity slowdowns under incomplete financial markets.

4.3 A balanced growth path equilibrium

Building on the results from the previous sections, I characterize a balanced growth path
equilibrium in this section. I specify parameters for idiosyncratic income risk (µz and σz)
and the endowment distribution for the newly born agents (fn) that are consistent with a
log-Laplacian wealth distribution ai ∼ L(µa, σ2

a) in a balanced growth path equilibrium.
6There is no trend-level change in the value of η estimated from the Panel Study of Income Dynamics

(PSID) data (see Section 5.1). Thus, I concentrate on an increase in the dispersion parameter σa.
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I start from a cross-sectional distribution of wealth inclusive of income, log(xi + η) =
ai ∼ L(µa, σ2

a). Given the values of µa and σa, Proposition 7 determines sC :

sC = Ct
Xt

= ζ exp(ξµa)
1− 1

2ξ
2σ2

a

/

[
exp(µa)
1− 1

2σ
2
a

− η
]
.

This equation succinctly summarizes individual households’ consumption–savings decisions
at the aggregate level. Then, I use the equilibrium conditions from the firm side of the
economy. Propositions 4 and 5 illustrate how to find the productivity growth rate g given
sC and sA. Similarly, the other major macroeconomic variables, such as sY , sK , sW , r, LY ,
and LA, can be fixed based on sC and sA (see footnote 4). Finally, LM , which governs
the per-period overhead labor cost, is calibrated to satisfy the zero-profit condition (Π = 0,
Equation (4)) and prevent the entry of new firms.

To find a magnitude of the idiosyncratic income risk (µz and σz) and an endowment
distribution for the newly born agents (fn) that are consistent with the above macroeco-
nomic environment in a general equilibrium, I turn to the consumption Euler equation (8),
the labor market clearing condition, and the government’s budget constraint regarding the
redistribution of accidental bequests.

Given the real interest rate r(sC , sA) and the growth rate g(sC , sA), I obtain a moment
condition for zi,t ∼ L(µz, σ2

z) from the Euler equation: E[β(1 + r)(1 + g)−γ exp(−ξγzi,t)] = 1
(Assumption 1(EE2)). To clear the labor market, labor demand L(sC , sA) = LY (sC , sA) +
LA(sC , sA) + LM should equal labor supply in efficiency units, Ei[εi,t]. With some algebra,
it can be shown that this condition is equivalent to a moment condition E[exp(zi,t)] = 1.
Finally, the government’s budget clearing condition implies that the aggregate value of the
accidental bequests is equal to the endowments of the newly born agents. Because death
shocks are random, this condition is equivalent to pdE[exp(ai,t + zi,t+1)] = pdE[exp(ni,t+1)].
Similarly, this equation simplifies to the same moment condition E[exp(zi,t)] = 1 as the
labor market clearing condition. Note that the two moment conditions, E[β(1 + r)(1 +
g)−γ exp(−ξγzi,t)] = 1 and E[exp(zi,t)] = 1, are sufficient to determine the idiosyncratic
income shock parameters (µz and σz).

What remains is to specify fn in a manner such that the implied cross-sectional distri-
bution of wealth fa is consistent with this balanced growth path equilibrium. It straight-
forwardly follows from Equation (12) that it is sufficient to assume that fn = p−1

d [fa − (1−
pd)fa+z′ ]. As long as pd > 1− 1

C , where C = σ2
a

σ2
a−σ2

z
exp

(
|µz |
σa/
√

2

)
, this endowment distribution
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has a well-defined pdf (Proposition 3). I checked that this condition is satisfied for all the
quantitative analyses in this paper. Similarly, the sufficient condition for the transversality
condition, max{γL, 0} < γ < γU (Assumption 1 (TVC3)), is also satisfied.

5 Wealth inequality and productivity slowdowns

This section presents the quantitative analysis of the model. I compute the general equilib-
rium transition dynamics of the macroeconomic variables induced by a trend-level increase
in idiosyncratic income risk and cross-sectional wealth inequality. Consistent with the theo-
retical prediction in Section 4, rising wealth inequality generates productivity slowdowns as
well as other macroeconomic trends, such as low demand intensity, low real interest rates,
and a high capital-to-net national income ratio. Comparing the different balanced growth
path equilibria with the various levels of steady-state wealth inequality yields similar results.

5.1 Calibration

This section calibrates the model parameters. The results for the parameters on the house-
hold side of the model, such as the distributional parameters (µa,t, σa,t, and η) and the
consumption function parameters (ζ and ξ), are borrowed from Lee (2021). Here, I recapit-
ulate the discussion in Lee (2021) for completeness. The R&D productivity parameter θ is
chosen by matching the trend-level growth rate for the US economy at the beginning of the
sample period. Other parameters are standard.

I start with the wealth distribution parameters. I compute the quintile shares of wealth
inclusive of income (xi,t) in the Panel Study of Income Dynamics (PSID) data and estimate
µa,t, σa,t, and ηt by matching these moments, where log(xi,t + ηt) = ai,t ∼ L(µa,t, σ2

a,t). In
doing so, I conduct two exercises. First, I calibrate the dispersion parameter σa,t and the
borrowing limit ηt in each period without any restrictions to match the empirical quintile
shares. Second, I impose a linear time-trend σa,t = κ0 + κ1t on the dispersion parameter
and assume a time-invariant borrowing limit η (scaled) to focus on slow-moving changes
in wealth inequality since the 1980s.7 In this case, the three parameters, κ0, κ1, and η,
are calibrated by jointly matching the quintile shares in all PSID waves during the sample
period. In all cases, µa,t is chosen by normalizing aggregate wealth (scaled) in each period

7The 1984 wave is the first PSID wave with wealth data.

20



Table 1: Quintile shares of wealth inclusive of income in the data and the model

(1) (2) (3) (4) (5) (6) (7) (8)

Quintile Shares of Wealth Inclusive of Income (x, %)

1st 2nd 3rd 4th 5th µa σa η

Data. PSID 1984 wave 1 5 9 17 67
Model. Flexible σa,t and ηt 0 6 10 16 67 -0.29 0.89 0.24
Model. σa,t = κ0 + κ1t and ηt = η 0 6 10 16 69 -0.37 0.93 0.21

Data. PSID 2001 wave 1 4 7 15 73
Model. Flexible σa,t and ηt 0 5 8 14 73 -0.51 1.00 0.19
Model. σa,t = κ0 + κ1t and ηt = η 0 4 8 14 74 -0.50 1.00 0.21

Data. PSID 2015 wave 0 2 5 12 80
Model. Flexible σa,t and ηt -1 3 6 11 80 -0.68 1.07 0.19
Model. σa,t = κ0 + κ1t and ηt = η -1 3 7 12 79 -0.62 1.05 0.21

Notes: Columns (1)-(5) in this table show the quintile shares of wealth inclusive of income in selected
PSID waves. The log-Laplacian model parameters are calibrated by matching the quintile shares of wealth.
For the flexible parameter case, I change the dispersion parameter σa,t and the borrowing limit ηt in each
period without any restrictions. For the second case, I impose a linear time-trend σa,t = κ0 + κ1t on the
dispersion parameter and assume a time-invariant borrowing limit η (scaled). In all cases, µa,t is determined
by normalizing aggregate wealth to one in each period.

to one (Ei[xi,t] = 1). For details on the PSID data, see Appendix B.2.
Columns (1)-(5) in Table 1 show the empirical and model-implied quintile shares of wealth

inclusive of income in selected years. In the data, the top quintile shares have substantially
increased since the 1980s. Note that this secular increase in wealth inequality can be repli-
cated by the model using the calibrated time series of the distributional parameters. Even the
parsimonious model with an upward linear trend in σa,t matches the cross-sectional wealth
data in different years remarkably well. Finally, there exist no clear trend-level changes in
the estimated ηt for each PSID wave.

Suppose that in 1983, the economy is on a balanced growth path described by the pa-
rameters in Table 1 (σa = 0.93, µa = −0.37, and η = 0.21). Using the moment conditions in
Section 4.3, I obtain σz = 0.11 and µz = −0.006 for this balanced growth path equilibrium.
Note that these realistic parameters satisfy Assumption 1 (3) (

√
2 > σa > σz). Verifying

Assumption 1 (5) (pd > 1 − 1
C ) is also straightforward. Finally, Figure 2 depicts the model
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Figure 2: Cross-sectional distributions of wealth

Notes: This figure shows the model pdfs (fa, fa+z′ , and fn′) from Equation (12) under the assumption that
the economy is in a balanced growth path equilibrium in 1983. I use the following parameters: σa = 0.93,
µa = −0.37, η = 0.21, σz = 0.11, µz = −0.006, and pd = 0.025.

pdfs (fa, fa+z′ , and fn′) determined by the calibrated distributional parameters. Clearly,
the wealth of the newly born agents (fn) is more concentrated around the center of the
distribution than the wealth of the entire population (fa) is.

Next, I turn to the shape (ξ) and scale (ζ) parameters of the consumption function (10).
Because log(ci,t) = constant + ξ log(xi,t + η), the shape parameter ξ can be estimated by
regressing log(ci,t) on log(xi,t + η). The left panel of Figure 3 shows a binned scatter plot of
log(ci,t) and log(xi,t + η) and a regression line based on the 2003 PSID wave. I use the same
η = 0.21 in Table 1. Note that, despite being simple, the tractable consumption function
(10) captures the salient empirical relationships between wealth and consumption reasonably
well. The right panel shows the ξ estimated from the different PSID waves with the 95%
confidence intervals. In all cases, the estimates are similar and approximately 0.5. Thus, I
calibrate ξ at 0.5.

For the scale parameter ζ, I compare the model-implied demand intensity sC,t = Ct
Xt

with the corresponding empirical measure from the beginning of the sample period. By
fitting a linear time trend to the post-1980 data to focus on slow-moving changes, I obtain
sC,1983 = 19.5% (see Figure 5 (a)). I adjust ζ to match the model-induced sC,1983 of 19.5%,
given the calibrated µa,1983, σa,1983, η, and ξ.
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Figure 3: Consumption function in the PSID

Notes: The left panel shows a binned scatter plot of log(ci,t) and log(xi,t + η) based on the PSID 2003 wave
with η = 0.21. The right panel illustrates the estimated slope coefficient ξ with the 95% confidence intervals
using each PSID wave and the calibrated value of 0.5.

The R&D productivity parameter θ is pinned down in the following manner. I first
normalize sA to one. Given sC,1983 and the similarly estimated trend-level GDP growth rate
g1983 of the US economy (see Figure 5 (b)), I can determine r and LY using the equations
in Proposition 4. Then, Equation (15) is used to find a consistent value for θ.

In short, the model is calibrated to resemble the US economy in the early 1980s. By doing
so, I can evaluate the quantitative importance of increasing wealth inequality for productivity
slowdowns and other macroeconomic changes that started to emerge circa 1980.

Other parameters are standard: β = 0.96, γ = 2, sA = 1, pd = 1/40, δ = 0.06, and ω = 6.
Thus, the steady-state markup, 1

ω−1 , is 20 percent, and α is selected by setting the capital
income share, ω−1

ω
(1− α), at 40 percent. These values are chosen following Rotemberg and

Woodford (1997) and Rognlie (2016, Table 4), respectively. As in Carroll et al. (2017), the
average working life is 40 years. The depreciation rate of the physical capital stock is 6
percent (Nadiri and Prucha, 1996, Table II).
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5.2 Transition dynamics

This section quantitatively investigates the transition of the US economy from a low-inequality
economy in the early 1980s to a high-inequality economy in the late 2020s. I examine the
dynamics of major macroeconomic variables, such as productivity growth rates, demand
intensity, real interest rates, and capital-to-income ratios, through the lens of the model.
I document that rising wealth inequality, induced by an increase in idiosyncratic income
risk and income inequality, generates substantial secular variation in these macroeconomic
variables. Thus, I conclude that the distributional factors have significant macroeconomic
implications for long-run growth as well as short-run fluctuations (see, e.g., Coibion et al.,
2017; Kaplan and Violante, 2018).

I consider three cases with different equilibrium concepts. First, I calculate the general
equilibrium transition dynamics. The transition starts from the low-inequality balanced
growth path equilibrium in 1983. Then, in 1984, economic agents realize that wealth in-
equality σa,t will exhibit a previously unanticipated gradual increase until 2019 and then
stay at its 2019 level thereafter. Since 1984, economic agents have had perfect foresight re-
garding the corresponding dynamics of the macroeconomic variables, such as µz,t, σz,t, µa,t,
and fn,t. In 1984, the overhead labor cost LM also adjusts to its value in the posttransition
balanced growth path equilibrium with σa,2019 and µa,2019. For this scenario, I assume that
there exists a parsimonious time trend of σa,t = κ0 + κ1t with the time-invariant η in Table
1. As a benchmark, I consider a growth path such that Xt and At grow at the endogenously
determined time-varying rate of gt.8

The second case compares balanced growth path equilibria with different levels of wealth
inequality. For the calibrated σa,t and ηt based on each PSID wave, I compute the cor-
responding balanced growth path equilibrium. In this case, I use the wealth distribution
parameters estimated without any restrictions.

Finally, I investigate partial equilibrium dynamics. I fit a linear time trend to the post-
1980 observations of demand intensity sC,t. Then, I input this secular decrease in sC from
sC,1983 to sC,2019 into the equilibrium conditions for the supply side to derive transition
dynamics consistent with the exogenously assumed path of demand intensity. Because the
household side is absent, this analysis is a partial equilibrium analysis.

Panels (a)-(c) in Figure 5 show the top wealth share, the standard deviation of log
8For details on the solution method, see Appendix D.1.
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Figure 4: Distributional parameters

Notes: The general equilibrium transition path is shown by the solid lines. The balanced growth path
equilibria with different levels of wealth inequality are depicted by the dashed lines with squares.

wealth, and the mean of log wealth, respectively, where ai,t = log(xi,t + ηt) ∼ L(µa,t, σ2
a,t).

The empirical top quintile shares estimated from the PSID are almost indistinguishable from
the squares in panel (a), which represent the balanced growth path equilibria with different
levels of wealth inequality. Additionally, with a gradual increase in σa,t, the transition path
(the solid line) captures the increasing concentration of wealth at the top since the 1980s.
This increase in wealth inequality is induced by an upward trend in σa,t as shown in panel
(b). Finally, given an increasing σa,t, preserving mean wealth xt = exp(µa,t)

1−0.5σ2
a,t
− ηt through

a mean-preserving spread requires a decrease in µa,t (panel (c)). The idiosyncratic income
risk parameters σz,t and µz,t are depicted in panels (d) and (e), where zi,t ∼ L(µz,t, σ2

z,t).
As is common in Bewley-Huggett-Aiyagari models, a larger income risk σz,t is necessary to
induce increased wealth inequality (panel (d)). Then, the labor market clearing condition
E[exp(zi,t)] = exp(µz,t)

1−0.5σ2
z,t

= 1 implies a concurrent decrease in µz,t as shown in panel (e). Finally,
panel (f) illustrates the mode of fn,t. As shown in Figure 2, the endowment of the newly born
agents fn,t is highly concentrated around the center of the wealth distribution fa,t. Thus, as
µa,t decreases (panel (c)), the mode of fn,t similarly shifts leftward.
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Figure 5: Macroeconomic trends in the model and the data

Notes: The general equilibrium transition path is shown by the solid lines. The partial equilibrium transition
path with an exogenous decrease in sC,t is depicted by the dash-dotted lines. The balanced growth path
equilibria with different levels of wealth inequality based on each PSID wave are illustrated by the dashed
lines with squares. The dotted lines represent the empirical moments.

Figure 5 shows the main results from the quantitative analysis of the macroeconomic
dynamics. Accompanied by the secular changes in the distributional factors shown in Figure
4, the aggregate consumption-to-wealth ratio (demand intensity) sC,t decreases (panel (a)),
productivity growth rates decrease (panel (b)), real interest rates decrease (panel (c)), and
the aggregate capital-to-net national income ratio increases (panel (d)). The magnitudes of
these variations are substantial and comparable to the trend-level changes in the data since
the 1980s. Thus, these results imply that rising wealth inequality can significantly affect
macroeconomic trends through its effects on demand intensity sC,t.9

Specifically, panel (a) illustrates the demand intensity, defined as the consumption-to-
wealth (inclusive of income) ratio sC,t = Ct

Xt
. On the general equilibrium transition path (the

solid line), sC,t decreases by 2 p.p. between 1983 and 2019. Because wealth inequality (σa,t)
increases during transition periods and the consumption function (10) is concave, demand
intensity decreases, consistent with the downward trend in the empirical time series (the

9For details on the empirical time series, see Appendix B.3.
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dotted line) and theoretical predictions in Proposition 7 (3). When a linear time trend
in the empirical measure of sC,t is directly estimated for the partial equilibrium analysis,
sC,t further decreases to 16.2% from 19.5% during the same periods (the dash-dotted line).
Comparing the different balanced growth paths (the dashed line with squares) yields similar
results. Thus, rising inequality and the concavity of the consumption function in wealth
inclusive of income explain approximately two-thirds of the trend-level decrease in demand
intensity in the data.

The limited demand and the small market size disincentivize firms from spending on
R&D. Thus, as shown in Proposition 6 and panel (b), productivity growth slows endoge-
nously and substantially. The transition to a high-inequality economy starts in 1984. As
LA,1984 decreases, g1985 = θLA,1984 decreases accordingly. Subsequently, on the general equi-
librium transition path, gt gradually decreases and converges to 1.4%. Similar to demand
intensity, shown in panel (a), the balanced growth paths with different levels of wealth in-
equality feature comparable growth slowdowns. In the partial equilibrium analysis, sC,t and
gt decrease more than along the general equilibrium path, and the posttransition growth rate
is 1%. Thus, wealth inequality has significant growth implications, and this model prediction
is consistent with the empirical time series of economic growth rates (see also Fernald, 2015;
Antolin-Diaz, Drechsel and Petrella, 2017).

These secular trends in demand intensity and productivity growth are further related
to other macroeconomic trends. Panel (c) depicts the model-implied rt (left axis) and its
empirical estimates (right axis). I obtain the following result for rt from the Euler equation
(8) (see also Assumption 1(EE2)):

r2019 − r1983 ≈ γ(g2019 − g1983) + γξ(µz,2019 − µz,1983)− 1
2(ξγ)2(σ2

z,2019 − σ2
z,1983). (18)

Along the general equilibrium transition path, the three terms on the right-hand side in
Equation (18) equal 1.1 p.p., 0.2 p.p., and 0.2 p.p., respectively. Thus, the modestly intensi-
fied idiosyncratic income risk that underlies rising wealth inequality contributes substantially
to low real interest rates. Additionally, this contribution occurs largely through the general
equilibrium effects on demand intensity, R&D incentives, and productivity growth rates. The
results from different balanced growth path equilibria are comparable with the decreases in
rt from the general equilibrium transition dynamics. Finally, the partial equilibrium analysis
predicts a larger decrease in rt based on a larger decrease in sC,t.
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Panel (d) illustrates the capital-to-net national income ratios Kt
Yt−δKt . The upward trend in

the data documented by Piketty and Zucman (2014) is replicated by the model simulation
results. Because Ct + Kt+1 = Xt, a decrease in sC,t implies relatively more capital and,
therefore, a higher value of Kt

Yt−δKt in the model.
In summary, distributional factors are relevant for long-run macroeconomic dynamics.

The model simulation results imply that rising wealth inequality in the US since the 1980s
has been a major source of productivity slowdowns as well as other salient macroeconomic
trends, such as low demand intensity, low real interest rates, and a high capital-to-income
ratio.

5.3 Welfare implications of wealth inequality

This section assesses the welfare implications of rising wealth inequality. For this purpose, I
define the following social welfare function for a constant λ:

SW ({λCi,t}) =
∑
t

βt
[∫ (λCi,t)1−γ − 1

1− γ di

]
. (19)

The scaling by growth rates (ci,t = Ci,t
G1×...×Gt ), the (scaled) consumption function (10) (ci,t =

ζ exp(ξai,t)), and the cross-sectional distribution of wealth (13) (ai,t ∼ L(µa,t, σ2
a,t)) allow the

social welfare function SW ({λCi,t}) to be parameterized by λ, {gt}, and {µa,t, σa,t}.
I compare the balanced growth path equilibrium with low inequality with the general

equilibrium transition path towards a high-inequality economy. The total social welfare cost
of this increase in wealth inequality is summarized by λtotal in the following equation:

SW (λ = 1, g1983, µa,1983, σa,1983) = SW (λtotal, {gt}, {µa,t, σa,t}).

λtotal reflects the proportional increase in individual consumption on the transition path re-
quired to keep social welfare unchanged from that in the pretransition balanced growth path
equilibrium. This cost is determined by two factors: productivity slowdowns {gt} and rising
wealth inequality {µa,t, σa,t}. Thus, I decompose λtotal into λgrowth and λwealth, where λgrowth

reflects only the cost of productivity slowdowns and λwealth captures the increase in wealth
inequality. Additionally, the increase in wealth inequality affects aggregate consumption (de-
mand intensity) and consumption inequality. Thus, λwealth is further decomposed into the
cost of decreasing average consumption relative to wealth (λsC ) and increasing consumption
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inequality (λconsumption).
Using the general equilibrium transition path in Section 5.2, I find that λtotal, λgrowth,

λwealth, λsC , and λconsumption are 1.19, 1.09, 1.09, 1.05, and 1.04, respectively.10 The welfare
cost of rising wealth inequality is substantial, amounting to 19% of individual consumption
in every period. Approximately half of this total cost originates from the general equilibrium
effects on productivity slowdowns (λgrowth). The remainder originates from the wealth in-
equality, where λwealth is almost equally split between the limited average consumption (λsC )
and the increase in consumption inequality (λconsumption).11

6 Conclusion

This paper studies the implications of rising wealth inequality on productivity slowdowns
through the lens of an endogenous growth model with heterogeneous households. I empha-
size a channel that connects rising inequality with productivity growth through aggregate
consumption demand. An increase in inequality decreases aggregate consumption demand
because rich households save more. Given the limited consumption demand, firms have fewer
incentives to spend on R&D because of smaller market sizes and lower profit gains. Thus,
R&D-based productivity growth endogenously slows. Based on this channel, the model
successfully replicates the macroeconomic trends in the US data since the 1980s, such as
productivity slowdowns, low demand intensity, and low real interest rates. The welfare cost
of rising wealth inequality is substantial because of an increase in consumption inequality, a
decrease in demand intensity, and endogenous growth slowdowns.

A Proofs

Proof of Proposition 1. First, I focus on the Euler equation (8). When scaled consump-
tion is given by ci,t = c̄(xi,t) = ζ(xi,t + η)ξ for all t:

Ci,t+1

Ci,t
= Gt+1

ci,t+1

ci,t
= Gt+1

(
xi,t+1 + η

xi,t + η

)ξ
= Gt+1

 Rt+1
Gt+1

(xi,t − ci,t) +mi,t+1 + η

xi,t + η

ξ

10See Appendix D.2 for details.
11For the empirical evidence on these trends, see Attanasio and Pistaferri (2014), Attanasio, Hurst and

Pistaferri (2015), Fernald (2015), and Antolin-Diaz, Drechsel and Petrella (2017).
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= Gt+1

 Rt+1
Gt+1

(xi,t − c̄(xi,t)) + Rt+1
Gt+1

c̄ (x̃i,t) +
[
exp(zi,t+1)− Rt+1

Gt+1

]
(x̃i,t + η)− Gt+1−Rt+1

Gt+1
η + η

xi,t + η

ξ

because of budget constraint (6) and Assumption 1(EE5). Because x̃i,0 = xi,0 by the initial
condition (EE3) in Assumption 1, c̄(xi,0) = c̄(x̃i,0). Thus, Ci,1

Ci,0
= G1

(
exp(zi,1)(xi,0+η)

xi,0+η

)ξ
=

G1 exp(ξzi,1). Then, for t = 0, the Euler equation (8) simplifies to

1 ≥ E0
[
βR1G

−γ
1 exp(−ξγzi,1)

]
,

which holds with equality by Assumption 1(EE1-2). Thus, the proposed consumption func-
tion solves the Euler equation (8) with equality for t = 0. Furthermore, given ci,0 = c̄(xi,0),
xi,1 + η = R1

G1
(xi,0 − ci,0) + mi,0 + η = exp(zi,1)(xi,0 + η) = exp(zi,1)(x̃i,0 + η) = x̃i,1 + η by

Assumption 1(EE4), implying that x̃i,1 = xi,1. Therefore, by mathematical induction, the
consumption function ci,t = c̄(xi,t) = ζ(xi,t+η)ξ solves the Euler equation (8) with equality for
all t. Furthermore, these consumption decisions imply that (1) xi,t+1+η = exp(zi,t+1)(xi,t+η)
for all t, (2) xi,t = x̃i,t > −η for all t, and (3) ci,t+1 = exp(ξzi,t+1)ci,t for all t (see also the
proof of Proposition 2 for (1)-(3)).

For the transversality condition (9), it suffices to show that the condition holds under
the balanced growth path to which the economy converges in the long run (Assumption 1
(TVC1)). Given the distributional family for zi,t (TVC2) and the random growth results
for ci,t and xi,t in (1) and (3) above, Appendix C specifies γL and γU in (TVC3) such that
max{γL, 0} < γ < γU is a sufficient condition for the transversality condition (9). Thus,
Assumption 1 is a sufficient condition for the consumption function (10) to satisfy the Euler
equation (8) and the transversality condition (9), which are sufficient conditions for the
optimal consumption–savings decisions.

Proof of Proposition 2. Suppose that xi,t = x̃i,t. Given ci,t = c̄(ci,t):

xi,t+1 = Rt+1

Gt+1
(xi,t − ci,t) +mi,t+1

= Rt+1

Gt+1
(xi,t − c̄(xi,t)) + Rt+1

Gt+1
c̄ (x̃i,t) +

[
exp(zi,t+1)− Rt+1

Gt+1

]
(x̃i,t + η)− Gt+1 −Rt+1

Gt+1
η

= exp(zi,t+1)(xi,t + η)− η.

Thus, xi,t+1 + η = exp(zi,t+1)(xi,t + η) = exp(zi,t+1)(x̃i,t + η) = x̃i,t+1 (Assumption 1 (EE4)).
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Because xi,0 = x̃i,0 > −η (EE3), by mathematical induction, I have:

xi,t = x̃i,t > −η,

xi,t+1 + η = exp(zi,t+1)(xi,t + η)

for all t. Finally:

ci,t+1 = c̄(xi,t+1) = ζ(xi,t+1 + η)ξ = exp(ξzi,t+1)ζ(xi,t + η)ξ = exp(ξzi,t+1)ci,t

for all t.

Proof of Proposition 3. Suppose ai,t+1 ∼ L(µa,t+1, σ
2
a,t+1). To prove Proposition 3, it

suffices to show that 1
pd

[fa,t+1 − (1 − pd)fa+z′,t+1] is a well-defined pdf of a random variable
ni,t+1.

Fix b ∈ R. Given Laplacian pdfs fa,t and fz′,t+1 (Assumption 2 (1-2)):

fa+z′,t+1(b) =
∫
fa,t(b− s)fz′,t+1(s)ds

=
∫ 1√

2σa,t
exp

(
−|b− s− µa,t|

σa,t/
√

2

)
1√

2σz,t+1
exp

(
−|s− µz,t+1|
σz,t+1/

√
2

)
ds

= 1
2σa,t+1σz,t+1

∫
exp

− |b̂− ŝ|
σa,t+1/

√
2
−
| σa,t
σa,t+1

ŝ+ ∆µa,t+1|
σz,t+1/

√
2

 dŝ,
where ŝ ≡ σa,t+1

σa,t
(s−µz,t+1−∆µa,t+1), b̂ ≡ σa,t+1

σa,t
(b−µz,t+1−µa,t+1), and ∆µa,t+1 ≡ µa,t+1−µa,t.

For now, suppose that b̂ ≥ 0. Because −|b̂− ŝ| ≤ −b̂+ ŝ = −|b̂|+ ŝ:

fa+z′,t+1(b) ≤ 1
2σa,t+1σz,t+1

exp
− |b̂|

σa,t+1/
√

2

∫ exp
 ŝ

σa,t+1/
√

2
−
| σa,t
σa,t+1

ŝ+ ∆µa,t+1|
σz,t+1/

√
2

 dŝ
= fa,t+1

(
b̂+ µa,t+1

)  1√
2σz,t+1

∫
exp

 ŝ

σa,t+1/
√

2
−
| σa,t
σa,t+1

ŝ+ ∆µa,t+1|
σz,t+1/

√
2

 dŝ
 .

Next, I show that with some algebra, the terms inside the square brackets reduce to exp
(
−∆µa,t+1
σa,t/

√
2

)
σa,tσa,t+1
σ2
a,t−σ2

z,t+1
.

Note that:

∫
exp

 ŝ

σa,t+1/
√

2
−
| σa,t
σa,t+1

ŝ+ ∆µa,t+1|
σz,t+1/

√
2

 dŝ
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=
∫ −σa,t+1

σa,t
∆µa,t+1

−∞
exp

 ŝ

σa,t+1/
√

2
+

σa,t
σa,t+1

ŝ+ ∆µa,t+1

σz,t+1/
√

2

 dŝ
+
∫ ∞
−
σa,t+1
σa,t

∆µa,t+1
exp

 ŝ

σa,t+1/
√

2
−

σa,t
σa,t+1

ŝ+ ∆µa,t+1

σz,t+1/
√

2

 dŝ
= exp

(√
2∆µa,t+1

σz,t+1

)
1

√
2

σa,t+1
+

√
2

σz,t+1

σa,t
σa,t+1

exp
{( √

2
σa,t+1

+
√

2
σz,t+1

σa,t
σa,t+1

)
ŝ

} ∣∣∣∣∣
−
σa,t+1
σa,t

∆µa,t+1

−∞

+ exp
(
−
√

2∆µa,t+1

σz,t+1

)
1

√
2

σa,t+1
−

√
2

σz,t+1

σa,t
σa,t+1

exp
{( √

2
σa,t+1

−
√

2
σz,t+1

σa,t
σa,t+1

)
ŝ

} ∣∣∣∣∣
∞

−
σa,t+1
σa,t

∆µa,t+1

= exp
(√

2∆µa,t+1

σz,t+1

)
1

√
2

σa,t+1
+

√
2

σz,t+1

σa,t
σa,t+1

exp
{
−
√

2
(

1 + σa,t
σz,t+1

)
∆µa,t+1

σa,t

}

− exp
(
−
√

2∆µa,t+1

σz,t+1

)
1

√
2

σa,t+1
−

√
2

σz,t+1

σa,t
σa,t+1

exp
{
−
√

2
(

1− σa,t
σz,t+1

)
∆µa,t+1

σa,t

}

= exp
(
−
√

2∆µa,t+1

σa,t

) 1
√

2
σa,t+1

+
√

2
σz,t+1

σa,t
σa,t+1

− 1
√

2
σa,t+1

−
√

2
σz,t+1

σa,t
σa,t+1


= exp

(
−
√

2∆µa,t+1

σa,t

)
σa,t+1√

2
2σz,t+1σa,t
σ2
a,t − σ2

z,t+1
,

where I used the assumption that σz,t+1 < σa,t (Assumption 2 (3)) and, therefore,
√

2
σa,t+1

−
√

2
σz,t+1

σa,t
σa,t+1

< 0. Thus, I obtain that:

fa+z′,t+1(b) ≤ fa,t+1
(
b̂+ µa,t+1

)  1√
2σz,t+1

∫
exp

 ŝ

σa,t+1/
√

2
−
| σa,t
σa,t+1

ŝ+ ∆µa,t+1|
σz,t+1/

√
2

 dŝ


= fa,t+1
(
b̂+ µa,t+1

)
exp

(
−∆µa,t+1

σa,t/
√

2

)
σa,tσa,t+1

σ2
a,t − σ2

z,t+1

as desired. When b̂ < 0, I use the fact that −|b̂− ŝ| ≤ b̂− ŝ = −|b̂| − ŝ and derive the same
upper bound for fa+z′,t+1(b).

I also compute an upper bound for fa,t+1
(
b̂+ µa,t+1

)
. By the reverse triangle inequality,

−|b̂| = −|b− µa,t+1 − µz,t+1| ≤ −|b− µa,t+1|+ |µz,t+1|. Thus:

fa,t+1(b̂+ µa,t+1) = 1√
2σa,t+1

exp
− |b̂|

σa,t+1/
√

2


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= 1√
2σa,t+1

exp
− σa,t+1

σa,t
|b− µa,t+1 − µz,t+1|
σa,t+1/

√
2


≤ 1√

2σa,t+1
exp

(
−|b− µa,t+1|
σa,t+1/

√
2

)
exp

{
−
√

2|b− µa,t+1|
(

1
σa,t
− 1
σa,t+1

)}
exp

(
|µz,t+1|
σa,t/
√

2

)

≤ fa,t+1(b) exp
(
|µz,t+1|
σa,t/
√

2

)
,

where I use the assumption that σa,t ≤ σa,t+1 in the last line (Assumption 2 (4)). Finally, I
have:

fa+z′,t+1(b) ≤ fa,t+1
(
b̂+ µa,t+1

)
exp

(
−∆µa,t+1

σa,t/
√

2

)
σa,tσa,t+1

σ2
a,t − σ2

z,t+1

≤ fa,t+1(b) exp
(
|µz,t+1| −∆µa,t+1

σa,t/
√

2

)
σa,tσa,t+1

σ2
a,t − σ2

z,t+1

= Ct+1fa,t+1(b) for all b ∈ R,

where Ct+1 ≡ σa,tσa,t+1
σ2
a,t−σ2

z,t+1
exp

(
|µz,t+1|−µa,t+1+µa,t

σa,t/
√

2

)
. By integrating fa+z′,t+1(b) ≤ Ct+1fa,t+1(b), I

obtain 1 ≤ Ct+1.
Thus, if pd > 1− 1

Ct+1
(Assumption 2 (5)), then (1− pd)fa+z′,t+1 <

1
Ct+1

fa+z′,t+1 ≤ fa,t+1;
therefore, fn,t+1 = p−1

d [fa,t+1− (1− pd)fa+z′,t+1] > 0. That is, fn,t+1 is a well-defined pdf.

Proof of Proposition 4. Let Πj,t be the profit made by firm j in period t:

Πj,t =
(
Pj,t
Pt

)1−ω
Yt −Wt (LY,j,t + LA,j,t + LM)− (rt + δ)Kj,t.

Firm j’s Lagrangian is given by

L =
∞∑
t=0

1∏t
τ=1(1 + rτ )

{
Πj,t + λmc,j,t

[
K1−α
j,t (Aj,tLY,j,t)α −

(
Pj,t
Pt

)−ω
Yt

]

+ λA,j,t [(1 + θLA,j,t)Aj,t − Aj,t+1]
}
.

When firms are symmetric, the first-order conditions are as follows:

Pj,t : λmc,t =M−1,

LY,j,t : WtLY,t =M−1αYt,
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Kj,t : rt + δ =M−1(1− α) Yt
Kt

,

LA,j,t : λA,t = Wt

θAt
,

Aj,t+1 : 1 + rt+1 =M−1α
Yt+1

At+1

1
λA,t

+ λA,t+1

λA,t
(1 + θLA,t+1).

I obtain Equation (14) from the first-order condition for Kj,t. Similarly, I derive Equation
(15) by using the conditions for LY,j,t, LA,j,t, and Aj,t+1. Equation (16) directly follows from
Equations (14) and (15).

Proof of Proposition 5. I denote the left-hand side of Equation (16) as L. Then:

L(g, sC) ≡ M
−1(1− α)
1− sC

[g + δ + (1− δ)sC ] = B(sC) (g +A(sC)) ,

where A(sC) ≡ δ + (1 − δ)sC > 0 and B ≡ M−1(1−α)
1−sC > 0. For a fixed sC ∈ (0, 1), L is a

linear function in g with horizontal intercept −A and slope B.
Similarly, the right-hand side, R, is given by:

R(g, sC , sA) ≡ g + θ

(
sY

sαAs
1−α
K

)1/α

= g + θ

sA
(1− sC)α−1

α G−1(g +A(sC))1/α

= g + C(sC)G−1(g +A(sC))1/α,

where C(sC , sA) ≡ θ
sA

(1 − sC)α−1
α > 0 for sA > 0 and G = 1 + g. It follows that

R(−A, sC , sA) = −A. Furthermore:

∂R

∂g
= 1− C(g +A) 1

α

G2 + 1
α

C(g +A) 1−α
α

G

≥ 1− C(g +A) 1
α

G2 + 1
α

C(g +A) 1
α

G2

= 1 + 1− α
α

C(g +A) 1
α

G2 .

In the second line, I use the fact that 0 < g +A < G for all g > −A because 0 < A(sC) =
1− (1− δ)(1− sC) ≤ 1. Therefore, ∂R

∂g
> 1 for all g > −A(sC).
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Fix sC ∈ (0, 1) and sA > 0. I have L(−A, sC) = 0 > −A = R(−A, sC , sA), ∂L
∂g

= B,
and ∂R

∂g
> 1 for all g > −A. Therefore, if B < 1, there exists a unique g(sC , sA) such that

L(g(sC , sA), sC) = R(g(sC , sA), sC , sA) and g(sC , sA) > −A(sC).

Proof of Proposition 6. I use the notation introduced in the proof of Proposition 5.
I fix sA to focus on the effects of sC on g(sC , sA). From Proposition 5, we know that
L(g(sC , sA), sC) = R(g(sC , sA), sC , sA). Let f(g, sC , sA) be L − R. Then, by the implicit
function theorem, ∂g(sC ,sA)

∂sC
= − ∂f

∂sC
/∂f
∂g

, where ∂f
∂g

= B − ∂R
∂g
< 0. Therefore,

∂g(sC , sA)
∂sC

> 0 if and only if ∂f

∂sC
> 0.

With some algebra, I can show that:

∂L(g, sC)
∂sC

= 1− α
(1− sC)2M

−1G, and

∂R(g, sC , sA)
∂sC

= 1− α
α

R− g
1− sC

+ 1− δ
α

R− g
G− (1− δ)(1− sC) .

Furthermore,

∂f

∂sC
> 0 ⇐⇒ ∂L

∂sC
>

∂R

∂sC
⇐⇒ (1− sC)2

1− α
∂L

∂sC
>

(1− sC)2

1− α
∂R

∂sC
,

where the last inequality simplifies to Equation (17) with χ being R.
Next, I turn to the special case in which α > sC , α > 1

2 , g(sC , sA) > −
[
1 + (1−sC)M

2α−1

]−1
,

and δ is sufficiently large. I first show that g(sC , sA) and χ = R(g(sC , sA), sC , sA) are bounded
as δ approaches 1. When δ → 1, A → 1. Thus, L(g, sC) → B(sC)(1 + g), where 0 < B < 1
by assumption. Similarly, R(g, sC , sA) converges to g + C(sC)(1 + g) 1−α

α . Therefore, in the
limit, the graph of L starts from (−1, 0), and its slope is 0 < B < 1. On the other hand, the
graph of R starts from (−1,−1), and its slope is greater than 1. As a result, as δ → 1, g(sC)
is bounded between −1 and B

1−B , where B(1+g) and g coincide when g = B
1−B . Furthermore,

χ = R(g(sC , sA), sC , sA) = L(g(sC , sA), sC) is bounded because its limit B(sC)(1+g(sC , sA))
is bounded.

Since χ and g(sC , sA) are bounded, the right-hand side of Equation (17) converges to
1−sC
α

(χ−g(sC , sA)) as δ → 1. Because χ = R(g(sC , sA), sC , sA) = L(g(sC , sA), sC), Equation
(17) reduces to M−1(1 + g(sC , sA)) > 1−sC

α
(B(sC)(1 + g(sC , sA)) − g(sC , sA)). This last
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inequality is equivalent to g(sC , sA) > −
[
1 + (1−sC)M

2α−1

]−1
when α > 1

2 .

Proof of Proposition 7. For a large xi such that log(xi + η) ≥ µa:

Pr(xi ≥ x) = Pr(ai ≥ log(x+ η)) =
∫ ∞

log(x+η)

1√
2σa

exp
(
− b− µa
σa/
√

2

)
db

= 1
2 exp

(
µa

σa/
√

2

)
(x+ η)−

√
2

σa ∝ x−
√

2
σa .

Thus, the right tail of xi has a Pareto distribution with Pareto coefficient
√

2
σa

.
For aggregate wealth and consumption, I use the facts that E{exp[L(µ, σ2)]} = exp(µ)

1− 1
2σ

2 (see
Kotz, Kozubowski and Podgórski, 2001) and log ci = log ζ + ξ log ai ∼ L(log ζ + ξµa, ξ

2σ2
a).

For the comparative statics for sC , note that x = x̂−η, where x̂ ≡ exp(µa)
1−0.5σ2

a
. It follows that

dx = dx̂−dη = x̂dµa+ 0.5x̂
1−0.5σ2

a
dσ2

a−dη = 0. By assumption, dη = 0. Thus, dµa
dσ2
a
|x = − 0.5

1−0.5σ2
a
.

The total differential of sC = c
x

with respect to µa and σ2
a yields:

dsC = dc

x
− c

x2dx = 1
x

(
ξcdµa + 0.5ξ2c

1− 0.5ξ2σ2
a

dσ2
a

)
− c

x2dx.

Finally:

dsC
dσ2

a

|x = 1
x

(
ξc
dµa
dσ2

a

|x + 0.5ξ2c

1− 0.5ξ2σ2
a

)
= −0.5ξc

x

(
1

1− 0.5σ2
a

− ξ

1− 0.5ξ2σ2
a

)

= −1
2

1 + 0.5ξσ2
a

(1− 0.5ξ2σ2
a)(1− 0.5σ2

a)
ξ(1− ξ)sC = −DsC ,

where D = 1
2

1+0.5ξσ2
a

(1−0.5ξ2σ2
a)(1−0.5σ2

a)ξ(1− ξ) > 0. It is clear that dsC
dσ2
a
|x < 0.

B Data appendix

B.1 Cross-country data

This appendix lists the data sources and details on the construction of the time series pre-
sented in Section 2. Following Piketty and Zucman (2014), the sample of rich countries in
this paper includes the G7 countries (Canada, France, Germany, Italy, Japan, the UK,and
the US) and Australia.
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(a) Top 10% wealth shares. Annual series are obtained from the World Inequality
Database. As of September 2021, this series is available for the US, the UK, and
France out of the eight countries.

(b) Top 10% income shares. Annual data are obtained from the World Inequality
Database.

(c) RGDP per capita growth rates. I use annual real GDP per capita data from the
World Bank (constant local currency units, NY.GDP.PCAP.KN). Canadian real GDP
data are available from 1997. I take 9-year moving averages of the growth rates to
concentrate on trend-level variation.

(d) Consumption-to-wealth ratios. For private consumption, I use final consump-
tion expenditure data for households and nonprofit institutions serving households
(NPISHs) from the World Bank (current local currency units, NE.CON.PRVT.CN).
The denominator is net private wealth measured in current local currency units. The
data source is the World Inequality Database (see also Piketty and Zucman, 2014).
The consumption and wealth data are annual.

(e) R&D intensity. Following Benigno and Fornaro (2018), I define R&D intensity as
the ratio of business R&D investment to the R&D stock RDinv,t/RDstock,t in each year
t. By using real R&D investment data, the R&D stock in each country is computed
as follows:

RDstock,t+1 = RDinv,t + (1− δRD)RDstock,t,

given the initial condition RDstock,0 = RDinv,0/δRD, where δRD represents the depreci-
ation rate of the R&D stock. I fix δRD at the traditionally assumed value of 0.15. The
results are robust to assuming an alternative initial condition RDstock,0 = 0.

The business R&D investment data in current local currencies and the GDP deflators
are obtained from the OECD database. Using the real R&D investment series, the
R&D stock and corresponding intensity measures are constructed for each country
from 1970 to 2018. The missing values of RDinv,t are interpolated from the adjacent
observations. To focus on slow-moving components, I take 9-year moving averages of
the R&D intensity series for each country.
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B.2 Wealth, income, and consumption in the PSID

This appendix covers the details of the variables constructed from the Panel Study of Income
Dynamics (PSID) data, which are analyzed in Section 5.

(a) Sample periods. The PSID wealth data are available in the 1984, 1989, 1994, and
1999 waves and every two years after that.

(b) PSID waves and calendar years. I consider variables in the PSID 1984 wave to be
observations from the calendar year of 1983. The same timing convention is used for
the other waves.

(c) Data cleaning. I use the number of family members to construct the per capita net
wealth and income variables. Additionally, I drop observations if the head of the family
unit is younger than 20 or older than 65.

(d) Definitions of variables.

• Wealth. Net wealth is defined as the sum of the values of a farm or busi-
ness, checking or savings accounts, money market funds, certificates of deposit,
government bonds or treasury bills, real estate, shares of stock in publicly held
corporations, stock mutual funds or investment trusts, private annuities or IRAs,
other assets, and the net value of any cars, trucks, motor homes, trailer, or boat
less the sum of liabilities from a farm, a business, or real estate, credit card or
store card debt, student loan debt, medical bills, legal bills, loans from relatives,
and other debt.

• Income. Income includes taxable income, transfers, and social security income.

• Wealth inclusive of income. Wealth inclusive of income is the sum of net
wealth and total income.

• Consumption. As in Attanasio and Pistaferri (2014), consumption includes
expenditures on food, rent, home insurance, utilities, car insurance, car repairs,
transportation, school, child care, health insurance, and out-of-pocket medical
expenses.
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B.3 Macroeconomic trends in the US economy

This appendix presents the details of the empirical time series shown in Figure 5.

(a) Consumption-to-wealth ratios. Following Laibson (1999), aggregate consumption
includes personal consumption expenditure and government consumption. Aggregate
wealth inclusive of income is the sum of net national wealth Kt and net national income
Yt− δKt. I obtain consumption data from the National Income and Product Accounts
and wealth and national income series from Tables B.1 and S.1 in the Financial Ac-
counts of the United States - Z.1.

(b) Growth rates. To focus on the slow-moving elements of economic growth, I plot the
moving averages of the real GDP per capita growth rate with a window size of 9 years.

(c) Real interest rates. I plot the natural rate of interest estimated by Laubach and
Williams (2003, 2016) using the right vertical axis.

(d) Capital-to-income ratios. I use the time series computed by Piketty and Zucman
(2014) for the US economy.

C Transversality conditions and the relative risk aver-
sion coefficient

In this appendix, I present the details on the calculation of γL and γU in Assumption
1(TVC3). Note that the transversality condition is given by:

lim
T→∞

E0
[
βT (Ci,T )−γ Xi,T

]
= 0.

This condition holds if:

lim
T→∞

E0

βT (Ci,T
Ci,0

)−γ
Xi,T + ηT
Xi,0 + η

 = 0 and lim
T→∞

E0

βT (Ci,T
Ci,0

)−γ
ηT
η

 = 0

because these two equations imply that limT→∞ E0
[
βT (Ci,T )−γ (Xi,T + ηT )

]
= 0 and limT→∞

E0[βT (Ci,T )−γηT ] = 0. Thus, I derive a sufficient condition for these two conditions.
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Using the random growth results in Proposition 2, I have Ci,t = Gt exp(ξzi,t)Ci,t−1 and
Xi,t + ηt = Gt exp(zi,t)(Xi,t−1 + ηt−1). Because η0 = η. I obtain:

βT
(
Ci,T
Ci,0

)−γ
Xi,T + ηT
Xi,0 + η

= βT
[
T∏
τ=1

G−γτ exp(−ξγzi,τ )
] [

T∏
τ=1

Gτ exp(zi,τ )
]

= βT
[
T∏
τ=1

G1−γ
τ exp((1− ξγ)zi,τ )

]
.

Let Et(ν) be E[exp(νzi,t)]. Then,

E0

βT (Ci,T
Ci,0

)−γ
Xi,T + ηT
Xi,0 + η

 =
T∏
τ=1

βG1−γ
τ Eτ (1− ξγ).

Because gt, µz,t, and σz,t converge to g, µz, and σz, respectively, as t → ∞. Et(1 − ξγ)
converges to E(1 − ξγ) as t → ∞. By continuity and given that βG1−γE(1 − ξγ) > 0, it is
clear that limT→∞ E0

[
βT

(
Ci,T
Ci,0

)−γ Xi,T+ηT
Xi,0+η

]
= 0 if βG1−γE(1− ξγ) < 1, or, equivalently,

T Vx(γ) ≡ −ρ+ (1− γ)ĝ + log(E(1− ξγ)) < 0, (C.1)

where ĝ ≡ log(G).
Similarly:

E0

βT (Ci,T
Ci,0

)−γ
ηT
η

 = E0

{
βT

[
T∏
τ=1

G−γτ exp(−ξγzi,τ )
]

T∏
τ=1

Gτ

}

=
T∏
τ=1

βG1−γ
τ Eτ (−ξγ).

Thus, limT→∞ E0

[
βT

(
Ci,T
Ci,0

)−γ ηT
η

]
= 0 if βG1−γE(−ξγ) < 1, or, equivalently:

T Vη(γ) ≡ −ρ+ (1− γ)ĝ + log(E(−ξγ)) < 0. (C.2)

When zi,t ∼ L(µz,t, σ2
z,t):

E(ν) = exp(νµz)
1− 1

2ν
2σ2

z

for |ν| <
√

2
σz
.
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Given that |1− ξγ| <
√

2
σz

:

T Vx(γ) = −ρ+ (1− γ)ĝ + (1− ξγ)µz − log
(

1− 1
2(1− ξγ)2σ2

z

)
.

It is straightforward to show that T V ′′x(γ) > 0; therefore, T Vx is strictly convex. Further-
more, as 1− ξγ approaches ±

√
2

σz
, T Vx diverges to ∞. As a result, given that |1− ξγ| <

√
2

σz
,

Equation (C.1) is equivalent to:
γx,L < γ < γx,U ,

where γx,L and γx,U are two distinct real roots of T Vx(γ) = 0 such that |1− ξγ| <
√

2
σz

. If a
real root of this equation does not exist, I define γx,L =∞ and γx,U = −∞. Similarly, given
that |ξγ| <

√
2

σz
:

T Vη(γ) = −ρ+ (1− γ)ĝ + (−ξγ)µz − log
(

1− 1
2(−ξγ)2σ2

z

)
,

which is strictly convex and diverges to ∞ as γ approaches ±ξ−1
√

2
σz

. I define γη,L and γη,U

accordingly.
Thus, if max{γL, 0} < γ < γU , the transversality condition is satisfied, where

γL = max {γx,L, γη,L} and γU = min {γx,U , γη,U} .

Finally, in the special case where η = 0, ηt = 0 for all t, T Vη(γ) < 0 is redundant.
Therefore, in this case, γL = γx,L and γU = γx,U .

D Solution methods for the quantitative analysis

This section covers the computational methods used for the quantitative analysis in Sections
5.2 and 5.3.

D.1 Transition dynamics

I first express the variables that grow in terms relative to Xt, e.g., sY,t = Yt
Xt

, sW,t = Wt

Xt
,

sK,t = Kt
Xt

, and sA,t = At
Xt

. Because I consider a growth path such that Xt and At grow at the
rate of gt, sA,t = sA.
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From the firms’ first-order conditions in the proof of Proposition 4, I obtain the following
equilibrium conditions:

sW,tLY,t =M−1αsY,t, (D.1)

rt + δ =M−1(1− α) sY,t
sK,t

, (D.2)

1 + rt+1 = sW,t+1

sW,t
(1 + gt+2 + θLY,t+1). (D.3)

Furthermore, the production function (2), the aggregate resource constraint (Xt = Ct+Kt+1),
and the zero-profit condition preventing new entry yield the following equilibrium conditions:

sY,t = s1−α
K,t s

α
AL

α
Y,t, (D.4)

sK,t+1 = 1− sC,t
1 + gt+1

, (D.5)

0 = sY,t − sW,t(LY,t + gt+1/θ + LM)− (rt + δ)sK,t, (D.6)

where I use the fact that gt = θLA,t in the last equation.
The economy is assumed to be on a balanced growth path in 1983. Thus, K1984 and

g1984 = θLA,1983 are determined accordingly. Because X1984 = (1 + g1984)X1983, sK,1984 con-
stitutes an initial condition for the transition dynamics that start in 1984. I assume that the
economy converges to its new balanced growth path equilibrium with a high level of wealth
inequality within 50 years after the wealth distribution stabilizes in 2019. I use the following
algorithm to derive this transition path.

1. Using the assumed path of µa,t and σa,t, calculate {sC,t}.

2. Guess sY,1984.

3. Compute LY,1984 from Equation (D.4), sW,1984 from Equation (D.1), r1984 from Equation
(D.2), g1985 from Equation (D.6), and sK,1985 from Equation (D.5).

4. Guess sY,1985.

5. Compute LY,1985 from Equation (D.4), sW,1985 from Equation (D.1), r1985 from Equation
(D.2), g1986 from Equation (D.6), and sK,1986 from Equation (D.5).
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6. Calculate another r1985 from Equation (D.3) using the values of sW,1985, g1986, and
LY,1985 obtained from Step 5 and that of sW,1984 from Step 3. If this r1985 is different
from the r1985 computed in Step 5, go to step 4.

7. Iterate forward.

8. If g2069 is not equal to the growth rate in the posttransition balanced growth path
equilibrium, go to step 2.

After deriving the dynamics of the aggregate variables, I calculate µz,t+1 and σz,t+1 from the
Euler equation (E[βRt+1G

−γ
t+1 exp(−ξγzi,t+1)] = 1) and the labor market clearing condition

(E[exp(zi,t+1)] = 1).12 Finally, fn,t+1 follows from Equation (12).

D.2 Welfare analysis

This section presents the computational details for the social welfare function in Equation
(19) and for λtotal, λgrowth, and λdispersion. Note that (λCi,t)1−γ =

(∏t
τ=1Gτ

)1−γ
(λci,t)1−γ.

Then:

∫ (λCi,t)1−γ − 1
1− γ di = λ1−γ

(
t∏

τ=1
Gτ

)1−γ ∫ c1−γ
i,t

1− γ di− 1
1− γ .

I denote
∫ c1−γ

i,t

1−γ di by vt. Because c1−γ
i,t = ζ1−γ exp[ξ(1−γ)ai,t] and ai,t ∼ L(µa,t, σ2

a,t), I obtain:

vt = v(µa,t, σa,t) = ζ1−γ exp[ξ(1− γ)µa,t]
1− 0.5ξ2(1− γ)2σ2

a,t

1
1− γ

if |ξ(1 − γ)σa,t| <
√

2. This inequality condition holds for all quantitative exercises in this
paper. Thus:

SW (λ, {gt}, {µa,t, σa,t}) = λ1−γ∑
t

βt
(

t∏
τ=1

Gτ

)1−γ

v(µa,t, σa,t)
− 1

(1− γ)(1− β) .

12I assume that µz,1984 and σz,1984 are equal to their 1983 values. Note that the Euler equation evaluated
in 1983, 1 = βE1983[Rt+1G

−γ
t+1 exp(−ξγzi,1984)], holds under perfect foresight in 1983, i.e., foresight of the

balanced growth path equilibrium. However, a structural change occured in 1984, and R1984 deviated from
the previously expected value. Thus, this Euler equation with the realized value of R1984 is not used to
calculate the corresponding values of µz,1984 and σz,1984.
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I define λtotal, λgrowth, and λwealth as follows:

SW (λ = 1, g1983, µa,1983, σa,1983) = SW (λgrowth, {gt}, µa,1983, σa,1983)

= SW (λgrowthλwealth, {gt}, {µa,t, σa,t}), and

λtotal = λgrowthλwealth.

The social welfare functions are evaluated in 1984 when the transition begins. With some
algebra, it follows that:

λgrowth =


v1983/(1− βG1−γ

1983)∑∞
t=0

[
βt
(∏t

τ=1Gτ+1984
)1−γ

v1983

]


1
1−γ

, and

λwealth =


∑∞
t=0

[
βt
(∏t

τ=1Gτ+1984
)1−γ

v1983

]
∑∞
t=0

[
βt
(∏t

τ=1Gτ+1984
)1−γ

vt+1984

]


1
1−γ

.

For the decomposition of λwealth into λsC and λconsumption, I note the following fact:

sC,t = ct
xt

= ζ exp(ξµa,t)
1− 0.5ξ2σ2

a,t

,

log(ci,t/ct) ∼ L(log(1− 0.5ξ2σ2
a,t), ξ2σ2

a,t).

In the first line, I use the fact that scaled aggregate wealth xt equals one. Because vt =∫ c1−γ
i,t

1−γ di = c1−γ
t

∫ (ci,t/ct)1−γ

1−γ di, I write:

vt = s1−γ
C,t v̂t,

where v̂t = v̂(σa,t) = (1−0.5ξ2σ2
a,t)1−γ

1−0.5ξ2(1−γ)2σ2
a,t

1
1−γ . Then, λsC and λconsumption are defined as follows:

λsC =


∑∞
t=0

[
βt
(∏t

τ=1Gτ+1984
)1−γ

v1983

]
∑∞
t=0

[
βt
(∏t

τ=1 Gτ+1984
)1−γ

s1−γ
C,t+1984v̂1983

]


1
1−γ

, and
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λconsumption =


∑∞
t=0

[
βt
(∏t

τ=1 Gτ+1984
)1−γ

s1−γ
C,t+1984v̂1983

]
∑∞
t=0

[
βt
(∏t

τ=1Gτ+1984
)1−γ

vt+1984

]


1
1−γ

,

where vt+1984 = s1−γ
C,t+1984v̂t+1983 and λwealth = λsCλconsumption.
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