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Tobin’s q is a central construct in finance and economics more broadly. Early manifestations of

the q theory of investment, including by Hayashi (1982), predict that Tobin’s q perfectly measures

a firm’s investment opportunities. As a result, Tobin’s q has become the most widely used proxy

for a firm’s investment opportunities, making it “arguably the most common regressor in corporate

finance” (Erickson and Whited, 2012).

Despite the popularity and intuitive appeal of q theory, its empirical performance has been disap-

pointing.1 Regressions of investment rates on proxies for Tobin’s q leave large unexplained residuals

and, taking early q theories literally, imply implausibly large capital adjustment costs. One po-

tential explanation is that q theory, at least in its earliest forms, is too simple. Several authors,

spanning from Hayashi (1982) to Gala and Gomes (2013), show that we should expect a perfect

linear relation between investment and Tobin’s q only in very special cases. A second possible ex-

planation is that we measure q with error, which would explain both the large unexplained residuals

and large implied adjustment costs. This possibility has spawned a sizable literature developing

techniques to measure q more accurately and correct for measurement-error bias.2

This paper’s goal is to address one type of measurement error in q and gauge how the investment-q

relation changes. One challenge in measuring q is quantifying a firm’s stock of capital. Physical as-

sets like property, plant, and equipment (PP&E) are relatively easy to measure, whereas intangible

assets like brands, innovative products, patents, software, distribution systems, and human capital

are difficult to measure. Our current accounting system, which was originally designed for an econ-

omy dominated by heavy manufacturing, is poorly suited for an economy increasingly dominated by

intangible capital. For example, accounting rules treat research and development (R&D) spending

as an expense rather than an investment, so the knowledge created by R&D does not typically

appear as an asset on the firm’s balance sheet.3 That knowledge is nevertheless part of the firm’s

economic capital: it was costly to obtain, it is owned by the firm,4 and it produces future benefits

1See Hassett and Hubbard (1997) and Caballero (1999) for reviews of the investment literature. Philippon (2009)
gives a more recent discussion.

2See Erickson and Whited (2000, 2002, 2012); Almeida, Campello, and Galvao (2010); and Erickson, Jiang, and
Whited (2013). Erickson and Whited (2006) provide a survey.

3If a company acquires another company, the acquired company’s R&D capital can appear indirectly on the
balance sheet as goodwill.

4A firm can own the knowledge directly using patents or indirectly using proprietary information contracts with
employees. A firm owns its brand via trademarks. Human capital is not owned by the firm, although firm-specific
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on average. We develop measures of q and investment that include both physical and intangible

capital, and we show that these measures produce a stronger empirical investment-q relation. Our

results have important implications for how we evaluate existing q theories of investment, and for

how researchers choose proxies for investment opportunities.

Our q measure, which we call total q, is the ratio of firm operating value to the firm’s total capital

stock, which equals the sum of its physical and intangible capital stocks. Similarly, our measure of

total investment is the sum of physical and intangible investments divided by the firm’s total capital.

Our measure of intangible capital builds on the measure of Falato, Kadryzhanova, and Sim (2013),

which in turn builds on the work of Corrado, Hulten, and Sichel (2009) and Corrado and Hulten

(2010). A firm’s intangible capital is the sum of its knowledge capital and organizational capital.

We interpret R&D spending as an investment in knowledge capital, and we apply the perpetual

inventory method to a firm’s past R&D spending to measure its current stock of knowledge capital.

We similarly interpret a fraction of past sales, general, and administrative (SG&A) expenses as

investments in organizational capital.5 While our q measure imposes some strong assumptions on

the data, one benefit is that it is easily computed from Compustat data for a large panel of firms.

Our analysis begins with OLS panel regressions of investment rates on proxies for q and cash

flow, similar to the classic regressions of Fazzari, Hubbard, and Petersen (1988). We compare a

specification that includes intangible capital in investment and q to the more typical specification

that regresses physical investment (CAPX divided by PP&E) on “physical q,” the ratio of firm

value to PP&E. The specifications with intangible capital deliver an R2 that is 44–57% higher.

In a horse race between total q and physical q, total q remains strongly positively related to the

total investment rate, whereas physical q becomes negatively related and almost loses statistical

significance. These results indicate that total q is a better proxy for investment opportunities than

is the usual physical q.

The OLS regressions suffer from a well known measurement-error bias. We correct this bias using

by using the Erickson and Whited (2000, 2002) measurement-error consistent GMM estimators

human capital or employee non-compete agreements can make human capital behave as if partially owned by the
firm.

5Eisfeldt and Papanikolao (2013) apply a similar method to SG&A data to measure organizational capital.
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and the instrumental variable (IV) estimators from Biorn (2000) and Arellano and Bond (1991).

Compared to the specifications with physical investment and q, the specifications including in-

tangible capital produce an estimated slope of investment on q that is 54–216% higher, and they

also generate higher slopes on cash flow. In the simplest manifestation of q theory, the slope on q

equals the inverse of the capital adjustment cost parameter. According to this benchmark theory,

including intangible capital reduces our adjustment cost estimates by 35–68%. A common concern

about investment-q regressions is that they produce unreasonably large capital adjustment cost

estimates.6 We show that including intangible capital mitigates this concern and changes our esti-

mates of an important financial friction. One caveat is that the slope on q is difficult to interpret in

more general q theories, as Erickson and Whited (2000), Gala and Gomes (2013), and others have

shown.

The GMM estimators produce a useful test statistic, τ2, measuring how close our q proxies are to

the unobservable true q. Specifically, τ2 is the R2 from a hypothetical regression of our q proxy on

the true q. We find that τ2 is 8–21% higher when one includes intangible capital in the investment-q

regression, again implying that total q is a better proxy for investment opportunities than is the

usual physical q. Our new q proxy is still not perfect, though: total q explains only 49–73% of the

variation in true q, depending on the estimator used.

Our main result so far is that including intangible capital results in a stronger investment-q

relation. This result is consistent across firms with high and low amounts of intangible capital, in

the early and late parts of our sample, and across industries. As expected, however, our result is

stronger where intangible capital is more important. The increase in R2 from including intangible

capital is roughly twice as large in firms with a higher proportion of intangible capital. The

increase in R2 is slightly higher, although not consistently so, in the later half of the sample,

when firms use more intangible capital. The increase is roughly twice as large in the high-tech and

consumer industries compared to the manufacturing and energy industries. The pattern in τ2 across

subsamples is similar. We also find that including intangible capital changes estimated slopes on

q by more in subsamples where intangible capital is more important, with a few exceptions. This

6This point is made in Summers (1981) and Philippon (2009) among many others.
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result suggests that capital adjustment cost estimates based on physical capital alone are likely

to be more biased where intangible capital is more important. Several important studies7 on q

and investment use data only on manufacturing firms. Our results imply that including intangible

capital is important even in the manufacturing industry, but is especially important if one looks

beyond manufacturing to the industries that increasingly dominate the economy.

Next, we show that many of these results also hold in macro time-series data. Our macro measure

of intangible capital is from Corrado and Hulten (2014) and is conceptually similar to our firm-

level measure. Including intangible capital in investment and q results in an R2 value that is 17

times larger, a slope on q that is 9 times larger, and hence implied adjustment costs that are 88%

lower. Almost all the improvement comes from adjusting the investment measure rather than q.

Our increase in R2 is even larger than the one Philippon (2009) obtains from replacing physical q

with a q proxy estimated from bond data, although our slope increase is smaller than Philippon’s.

Philippon’s bond q is still a superior proxy for physical investment opportunities and performs

better when we estimate the model in first differences.

We provide a simple theory of optimal investment in physical and intangible capital. The model

predicts that marginal q equals total q, which provides a rationale for the total q measure. It

also predicts that the total investment rate is perfectly explained by total q and time fixed effects,

providing a rationale for our regressions using total capital. In contrast, the usual regression of

physical investment on physical q is predicted to generate a lower R2 and downward-biased slopes.

This prediction helps explain why we find lower R2 values larger implied adjustment costs when

we exclude intangible capital.

To summarize, two main messages emerge from our analysis. First, researchers using Tobin’s q

as a proxy for investment opportunities should include intangible capital in their proxies for q and

also in investment. Second, we show that the q theories predicting a linear investment-q relation

perform much better empirically than was previously believed. Once we correct an important

source of measurement error, the theory fits the data better and implies more reasonable capital

adjustment costs.

7Almeida and Campello (2007) and Almeida, Campello and Galvao (2010), and Erickson and Whited (2012)
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Besides contributing to the previously discussed literatures on investment, Tobin’s q, and mea-

surement error, this paper also contributes to the finance literature on intangible capital. Brown,

Fazzari, and Petersen (2009) show that shifts in the supply of internal and external equity finance

drive aggregate R&D investment. Falato, Kadyrzhanova and and Sim (2013) document a strong

empirical link between intangible capital and firms’ cash holdings; they argue that the link is driven

by debt capacity. Eisfeldt and Papanikolaou (2013) show that firms with more organizational cap-

ital have higher average stock returns, suggesting this type of intangible capital makes these firms

riskier to shareholders.

This is not the first paper to forecast intangible investment using q. Almeida and Campello

(2007) use physical q, cash flow, and asset tangibility to forecast R&D investment. Their focus

is on how asset tangibility affects investment levels through borrowing capacity. Slightly closer to

our specifications, Chen, Goldstein and Jiang (2007) use physical q to forecast the sum of physical

investment and R&D. Their focus is on whether private information in prices affects the investment-

price sensitivity. Besides having a different focus, our paper is the first to include all the types of

intangible capital in both investment and q.

There is also a sizable literature that studies the impact of intangible investments on q. For

example, Megna and Klock (1993) and Klock and Megna (2001) study the impact of intangible

capital on q in the semiconductor and telecommunications industries, respectively. These studies

find that intangible capital is an important component of firms’ market valuations. Similarly,

Chambers, Jennings and Thompson (2002) and Villalonga (2004) find that firms with larger stocks

of intangible capital exhibit stronger performance and market valuations. Hall (2001) uses a capital-

adjustment model to infer the aggregate stock of intangible capital from data on prices and physical

capital.

The paper proceeds as follows. Section 1 describes the data and our measure of intangible

capital. Section 2 presents results from OLS regressions, and section 3 presents results that correct

for measurement-error bias. Section 4 shows subsample results for different types of firms and

years. Section 5 contains results for the overall macroeconomy. Section 6 presents our theory of

investment in physical and intangible capital. Section 7 concludes.
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1 Data

This section describes the data in our main firm-level analysis. Section 5 describes the data in our

macro time-series analysis.

The sample includes all Compustat firms except regulated utilities (SIC Codes 4900–4999), finan-

cial firms (6000–6999), and firms categorized as public service, international affairs, or non-operating

establishments (9000+). We also exclude firms with missing or non-positive book value of assets or

sales and firms with less that $5 million in physical capital, as is standard in the literature. We use

data from 1972 to 2010, although we use earlier data to calculate the stock of intangible capital.

We winsorize all regression variables at the %0.5 level to remove extreme outliers.

1.1 Tobin’s q

To measure physical q, we follow Fazzari, Hubbard and Petersen (1988), Erickson and Whited

(2012), and others who measure q as

qphy =
Mktcap+Debt−AC

PP&E
, (1)

where Mktcap is the market value of outstanding equity, Debt is the book value (a proxy for the

market value) of outstanding debt, AC is the current assets of the firm, such as inventory and

marketable securities, and P&PE is the book value of property, plant and equipment. All of these

quantities are measured at the beginning of the period. Another less common method, used for

example in Rauh (2006) and Chava and Roberts (2008), is to measure q as the market-to-book ratio.

Erickson and Whited (2000, 2012) show that this proxy is less effective at forecasting investment,

a result that we confirm in unreported regressions.

Our measure of total q includes both physical and intangible capital. Our measure of total q is

qtot ≡
Mktcap+Debt−AC

PP&E + Intan
= qphy

PP&E

PP&E + Intan
. (2)

Intan is the stock of intangible capital, described in the next sub-section. Section 6 provides a
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theoretical rationale for adding together physical and intangible capital in qtot. A simpler but less

satisfying rationale is that existing studies measure capital by summing up many different types

of physical capital into PP&E; our measure simply adds one more type of capital to that sum.

Equation (2) shows that qtot equals qphy times the ratio of physical to total capital. While the

correlation between physical and total q in our sample is quite high, 0.88, the measures produce

quite different results in investment regressions.

1.2 Intangible Capital and Investment

Because Generally Accepted Accounting Principles classify investments in intangible assets as ex-

penses,8 the stock of intangible assets is typically not captured on firms’ balance sheets. Fortunately,

we can construct a proxy for the stock of intangible capital by accumulating past investments in

intangible assets as reported on firms’ income statements.

Our measure closely follows Falato, Kadyrzhanova and Sim’s (2013). A firm’s stock of intangible

capital, Intan, is the sum of its knowledge capital and organizational capital. A firm acquires

knowledge capital by spending on R&D. We accumulate capital flows from R&D expenses using

the perpetual inventory method:

Git = (1− δR&D)Git−1 +R&Dit (3)

where Git is the end-of-period stock of knowledge capital, δR&D is its depreciation rate, and R&Dit

is real expenditures on R&D during the year. We choose δR&D = 15% following Hall, Jaffe and

Tranchenberg (2001). Results are robust to using alternate depreciation rates. We interpolate

missing values of R&D following Hall (1993), who shows that doing so results in an unbiased

measure of R&D capital. We use Compustat data back to 1950 to compute (3), but our regressions

only include observations after 1972, the first year when Compustat R&D coverage exceeds 40%.

Next, we measure the stock of organizational capital by accumulating a fraction of past SG&A

expenses using the perpetual inventory method as in equation (3). The logic is that at least part of

8FASB, “Accounting for Research and Development Costs,” Statement of Financial Accounting Standards No.
2, October 1974.
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SG&A spending represents investments in organizational capital through advertising, spending on

distribution systems, employee training, and payments to strategy consultants. We follow Corrado,

Hulten, and Sichel (2009) and consider only 20% of SG&A to be investments in intangible capital.

We interpret the remaining 80% as operating costs that support the current period’s profits. Our

results are not sensitive to using values other than 20%.9 We apply a depreciation rate of δSG&A =

0.20, following Lev and Radhakrishnan (2005).

One challenge in applying the perpetual inventory method in (3) is choosing a value for Gi0,

the capital stock in the firm’s first non-missing Compustat record. Falato, Kadryzhanova, and

Sim (2013) assume the firm has been investing at the constant rate R&Di1 forever, so Gi0 =

R&Di1/δR&D. Eisfeldt and Papanikolaou (2013) use a modified approach that assumes the in-

vestment level has been growing at some constant rate forever. By assuming the firm has been

alive forever, both methods tend to over-estimate firms’ initial capital stocks. We use a modified

approach that incorporates data on firms’ founding years and recognizes that capital spending in-

creases faster for younger firms. Specifically, we set Gi0 to R&Di1 times a coefficient that depends

on the firm’s age in year zero. We compute these coefficients assuming the firm’s pre-Compustat

R&D spending grows at the average rate for Compustat firms of the same age. We apply a similar

approach to SG&A spending. Appendix A provides additional details and tabulates the age-specific

coefficients.

Our measure of total investment includes investments in both physical and intangible capital.

Specifically, we define the total investment rate as

ιtot =
CAPEX +R&D + 0.2 × SG&A

PP&E + Intan
. (4)

In contrast, the physical investment rate most commonly used in the literature is ιphy = CAPEX/PP&E.

The correlation between ιtot and ιphy is 0.87.

9We obtain similar results using a range from 0–40%.
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1.3 Cash Flow

Erickson and Whited (2012) and others define cash flow as

cphy =
IB +DP

PP&E
, (5)

where IB is income before extraordinary items and DP is depreciation expense. This is the pre-

depreciation free cash flow available for physical investment or distribution to shareholders. In

addition to cphy, we use an alternate cash flow measure that recognizes R&D and part of SG&A as

investments rather than operating expenses. Specifically, we add intangible investments back into

the free cash flow, less the tax benefit of the expense: 10

ctot =
IB +DP + (R&D + 0.2 × SG&A)(1− κ)

PP&E + Intan
(6)

where κ is the marginal tax rate. When available, we use simulated marginal tax rates from Graham

(1996). Otherwise, we assume a marginal tax rate of 30%, which is close to the mean tax rate in

the sample. The correlation between ctot and cphy is 0.81.

1.4 Summary Statistics

Table 1 contains summary statistics. We compute the intangible intensity as a firm’s ratio of

intangible to total capital. The mean and median intangible intensities are 42%, indicating that

intangible capital makes up almost half of firms’ total capital. Knowledge capital makes up 48%

of intangible capital on average, so organizational capital makes up 52%. The average qtot is

mechanically smaller than qphy, since the denominator is larger. There is less volatility in qtot than

qphy even if we scale the standard deviations by the respective means. Total investment exceeds

physical investment on average. This result is not mechanical, since ιtot adds intangibles to both

the numerator and denominator. By ignoring intangible investments, one typically underestimates

firms’ investment rates.

10Since the firm expenses intangible investments, the effective cost of a dollar of intangible capital is only (1− κ)
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Figure 1 plots the time-series of average intangible intensity. We see that intangible capital is

increasingly important: the intensity increases from 27% in 1972 to 47% in 2010. As expected,

high-tech firms are heavy users of intangible capital, while manufacturing firms use less. Somewhat

surprisingly, even manufacturing firms have considerable and growing amounts of intangible capital;

their intangible intensity increases from 27–36% between 1972–2010.

2 OLS Results

Table 2 contains results from OLS panel regressions of investment on q with firm and year fixed

effects. The dependent variables in Panels A and B are, respectively, the total and physical invest-

ment rates, ιtot and ιphy. While the estimated slopes suffer from measurement-error bias, the R2

values help judge how well our q measures proxy for investment opportunities. We focus on R2 in

this section and interpret the coefficients on q after correcting for bias in the next section.

Most papers in the literature regress ιphy on qphy, as in column 2 of Panel B. That specification

delivers an R2 of 0.276, whereas a regression of ιtot on qtot (Panel A column 1) produces an R2 of

0.398, 44% higher. In other words, total q explains total investment better than physical q explains

physical investment. There are two reasons for the increase in R2. First, comparing columns 1

and 2 in Panel B, we see that qtot explains even physical investment slightly better than does qphy.

More importantly, R2 values are uniformly larger in Panel A than Panel B, indicating that total

investment rates are better explained by all q variables, including qtot. It also turns out that qtot

does a better job than qphy at explaining total investment (columns 1 and 2 of Panel A). When

we run a horse race between total and physical q in column 3 of Panel A, the sign on qphy flips

to negative and becomes much less statistically significant, implying that physical q contains little

additional information about total investment opportunities once we account for qtot. When we run

that same horse race using physical investment (column 3 of Panel B), we see that both q variables

enter with high significance, although qtot has the higher t-statistic. Columns 4–6 repeat the same

specifications while controlling for cash flow; the pattern in R2 values is similar. Taken together,

these results imply that total q is a better proxy for total investment opportunities than is physical
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q. Total q is even a slightly better proxy for physical investment opportunities, although physical

q still contains additional information.

We have also run similar (unreported) horse race regressions with other definitions of q, delivering

similar results. For example, Eberly, Rebelo and Vincent (2012) do not subtract current assets from

the numerator of q. Chen, Goldstein and Jiang (2007) calculate q as the market value of equity

plus book value of assets minus the book value of equity scaled by book assets. These alternative

definitions perform similarly to, or worse than, physical q.

3 Bias-Corrected Results

We now estimate the previous models while correcting the measurement-error bias in OLS. We com-

pare results from three estimators. Besides producing unbiased slopes that are easier to interpret,

some of these estimators produce measures of how close our q proxies are to the true, unobservable

q. We briefly describe the estimators below and provide additional details in Appendix B. Our main

conclusions are consistent across the various estimators, but we include them all for completeness.

The first estimator we use is the measurement-error consistent two-step GMM estimator of Erick-

son and Whited (2000, 2002), which we denote EW GMM. This estimator chooses parameter values

that minimize the distance between actual and predicted higher-order moments in investment, our

noisy proxy for q, and their interaction. We consider four variants of the estimator. The Geary

(1942) and GMM4 estimators use up to third and fourth moments, respectively; for each type, we

estimate the model in levels and first differences. The EW GMM estimator produces a statistic ρ2

that measures the R2 from a hypothetical regression of investment on true, unobservable q. It also

produce a statistic τ2 measuring the R2 from a hypothetical regression of our q proxy on the true

q. A q measure with a higher τ is therefore a better proxy for true q. The EW GMM estimator

has been superceded by Erickson, Jiang, and Whited’s (2013) higher-order cumulant estimator,

which has the same asymptotic properties but better finite-sample properties. We plan to use the

cumulant estimator in the future.

The second and third estimators are IV estimators advocated by Almeida, Campello and Galvao
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(2010). Both start by taking first differences of a linear investment-q model. Biorn’s (2000) IV

estimator assumes the measurement error in q follows a moving-average process up to some finite

order, and it uses lagged values of the regressors as instruments to “clear” the memory in the

measurement error process. Arellano and Bond’s (1991) GMM IV estimator use twice-lagged q

and investment as instruments for the first-differenced equation, and weights these instruments

optimally using GMM. These estimators have the advantage of being better understood and easier

to implement numerically. However, Erickson and Whited (2012) find that they can produce the

same biased results as OLS regressions if the measurement error is serially correlated, which is

possible in our setting.

Estimation results are in Table 3. Each column shows results from a different estimator. For

comparison, the first column shows results using OLS with firm and time fixed effects. Panel A

shows results using total capital (ιtot, qtot, and ctot), and Panel B shows results using physical

capital (ιphy, qphy, and cphy).

First, we discuss results from Erickson and Whited’s (2012) identification diagnostic test, which

tests the joint null hypothesis that the slope on q is zero, and that the proxy for q is non-skewed.

The model is not well identified if this null is true. All results are for the EW GMM estimator

using up to fourth moments. For the data in levels (first differences), the test for Panel B’s physical

capital specification rejects the hypothesis of no identification in 82% (62%) of the 39 years in our

data, while in the total capital specifications it rejects in 85% (62%) of the years. It therefore

seems that the identifying assumptions for the EW GMM estimator hold at least as well using

total capital as they do with physical capital alone.

The τ2 estimates are uniformly higher in Panel A than Panel B, indicating that total q is a better

proxy for the true, unobservable q than is physical q. Depending on the estimator used, the increase

in τ2 ranges from 8–21%. Total q is still a noisy proxy, however: our highest τ2 is 0.728, indicating

that total q explains only 72.8% of the variation in true q.

The ρ2 estimates are also uniformly higher in Panel A than Panel B, depending on the GMM

estimator used. This result indicates that the unobservable true q explains more of the variation in

total investment than it does for physical investment. In other words, the relation between q and
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investment is stronger when we include intangible capital in both q and investment. The increase

in ρ2 ranges from 32–54% depending on the estimator. The ρ2 estimates in Panel A range from

0.598 to 0.703, indicating that q explains 60-70% of the variation in investment. This result helps

us evaluate how the simplest linear investment-q theory fits the data. The theory explains most of

the variation in investment, but there is still considerable variation left unexplained. The theory

fits the data considerably better when one includes intangible capital in investment and q.

Next, we consider the estimated slopes on q. Comparing panels A and B, the coefficients on q

are larger in Panel A for every estimator used. The increase in coefficient from Panel B to Panel

A ranges from 54–216%. This result has interesting economic implications, because the simplest q

theories predict that the inverse of the estimated slope on q equals the marginal capital adjustment

cost parameter.11 According to these benchmark theories, our estimated adjustment costs are 35–

68% lower when we use total capital rather than just physical capital in our measures. Previous

papers12 have concluded that adjustment costs from investment-q regressions are unreasonably

large. We find more reasonable estimates after correcting an important source of measurement

error, which builds confidence in these simple q theories. An important caveat is that alternate,

more general q theories do not provide a clean mapping between our regression slope and adjustment

cost parameters. An important priority for future research is to estimate these alternate theories

using measures of investment and q that include intangible capital.

Finally, we discuss the estimated slope coefficients on cash flow. The simplest q theories predict

a slope of zero. Recent theories, however, have shown that these slopes are hard to interpret,

as non-zero slopes may arise from many sources, only one of which is financial constraints. For

example, Gomes (2001), Hennessy and Whited (2007), and Abel and Eberly (2011) develop models

predicting significant cash flow slopes even in the absence of financial frictions.

We find significantly positive slopes on cash flow for five out of seven estimators in each panel.

Comparing Panels A and B, the slopes on cash flow are typically larger when we include intangible

capital. This result is expected: when intangible investment is high, ctot will exceed cphy as a result

11Hayashi (1982), among others, makes this prediction. The prediction typically follows from three key assumptions:
perfect competition, constant returns to scale, and quadratic capital adjustment costs. We provide our own theory
in Section 6.

12For example, see Summers (1981), Shapiro (1986), and Philippon (2009).
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of adding the tax-adjusted intangible investment back into cash flow. However, we emphasize that

this difference is the result of having a more economically sensible measure of investment and hence

free cash flow. In other words, we argue that previous studies that only include physical capital

have found slopes on cash flow that are too small, because they fail to classify the resources that

go to intangible capital investment as free cash flow.

4 Cross-Sectional and Time-Series Differences

So far we have pooled together all observations. Next, we compare results across firms and years.

We re-estimate the previous models in subsamples formed using three variables. First, we form

low- and high-intangible subsamples, where low- (high-) intangible firms have below- (above-)

median intangible intensity in a given year. Recall that intangible intensity is the ratio of a firm’s

intangible to total capital stock. Second, we examine the early (1972–1993) and late (1994–2010)

parts of our sample. Third, we form industry subsamples. To avoid small subsamples in our GMM

analysis, we use Fama and French’s 5-industry definition, and we present results only for the three

largest industries: “Manuf,” which includes manufacturing and energy firms (we drop utility firms);

“Cnsmr,” which includes consumer durables, nondurables, wholesale, retail, and some services; and

“HiTec,” which includes business equipment, telephone, and television transmission. We refer to

these industries as simply manufacturing, consumer, and high-tech. For each subsample we estimate

a total-capital specification using ιtot, qtot, and ctot. An adjacent column presents a physical-capital

specification using ιphy, qphy, and cphy. Where possible, we tabulate the difference in R2, ρ2, and

τ2 between the physical- and total-capital specifications.

OLS results for the intangible and year subsamples are in Table 4. OLS results for industry

subsamples are in Table 5. The top panels includes just q, whereas the bottom panels add cash

flow as a regressor. Using total capital rather than physical capital alone produces higher R2 values

in all subsamples. The increase in R2 ranges from 0.067–0.193, i.e., from 33–68%.

Including intangible capital is more important in certain types of firms and years. As expected,

it is more important in firms with more intangible capital: the increase in R2 is 0.138 (43%) in the
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high-intangible subsample, compared to 0.067 (33%) in the low-intangible subsample. We see mixed

results for the year subsamples. Without controlling for cash flow, the increase in R2 is slightly

higher in later subsample, whereas controlling for cash flow in Panel B delivers the opposite result.

This result is somewhat surprising, as intangible capital is more prevalent in recent years (Figure

1). Including intangible capital increases the R2 by 0.061 (29%) in the manufacturing industry,

compared to 0.120 (50%) in the consumer industry and 0.136 (38%) in the high-tech industry.

This result makes sense, as the manufacturing industry uses the least of intangible capital (mean

intensity = 23%), the consumer industry uses an intermediate amount (mean intensity = 35%),

and the high tech industry uses the most (mean intensity = 47%). Nevertheless, we emphasize

that even manufacturing firms have considerable amounts of intangible capital and see a stronger

investment-q relation when we include intangible capital.

Next, we correct for measurement bias in the OLS subsample regressions. Since our main results

in Section 3 are consistent across estimators, in this section we use a single estimator, the fourth-

order GMM estimator of Erickson and Whited (2000, 2002). Results are in Tables 6 and 7, which

have a similar structure as Tables 4 and 5. With only a few exceptions,13 our key results are

consistent across all subsamples and specifications: τ2 is higher when we include intangible capital,

indicating that total q is a better proxy for true q; ρ2 is higher when we include intangible capital,

indicating a stronger investment-q relation; and estimated slopes on q are higher when we include

intangible capital, implying lower capital adjustment costs. The increases in slopes are especially

dramatic, ranging from 36–482%.

As in the OLS regressions, including intangible capital is more important in certain firms and

years. For example, the increase in τ2 is larger in later years (0.128) than earlier years (0.042), and

it is larger in the consumer (0.080) and high tech industries (0.185) than the manufacturing industry

(0.035). Somewhat surprisingly, while the increase in τ2 is large for both low- and high-intangible

firms, it is larger for the low-intangible firms (0.206 vs. 0.173). This difference in differences is not

large, however. In most subsamples, the percent increase in the estimated slope on q from including

13In the manufacturing and consumer industries, τ 2 is lower if we use total capital and control for cash flow. If we
exclude cash flow as a regressor in those same industries, however, the result reverses. In the manufacturing industry,
ρ2 is slightly smaller if we use total capital and exclude cash flow from the model, but the result reverses if we include
cash flow.
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intangible capital is larger in subsamples with more intangible capital, as expected. For example,

the slope increases 36% in the low-intangible subsample, compared to 206% in the high-intangible

subsample.

To summarize, our main result– that including intangible capital results in a stronger investment-

q relation– is consistent across firms with high and low amounts of intangible capital, in the early

and late parts of our sample, and across industries. As expected, though, this result is typically

stronger where intangible capital is more important.

5 Macro Results

So far we have analyzed firm-level data. Next we investigate the investment-q relation in U.S.

macro time-series data. Our sample includes 142 quarterly observations from 1972Q2–2007Q2, the

longest period for which all variables are available.

We construct versions of physical and total investment and q using macro data. Physical q and

investment come from Hall (2001), who uses the Flow of Funds and aggregate stock and bond

market data. Physical q, again denoted qphy, is the ratio of the value of ownership claims on

the firm less the book value of inventories to the reproduction cost of plant and equipment. The

physical investment rate, again denoted ιphy, equals private nonresidential fixed investment scaled

by its corresponding stock, both of which are from the Bureau of Economic Analysis.

Data on the aggregate stock and flow of physical and intangible capital come from Carol Corrado

and are discussed in Corrado and Hulten (2014). Earlier versions of these data are used by Corrado,

Hulten, and Sichel (2009) and Corrado and Hulten (2010). Their measures of intangible capital

include aggregate spending on business investment in computerized information (from NIPA), R&D

(from the NSF and Census Bureau), and “economic competencies,” which includes investments in

brand names, employer-provided worker training, and other items (various sources). Similar to

before, we measure the total capital stock as the sum of the physical and intangible capital stocks,

we compute total q as the ratio of total ownership claims on firm value, less the book value of

inventories, to the total capital stock, and we compute the total investment rate as the sum of
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intangible and physical investment to the total capital stock.

To mitigate problems from potentially differing data coverage, we use Corrado and Hulten’s (2014)

ratio of physical to total capital to adjust Hall’s (2001) measures of physical q and investment. More

precisely, we calculate total q as

qtot =
V

Kphy +Kintan
= qphy ×

Kphy

Kphy +Kintan
(7)

and total investment as

ιtot =
Iphy + Iintan

Kphy +Kintan
= ιphy ×

Kphy

Kphy +Kintan
×

Iphy + Iintan

Iphy
. (8)

where qphy and ιphy are from Hall’s (2001) data andKphy, Kintan, Iphy, and Iintan are from Corrado

and Hulten’s (2014) data.

The correlation between physical and total q is extremely high, at 0.997. The reason is that total

q equals physical q times the ratio of physical to total capital [equation (7)], and the latter ratio has

changed slowly and consistently over time.14 Of significantly larger importance is the change from

physical to total investment, which requires changing both the numerator and the denominator

in (8). Since the ratio of capital flows has changed more than the ratio of the capital stocks, the

correlation between total and physical investment is much smaller at 0.43.

For comparison, we also use Philippon’s (2009) aggregate bond q, which he obtains by applying a

structural model to data on bond maturities and yields. Bond q is available at the macro level but

not at the firm level. Philippon (2009) shows that bond q explains more of the aggregate variation

in what we call physical investment than does physical q. Bond q data are from Philippon’s web

site.

Figure 2 plots the time series of aggregate investment and q using physical capital (left panel)

and total capital (right panel). Except in a few subperiods, physical q is a relatively poor predictor

of physical investment, as Philippon (2009) and others have shown. Total q seems to do a much

14The macro intangible intensity increases from roughly 0.2 in 1975 to 0.3 in 2010. In contrast, Figure 1 shows the
cross-sectional average intensity increasing from roughly 0.27 to 0.47 over this period. We can reconcile these facts if
small firms use more intangible capital.
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better job of predicting total investment, although the fit is not perfect. The total investment-q

relation is particularly strong during the tech boom of the late 1990’s, and is particularly weak

during the early period, 1975-85. As explained above, the improvement in fit comes mainly from

changing the investment measure, since total and physical q are almost perfectly correlated in the

time series.

Table 8 presents results from time-series regressions of investment on q. The top panel uses total

investment as the dependent variable, and the bottom panel uses physical investment. The first

two columns show dramatically higher R2 values and slope coefficients in the top panel compared

to the bottom. The result is similar for both total and physical q (columns 1 and 2), as expected.

This result implies a much stronger investment-q relation when we include intangible capital in our

investment measure. The 0.57 increase in R2 from including intangible capital is even larger than

the 0.43 increase Philippon (2009) obtains by using bond q in place of physical q (columns 2 vs. 3

in panel B).

Interestingly, the R2 values in panel A indicate that both total and physical q explain more

than three times as much variation in total investment than does bond q, which does not enter

significantly either on its own (column 3) or in horse races with total or physical q (columns 4

and 5). (We do not run a horse race between total and physical q since the variables are almost

collinear.) We obtain the opposite result when the dependent variable is physical investment: bond

q explains much more of the variation in physical investment and is the only q variable that enters

significantly.

We re-estimate the regressions in first differences and, to handle seasonality, in four-quarter

differences. Results are available upon request. Echoing our results above, regressions of investment

on both total and physical q generate larger slopes and R2 values when we use total rather than

physical investment. The relation between physical investment and either q variable is statistically

insignificant in first differences, whereas the relation between total investment and either q is always

significant. In all these specifications in differences, bond q enters with much higher statistical

significance, drives out total and physical q in horse races, and generates higher R2 values.

To summarize, in macro time-series data we find a much stronger investment-q relation when we
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include intangible capital in our measure of investment. The increase in R2 is even larger than the

one Philippon (2009) finds when using bond q in place of physical q. While total q is better than

bond q at explaining the level of total investment, bond q is better at explaining first differences,

and bond q is also better at explaining the level of physical investment.

6 A Theory of Intangible Capital and the Investment-q Relation

In this section we present a theory of optimal investment in physical and intangible capital. Our

first goal is to provide a rationale for the empirical choices we have made so far. Specifically, we

provide a rationale for adding together physical and intangible capital in our measure of total q,

and we provide a rationale for regressing total investment on total q. Our second goal is to illustrate

what can go wrong when one omits intangible capital and simply regresses physical investment on

physical q. Our theory is deliberately simple in order to make the economic mechanism as clear as

possible. At the end of the section we discuss related theories and assess whether our predictions

will extend to more general settings. All proofs are in Appendix C.

We extend Abel and Eberly’s (1994) theory of investment under uncertainty to include two

capital goods. We interpret the two capital goods as physical and intangible capital, but they are

interchangeable within the model. The model features an infinitely lived, perfectly competitive firm

that holds K1t units of physical capital and K2t units of intangible capital at time t. (We omit firm

subscripts for notational ease. Parameters are constant across firms, but shocks and endogenous

variables can vary across firms unless otherwise noted.) At each instant t the firm chooses the

investment rates I1t and I2t in two types of capital and the amount of labor Lt that maximize the

presented value of expected future cash flows:

V (K1t,K2t, εt, p1t, p2t) = max
Lt+s, I1,t+s, I2,t+s

∫
∞

0
Et[π (Kt+s, Lt+s, εt+s) (9)

− c (I1,t+s, I2,t+s,Kt+s, p1,t+s, p2,t+s)]e
−rsds (10)
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subject to

dK1 = (I1 − δK1) dt (11)

dK2 = (I2 − δK2) dt. (12)

Operating profits π depend on the total amount of capital K ≡ K1 +K2, labor L, a constant wage

rate w, and a random variable ε :

π (K,L, ε) = F (L,K, ε) − wL. (13)

Since profits depend on total capital K but not on K1 and K2 individually, the two capital types

are perfect substitutes in production. This assumption is implicit in almost all empirical work on

the investment-q relation: by using data on CAPEX or PP&E, both of which add together different

types of physical capital, researchers have treated these different types as perfect substitutes. We

assume the production function F is linearly homogenous in K and L. The cost of investment c

equals

c (I1, I2,K, p1, p2) =
γ1
2
K

(
I1
K

)2

+
γ2
2
K

(
I2
K

)2

+ p1I1 + p2I2. (14)

The first two terms of c represent adjustment costs, and the last two terms denote the purchase/sale

cost of new capital. The capital prices p1 and p2, along with profitability shock ε, fluctuate over

time according to a general stochastic diffusion process

dxt = µ (xt) dt+Σ(xt) dBt, (15)

where xt = [εt p1t p2t]
′ . We assume all firms face the same capital prices p1t and p2t, but the

shock ε can vary across firms.

Next we present the three main predictions from the theory.
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Lemma 6.1. Marginal q equals average q, the ratio of firm value to the total capital stock:

∂Vt

∂K
=

Vt

K1t +K2t
≡ qtot (εt, p1t, p2t) . (16)

This result provides a rationale for measuring q as firm value divided by the sum of physical

and intangible capital, which we call total q. The value of qtot depends on the shock ε and the

two capital prices, p1 and p2. Marginal q, ∂Vt/∂K, measures the benefit of adding an incremental

unit of capital (either tangible or intangible) to the firm. Marginal q is not observed by the

econometrician in many investment theories, making the theories difficult to estimate. Since our

firm faces constant returns and perfect competition, as in Hayashi (1982) and others, marginal q

equals the easily observed average q.

The firm chooses the optimal investment rate by equating marginal q and the marginal cost of

investment. For physical capital, this equality is ∂Vt/∂K1 = ∂c (·) /∂I1. Applying this condition

to our cost function (14) yields the following optimal investment rates in the two capital types:

ιphyt ≡
I1t

K1t +K2t
=

1

γ1

(
qtott − p1t

)
(17)

ιintant ≡
I2t

K1t +K2t
=

1

γ2

(
qtott − p2t

)
. (18)

Intuitively, the firm invests more in a type of capital when the benefits of investing (qtot) are

higher, when its adjustment cost γ is lower, and when the capital price is lower. Summing the two

investment rates above generates our next main prediction.

Lemma 6.2. The total investment rate ιtot is linear in qtot and the capital prices:

ιtott ≡
I1t + I2t
K1t +K2t

=

(
1

γ1
+

1

γ2

)
qtott −

p1t
γ1

−
p2t
γ2

. (19)

If prices p1 and p2 are constant across firms at each instant, then the OLS panel regression

ιtotit = at + βqtotit + ηit (20)
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will produce an R2 of 100% and a slope coefficient β equal to 1/γ1 + 1/γ2.

This result provides a rationale for regressing total investment on total q, as we do earlier in the

paper. Time fixed effects are needed to soak up the time-varying capital prices p in (19).

The result also tells us that the OLS slope β is an unbiased estimator of the total inverse adjust-

ment cost, 1/γ1 + 1/γ2. This prediction provides one potential reason why we find larger slopes of

total investment on total q in Section 3: our slope is not the inverse adjustment cost parameter,

but the sum of two inverse adjustment cost parameters. This prediction highlights the difficulty

in interpreting these slopes, a point made by Erickson and Whited (2000) and others. If we had

assumed a different investment cost of the form

c (I1, I2,K, p1, p2) =
γ

2
K

(
I1 + I2

K

)2

+ p1I1 + p2I2, (21)

then our model would make the usual prediction that β = 1/γ. With this alternate setup, we could

interpret Section 3’s larger slopes on total q as evidence of a lower adjustment cost parameter γ.

We now use our theory to analyze the typical regression in the literature, which is a regression

of physical investment (I1/K1 in the model) on physical q (V/K1 in the model). Our next result

shows how omitting intangible capital from these regressions results in a lower R2 and biased slope

coefficients.

Lemma 6.3. The physical investment rate equals

ιphyit ≡
I1,i,t
K1,i,t

=
1

γ1
qphyit −

p1t
γ1

Kit

K1,i,t
. (22)

If prices and p1 and p2 are constant across firms at each instant, then the OLS panel regression

ιphyit = ãt + β̃qphyit + η̃it (23)

will produce an R2 less than 100% and a slope β̃ that is biased away from 1/γ1.

Equation (22) follows from multiplying both sides of equation (17) by Kit/K1,i,t. Time fixed

effects ãt will not absorb the term p1t
γ1

Kit

K1,i,t
in equation (22), because Kit/K1,i,t is not necessarily
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constant across firms. As a result, the error term η̃it can be nonzero, producing an R2 less than

100% in regression (23). Equation (22) implies that the error term in regression (23) equals

η̃it = −
p1t
γ1

(
Kit

K1,i,t
−

Kt

K1,t

)
. (24)

This disturbance is cross-sectionally15 correlated with the regressor qphyit through the termKit/K1,i,t

in (24), because qphyit = qtotit Kit/K1,i,t. Since the error term is correlated with the regressor in (23),

the estimated slope coefficient is biased away from 1/γ1.

Will adjustment cost estimates from regression (23) be too high or too low? Signing the bias

is difficult since qtot and qphy are not available in closed form. We solve the model numerically16

and show that, for reasonable parameter values, the OLS slope β̃ is a downward-biased estimator

of 1/γ1. In other words, regression (23) typically over-estimates the adjustment cost parameter

γ1. The reason for the negative bias in β̃ is that the regression’s error term η̃it in (24) has an

almost perfect negative correlation with the regressor ιphyt , which makes sense given that Kit/K1,i,t

appears in both variables, albeit with a negative sign in η̃it.

To summarize, our simple theory predicts that total q is the best proxy for total investment

opportunities, whereas physical q is a noisy proxy for physical investment opportunities. These

predictions help explain why our regressions produce higher R2 and τ2 values when we use total

rather than physical capital. The theory also predicts that a regression of physical investment on

physical q will produce upward-biased adjustment cost estimates.

Existing theories shed light on how sensitive these predictions are to our specific assumptions.

Using a dynamic, deterministic investment model with multiple capital goods, Wildasin (1984)

shows that only under stringent assumptions will the total investment rate be linear in a total q

measure that, like ours, simply adds together the different capital goods. Hayashi and Inoue (1990)

also analyze an investment model with multiple capital goods, and they show that investment and

q may be related through a potentially nonlinear aggregator of the various capital goods. Several

15The regression with time fixed effects is equivalent to demeaning i
phy
it and q

phy
it by their cross-sectional means and

then regressing the demeaned variables on each other without time fixed effects. It is therefore the cross-sectional
correlation between q

phy

it and η̃it that matters for determining bias.
16Details on the numerical solution are in Appendix D.
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theories of investment in a single capital good, including recently Gala and Gomes (2013), show

that Tobin’s q and investment are weakly linked except in very special cases.

In sum, a linear relation between total investment and what we call total q obtains only in special

cases, including the one we consider in this section. It is therefore all the more surprising that

we find a strong linear relation between investment and q in the data, at least when we include

intangible capital in our measures. This discussion also emphasizes the importance of testing more

general q theories using measures of investment and q that include intangible capital. Since the

benchmark linear investment-q relation changes considerably when we include intangible capital,

we speculate that the more general relation will also change.

7 Conclusion

We incorporate intangible capital into measures of investment and Tobin’s q, and we show that

the investment-q relation becomes stronger as a result. Specifically, our measures deliver higher

R2 values, larger coefficients on q, and hence lower implied adjustment costs in regressions of

investment on q. These results hold true in both firm-level and macro data. Firm-level estimation

results also indicate that our measure of total q is closer to the unobservable true q than is the

standard physical q measure. These results hold true across several types of firms and years, but

they are especially strong where intangible capital is most important, for example, in the high-tech

industry and in recent years.

Our results have two main implications. First, our results indicate that the q theory of investment,

or at least the version predicting a linear relation between investment and Tobin’s q, performs better

empirically than was previously believed. Once we correct an important source of measurement

error, the theory fits the data better and implies more reasonable capital adjustment costs. Second,

researchers using Tobin’s q as a proxy for firms’ total investment opportunities should use a proxy

that, like ours, includes intangible capital. One benefit of our proxy is that it is easy to compute

for a large panel of firms.
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Appendix A: Measuring Firms’ Initial Capital Stock

This appendix explains how we estimate a firm’s stock of knowledge and organizational capital in

its first non-missing Compustat record. We describe the steps for estimating the initial knowledge-

capital stock; the method for organizational capital is similar. Broadly, for each firm i we estimate

R&D spending in each year of life between the firm’s founding and its first non-missing Compustat

record, denoted year zero. Our main assumption is that the firm’s R&D grows at the average rate

for Compustat firms of the same age. We then apply the perpetual inventory method to these

forecasted R&D values to obtain the initial stock of knowledge capital in year zero.

The specific steps are as follows:

1. Obtain firms’ founding date from Jay Ritter’s database, available on Ritter’s web site.

2. Compute age since founding for all non-missing Compustat records.

3. Using the full Compustat dataset, compute the average log change in R&D in each yearly

age category.

4. For firms with missing founding date in Ritter’s data, estimate the founding date as the

minimum of (a) the year of the firm’s first Compustat record and (b) firm’s IPO year minus

8, which is the median age between founding and IPO for IPOs from 1980-2012 (from Jay

Ritter’s web site). For each firm i, we now have R&Di1, the first non-missing R&D value

for firm i, and we also have Agei1 the firm’s age since founding in the year corresponding to

R&Di1.

5. For each age between 1 and Agei1, we assume the log change in R&D equals the average value

from step 3 above.

6. Using R&Di1 and the estimated changes from the previous step, estimate the past values of

R&D for firm i’s ages 1 to Agei1 − 1.

7. Apply the perpetual inventory method in equation (3) to the estimated R&D spending from

the previous step to obtain Gi0, the stock of knowledge capital. Equivalently, set Gi0 equal

to R&Di1 times an age-specific multiplier. We plot the age-specific multipliers below:
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Figure A1. This figure plots the age-specific multipliers used to estimate the stock of knowledge

capital (top panel) and organizational capital (bottom panel) in firms’ first non-missing Compustat

record. The solid line indicates our multiplier, and for comparison the dashed line indicates the

multiplier assumed by the method of Falato, Kadryzhanova, and Sim (2013). The latter multiplier

equals one divided by the assumed depreciation rate.

The solid line slopes up, meaning our method reasonably assigns the firm more capital if it is older

at the time of its first Compustat record. We use estimated R&D values only to compute firms’

stock of knowledge capital. We never use estimated R&D in a regression’s dependent variable, for

example.

Appendix B: Details on bias-free estimators

The discussions here follow Erickson and Whited (2000, 2002, 2012) and Almeida, Campello, and
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Galvao (2010).

1. The Erickson and Whited (2000, 2002) GMM Estimator

We start with the classical errors in variables model. This model can be written as

yi = ziα+ qiβ + ui (25)

pi = γ + qi + εi (26)

where qi is the average q of firm i, p is an estimate of Tobin’s q, and zi is a row vector of perfectly

measured regressors, including a constant. The regression error, ui, and the measurement error, εi,

are assumed independent of each other and of (zi, qi), and the observations within a cross section

are assumed i.i.d.

The first step is to re-express the model in terms of deviations from means. Define µy =

[E(z′izi)]
−1E(z′iyi) and µq = [E(z′izi)]

−1E(z′ipi), and letting ŷi = yi − µyzi, p̂i = pi − µqzi and

q̂i = qi − µqzi, rewrite the model as

ŷi = q̂iβ + ui (27)

p̂i = q̂i + εi (28)

This model provides a measure τ2 of the quality of the proxy for q. This measure is the population

R2 of the last equation, which we can calculate as

τ2 =
µ′

qvar(z)µq + E(q̇2i )

µ′

qvar(z)µq + E(q̂2i ) + E(ε2i )
. (29)

Given a panel data set, we first estimate τ2 for each cross section of our panel by substituting

cross-section estimates of E(q̂2i ), E(ε2i ), µq and var(z) into Equation (29). The first two estimates

are GMM estimates based on moment conditions that use third-order moments to identify the
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errors-in-variables model. The assumptions on equations (25) and (26) imply:

E(ŷ2i ) = β2E(q̂2i ) + E(u2i ) (30)

E(ŷip̂i) = βE(q̂2i ) (31)

E(p̂2i ) = E(q̂2i ) + E(ε2i ) (32)

E(ŷ2i p̂i) = β2E(q̂3i ) (33)

E(ŷip̂
2
i ) = βE(q̂3i ) (34)

E(ŷ3i p̂i) = β3E(q̂4i ) + 3βE(q̂2i )E(u2i ) (35)

E(ŷ2i p̂
2
i ) = β2E(q̂4i ) + β2E(q̂2i )E(ε2i ) + E(q̂2i )E(u2i ) + E(ε2i )E(u2i ) (36)

E(ŷip̂
3
i ) = βE(q̂4i ) + 3βE(q̂2i )E(ε2i ) (37)

Estimation requires replacing the left hand side quantities of equations (30)-(37) with data estimates

and then using GMM to find the vector of right hand side quantities (β, E(q̂2i ), E(u2i ), E(ε2i ),

E(q̂3i ), E(q̂4i )) that minimizes the distance between the left and right hand sides according to the

minimum-variance GMM weighting matrix.

This estimation procedure requires the identifying assumptions that both β and E(q̂3i ) are nonzero.

If these assumptions hold then equations (33) and (34) imply that β = E(ŷ2i p̂i)/E(ŷip̂
2
i ). If we used

only equations (30)-(35) the system would be just identified. Equations (36) and (37) provide

overidentifying restrictions that increase efficiency, as shown in Erickson and Whited (2006).

Erickson and Whited (2012) recommend using many different starting values for β along a grid

to ensure one finds a global minima, where the grid should contain the OLS estimate of β, as well

as the GEARY estimate, which is how we implement their estimator. After the estimator is run

on each cross section of the data, the results are pooled using the minimum distance estimator

for unbalanced panels described in Erickson and Whited (2012). The code for both the GMM

estimator and for the minimum distance estimator are from Toni Whited’s web site.

2. Biorn’s (2000) IV Estimator
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Similar to the setup of the EW GMM estimator above, we start with an error-in-variables model:

yit = zitα+ qitβ + uit (38)

pit = γ + qit + εit, (39)

where qit is the true q, pit is a noisy estimate of q, and zi is a row vector of well measured regressors,

including individual fixed effects. The regression error, uit, and the measurement error, εit, are

uncorrelated with each other and with (zit, qit), and the observations are independent across i.

By substituting (39) into (38), we can take first differences of the data to eliminate the individual

effects and obtain

yit − yit−1 = (pit − pit−1)β + [(uit − εitβ)− uit−1 − εit−1β)]. (40)

The coefficient of interest will be biased due to the assumed correlation between the mismeasured

variable and the innovations. Griliches and Hausman (1986) propose an IV approach to reduce this

bias. While this IV approach does not make any distributional assumptions on the mismeasured

regressor, it does require the additional assumption that the measurement error terms εit are i.i.d.

over time.

Biorn (2000) relaxes the i.i.d. condition for innovations in the mismeasured equation and proposes

alternative assumptions under which consistent IV estimators of the coefficient of the mismeasured

regressor exist. In particular, if we allow for a vector moving average structure up to order λ (≥ 1)

for the innovations then one can use the lags of the variables already included in the model as

instruments to “clear” the λ period memory of the MA process in the measurement error. See

Biorn (2000) for details. The identifying assumption made in this paper is that the measurement

error is MA of order λ ≤ 3.

3. The Arellano and Bond (1991) GMM Estimator

The discussion here follows Blundell, Bond, Devereux and Schiantarelli (1992), who were the first

researchers to apply the Arellano and Bond (1991) GMM instrumental variable technique in the

29



context of a standard investment model for correlated firm-specific effects and mismeasurement of

q. These authors use an instrumental variables approach on a first-differenced model in which the

instruments are optimally weighted so as to form the GMM estimator. In particular, they use qi,t−2

and twice-lagged investments as instruments for the first-differenced equation for firm i in period

t.

A GMM estimator for the errors-in-variables model of equation (40) based on IV moment condi-

tions takes the form

β̂ =
[
(∆x′Z)W−1

N (Z ′∆x)
]
−1

(∆x′Z)W−1
N (Z ′∆y), (41)

where ∆x is the stacked vector of observations on the first difference of the mismeasured variable

and ∆y is the stacked vector of observations on the first difference of the dependent variable. The

instrument matrix takes the form:




x1 0 0 . . . 0 . . . 0

0 x1 x2 . . . 0 . . . 0

...
...

...
...

...

0 0 0 . . . x1 . . . xT−2




.

An optimal choice of the inverse weight matrix WN is a consistent estimate of the covariance matrix

of the orthogonality conditions E(Z ′

i∆νi∆ν ′iZi), where ∆νi are the first-differenced residuals of each

individual. A two-step GMM estimator uses a robust choice W̃ =
∑N

i=1 Z∆ν̂i∆ν̂ ′iZi where ∆ν̂i are

one-step GMM residuals.

Again, we use the results of Biorn (2000) who shows that when one allows for an MA(λ) structure

in the measurement error, one must ensure that the variables in the IV matrix have a lead or lag of at

least λ+1 periods in the regressor. While the GMM estimator is more efficient that the IV estimator

in the presence of heteroscedasticity, estimation of the optimal weighting matrix requires obtaining

estimates of fourth moments so this GMM estimator can have poor small sample properties (Baum,

Schaffer and Stillman (2003)).

Appendix C: Proofs
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Proof of Lemma 1. Abel and Eberly (1994) show that constant returns to scale in π implies

max
L

π (K,L, ε) = H (ε)K. (42)

We can write the investment cost function as

c (I1, I2,K, p1, p2) = K

[
γ1
2

(
I1
K

)2

+
γ2
2

(
I2
K

)2

+
I1
K

+ p2t
I2
K

]
, (43)

so we can write the value function as

Vt = max
i1,t+s, i2,t+s

∫
∞

0
Et {[H (εt+s)− c (ι1,t+s, ι2,t+s, 1, p1,t+s, p2,t+s)]Kt+s} , (44)

where ι1,t+s ≡ I1,t+s/Kt+s and ι2,t+s ≡ I2,t+s/Kt+s. Since depreciation rates are constant across

the two types of capital, we have

dKt = (It − δKt) dt,

where total investment is defined as I = I1 + I2. Since the objective function and constraints can

be written as functions of total capital K and not K1 and K2 individually, the firm’s value depends

on K but not on K1 and K2individually :

V (K1,K2, ε, p1, p2) = V (K, ε, p1, p2) . (45)

Following the same argument as in Abel and Eberly’s (1994) Appendix A, firm value must be

proportional to total capital K :

V (K, ε, p1, p2) = Kqtot (ε, p1, p2) = (K1 +K2) q
tot (ε, p1, p2) . (46)

Partially differentiating this equation with respect to K1 and K2 yields (16).

Proof of Lemma 2. Equation (19) follows from adding equations (17) and (18). Following a

similar proof as in Abel and Eberly (1994), one can derive the Bellman equation and take first-order
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conditions with respect to I1 to obtain

qtot = cI1 (I1, I2,K, p) = γ1
I1
K

+ p1, (47)

which generates (17). Details are available upon request.

Proof of Lemma 3. From (22) we have

β = 1/γ1 (48)

ãt + ηit = −
p1t
γ1

Kit

K1,i,t
. (49)

The right-hand side of (49) can vary across firms i at any instant t, for example, because firms are

endowed with different ratios Ki0/K1,i,0. It follows that ηit can be nonzero, so regression (23) will

produce an R2 < 1 in general. The bias in β follows from the correlations described in the paper.

Appendix D: Numerical solution of the investment model

We choose specific functional forms to solve the model numerically. We assume a Cobb-Douglas

production function

π (K,L, ε) = εLαK1−α − wL,

so that

π(K, ε) = max
L

π (K,L, ε) = H (ε)K (50)

H (ε) = hεθ

h = α
α

1−αw
α

α−1 − α
1

1−αw
α

α−1

θ =
1

1− α
.
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We assume the exogenous variables follow uncorrelated, positive, mean-reverting processes:

d ln εit = −φ ln εitdt+ σεdB
(ε)
it

d ln p1t = −φ ln p1tdt+ σpdB
(p1)
t

d ln p2t = −φ ln p2tdt+ σpdB
(p2)
t .

The goal is to solve for the function qtot (ε, p1, p2) . Following the approach in Abel and Eberly

(1994), one can show that the Bellman equation is

qtot (r + δ) = πK (K, ε) − cK (I1, I2,K, p1, p2) + E
[
dqtot

]
/dt. (51)

Substituting in (50), (14), (17), and (18) and applying Ito’s lemma yields

qtot (r + δ) = hεθ +
1

2γ1

(
qtot − p1

)2
+

1

2γ2

(
qtot − p2

)2
+ qtotx µ (x) +

1

2
qtotxxΣ (x) . (52)

We numerically solve this equation for qtot (ε, p1, p2) using the collocation method of Miranda and

Fackler (2002), which approximates qtot as a polynomial in ε, p1, and p2 and their interactions.

We use the following parameter values to illustrate the solution:

α = 0.5, w = 0.1, r = 0.2, δ = 0.1, γ1 = 100, γ2 = 200

φ = 2, σε = 0.1, σp = 0.2.

We choose a high discount rate r and adjustment costs γ so that qtot is finite. For these parameter

values, qtot is strongly increasing in ε and weakly decreasing in p1 and p2.

We simulate a large panel of data on iphyit and qphyit , then estimate the panel regression (23) by

OLS. The estimated coefficient on qphyit is 0.0091, whereas the true value of 1/γ1 is 0.01. In other

words, the OLS slope coefficient is a downward biased estimator for 1/γ1, i.e., an upwards biased

estimator of γ1. The reason for the downward bias is that the regression disturbance η̃it in equation

(24) has a correlation of roughly -0.98 with the cross-sectionally demeaned regressor qphyit .
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Figure 1. This figure plots the mean intangible capital intensity for all firms in our sample as
well as the subset of firms in the consumer, manufacturing, and high tech industries. Intangible
intensity is the fraction of a firm’s capital stock made up of intangible capital. We use the five-
industry definition from Fama and French (1997).

37



.0
8

.0
9

.1
.1

1
.1

2
.1

3

1
2

3
4

5
q

1950 1960 1970 1980 1990 2000 2010
Year

Physical

.1
4

.1
6

.1
8

.2
In

ve
st

m
en

t

0
1

2
3

4

1950 1960 1970 1980 1990 2000 2010
Year

Total

q Investment

Figure 2. This figure plots Tobin’s q and the investment rates for the aggregate U.S. economy.

The left panel uses data from Hall (2001) and includes only physical capital in q and investment.

The right panel uses data from Corrado and Hulten (2014) and includes both both physical and

intangible capital in q and investment. For each graph, the left axis is the value of q and the right

axis the investment rate (investment / capital)
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Table 1
Summary Statistics

Statistics are based on a sample of 69,744 yearly observations of 7,412 Compustat firms from 1972 to 2010. The

physical capital stock equals PP&E. We estimate the intangible capital stock by applying the perpetual inventory

method to firms’ intangible investments, defined as R&D + 0.2 × SG&A. Intangible intensity equals the intangible

capital stock divided by the total capital stock (physical + intangible). Knowledge capital is the part of intangible

capital that comes from R&D. q denotes Tobin’s q, ι denotes investment divided by capital, and c denotes the cash

flow rate. The numerator for both q variables is the market value of equity plus the book value of debt minus current

assets. The denominator for all “phy” variables is PP&E. The denominator for all “tot” variables is the total capital

stock. The numerator for ιphy is CAPX, and the numerator for ιtot is total investment, intangible plus physical. The

numerator for physical cash flow is income before extraordinary items plus depreciation expenses, and the numerator

for total cash flow is the same but adds back intangible investment net a tax adjustment discussed in the text.

Variable Mean Median Std Skewness

Intangible capital stock 452 47.5 1877 9.47
Physical capital stock 1020 57.0 5556 15.57
Intangible intensity 0.42 0.42 0.22 0.11
Knowledge capital / Intangible capital 0.48 0.49 0.34 0.02

qphy 3.55 0.98 8.59 5.02
ιphy 0.19 0.12 0.26 5.09
cphy 0.17 0.18 0.66 -1.97

qtot 1.44 0.59 2.96 4.87
ιtot 0.26 0.19 0.25 4.51
ctot 0.21 0.18 0.26 0.70
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Table 2
OLS Results

Calculations are based on a sample of Compustat firms from 1972 to 2010. All estimates are of an OLS regression of
investment on a proxy for Tobin’s q and cash flow with firm and year fixed effects of the form

ιit = α+ βqqit + βccit + γi + νt + εit.

qphy is (MktCap + Debt - CA)/PP&E and qtot is (MktCap + Debt - CA)/(PP&E + INTAN). The dependent variable

in the top panel is ιtot, total investment (physical + intangible) deflated by the total capital stock. ctot is deflated

by the total capital stock and has been adjusted for intangible capital investments. The dependent variable in the

bottom panel is ιphy, physical investment (PP&E) deflated by the physical capital stock. cphy is deflated by the

physical capital stock and has not been adjusted for intangible capital expense. Robust standard errors, clustered by

firm, are in parentheses under the parameter estimates. The table reports within-R2 values.

Panel A: Total investment (ιtot)

qtot 0.051∗∗∗ 0.058∗∗∗ 0.044∗∗∗ 0.050∗∗∗

(0.001) (0.002) (0.001) (0.002)

qphy 0.016∗∗∗ -0.003∗∗∗ 0.014∗∗∗ -0.002∗∗∗

(0.000) (0.001) (0.000) (0.001)

ctot 0.227∗∗∗ 0.273∗∗∗ 0.226∗∗∗

(0.013) (0.014) (0.013)

R2 0.398 0.324 0.399 0.440 0.386 0.441
N 69744 69744 69744 69744 69744 69744

Panel B: Physical investment (ιphy)

qtot 0.048∗∗∗ 0.032∗∗∗ 0.047∗∗∗ 0.032∗∗∗

(0.001) (0.003) (0.001) (0.003)

qphy 0.017∗∗∗ 0.006∗∗∗ 0.017∗∗∗ 0.006∗∗∗

(0.000) (0.001) (0.000) (0.001)

cphy 0.029∗∗∗ 0.030∗∗∗ 0.029∗∗∗

(0.005) (0.005) (0.004)

R2 0.290 0.276 0.296 0.294 0.281 0.300
N 69744 69744 69744 69744 69744 69744
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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Table 3
Bias-Corrected Results

Calculations are based on a sample of Compustat firms from 1972 to 2010. All estimates are of a regression of

investment on a proxy for Tobin’s q and cash flow. GMM4 denotes the EW GMM estimator based on moments

up to order 4, and GEARY denotes the third-order moment estimator from Geary (1942), where a “t” represents

within-transformed data. All estimates are obtained by pooling yearly estimates via minimum distance. OLS denotes

ordinary least squares with firm and year fixed effects. IV denotes instrumental variable estimation, with two and

three lags of cash flow and the proxy for Tobin’s q as instruments for the first difference of the proxy for Tobin’s q. AB

denotes estimation of this same first-differenced regression with the same instruments, but using the GMM technique

in Arellano and Bond (1991). In the top panel, investment and cash flow are deflated by the total capital stock and

the proxy for q is the total q described in the text. In the bottom panel, investment and cash flow are deflated by

physical capital and the proxy for q is physical q. ρ2 is the R2 from a hypothetical regression of investment on true

q, and τ 2 is the R2 from a hypothetical regression of our q proxy on true q. Standard errors are in parentheses under

the parameter estimates.

Panel A: Total investment (ιtot)

OLS GEARY GMM4 GEARYt GMM4t IV AB

qtot 0.044∗∗∗ 0.071∗∗∗ 0.060∗∗∗ 0.071∗∗∗ 0.057∗∗∗ 0.033∗∗∗ 0.035∗∗∗

(0.001) (0.001) (0.001) (0.002) (0.001) (0.002) (0.002)

ctot 0.227∗∗∗ -0.019 -0.003 0.043∗∗∗ 0.105∗∗∗ 0.099∗∗∗ 0.100∗∗∗

(0.012) (0.012) (0.011) (0.011) (0.010) (0.009) (0.011)

ρ2 .703 .589 .672 .561
τ2 .667 .728 .527 .493
N 69744 69744 69744 69744 69744 50070 52087

Panel B: Physical investment (ιphy)

OLS GEARY GMM4 GEARYt GMM4t IV AB

qphy 0.017∗∗∗ 0.028∗∗∗ 0.019∗∗∗ 0.036∗∗∗ 0.037∗∗∗ 0.014∗∗∗ 0.015∗∗∗

(0.000) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001)

cphy 0.030∗∗∗ -0.015∗∗ -0.010∗∗ -0.003 -0.001 0.024∗∗∗ 0.025∗∗∗

(0.005) (0.005) (0.004) (0.005) (0.005) (0.003) (0.004)

ρ2 .532 .407 .495 .364
τ2 .58 .652 .437 .455
N 69744 69744 69744 69744 69744 54141 56240
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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Table 4
Subsample Comparison: OLS Results

This table shows results from estimating Table 2’s OLS regressions in subsamples. We regress investment on q and

(in Panel B) cash flow. Columns labeled “Physical” use ιphy , qphy and cphy , while columns labeled “Total” use ιtot,

qtot and ctot as defined in the notes for Table 1. The Low (High) subsample contains firms whose ratio of intangible to

total capital is below (above) the year’s median. The Early (Late) subsample includes years 1972–1993 (1994–2010).

∆R2 is the change in R2 between the Physical and Total specification. Robust standard errors, clustered by firm,

are in parentheses under the parameter estimates. The table reports within-R2 values.

Panel A: No Cash Flow

Low High Early Late
Physical Total Physical Total Physical Total Physical Total

q 0.026∗∗∗ 0.047∗∗∗ 0.015∗∗∗ 0.049∗∗∗ 0.030∗∗∗ 0.065∗∗∗ 0.015∗∗∗ 0.046∗∗∗

(0.002) (0.002) (0.000) (0.001) (0.001) (0.003) (0.000) (0.001)

R2 0.206 0.273 0.319 0.457 0.242 0.340 0.333 0.444
∆R2 .067 .138 .098 .111
N 34333 34333 35411 35411 33335 33335 36409 36409

Panel B: With Cash Flow

Low High Early Late
Physical Total Physical Total Physical Total Physical Total

q 0.025∗∗∗ 0.040∗∗∗ 0.015∗∗∗ 0.043∗∗∗ 0.025∗∗∗ 0.040∗∗∗ 0.015∗∗∗ 0.044∗∗∗

(0.002) (0.003) (0.000) (0.002) (0.002) (0.003) (0.000) (0.001)

c 0.112∗∗∗ 0.242∗∗∗ 0.022∗∗∗ 0.219∗∗∗ 0.161∗∗∗ 0.502∗∗∗ -0.003 0.083∗∗∗

(0.013) (0.021) (0.005) (0.016) (0.015) (0.026) (0.005) (0.014)

R2 0.227 0.319 0.322 0.498 0.284 0.477 0.333 0.451
∆R2 .092 .176 .193 .118
N 34333 34333 35411 35411 33335 33335 36409 36409
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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Table 5
Industry Comparison: OLS Results

This table shows results from estimating Table 2’s OLS regressions of investment on q and (in Panel B) cash flow in

industry subsamples. Columns labeled “Physical” use ιphy , qphy and cphy , while columns labeled “Total” use ιtot, qtot

and ctot as defined in the notes for Table 1. We use the Fama-French (1997) 5-industry definition. Columns labeled

“Manufacturing” use manufacturing and energy firms. Columns labeled “Consumer” use firms in the consumer goods,

retail, and service industries. Columns labeled “High Tech” use business-equipment and telecommunication firms.

∆R2 is the change in R2 between the Physical and Total specification. Robust standard errors, clustered by firm,

are in parentheses under the parameter estimates.

Panel A: No Cash Flow

Manufacturing Consumer High Tech
Physical Total Physical Total Physical Total

q 0.022∗∗∗ 0.046∗∗∗ 0.025∗∗∗ 0.058∗∗∗ 0.016∗∗∗ 0.052∗∗∗

(0.002) (0.003) (0.002) (0.003) (0.001) (0.001)

R2 0.210 0.271 0.239 0.359 0.362 0.498
∆R2 .061 .120 .136
N 20900 20900 18128 18128 20615 20615

Panel B: With Cash Flow

Manufacturing Consumer High Tech
Physical Total Physical Total Physical Total

q 0.020∗∗∗ 0.036∗∗∗ 0.024∗∗∗ 0.049∗∗∗ 0.016∗∗∗ 0.046∗∗∗

(0.002) (0.004) (0.002) (0.004) (0.001) (0.002)

c 0.079∗∗∗ 0.274∗∗∗ 0.081∗∗∗ 0.267∗∗∗ 0.019∗∗∗ 0.203∗∗∗

(0.017) (0.032) (0.019) (0.030) (0.005) (0.019)

R2 0.229 0.348 0.257 0.414 0.364 0.529
∆R2 .119 .157 .165
N 20900 20900 18128 18128 20615 20615
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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Table 6
Subsample Comparison: Bias-Corrected Results

Calculations are based on a sample of Compustat firms from 1972 to 2010. All estimates are of a regression of

investment on a proxy for Tobin’s q and cash flow. We use the EW GMM estimator based on moments up to order

four, pooling yearly estimates via minimum distance. Columns labeled “Physical” use ιphy , qphy and cphy , while

columns labeled “Total” use ιtot, qtot and ctot as defined in the notes for table 1. The Low (High) subsample contains

firms whose ratio of intangible to total capital is below (above) the year’s median. The Early (Late) subsample

includes years 1972–1993 (1994–2010). ρ2 is the R2 from a hypothetical regression of investment on true q, and τ 2

is the R2 from a hypothetical regression of our q proxy on true q. The ∆ variables denote the difference in statistic

between the Physical and Total specification. Standard errors are in parentheses under the parameter estimates.

Panel A: No Cash Flow

Low High Early Late
Physical Total Physical Total Physical Total Physical Total

q 0.039∗∗∗ 0.053∗∗∗ 0.018∗∗∗ 0.055∗∗∗ 0.032∗∗∗ 0.093∗∗∗ 0.015∗∗∗ 0.047∗∗∗

(0.001) (0.001) (0.000) (0.001) (0.001) (0.002) (0.000) (0.001)

ρ2 0.388 0.406 0.383 0.485 0.298 0.480 0.368 0.479
∆ρ2 0.018 0.102 0.182 0.111
τ2 0.491 0.697 0.619 0.792 0.601 0.643 0.684 0.812
∆τ2 0.206 0.173 0.042 0.128
N 34333 34333 35411 35411 33335 33335 36409 36409

Panel B: With Cash Flow

Low High Early Late
Physical Total Physical Total Physical Total Physical Total

q 0.023∗∗∗ 0.048∗∗∗ 0.011∗∗∗ 0.064∗∗∗ 0.043∗∗∗ 0.110∗∗∗ 0.016∗∗∗ 0.052∗∗∗

(0.001) (0.002) (0.000) (0.001) (0.001) (0.002) (0.000) (0.001)

c -0.026∗ 0.028 -0.011∗∗ 0.025 0.024 0.231∗∗∗ -0.013∗∗ -0.040∗∗

(0.011) (0.016) (0.004) (0.013) (0.015) (0.030) (0.004) (0.013)

ρ2 0.332 0.545 0.431 0.637 0.444 0.687 0.387 0.573
∆ρ2 0.213 0.206 0.243 0.186
τ2 0.530 0.615 0.647 0.716 0.550 0.528 0.678 0.776
∆τ2 0.085 0.069 -0.022 0.098
N 34333 34333 35411 35411 33335 33335 36409 36409
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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Table 7
Industry Comparison: Bias-Corrected Results

Calculations are based on a sample of Compustat firms from 1972 to 2010. All estimates are of a regression of

investment on a proxy for Tobin’s q and cash flow. We use the EW GMM estimator based on moments up to order

four, pooling yearly estimates via minimum distance. Columns labeled “Physical” use ιphy , qphy and cphy , while

columns labeled “Total” use ιtot, qtot and ctot as defined in the notes for table 1. We use the Fama-French (1997)

5-industry definition. Columns labeled “Manufacturing” use manufacturing and energy firms. Columns labeled

“Consumer” use firms in the consumer goods, retail, and service industries. Columns labeled “High Tech” use

business-equipment and telecommunication firms. ρ2 is the R2 from a hypothetical regression of investment on true

q, and τ 2 is the R2 from a hypothetical regression of our q proxy on true q. The ∆ variables denote the difference

in statistic between the Physical and Total specification. Standard errors are in parentheses under the parameter

estimates.

Panel A: No Cash Flow

Manufacturing Consumer High Tech
Physical Total Physical Total Physical Total

q 0.040∗∗∗ 0.084∗∗∗ 0.033∗∗∗ 0.104∗∗∗ 0.023∗∗∗ 0.057∗∗∗

(0.000) (0.000) (0.000) (0.001) (0.000) (0.001)

ρ2 0.307 0.291 0.053 0.265 0.409 0.547
∆ρ2 -0.016 0.212 0.138
τ2 0.667 0.702 0.644 0.724 0.661 0.846
∆τ2 0.035 0.080 0.185
N 20900 20900 18128 18128 20615 20615

Panel B: With Cash Flow

Manufacturing Consumer High Tech
Physical Total Physical Total Physical Total

q 0.017∗∗∗ 0.083∗∗∗ 0.018∗∗∗ 0.100∗∗∗ 0.018∗∗∗ 0.056∗∗∗

(0.000) (0.001) (0.000) (0.002) (0.000) (0.001)

c 0.039∗∗∗ 0.118∗∗∗ 0.008 0.140∗∗∗ -0.016∗∗∗ 0.098∗∗∗

(0.008) (0.017) (0.009) (0.027) (0.004) (0.014)

ρ2 0.387 0.579 0.310 0.639 0.406 0.671
∆ρ2 .192 0.329 0.265
τ2 0.672 0.628 0.561 0.467 0.656 0.747
∆τ2 -0.044 -0.094 0.091
N 20900 20900 18128 18128 20615 20615
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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Table 8
Time-Series Macro Regressions

Calculations are based on quarterly aggregate U.S. data from 1972Q2 through 2007Q2. In the top panel, the dependent

variable is total investment (physical + intangible), deflated by the total capital stock. In the bottom panel, the

dependent variable is total physical investment (PP&E) deflated by the total physical capital stock. Physical q equals

physical investment divided by the physical capital stock; Hall (2001) computes these measures from the Flow of

Funds. Total q includes intangible capital by multiplying physical q by the ratio of physical to total capital; the ratio

is from Corrado and Hulten’s (2014) aggregate U.S. data. Bond q is constructed by applying the structural model of

Philippon (2009) to bond maturity and yield data; these data are from Philippon’s web site. Newey-West standard

errors, with autocorrelation up to twelve quarters, are reported in parentheses.

Panel A: Total investment (ιtot)

Total q 0.017∗∗∗ 0.016∗∗∗

(0.003) (0.003)

Physical q 0.012∗∗∗ 0.012∗∗∗

(0.002) (0.002)

Bond q 0.055 0.033 0.031
(0.032) (0.017) (0.018)

OLS R2 0.610 0.646 0.139 0.693 0.652
N 141 141 141 141 141

Panel B: Physical investment (ιphy)

Total q 0.003 0.001
(0.003) (0.002)

Physical q 0.002 0.001
(0.003) (0.002)

Bond q 0.061∗∗∗ 0.060∗∗∗ 0.060∗∗∗

(0.009) (0.009) (0.009)

OLS R2 0.047 0.035 0.462 0.465 0.466
N 141 141 141 141 141
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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