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Abstract

We propose a new modeling approach for the cross section of returns. Our method,
Instrumented Principal Components Analysis (IPCA), allows for latent factors and
time-varying loadings by introducing observable characteristics that instrument for
the unobservable dynamic loadings. If the characteristics/expected return relationship
is driven by compensation for exposure to latent risk factors, IPCA will identify the
corresponding latent factors. If no such factors exist, IPCA infers that the character-
istic effect is compensation without risk and allocates it to an “anomaly” intercept.
Studying returns and characteristics at the stock-level, we find that four IPCA factors
explain the cross section of average returns significantly more accurately than existing
factor models and produce characteristic-associated anomaly intercepts that are small
and statistically insignificant. Furthermore, among a large collection of characteristics
explored in the literature, only eight are statistically significant in the IPCA specifica-
tion and are responsible for nearly 100% of the model’s accuracy.
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One of our central themes is that if assets are priced rationally, variables that are

related to average returns, such as size and book-to-market equity, must proxy for

sensitivity to common (shared and thus undiversifiable) risk factors in returns.

Fama and French (1993)

We have a lot of questions to answer: First, which characteristics really provide

independent information about average returns? Which are subsumed by others?

Second, does each new anomaly variable also correspond to a new factor formed

on those same anomalies? ... Third, how many of these new factors are really

important? Cochrane (2011)

1 Introduction

The greatest collective endeavor of the asset pricing field in the past 40 years is the search for

an empirical explanation of why different assets earn different average returns. The answer

from equilibrium theory is clear—differences in expected returns reflect compensation for

different degrees of risk. But the empirical answer has proven more complicated, as some

of the largest differences in performance across assets continue to elude a reliable risk-based

explanation.

This empirical search centers around return factor models, and arises from the Euler equation

for investment returns. With only the assumption of “no arbitrage,” a stochastic discount

factor mt+1 exists and, for any excess return ri,t, satisfies the equation

Et[mt+1ri,t+1] = 0 ⇔ Et[ri,t+1] =
Covt(mt+1, ri,t+1)

V art(mt+1)︸ ︷︷ ︸
β′
i,t

V art(mt+1)

Et[mt+1]︸ ︷︷ ︸
λt

. (1)

The loadings, βi,t, are interpretable as exposures to systematic risk factors, and λt as the

risk prices associated with those factors. More specifically, when mt+1 is linear in factors

ft+1, this maps to a factor model for excess returns of the form1

ri,t+1 = αi,t + β′i,tft+1 + εi,t+1 (2)

where Et(εi,t+1) = Et[εi,t+1ft+1] = 0, Et[ft+1] = λt, and, perhaps most importantly, αi,t = 0

for all i and t. The factor framework in (2) that follows from the asset pricing Euler equation

1Ross (1976), Hansen and Richard (1987).
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(1) is the setting for most empirical analysis of expected returns across assets.

There are many obstacles to empirically analyzing equations (1) and (2), the most important

being that the factors and loadings are unobservable.2 There are two common approaches

that researchers take.

The first pre-specifies factors based on previously established knowledge about the empirical

behavior of average returns, treats these factors as fully observable by the econometrician,

and then estimates betas and alphas via regression. This approach is exemplified by Fama

and French (1993). A shortcoming of this approach is that it requires previous understanding

of the cross section of average returns. But this is likely to be a partial understanding at

best, and at worst is exactly the object of empirical interest.3

The second approach is to treat risk factors as latent and use factor analytic techniques, such

as PCA, to simultaneously estimate the factors and betas from the panel of realized returns, a

tactic pioneered by Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986).

This method uses a purely statistical criterion to derive factors, and has the advantage

of requiring no ex ante knowledge of the structure of average returns. A shortcoming of

this approach is that PCA is ill-suited for estimating conditional versions of equation (2)

because it can only accommodate static loadings. Furthermore, PCA lacks the flexibility

for a researcher to incorporate other data beyond returns to help identify a successful asset

pricing model.

1.1 Our Methodology

In this paper, we use a new method called instrumented principal components analysis, or

IPCA, that estimates market risk factors and loadings by exploiting beneficial aspects of

both approaches while bypassing many of their shortcomings. IPCA allows factor loadings

to partially depend on observable asset characteristics that serve as instrumental variables

for the latent conditional loadings.4

2Even in theoretical models with well defined risk factors, such as the CAPM, the theoretical factor of
interest is generally unobservable and must be approximated, as discussed by Roll (1977).

3Fama and French (1993) note that “Although size and book-to-market equity seem like ad hoc variables
for explaining average stock returns, we have reason to expect that they proxy for common risk factors
in returns. ... But the choice of factors, especially the size and book-to-market factors, is motivated by
empirical experience. Without a theory that specifies the exact form of the state variables or common
factors in returns, the choice of any particular version of the factors is somewhat arbitrary.”

4Our terminology is inherited from generalized method of moments usage of “instrumental variables”
for approximating conditioning information sets. See Hansen (1982), or Cochrane (2005) for a textbook
treatment in the context of asset pricing.
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The IPCA mapping between characteristics and loadings provides a formal statistical bridge

between characteristics and expected returns, while at the same time remaining consistent

with the equilibrium asset pricing principle that risk premia are solely determined by risk

exposures. And, because instruments help consistently recover loadings, IPCA is then also

able to consistently estimate the latent factors associated with those loadings. In this way,

IPCA allows a factor model to incorporate the robust empirical fact that stock characteristics

provide reliable conditioning information for expected returns. By including instruments, the

researcher can leverage previous, but imperfect, knowledge about the structure of average

returns in order to improve their estimates of factors and loadings, without the unrealistic

requirement that the researcher can correctly specify the exact factors a priori.

Our central motivation in developing IPCA is to build a model and estimator that admits the

possibility that characteristics line up with average returns because they proxy for loadings on

common risk factors. Indeed, if the “characteristics/expected return” relationship is driven

by compensation for exposure to latent risk factors, IPCA will identify the corresponding

latent factors and betas. But, if no such factors exist, the characteristic effect will be ascribed

to an intercept. This immediately yields an intuitive intercept test that discriminates whether

a characteristic-based return phenomenon is consistent with a beta/expected return model,

or if it is compensation without risk (a so-called “anomaly”). This test generalizes alpha-

based tests such as Gibbons, Ross, and Shanken (1989, GRS). Rather than asking the GRS

question “do some pre-specified factors explain the anomaly?,” our IPCA test asks “Does

there exist some set of common latent risk factors that explain the anomaly?” It also provides

tests for the importance of particular groups of instruments while controlling for all others,

analogous to regression-based t and F tests, and thus offers a means to address questions

raised in the Cochrane (2011) quote above.

A standard protocol has emerged in the literature: When researchers propose a new charac-

teristic that aligns with future asset returns, they build portfolios that exploit the charac-

teristic’s predictive power and test the alphas of these portfolios relative to some previously

established pricing factors (such as those from Fama and French, 1993 or 2015). This proto-

col is unsatisfactory as it fails to fully account for the gamut of proposed characteristics in

prior literature. Our method offers a different protocol that treats the multivariate nature

of the problem. When a new anomaly characteristic is proposed, it can be included in an

IPCA specification that also includes the long list of characteristics from past studies. Then,

IPCA can estimate the proposed characteristic’s marginal contribution to the model’s factor

loadings and, if need be, its anomaly intercepts, after controlling for other characteristics in

a complete multivariate analysis.
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Additional IPCA features make it ideally suited for state-of-the-art asset pricing analyses.

One is its ability to jointly evaluate large numbers of characteristic predictors with mini-

mal computational burden. It does this by building a dimension reduction directly into the

model. The cross section of assets may be large and the number of potential predictors

expansive, yet the model’s insistence on a low-dimension factor structure imposes parameter

parsimony. Our approach is designed to handle situations in which characteristics are highly

correlated, noisy, or even spurious. The dimension reduction picks a few linear combina-

tions of characteristics that are most informative about patterns in returns and discards the

remaining uninformative high dimensionality. Another is that it can nest traditional, pre-

specified factors within a more general IPCA specification. This makes it easy to test the

incremental contribution of estimated latent IPCA factors while controlling for other factors

from the literature.

1.2 Findings

Our analysis judges asset pricing models on two criteria. First, a successful factor model

should excel in describing the common variation in realized returns. That is, it should

accurately describe systematic risks. We measure this according to a factor model’s total

panel R2. We define total R2 as the fraction of variance in ri,t described by β̂′i,t−1f̂t, where

β̂i,t−1 are estimated dynamic loadings and f̂t are the model’s estimated common risk factors.

The total R2 thus includes the explained variation due to contemporaneous factor realizations

and dynamic factor exposures, aggregated over all assets and time periods.

Second, a successful asset pricing model should describe differences in average returns across

assets. That is, it should accurately describe risk compensation. To assess this, we define a

model’s predictive R2 as the explained variation in ri,t due to β̂′i,t−1λ̂, which is the model-

based conditional expected return on asset i given t − 1 information, and where λ̂ is the

vector of estimated factor risk prices.5

Our empirical analysis uses data on returns and characteristics for over 12,000 stocks from

1962–2014. For example, in the specification with four factors and all stock-level intercepts

restricted to zero, IPCA achieves a total R2 for returns of 19.4%. As a benchmark, the

matched sample total R2 from the Fama-French five-factor model is 21.9%. Thus, IPCA is

a competitive model for describing the variability and hence riskiness of stock returns.

5We discuss our definition of predictive R2 in terms of the unconditional risk price estimate, λ̂, rather
than a conditional risk price estimate, in Section 4.

5



Perhaps more importantly, the factor loadings estimated from IPCA provide an excellent

description of conditional expected stock returns. In the four-factor IPCA model, the esti-

mated compensation for factor exposures (β̂′i,tλ̂) delivers a predictive R2 for returns of 1.8%.

In the matched sample, the predictive R2 from the Fama-French five-factor model is 0.3%.

If we instead use standard PCA to estimate the latent four-factor specification, it delivers a

29.0% total R2, but produces a negative predictive R2 and thus has no explanatory power

for differences in average returns across stocks. In summary, IPCA is the most successful

model we analyze for jointly explaining realized variation in returns (i.e., systematic risks)

and differences in average returns (i.e., risk compensation).

The model performance statistics cited above are based on in-sample estimation. If we

instead use recursive out-of-sample estimation to calculate predictive R2’s for stock returns,

we find that IPCA continues to outperform alternatives. The four-factor IPCA predictive

R2 is 0.7% per month out-of-sample, still more than doubling the Fama-French five-factor

in-sample R2.

By linking factor loadings to observable data, IPCA tremendously reduces the dimension

of the parameter space compared to models with observable factors and even compared to

standard PCA. To accommodate the more than 12,000 stocks in our sample, the Fama-

French five-factor model requires estimation of 57,260 loading parameters. Four-factor PCA

estimates 53,648 parameters including the time series of latent factors. Four-factor IPCA

estimates only 2,688 (including each realization of the latent factors), or 95% fewer parame-

ters than the pre-specified factor model or PCA, and incorporates dynamic loadings without

relying on ad hoc rolling estimation. It does this by essentially redefining the identity of a

stock in terms of its characteristics, rather than in terms of the stock identifier. Thus, once

a stock’s characteristics are known, only a small number of parameters (which are common

to all assets) are required to map observed characteristic values into betas.

IPCA’s success in explaining differences in average returns across stocks comes solely through

its description of factor loadings—it restricts intercept coefficients to zero for all stocks. The

question remains as to whether there are differences in average returns across stocks that

align with characteristics and that are unexplained by exposures to IPCA factors.

By allowing intercepts to also depend on characteristics, IPCA provides a test for whether

characteristics help explain expected returns above and beyond their role in factor loadings.

Including alphas in the one-factor IPCA model improves its ability to explain average re-

turns and rejects the null hypothesis of zero intercepts. Evidently, with a single factor, the

specification of factor exposures is not rich enough to assimilate all of the return predictive
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content in stock characteristics. Thus, the excess predictability from characteristics spills

into the intercept to an economically large and statistically significant extent.

However, when we consider specifications with K ≥ 2, the improvement in model fit due

to non-zero intercepts becomes small and statistically insignificant. The economic conclu-

sion is that a risk structure with two or more dimensions coincides with information in

stock characteristics in such a way that i) risk exposures are exceedingly well described by

stock characteristics, and ii) the residual return predicability from characteristics, above

and beyond that in factor loadings, falls to effectively zero, obviating the need to resort to

“anomaly” intercepts.

The dual implication of IPCA’s superior explanatory power for average stock returns is

that IPCA factors are closer to being multivariate mean-variance efficient than factors in

competing models. We show that the tangency portfolio of factors from the four-factor

IPCA specification achieves an ex ante (i.e., out-of-sample) Sharpe ratio of 2.6, versus 1.3

for the five Fama-French factors. We also demonstrate that the performance of IPCA is very

similar when we restrict the sample to large stocks and when modeling annual rather than

monthly returns.

Lastly, IPCA offers a test for which characteristics are significantly associated with factor

loadings (and, in turn, expected returns) while controlling for all other characteristics, in

analogy to t-tests of explanatory variable significance in a regression model. In our main

specification, we find that eight of the 36 firm characteristics in our sample are statistically

significant at the 5% level, and five of these are significant at the 1% level. These include

essentially three types of variables: size (e.g., market capitalization and total book assets),

recent stock trends (e.g., short-term reversal and momentum), and market beta. Notably ab-

sent from the list of significant characteristics are measures of value such as book-to-market

and earnings-to-price. If we re-estimate the model using the subset of eight significant regres-

sors, we find that the model fit is nearly identical to the full 36-characteristic specification.

The fact that only a small subset of characteristics is necessary to explain variation in

realized and expected stock returns shows that most characteristics are statistically irrelevant

for understanding the cross section of returns, once they are evaluated in an appropriate

multivariate context. Furthermore, that we cannot reject the null of zero alphas using

only two or more IPCA risk factors leads us to conclude that the few characteristics that

enter significantly do so because they help explain assets’ exposures to systematic risks, not

because they represent anomalous compensation without risk.
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1.3 Literature

Our works builds on several literatures studying the behavior of stock returns. Calling this

literature large is a gross understatement. Rather than attempting a thorough review, we

briefly describe three primary strands of literature most closely related to our analysis and

highlight a few exemplary contributions in each.

One branch of this literature analyzes latent factor models for returns, beginning with Ross’s

(1976) seminal APT. Empirical contributions to this literature, such as Chamberlain and

Rothschild (1983) and Connor and Korajcyzk (1986, 1988), rely on principal component

analysis of returns. Our primary innovation relative to this literature is to bring the wealth

of characteristic information into latent factor models and, in doing so, make it possible to

tractably analyze latent factor models with dynamic loadings.

Another strand of literature models factor loadings as functions of observables. Most closely

related are models in which factor exposures are functions of firm characteristics, dating at

least to Rosenberg (1974). In contrast to our contributions, Rosenberg’s analysis is primarily

theoretical, assumes that factors are observable, and does not provide a testing framework.6

Ferson and Harvey (1991) allow for dynamic betas as asset-specific functions of macroeco-

nomic variables. They differ from our analysis by relying on observable factors and focusing

on macro rather than firm-specific instrumental variables. Daniel and Titman (1996) directly

compare stock characteristics to factor loadings in terms of their ability to explain differences

in average returns, an approach recently extended by Chordia, Goyal, and Shanken (2015).

IPCA is unique in nesting competing characteristic and beta models of returns while simul-

taneously estimating the latent factors that most accurately coincide with characteristics as

loadings, rather than relying on pre-specified factors.

A third literature models stock returns as a function of many characteristics at once. This

literature has emerged only recently in response to an accumulation of research on predictive

stock characteristics, and exploits more recently developed statistical techniques for high-

dimensional predictive systems. Lewellen (2015) analyzes the joint predictive power of up to

15 characteristics in OLS regression. Light, Maslov, and Rytchkov (2016) and Freyberger,

Neuhierl, and Weber (2017) consider larger collections of predictors than Lewellen and ad-

dress concomitant statistical challenges using partial least squares and LASSO, respectively.

These papers take a pure return forecasting approach and do not attempt to develop an

asset pricing model or conduct asset pricing tests.

6Also see, for example, the documentation for BARRA’s (1998) risk management and factor construction
models.
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Kozak et al. (forthcoming) show that a small number of principal components from 15

anomaly portfolios (from Novy-Marx and Velikov, 2015) are able to price those same port-

folios with insignificant alphas. Our results illustrate that while that model works well for

pricing their specific anomaly portfolios, the same model (and the PCA approach more

generally) fails with other sets of test assets. We show that IPCA solves this problem by

allowing assets’ loadings to transition smoothly as its characteristics evolve. As a result,

IPCA successfully prices individual stocks as well as anomaly or other stock portfolios. In

follow on work, Kozak et al. (2017) use shrinkage estimation to select a subset of characteris-

tic portfolios with good out-of-sample explanatory power for average returns. They directly

model risk prices as functions of average portfolio returns then use shrinkage to identify a

model with non-mechanical out-of-sample explanatory power for returns. Our findings differ

in a few ways. First, our IPCA method selects pricing factors based on a factor variance

criterion, then subsequently and separately tests whether loadings on these factors explain

differences in average returns. Second, our approach derives formal tests and emphasizes

statistical model comparison in a frequentist setting. Our tests i) differentiate whether a

characteristic is better interpreted as a proxy for systematic risk exposure or as an anomaly

alpha, ii) assess the incremental explanatory power of an individual characteristic against a

(potentially high dimension) set of competing characteristics, and iii) compare latent factors

against pre-specified alternative factors. The results of these tests conclude that stock char-

acteristics are best interpreted as risk loadings, that most of the characteristics proposed

in the literature contain no incremental explanatory power for returns, and that commonly

studied pre-specified factors are inefficient in a mean-variance sense.

We describe the IPCA model and our estimation approach in Section 2. Section 3 develops

asset pricing and model comparison tests in the IPCA setting. Section 4 reports our empirical

findings and Section 5 concludes.

2 Model and Estimation

The general IPCA model specification for an excess return ri,t+1 is

ri,t+1 = αi,t + βi,tft+1 + εi,t+1, (3)

αi,t = z′i,tΓα + να,i,t, βi,t = z′i,tΓβ + νβ,i,t.

The system is comprised of N assets over T periods. The model allows for dynamic factor
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loadings, βi,t, on aK-vector of latent factors, ft+1. Loadings potentially depend on observable

asset characteristics contained in the L×1 instrument vector zi,t (which includes a constant).

The specification of βi,t is central to our analysis and plays two roles. First, instrumenting

the estimation of latent factor loadings with observable characteristics allows additional data

to shape the factor model for returns. This differs from traditional latent factor techniques

like PCA that estimate the factor structure solely from returns data. Anchoring the loadings

to observable instruments can make the estimation more efficient and thereby improve model

performance. This is true even if the instruments and true loadings are constant over time

(see Fan, Liao, and Wang, 2016). Second, incorporating time-varying instruments makes it

possible to estimate dynamic factor loadings, which is valuable when one seeks a model of

conditional return behavior.

The matrix Γβ defines the mapping between a potentially large number of characteristics

and a small number of risk factor exposures. Estimation of Γβ amounts to finding a few

linear combinations of candidate characteristics that best describe the latent factor load-

ing structure.7 Our model emphasizes dimension reduction of the characteristic space. If

there are many characteristics that provide noisy but informative signals about a stock’s

risk exposures, then aggregating characteristics into linear combinations isolates the signal

and averages out the noise.8 Any behavior of dynamic loadings that is orthogonal to the

instruments falls into νβ,i,t. With this term, the model recognizes that firms’ risk exposures

are not perfectly recoverable from observable firm characteristics.

The Γβ matrix also allows us to confront the challenge of migrating assets. Stocks evolve

over time, moving for example from small to large, growth to value, high to low investment

intensity, and so forth. Received wisdom in the asset pricing literature is that stock expected

returns evolve along with these characteristics. But the very fact that the “identity” of the

stock changes over time makes it difficult to model stock-level conditional expected returns

using simple time series methods. The standard response to this problem is to dynamically

form portfolios that hold the average characteristic value within the portfolio approximately

constant. But if an adequate description of an asset’s identity requires several characteris-

tics, this portfolio approach becomes infeasible due to the proliferation of portfolios. IPCA

7The model imposes that βi,t is linear in instruments. Yet it accommodates non-linear associations
between characteristics and exposures by allowing instruments to be non-linear transformations of raw char-
acteristics. For example, one might consider including the first, second, and third power of a characteristic
into the instrument vector to capture nonlinearity via a third-order Taylor expansion, or interactions between
characteristics. Relatedly, zi,t can include asset-specific, time-invariant instruments.

8Dimension reduction among characteristics is a key differentiator between IPCA and BARRA’s approach
to factor modeling.

10



provides a natural and general solution: Parameterize betas as a function of the characteris-

tics that determine a stock’s expected return. In doing so, migration in the asset’s identity is

tracked through its betas, which are themselves defined by their characteristics in a way that

is consistent among all stocks (Γβ is a global mapping shared by all stocks). Thus, IPCA

avoids the need for a researcher to perform an ad hoc preliminary dimension reduction that

gathers test assets into portfolios. Instead, the model accommodates a high-dimensional

system of assets (individual stocks) by estimating a dimension reduction that represents the

identity of a stock in terms of its characteristics.9

We examine the null hypothesis that characteristics do not proxy for alpha: this corresponds

to restricting Γα to zero in (3). The unrestricted version of (3) allows for non-zero Γα,

representing the alternative hypothesis that conditional expected returns have intercepts that

depend on stock characteristics. The structure of αi,t is a linear combination of instruments

mirroring the specification of βi,t. IPCA estimates αi,t by finding the linear combination of

characteristics (with weights given by Γα) that best describes conditional expected returns

while controlling for the role of characteristics in factor risk exposure. If characteristics align

with average stock returns differently than they align with risk factor loadings, then IPCA

will estimate a non-zero Γα, thus conceding anomalous compensation for holding stocks in

excess of their systematic risk.

We focus on models in which the number of factors, K, is small, imposing a view that

the empirical content of an asset pricing model is its parsimony in describing sources of

systematic risk. At the same time, we allow the number of instruments, L, to be potentially

large, as literally hundreds of characteristics have been put forward by the literature to

explain average stock returns. And, because any individual characteristic is likely to be a

noisy representation of true factor exposures, accommodating large L allows the model to

average over characteristics in a way that reduces noise and more accurately reveals true

exposures.

2.1 Restricted Model (Γα = 0)

In this section we provide a conceptual overview of IPCA estimation. Our description here

introduces two identifying assumptions and discusses their role in estimation. Kelly, Pruitt,

9This structure also makes it easy to calculate a firm’s cost of capital as a function of observable charac-
teristics. This avoids reliance on CAPM betas or other factor loadings that may be difficult to estimate with
time series regression, or may rely on a badly misspecified model. Once Γβ is recovered from a representative
set of asset returns, it can be used to price other assets that may lack a long history of returns but at least
have a snapshot of recent firm characteristics available.
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and Su (2017) derive the IPCA estimator and prove that, together with the identifying

assumptions, IPCA consistently estimates model parameters and latent factors as the number

of assets and the time dimension simultaneously grow large, as long as factors and residuals

satisfy weak regularity conditions (their Assumptions 2 and 3). We refer interested readers

to that paper for technical details and present a practical summary here.

We first describe estimation of the restricted model in which Γα = 0L×1, ruling out the

possibility that characteristics capture “anomalous” compensation without risk. This re-

striction maintains that characteristics explain expected returns only insofar as they proxy

for systematic risk exposures. In this case, equation (3) becomes

ri,t+1 = z′i,tΓβft+1 + ε∗i,t+1 (4)

where ε∗i,t+1 = εi,t+1 + να,i,t + νβ,i,tft+1 is a composite error.10

We derive the estimator using the vector form of equation (4),

rt+1 = ZtΓβft+1 + ε∗t+1,

where rt+1 is an N×1 vector of individual firm returns, Zt is the N×L matrix that stacks the

characteristics of each firm, and ε∗t+1 likewise stacks individual firm residuals. Our estimation

objective is to minimize the sum of squared composite model errors:

min
Γβ ,F

T−1∑
t=1

(rt+1 − ZtΓβft+1)′ (rt+1 − ZtΓβft+1) . (5)

The values of ft+1 and Γβ that minimize (5) satisfy the first-order conditions

f̂t+1 =
(
Γ′βZ

′
tZtΓβ

)−1
Γ′βZ

′
trt+1, ∀t (6)

and

vec(Γ′β) =

(
T∑
t=1

[Zt ⊗ f ′t ]
′
[Zt ⊗ f ′t ]

)−1( T∑
t=1

[Zt ⊗ f ′t ]
′
rt

)
. (7)

Condition (6) shows that factor realizations are period-by-period cross section regression

coefficients of rt+1 on the latent loading matrix βt. Likewise, Γβ, is the coefficient of returns

10That is, our data generating process has two sources of noise that affect estimation of factors and loadings.
The first comes from returns being determined in large part by idiosyncratic firm-level shocks (εi,t+1) and
the second from the fact that characteristics do not perfectly reveal the true factor model parameters (να,i,t
and νβ,i,t). There is no need to distinguish between these components of the residual in the remainder of
our analysis.

12



regressed on the factors interacted with firm-specific characteristics. This system of first-

order conditions has no closed-form solution and must be solved numerically. Fortunately,

the numerical problem is solvable via alternating least squares in a matter of seconds even

for high dimension systems. We describe our numerical method in Appendix A and discuss

a special case that admits an exact analytical solution in Appendix C.2.

As common in latent factor models, IPCA requires one further assumption for estimator

identification. Γβ and ft+1 are unidentified in the sense that any set of solutions can be ro-

tated into an equivalent solution ΓβR
−1 and Rft+1 for a non-singular K-dimensional rotation

matrix R. To resolve this indeterminacy, we impose that Γ′βΓβ = IK , that the unconditional

covariance matrix of ft is diagonal with descending diagonal entries, and that the mean of ft

is non-negative. These assumptions place no economic restrictions on the model and solely

serve to pin down a uniquely identified solution to the first-order conditions.11

2.1.1 A Managed Portfolio Interpretation of IPCA

To help develop intuition for IPCA factor and loading estimates, it is useful to compare with

the estimator for a static factor model such as rt = βft + εt (e.g., Connor and Korajczyk,

1988). The objective function in the static case is

min
β,F

T∑
t=1

(rt − βft+1)′ (rt − βft+1)

and the first-order condition for ft+1 is ft+1 = (β′β)−1 β′rt+1. Substituting this into the

original objective yields a concentrated objective function for β of

max
β

tr

(∑
t

(β′β)
−1
β′rt+1r

′
t+1β

)
.

This objective maximizes a sum of so-called “Rayleigh quotients” that all have the same

denominator, β′β. In this special case, the well-known PCA solution for β is given by the

first K eigenvectors of the sample second moment matrix of returns,
∑

t rt+1r
′
t+1.

Naturally, dynamic betas complicate the optimization problem. Substituting the IPCA first-

11Our identification is a dynamic model counterpart to the standard PCA identification assumption for
static models (see, for example, Assumption F1(a) in Stock and Watson, 2002a).
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order condition (6) into the original objective yields

max
Γβ

tr

(
T−1∑
t=1

(
Γ′βZ

′
tZtΓβ

)−1
Γ′βZ

′
trt+1r

′
t+1ZtΓβ

)
. (8)

This concentrated IPCA objective is more challenging because the Rayleigh quotient de-

nominators, Γ′βZ
′
tZtΓβ, are different for each element of the sum and, as a result, there is no

analogous eigenvector solution for Γβ.

Nevertheless, the structure of our dynamic problem is closely reminiscent of the static prob-

lem. While the static PCA estimator applies the singular value decomposition to the panel

of individual asset returns ri,t, our derivation shows that the IPCA problem can be ap-

proximately solved by applying the singular value decomposition not to raw returns, but to

returns interacted with instruments. Consider the L× 1 vector defined as

xt+1 = Z ′trt+1. (9)

This is the time t+1 realization of returns on a set of L managed portfolios. The lth element

of xt+1 is a weighted average of stock returns with weights determined by the value of lth

characteristic for each stock at time t. Stacking time series observations produces the T ×L
matrix X = [x′1, ..., x

′
T ]′. Each column of X is a time series of returns on a characteristic-

managed portfolio. If the first three characteristics are, say, size, value, and momentum,

then the first three columns of X are time series of returns to portfolios managed on the

basis of each of these.

If we were to approximate the Rayleigh quotient denominators with a constant (for example,

replacing each Z ′tZt by their time series average, T−1
∑

t Z
′
tZt), then the solution to (8) would

be to set Γβ equal to the first K eigenvectors of the sample second moment matrix of managed

portfolio returns, X ′X =
∑

t xtx
′
t.

12 Likewise, the estimates of ft+1 would be the first K

principal components of the managed portfolio panel. This is a close approximation to the

exact solution as long as Z ′tZt is not too volatile. More importantly, because we desire to

find the exact solution, this approximation provides an excellent starting guess to initialize

the numerical optimization and quickly reach the exact optimum.

As one uses more and more characteristics to instrument for latent factor exposures, the

number of characteristic-managed portfolios in X grows. Prior empirical work shows that

there tends to be a high degree of common variation in anomaly portfolios (e.g. Kozak et al.,

12To be more precise, Γβ is estimated by a rotation of xt’s second moment, where the rotation is a function
of T−1

∑
t Z
′
tZt.
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forthcoming). IPCA recognizes this and estimates factors and loadings by focusing on the

common variation in X. It estimates factors as the K linear combinations of X’s columns,

or “portfolios of portfolios,” that best explain covariation among the panel of managed port-

folios. These factors differ from principal components of X in that the explained covariation

is re-weighted across time and across assets to emphasize observations associated with the

most informative instruments (this is the role of the Z ′tZt denominator).

IPCA can also be viewed as a generalization of period-by-period cross section regressions

as employed in Fama and MacBeth (1973) and Rosenberg (1974). When K = L there

is no dimension reduction—the estimates of ft+1 are the characteristic-managed portfolios

themselves and are equal to the period-wise Fama-MacBeth regression coefficients (and Γβ =

IL). This unreduced specification is close in spirit to the BARRA model. But when K < L,

IPCA’s ft+1 estimate is a constrained Fama-MacBeth regression coefficient. The constrained

regression not only estimates return loadings on lagged characteristics, but it must also

choose a reduced-rank set of regressors—the K < L combinations of characteristics that

best fit the cross section regression.

The asset pricing literature has struggled with the question of which test assets are most

appropriate for evaluating models (Lewellen, Nagel, and Shanken, 2010; Daniel and Titman,

2012). IPCA provides a resolution to this dilemma. On one hand, IPCA tests can be

viewed as using the set of test assets with the finest possible resolution—the set of individual

stocks. At the same time, the discussion regarding equation (8) shows that IPCA’s tests

can equivalently be viewed as using characteristic-managed portfolios, xt, as the set of test

assets, which have comparatively low dimension and average out a substantial degree of

idiosyncratic stock risk.13

2.2 Unrestricted Model (Γα 6= 0)

The unrestricted IPCA model allows for intercepts that are functions of the instruments,

thereby admitting the possibility of “anomalies” in which expected returns depend on char-

acteristics in a way that is not explained by exposure to systematic risk. Like the factor

specification in (4), the unrestricted IPCA model assumes that intercepts are a linear com-

13A further convenience of the managed portfolio representation is that avoids issues with missing obser-
vations in stock-level data. In particular, when constructing managed portfolios in equation (9), we evaluate
this inner product as a sum over elements of Zt and rt+1 for which both terms in the cross-product are
non-missing. Thus (9) is a slight abuse of notation.
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bination of instruments with weights defined by the L× 1 parameter vector Γα:

ri,t+1 = z′i,tΓα + z′i,tΓβft+1 + ε∗i,t+1. (10)

Model (10) is unrestricted in that it admits mean returns that are not determined by factor

exposures alone.

Estimation proceeds nearly identically to Section 2.1. We rewrite (10) as ri,t+1 = z′i,tΓ̃f̃t+1 +

ε∗i,t+1, where Γ̃ ≡ [Γα,Γβ] and f̃t+1 ≡ [1, f ′t+1]′. That is, the unrestricted model is mapped to

the structure of (4) by simply augmenting the factor specification to include a constant.

The first-order condition for Γ̃ is the same as (7) except that f̃t replaces ft. The ft+1 first-

order condition changes slightly to

ft+1 =
(
Γ′βZ

′
tZtΓβ

)−1
Γ′βZ

′
t (rt+1 − ZtΓα) , ∀t. (11)

This is a cross section regression of “returns in excess of alpha” on dynamic betas, and

reflects the fact that the unrestricted estimator decides how to best allocate panel variation

in returns to factor exposures versus anomaly intercepts.

3 Asset Pricing Tests

In this section we develop three hypothesis tests that are central to our empirical analysis.

The first is designed to test the zero alpha condition that distinguishes the restricted and un-

restricted IPCA models of Sections 2.1 and 2.2. The second tests whether observable factors

(such as the Fama-French five-factor model) significantly improve the model’s description of

the panel of asset returns while controlling for IPCA factors. The third tests the incremen-

tal significance of an individual characteristic or set of characteristics while simultaneously

controlling for all other characteristics.

3.1 Testing Γα = 0L×1

When a characteristic lines up with expected returns in the cross section, the unrestricted

IPCA estimator in Section 2.2 decides how to split that association. Does the characteristic

proxy for exposure to common risk factors? If so, IPCA will attribute the characteristic

to beta via β̂i,t = z′i,tΓ̂β, thus interpreting the characteristic/expected return relationship
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as compensation for bearing systematic risk. Or, does the characteristic capture anomalous

differences in average returns that are unassociated with systematic risk? In this case, IPCA

will be unable to find common factors for which characteristics serve as loadings, so it will

attribute the characteristic to alpha via α̂i,t = z′i,tΓ̂α.

In the restricted model, the association between characteristics and alphas is disallowed. If

the data truly call for an anomaly alpha, then the restricted model is misspecified and will

produce a poor fit compared to the unrestricted model that allows for alpha. The distance

between unrestricted alpha estimates and zero summarizes the improvement in model fit

from loosening the alpha restriction. If this distance is statistically large (i.e., relative to

sampling variation), we can conclude that the true alphas are non-zero.

We propose a test of the zero alpha restriction that formalizes this logic. In the model

equation

ri,t+1 = αi,t + βi,tft+1 + εi,t+1,

we are interested in testing the null hypothesis

H0 : Γα = 0L×1

against the alternative hypothesis

H1 : Γα 6= 0L×1.

Characteristics determine alphas in this model only if Γα is non-zero. The null therefore

states that alphas are unassociated with characteristics in zi,t. Because the hypothesis is

formulated in terms of the common parameter, this is a joint statement about alphas of all

assets in the system.

Note that Γα = 0L×1 does not rule out the existence of alphas entirely. From the model

definition in equation (3), we see that αi,t may differ from zero because να,i,t is non-zero.

That is, the null allows for some mispricing, as long as mispricings are truly idiosyncratic

and unassociated with characteristics in the instrument vector. Likewise, the alternative

hypothesis is not concerned with alphas arising from the idiosyncratic να,i,t mispricings.

Instead, it focuses on the more economically interesting mispricings that may arise as a

regular function of observable characteristics.

In statistical terms, Γα 6= 0L×1 is a constrained alternative. This contrasts, for example, with

the Gibbons, Ross, and Shanken (1989, GRS henceforth) test that studies the unconstrained
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alternative αi = 0 ∀i. In GRS, each αi is estimated as an intercept in a time series regression.

GRS alphas are therefore residuals, not a model. Our constrained alternative is itself a

model that links stock characteristics to anomaly expected returns via a fixed mapping that

is common to all firms. If we reject the null IPCA model, we do so in favor of a specific model

for how alphas relate to characteristics. In this sense our asset pricing test is a frequentist

counterpart to Barillas and Shanken’s (forthcoming) Bayesian argument that it should take

a model to beat a model. This has the pedagogical advantage that, if we reject H0 in

favor of H1, we can further determine which elements of Γα (and thus which characteristics)

are most responsible for the rejection. By isolating those characteristics that are a wedge

between expected stock returns and exposures to aggregate risk factors, we can work toward

an economic understanding of how the wedge emerges.14

We construct a Wald-type test statistic for the distance between the restricted and unre-

stricted models as the sum of squared elements in the estimated Γα vector,

Wα = Γ̂′αΓ̂α.

Inference, which we conduct via bootstrap, proceeds in the following steps. First, we estimate

the unrestricted model and retain the estimated parameters

Γ̂α, Γ̂β, and {f̂t}Tt=1.

A convenient aspect of our model from a bootstrapping standpoint is that, because the

objective function can be written in terms of managed portfolios xt, we can resample portfolio

residuals rather than resampling stock-level residuals. Following from the managed portfolio

definition,

xt+1 = Z ′trt+1 = (Z ′tZt)Γα + (Z ′tZt)Γβft+1 + Z ′tε
∗
i,t+1,

we define the L× 1 vector of managed portfolio residuals as dt+1 = Z ′tε
∗
i,t+1 and retain their

fitted values {d̂t}Tt=1.

14Our test also overcomes a difficult technical problem that the GRS test faces in large cross sections such
as that of individual stocks. It is very difficult to test the hypothesis that all stock-level alphas are zero as it
amounts to a joint test of N parameters where N potentially numbers in the tens of thousands. The IPCA
specification reduces the joint alpha test to a L × 1 parameter vector. Contrast this with recent advances
in alphas tests such as Fan, Liao, and Wang (2016) who illustrate the complications of the large N testing
problem and resort to a complicated thresholded covariance matrix estimator. Even with that advance, they
look at only the stocks in the S&P 500, which is an order of magnitude smaller than the cross section we
consider.
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Next, for b = 1, ..., 1000, we generate the bth bootstrap sample of returns as

x̃bt = (Z ′tZt)Γ̂β f̂t + d̃bt , d̃bt = qb1d̂qb2 . (12)

The variable qb2 is a random time index drawn uniformly from the set of all possible dates.

In addition, we multiply each residual draw by a Student t random variable, qb1, that has

unit variance and five degrees of freedom. Then, using this bootstrap sample, we re-estimate

the unrestricted model and record the estimated test statistic W̃ b
α = Γ̃b′αΓ̃bα. Finally, we draw

inferences from the empirical null distribution by calculating a p-value as the fraction of

bootstrapped W̃ b
α statistics that exceed the value of Wα from the actual data.

3.1.1 Comments on Bootstrap Procedure

The method described above is a “residual” bootstrap. It uses the model’s structure to

generate pseudo-samples under the null hypothesis that Γα = 0. In particular, it fixes

the explained variation in returns at their estimated common factor values under the null

model, ZtΓ̂β f̂t+1, and randomizes around the null model by sampling from the empirical

distribution of residuals to preserve their properties in the simulated data. The bootstrap

dataset xbt satisfies Γα = 0 by construction because a non-zero Γ̂α is estimated as part of

the unrestricted model but excluded from the bootstrap data. This approach produces an

empirical distribution of W̃ b
α designed to quantify the amount of sampling variation in the

test statistic under the null. In Appendix B, we report a variety of Monte Carlo experiments

illustrating the accuracy of the test in terms of size (appropriate rejection rates under the

null) and power (appropriate rejection rates under the alternative).

Premultiplying the residual draws by a random t variable is a technique known as the “wild”

bootstrap. It is designed to improve the efficiency of bootstrap inference in heteroskedastic

data such as stock returns (Goncalves and Killian, 2004). Appendix B also demonstrates

the improvement in test performance, particularly power for nearby alternatives, from using

a wild bootstrap.

Equation (8) illustrates why we bootstrap datasets of managed portfolios returns, xt, rather

than raw stock returns, rt. The estimation objective ultimately takes as data the managed

portfolio returns, xt = Z ′trt, and estimates parameters from their covariance matrix. If

we were to resample stock returns, the estimation procedure would anyway convert these

into managed portfolios before estimating model parameters. It is thus more convenient

to resample xt directly. Bootstrapping managed portfolio returns comes with a number of
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practical advantages. It resamples in a lower dimension setting (T × L) than stock returns

(T × N), which reduces computation cost. It also avoids issues with missing observations

that exist in the stock panel, but not in the portfolio panel.

Our test enjoys the usual benefits of bootstrapping, such as reliability in finite samples

and validity under weak assumptions on residual distributions. It is important to point

out that our bootstrap tests are feasible only because of the fast alternating least squares

estimator that we have derived for IPCA. Estimation of the model via brute force numerical

optimization would not only make it very costly to use IPCA in large systems—it would

immediately take bootstrapping off the table as a viable testing approach.

3.2 Testing Observable Factor Models Versus IPCA

Next, we extend the IPCA framework to nest commonly studied models with pre-specified,

observable factors. The encompassing model is

ri,t+1 = βi,tft+1 + δi,tgt+1 + εi,t+1. (13)

The βi,tft+1 term is unchanged from its specification in (3). The new term is the portion of

returns described by the M × 1 vector of observable factors, gt+1. Loadings on observable

factors are allowed to be dynamic functions of the same conditioning information entering

into the loadings on latent IPCA factors:

δi,t = z′i,tΓδ + νδ,i,t,

where Γδ is the L×M mapping from characteristics to loadings. The encompassing model

imposes the zero alpha restriction so that we can evaluate the ability of competing models

to price assets based on exposures to systematic risk (though it easy to incorporate αi,t in

in (13) if desired).

We estimate model (13) following the same general tack as Section 2.2. We rewrite (13)

as ri,t+1 = z′i,tΓ̃f̃t+1 + ε∗i,t+1, where Γ̃ ≡ [Γβ,Γδ] and f̃t+1 ≡ [f ′t+1, g
′
t+1]′. That is, the model

with nested observable factors is mapped to the structure of (4) by augmenting the factor

specification to include the observable gt+1. The first-order condition for Γ̃ the same as (7)

except that f̃t replaces ft. The ft+1 first-order condition changes slightly to

ft+1 =
(
Γ′βZ

′
tZtΓβ

)−1
Γ′βZ

′
t (rt+1 − ZtΓδgt+1) , ∀t.
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This is a cross section regression of “returns in excess of observable factor exposures” on

βt, and reflects the fact that that nested specification decides how to best allocate panel

variation in returns to latent IPCA factors versus observable pre-specified factors.

We construct a test of the incremental explanatory power of observable factors after control-

ling for the baseline IPCA specification. The hypotheses for this test are

H0 : Γδ = 0L×M vs. H1 : Γδ 6= 0L×M .

Γ̂δ denotes the estimated parameters corresponding to gt+1, from which we construct the

Wald-like test statistic

Wδ = vec(Γ̂δ)
′vec(Γ̂δ).

Wδ is a measure of the distance between model (13) and the IPCA model that excludes

observable factors (Γδ = 0L×M). If Wδ is large relative to sampling variation, we can conclude

that gt+1 holds explanatory power for the panel of returns above and beyond the baseline

IPCA factors.

Our sampling variation estimates, and thus p-values for Wδ, use the same residual wild

bootstrap concept from Section 3.1. First, we construct residuals of managed portfolios,

d̂t+1 = Z ′tε̂
∗
i,t+1, from the estimated model. Then, for each iteration b, we resample portfolio

returns imposing the null hypothesis. Next, from each bootstrap sample, we re-estimate

Γδ and construct the associated test statistic W̃ b
δ . Finally, we compute the p-value as the

fraction of samples for which W̃ b
δ exceeds Wδ.

3.3 Testing Instrument Significance

The last test that we introduce evaluates the significance of an individual characteristic while

simultaneously controlling for all other characteristics. We focus on the model in equation

(4) with alpha fixed at zero and no observable factors. That is, we specifically investigate

whether a given instrument significantly contributes to βi,t.

To formulate the hypotheses, we partition the parameter matrix as

Γβ = [γβ,1 , ... , γβ,L]′ ,

where γβ,l is a K × 1 vector that maps characteristic l to loadings on the K factors. Let the
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lth element of zi,t be the characteristic in question. The hypotheses that we test are

H0 : Γβ = [γβ,1 , ... , γβ,l−1 , 0K×1 , γβ,l+1 , ... , γβ,L]′ vs. H1 : Γβ = [γβ,1 , ... , γβ,L]′ .

The form of this null hypothesis comes from the fact that, for the lth characteristic to have

zero contribution to the model, it cannot impact any of the K factor loadings. Thus, the

entire lth row of Γβ must be zero.

We estimate the alternative model that allows for a non-zero contribution from character-

istic l, then we assess whether the distance between zero and the estimate of vector γβ,l is

statistically large. Our Wald-type statistic in this case is

Wβ,l = γ̂′β,lγ̂β,l.

Inference for this test is based on the same residual bootstrap concept described above. We

define the estimated model parameters and managed portfolio residuals from the alternative

model as

{γ̂β,l}Ll=1, {f̂t}Tt=1, and {d̂t}Tt=1.

Next, for b = 1, ..., 1000, we generate the bth bootstrap sample of returns under the null

hypothesis that the lth characteristic has no effect on loadings. To do so, we construct the

matrix

Γ̃β = [γ̂β,1 , ... , γ̂β,l−1 , 0K×1 , γ̂β,l+1 , ... , γ̂β,L]

and re-sample characteristic-managed portfolio returns as

x̃bt = ZtΓ̃β f̂t + d̃bt

with the same formulation of d̃bt used in equation (12). Then, for each sample b, we re-estimate

the alternative model and record the estimated test statistic W̃ b
β,l. Finally, calculate the test’s

p-value as the fraction of bootstrapped W̃ b
β,l statistics that exceed Wβ,l. This test can be

extended to evaluate the joint significance of multiple characteristics l1, ..., lJ by modifying

the test statistic to Wβ,l1,...,lJ = γ̂′β,l1 γ̂β,l1 + ...+ γ̂′β,lJ γ̂β,lJ .
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4 Empirical Findings

4.1 Data

Our stock returns and characteristics data are from Freyberger, Neuhierl, and Weber (2017).

The sample begins in July 1962, ends in May 2014, and includes 12,813 firms. For each firm

we have 36 characteristics. They are market beta (beta), assets-to-market (a2me), total as-

sets (log at), sales-to-assets (ato), book-to-market (beme), cash-to-short-term-investment

(c), capital turnover (cto), capital intensity (d2a), ratio of change in PP&E to change in

total assets (dpi2a), earnings-to-price (e2p), fixed costs-to-sales (fc2y), cash flow-to-book

(free cf), idiosyncratic volatility (idio vol), investment (investment), leverage (lev),

log lagged market equity (size), lagged turnover (lturnover), net operating assets (noa),

operating accruals (oa), operating leverage (ol), price-to-cost margin (pcm), profit margin

(pm), gross profitability (prof), Tobin’s Q (q), closeness to relative high price (rel high),

return on net operating assets (rna), return on assets (roa), return on equity (roe), mo-

mentum (mom 12 2), intermediate momentum (mom 12 7), short-term reversal (mom 2 1),

long-term reversal (mom 36 13), sales-to-price (s2p), SG&A-to-sales (sga2s), bid-ask spread

(spread), and unexplained volume (suv). We restrict attention to i, t observations for which

all 36 characteristics are non-missing. For further details and summary statistics, see Frey-

berger, Neuhierl, and Weber (2017).

These characteristics vary both in the cross section and over time. The two dimensions

potentially aid IPCA’s estimation of the factor model in different ways. For example, the

average level of a stock characteristic may be helpful for understanding a stock’s uncon-

ditional factor loadings, while time variation around this mean may help understand the

stock’s conditional loadings, and the relevance of the two components for asset pricing may

differ in magnitude. To allow for this possibility, we separate characteristics into their time

series mean and their deviation around the mean. We denote the vector of characteristics

on stock i at time t as ci,t. The vector of IPCA instruments includes a constant, as well as

means and deviations of each characteristic:

zi,t = [1, c̄′i, (ci,t − c̄i)′]′, where c̄i ≡
1

T

T∑
t=1

ci,t.

When we perform out-of-sample analyses, we replace the full sample mean c̄i with the histor-

ical mean c̄i,t ≡ 1
t

∑t
τ=1 ci,τ . We cross-sectionally standardize instruments period-by-period.

In particular, we calculate stocks’ ranks for each characteristic, then divide ranks by the
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number of non-missing observations and subtract 0.5. This maps characteristics into the

[-0.5,+0.5] interval and focuses on their ordering as opposed to magnitude. We use this

standardization for its insensitivity to outliers, then show in robustness analyses that results

are qualitatively the same without characteristic standardization.

4.2 The Asset Pricing Performance of IPCA

We estimate the K-factor IPCA model for various choices of K, and consider both restricted

(Γα = 0) and unrestricted versions of each specification. Two R2 statistics measure model

performance. The first we refer to as the “total R2” and define it as

Total R2 = 1−

∑
i,t

(
ri,t+1 − z′i,t(Γ̂α + Γ̂β f̂t+1)

)2∑
i,t r

2
i,t+1

. (14)

It represents the fraction of return variance explained by both the dynamic behavior of con-

ditional loadings (and alphas in the unrestricted model), as well as by the contemporaneous

factor realizations, aggregated over all assets and all time periods. The total R2 summa-

rizes how well the systematic factor risk in a given model specification describes the realized

riskiness in the panel of individual stocks.

The second measure we refer to as the “predictive R2” and define it as

Predictive R2 = 1−

∑
i,t

(
ri,t+1 − z′i,t(Γ̂α + Γ̂βλ̂)

)2∑
i,t r

2
i,t+1

. (15)

It represents the fraction of realized return variation explained by the model’s description

of conditional expected returns. IPCA’s return predictions are based on dynamics in factor

loadings (and alphas in the unrestricted model). In theory, expected returns can also vary

because risk prices vary. One limitation of IPCA is that, without further model structure, it

cannot separately identify risk price dynamics. Hence, we hold estimated risk prices constant

and predictive information enters return forecasts only through the instrumented loadings.

When Γα = 0 is imposed, the predictive R2 summarizes the model’s ability to describe risk

compensation solely through exposure to systematic risk. For the unrestricted model, the

predictive R2 describes how well characteristics explain expected returns in any form—be it

through loadings or through anomaly intercepts.

Panel A of Table I reports R2’s at the individual stock level for K = 1, ..., 6 factors. With
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Table I
IPCA Model Performance

Note. Panel A and B report total and predictive R2 in percent for the restricted (Γα = 0) and unre-
stricted (Γα 6= 0) IPCA model. These are calculated with respect to either individual stocks (Panel A) or
characteristic-managed portfolios (Panel B). Panel C reports bootstrapped p-values for the test of Γα = 0.

K
1 2 3 4 5 6

Panel A: Individual Stocks (rt)
Total R2 Γα = 0 15.1 17.0 18.5 19.4 19.9 20.3

Γα 6= 0 16.6 18.2 19.2 19.8 20.2 20.4

Pred. R2 Γα = 0 0.44 1.64 1.70 1.83 1.82 1.82
Γα 6= 0 1.89 1.87 1.87 1.86 1.86 1.85

Panel B: Managed Portfolios (xt)
Total R2 Γα = 0 91.6 93.6 96.7 97.7 98.3 98.7

Γα 6= 0 92.6 96.2 97.6 98.2 98.6 98.8

Pred. R2 Γα = 0 2.06 2.84 2.75 2.97 2.98 2.97
Γα 6= 0 3.14 3.11 3.10 3.11 3.08 3.07

Panel C: Asset Pricing Test
Wα p-value 0.00 15.4 32.9 38.2 59.4 13.0

a single factor, the restricted (Γα = 0) IPCA model explains 15.1% of the total variation

in stock returns. As a reference point, the total R2 from the CAPM and Fama-French

three-factor model is 11.9% and 18.9%, respectively, in our individual stock sample.

The predictive R2 in the restricted one-factor IPCA model is 0.4%. This is for individual

stocks and at the monthly frequency. To benchmark this magnitude, the predictive R2 from

the CAPM or the Fama-French three-factor model is 0.3% in a matched individual stock

sample.

Allowing for Γα 6= 0 increases the total R2 by 1.5 percentage points to 16.6%, while the

predictive R2 rises dramatically to 1.9% per month for individual stocks. The unrestricted

IPCA specification attributes predictive content from characteristics to either betas or al-

phas. The results show that with K = 1, IPCA can only capture about one-fifth of the

return predictability embodied by characteristics while maintaining the Γα = 0 constraint.

This represents a failure of the restricted one-factor IPCA model to explain heterogeneity in

conditional expected returns. This failure is statistically borne out by the hypothesis test of

Γα = 0 in Panel C, which rejects the null with a p-value below 0.01%.

25



When we allow for multiple IPCA factors, the gap between restricted and unrestricted models

shrinks rapidly. At K = 2, the total R2 for the restricted model is 17.0%, achieving more

than 93% of the explanatory power of the unrestricted model. The predictive R2 rises to

1.6%, capturing 88% of the characteristics’ predictive content while imposing Γα = 0. Our

test fails to reject the null hypothesis that Γα = 0 when K = 2 (p-value of 15.4%). For

K > 2, the distance between the restricted and unrestricted models shrinks even further. At

K = 4, the restricted and unrestricted models behave nearly identically.

The results of Table I show that IPCA explains essentially all of the heterogeneity in average

stock returns associated with stock characteristics if at least two factors are included in the

specification. It does so by identifying a set of factors and associated loadings such that

stocks’ expected returns align with their exposures to systematic risk—without resorting to

alphas to explain the predictive role of characteristics. In other words, IPCA infers that

characteristics are risk exposures, not anomalies.

Note that, because IPCA is estimated from a least squares criterion, it directly targets total

R2. Thus the risk factors that IPCA identifies are optimized to describe systematic risks

among stocks. They are by no means specialized to explain average returns, however, as

estimation does not directly target the predictive R2. Because conditional expected returns

are a small portion of total return variation (as evidenced by the 1.9% predictive R2 in

the unrestricted model), it is very well possible that a misspecified model could provide an

excellent description of risk yet a poor description of risk compensation (in results below,

the traditional PCA model serves as an example of this phenomenon). Evidently, this is

not the case for IPCA, as its risk factors indirectly produce an accurate description of risk

compensation across assets.

The asset pricing literature is accustomed to evaluating the performance of pricing factors

in explaining the behavior of test portfolios, such as the 5×5 size and value-sorted portfolios

of Fama and French (1993), as opposed to individual stocks. The behavior of portfolios

can differ markedly from individual stocks because they average out a large fraction of

idiosyncratic variation. As emphasized in Section 2.1.1, IPCA asset pricing tests can be at

once interpreted as tests of stocks, or as tests of characteristic-managed portfolios, xt. In

this spirit, Panel B of Table I evaluates fit measures for managed portfolios.15 The xt vector

includes returns on 73 portfolios, one correspond to each instrument (the means and time

15Fit measures for xt are

Total R2 = 1−

∑
t

(
xt+1 − Z ′tZt(Γ̂α + Γ̂β f̂t+1)

)′ (
xt+1 − Z ′tZt(Γ̂α + Γ̂β f̂t+1)

)
∑
t x
′
t+1xt+1

,
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series deviations of 36 characteristics plus a constant).

With K = 4 factors, the total R2’s for the restricted and unrestricted models are 96.7%

and 97.6%, respectively. The reduction in noise via portfolio formation also improves pre-

dictive R2’s to 3.0% and 3.1% for the restricted and unrestricted models, respectively. As in

the stock-level case, the unrestricted IPCA specification performs almost identically to the

unrestricted specification when K ≥ 2.

4.3 Comparison with Existing Models

The results in Table I compare the performance of IPCA across specification choices for K

and with or without the imposition of asset pricing restrictions. We now compare IPCA to

leading alternative modeling approaches in the literature. The first includes models with pre-

specified observable factors. We consider models with K = 1, 3, 4, 5, or 6 observable factors.

The K = 1 model is the CAPM (using the CRSP value-weighted excess market return as

the factor), K = 3 is the Fama-French (1993) three-factor model that includes the market,

SMB and HML (“FF3” henceforth). The K = 4 model is the Carhart (1997, “FFC4”) model

that adds MOM to the FF3 model. K = 5 is the Fama-French (2015, “FF5”) five-factor

model that adds RMW and CMA to the FF3 factors. Finally, we consider a six-factor model

(“FFC6”) that includes MOM alongside the FF5 factors.

We report two implementations of observable factor models. The first is a traditional ap-

proach in which factor loadings are estimated asset-by-asset via time series regression. In

this case, loadings are static and no characteristic instruments are used in the model. The

second implementation places observable factor models on the same footing as our IPCA

latent factor model by parameterizing loadings as a function of instruments, following the

definition of δi,t in equation (13).

The last set of alternatives that we consider are static latent factor models estimated with

PCA. In this approach, we consider one to six principal component factors from the panel

of individual stock returns.16

and

Predictive R2 = 1−

∑
t

(
xt+1 − Z ′tZt(Γ̂α + Γ̂βλ̂)

)′ (
xt+1 − Z ′tZt(Γ̂α + Γ̂βλ̂)

)
∑
t x
′
t+1xt+1

.

16In calculating PCA, we must confront the fact that the panel of returns is unbalanced. We estimate PCA
using the alternating least squares option in Matlab’s pca.m function. As a practical matter, this means that
PCA estimation for individual stocks bears a high computational cost. It also highlights the computational
benefit of IPCA, which side steps the unbalanced panel problem by parameterizing betas with characteristics
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Table II
IPCA Comparison With Other Factor Models

Note. The table reports total and predictive R2 in percent and number of estimated parameters (Np) for
the restricted (Γα = 0) IPCA model (Panel A), for observable factor models with static loadings (Panel
B), for observable factor models with instrumented dynamic loadings (Panel C), and for static latent factor
models (Panel D). Observable factor model specifications are CAPM, FF3, FFC4, FF5, and FFC6 in the
K = 1, 3, 4, 5, 6 columns, respectively.

Test K
Assets Statistic 1 3 4 5 6

Panel A: IPCA
rt Total R2 15.3 18.6 19.5 20.0 20.4

Pred. R2 0.46 1.64 1.77 1.76 1.76
Np 672 2016 2688 3360 4032

xt Total R2 91.6 96.7 97.7 98.3 98.7
Pred. R2 2.06 2.75 2.97 2.98 2.97
Np 672 2016 2688 3360 4032

Panel B: Observable Factors (no instruments)
rt Total R2 11.9 18.9 20.9 21.9 23.7

Pred. R2 0.31 0.29 0.28 0.29 0.23
Np 11452 34356 45808 57260 68712

xt Total R2 34.3 51.0 56.4 55.3 60.4
Pred. R2 0.97 1.63 1.48 1.92 1.70
Np 73 219 292 365 438

Panel C: Observable Factors (with instruments)
rt Total R2 10.7 14.7 15.7 15.3 16.2

Pred. R2 0.35 0.57 0.54 0.71 0.66
Np 73 219 292 365 438

xt Total R2 65.8 84.4 86.5 85.7 87.7
Pred. R2 1.70 2.10 2.02 2.16 2.08
Np 73 219 292 365 438

Panel D: Principal Components
rt Total R2 16.8 26.2 29.0 31.5 33.8

Pred. R2 < 0 < 0 < 0 < 0 < 0
Np 13412 40236 53648 67060 80472

xt Total R2 87.9 93.9 95.3 96.4 97.1
Pred. R2 2.00 2.04 2.59 2.60 2.60
Np 672 2016 2688 3360 4032

and, as a result, is estimated from managed portfolios that can always be constructed to have no missing
data.
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We estimate all models in Table II restricting intercepts to zero. We do so by imposing

Γα = 0 in specifications relying on instrumented loadings, and by omitting a constant in the

static (time series regression) implementation of observable factor models.

Table II reports the total and predictive R2 as well as the number of estimated parameters

(Np) for each model.17 For ease of comparison, Panel A re-states model fits for IPCA with

Γα = 0.18

Panel B reports fits for static (i.e., excluding instruments) observable factor models. In the

analysis of individual stocks, observable factor models generally produce a slightly higher

total R2 than the IPCA specification using the same number of factors. For example, at

K = 5, FF5 achieves a 1.9 percentage point improvement in R2 relative to IPCA’s fit of

20.0%. To accomplish this, however, observable factors rely on vastly more parameters than

IPCA. The number of parameters in an observable factor model is equal to the number

of loadings, or Np = NK. For IPCA, the number of factors is the dimension of Γβ plus

the number of estimated factor realizations, or Np = LK + TK. In our sample of 11,452

stocks with 72 instruments over 599 months, observable factor models therefore estimate

17 times (≈ 11452/(72 + 599)) as many parameters as IPCA. In short, IPCA provides a

similar description of systematic risk in stock returns as leading observable factors while

using almost 85% fewer parameters.

At the same time, IPCA provides a substantially more accurate description of stocks’ risk

compensation than observable factor models, as evidenced by the predictive R2. Observable

factor models’ predictive power never rises beyond 0.3% for any specification, compared with

a 1.8% predictive R2 from IPCA with K = 4.

Among characteristic-managed portfolios xt, the explanatory power from observable factor

models’ total R2 suffers in comparison to IPCA. For K ≥ 3, IPCA explains over 96% of total

portfolio return variation, while FFC6 explains 60.4%. IPCA also achieves at least a 55%

17The R2’s for alternative models are defined analogously to those of IPCA. In particular, for individual
stocks they are

Total R2 = 1−

∑
i,t

(
ri,t − β̂if̂t

)2
∑
i,t r

2
i,t

,Predictive R2 = 1−

∑
i,t

(
ri,t − β̂iλ̂

)2
∑
i,t r

2
i,t

,

and are similarly adapted for managed portfolios xt. In all cases, model fits are based on exactly matched
samples with IPCA.

18These differ minutely from Table I results because, for the sake of comparability in this table, we drop
stock-month observations with insufficient data for time series regression on observable factors. We require
at least 60 non-missing months to compute observable factor betas, which filters out slightly more than a
thousand stocks compared to the sample used in Table I, and leaves us with just under 1.4 million stock-
month observations.

29



improvement in predictive R2 (1.9% at best among observable factor models, versus 3.0%

for IPCA). In sum, when test assets are managed portfolios, IPCA dominates in its ability

to describe systematic risks as well as cross-sectional differences in average returns.

Panel C investigates the performance of observable factor models when loadings are allowed

to vary over time in the same manner as IPCA. In this case, loadings are instrumented

with the same characteristics used for the IPCA analysis, following the definition of δi,t in

equation (13). Because the intercept and latent factor components in (13) are restricted

to zero, the the estimation of Γδ reduces to a panel regression of ri,t+1 on zi,t ⊗ gt+1. For

individual stocks, allowing for dynamic loadings decreases the total R2 compared to the

static model, but roughly doubles the predictive R2 for K ≥ 2. At the portfolio level, the

dynamic loadings sharply increase total R2, while at the same time improving the predictive

R2. This is an interesting result in its own right and, to the best of our knowledge, is new

to the literature.

In Panel D we report the performance of models latent factors with static and uninstrumented

loadings (estimated via PCA). At the individual stock level, PCA’s total R2 exceeds that of

IPCA and observable factor models for all K. PCA, however, provides a dismal description

of expected returns at the stock level; the predictive R2 is negative for each K. On the other

hand, when the model is re-estimated using data at the managed portfolio level, PCA fits in

terms of both total and predictive R2 are generally excellent and only exceeded by IPCA.

Table III formally tests whether the inclusion of observable factors improves over a given

IPCA specification in the matched individual stock sample. The tests, described in Section

3.2, nest the various sets of observable factors studied in Table II (represented by rows)

with different numbers of latent IPCA factors (represented by columns). Panels A and B

show total and predictive R2’s for these joint models. For ease of comparison, we restate

fits from the baseline IPCA specification in the rows showing zero observable factors. When

K = 1, adding observable factors improves the model fit. The total R2 rises from 15.1% for

the IPCA-only model to 18.3% with the FFC6 factors. The predictive R2 rises from 0.4%

to 1.1%. Hypothesis test results show that RMW and CMA offer a statistically significant

improvement over the K = 1 IPCA model (with p-values below 1%).

With more IPCA factors, however, observable factors become redundant. At K = 2, none

of the FFC6 factors are statistically significant after controlling for IPCA factors. The

predictive R2 rises only 0.2% from 1.6% with IPCA alone to 1.8% with the addition of FFC6

factors, and the total R2 rises from 17.0% to 19.4%. With three or more IPCA factors, the

incremental explanatory power from observable factors is negligible.
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Table III
IPCA Fits Including Observable Factors

Note. Panels A and B report total and predictive R2 from IPCA specifications with various numbers
of latent factors K (corresponding to columns) while also controlling for observable factors according to
equation (13). Rows labeled 0, 1, 4, and 6 correspond to no observable factors or the CAPM, FFC4, or
FFC6 factors, respectively. Panel C reports tests of the incremental explanatory power of each observable
factor model with respect to the IPCA model.

Observ. K
Factors 1 2 3 4 5 6

Panel A: Total R2

0 15.1 17.0 18.5 19.4 19.9 20.3
1 16.2 17.9 18.8 19.5 20.0 20.4
4 18.0 19.2 19.6 20.0 20.3 20.6
6 18.3 19.4 19.8 20.1 20.4 20.7

Panel B: Predictive R2

0 0.44 1.64 1.70 1.83 1.82 1.82
1 0.43 1.71 1.83 1.83 1.82 1.82
4 0.91 1.81 1.82 1.82 1.83 1.81
6 1.08 1.82 1.82 1.83 1.81 1.81

Panel C: Individual Significance Test p-value
MKT–RF 29.1 33.8 94.4 79.1 71.0 61.8
SMB 29.8 50.2 81.5 64.3 52.4 61.0
HML 20.1 3.80 6.30 72.7 89.1 82.6
RMW 0.40 22.1 50.9 46.2 82.8 95.0
CMA 0.40 29.5 16.4 25.0 18.3 23.4
MOM 12.7 8.10 9.90 28.2 67.1 63.7

4.3.1 Discussion

Table II offers a synthesis of IPCA vis-à-vis existing cross-sectional pricing models. The

spectrum of factor models can be classified on two dimensions. First, are factors latent or

observable? Second, are loadings static or parameterized functions of dynamic instruments?

Table II clearly differentiates the empirical role of each ingredient.

The empirical performance of traditional cross section pricing models is hampered in both

model dimensions. First, they rely on pre-specified observable factors that are not directly

optimized for describing asset price variation. Second, they rely on static loadings estimated

via time series regression. The superior performance of IPCA shows that, by allowing the

data to dictate factors that best describe common sources of risk, and by freeing loadings to

vary through time as a function of observables, model fits are unambiguously improved.
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Which of these dimensions is more important? Panel C shows that dynamic betas—particularly

ones that are parameterized functions of observable stock-characteristics—are responsible for

large improvements in predictive R2. By tying loadings to characteristics, the no-arbitrage

connection between loading and expected returns is substantially enhanced, even when fac-

tors are pre-specified outside the model. At the same time, this pulls down the total R2.

This is perhaps unsurprising, given the massive e xpansion in parameter count when one

moves to regression-based beta estimates for each asset. It is likely that higher total R2 in

static models is merely an artifact of statistical overfit from over-parameterization.

Panel D shows that it is possible for a latent factor model to succeed in describing returns

even when betas are static. However, this conclusion depends crucially on the choice of

test assets—are they individual stocks or managed portfolios? The glowing performance of

static IPCA among managed portfolios is closely in line with the findings of Kozak et al.

(forthcoming). Yet at the stock level, static PCA leads to egregious model performance.

This divergence suggests an inherent misspecification in the static latent factor model.

In contrast, IPCA is successful in describing returns for both individual stocks and for

managed portfolios—and it does so using the exact same set of model parameters for both

sets of assets. In short, the incorporation of both latent factors and dynamic betas are the

key model enhancements that allow IPCA to achieve a unique level of success in describing

the cross section of returns.

4.4 Out-of-sample Fits

Thus far, the performance of IPCA and alternatives has been based on in-sample estimates.

That is, IPCA factors and loadings are estimated from the full panel of stock returns. Next,

we analyze IPCA’s out-of-sample fits.

To construct out-of-sample fit measures, we use recursive backward-looking estimation and

track the post-estimation performance of estimated models. In particular, in every month

t ≥ T/2, we use all data through t to estimate the IPCA model and denote the resulting

backward-looking parameter estimate as Γ̂β,t. Then, based on equation (6), we calculate

the out-of-sample realized factor return at t + 1 as f̂t+1,t =
(

Γ̂′β,tZ
′
tZtΓ̂β,t

)−1

Γ̂′β,tZ
′
trt+1.

That is, IPCA factor returns at t + 1 may be calculated with individual stock weights(
Γ̂′β,tZ

′
tZtΓ̂β,t

)−1

Γ̂′β,tZ
′
t that require no information beyond time t, just like the portfolio

sorts used to construct observable factors.

The out-of-sample total R2 compares rt+1 to ZtΓ̂β,tf̂t+1,t and xt+1 to Z ′tZtΓ̂β,tf̂t+1,t. The out-
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Table IV
Out-of-sample Fits

Note. The table reports out-of-sample total and predictive R2 in percent with recursive estimation scheme.

Test K
Assets Statistic 1 2 3 4 5 6

rt Total R2 14.6 16.0 16.9 17.6 18.1 18.5
Pred. R2 0.32 0.31 0.52 0.57 0.56 0.56

xt Total R2 88.7 93.7 95.7 97.0 98.0 98.3
Pred. R2 2.44 2.39 2.66 2.88 2.83 2.83

of-sample predictive R2 is defined analogously, replacing f̂t+1,t with the factor mean through

t, denoted λ̂t.

Table IV reports out-of-sample R2 statistics. The main conclusion from the table is that the

strong performance of IPCA is not merely an in-sample phenomenon driven by statistical

overfit. IPCA delivers nearly the same out-of-sample total R2 that it achieves in-sample.

And while the predictive R2 is somewhat reduced, it remains economically large and out-

performs even the in-sample predictions from observable factors, both for individual stocks

and managed portfolios.

4.5 Unconditional Mean-Variance Efficiency

Zero intercepts in a factor pricing model are equivalent to multivariate mean-variance ef-

ficiency of the factors. This fact is the basis for the Gibbons, Ross, and Shanken (1989)

alpha test and bears a close association with our Wα test. The evidence thus far indicates

that IPCA loadings predict asset returns more accurately than competing factor models

both in-sample and out-of-sample, suggesting that IPCA factors achieve higher multivariate

efficiency than competitors. In this section, we directly investigate factor efficiency.

An important, if subtle, fact to bear in mind is that ours is a conditional asset pricing

model—factor loadings are parameterized functions of conditioning instruments. A condi-

tional asset pricing model is attractive because it often maps directly to decisions of investors,

who seek period-by-period to hold assets with high conditional expected returns relative to

their conditional risk. At the same time, conditional models are more econometrically chal-

lenging than unconditional models because they typically require the researcher to estimate

a dynamic model and take a stand on investors’ conditioning information. These complica-
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Figure 1: Alphas of Characteristic-Managed Portfolios

Note. The left and middle panels report unconditional alphas for characteristic-managed portfolios (xt),
relative to FFC6 factors and four IPCA factors, respectively, estimated from time series regression. The
right panel reports the time series averages of conditional alphas in the baseline four-factor IPCA model.
Alphas are plotted against portfolios’ raw average excess returns. Alphas with t-statistics in excess of 2.0
are shown with filled squares, while insignificant alphas are shown with unfilled circles.
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tions lead the factor model literature to focus predominantly on unconditional estimation

and testing.19

Our findings of small and insignificant Γα suggests that estimated IPCA factors are multi-

variate mean-variance efficient, conditionally. This result does not necessarily imply uncon-

ditional efficiency of our factors, and therefore our results are not directly comparable to the

existing analysis that revolves around unconditional models. To bridge this gap, we conduct

two sets of analyses that assess the unconditional efficiency of IPCA factors and thereby link

our analysis with the large empirical literature on unconditional factor models.

4.5.1 Does IPCA “Price” Anomalies Unconditionally?

First, we investigate whether IPCA factors and observable factors accurately “price” anomaly

portfolios unconditionally. To do so, we estimate unconditional alphas in a full-sample time

series regression of portfolio returns onto each set of factors.

The anomaly portfolios that we study are the 73 characteristic-managed portfolios, xt, dis-

cussed in Section 4.2. For comparability, we re-sign portfolios to have positive means and

scale them to 10% annualized volatility. The mean and median annualized Sharpe ratios

19For an excellent treatment of conditional versus unconditional asset pricing models and mean-variance
efficiency, see chapter 8 of Cochrane (2005).
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among these portfolios are 0.50 and 0.74, respectively, with 17 portfolios having a Sharpe

ratio in excess of 1.50.20

Figure 1 reports unconditional alpha estimates for each portfolio. The left-hand figure plots

portfolios’ anomaly alphas from the FFC6 model against their raw average excess returns,

overlaying the 45-degree line. Alphas with t-statistics in excess of 2.0 are depicted with

filled squares, while insignificant alphas are shown with unfilled circles. With only a few

exceptions, characteristic-managed portfolios appear anomalous with respect to the FFC6

model. Their alphas are mostly statistically significant and clustered around the 45-degree

line, indicating that their average returns are essentially unexplained by observable factors.

The middle figure shows unconditional alphas for the same portfolios with respect to the four-

factor IPCA model.21 Specifically, we first estimate the four IPCA factors from the baseline

conditional specification, then we regress portfolios on these estimated factors in full sample

time series regressions (i.e., with static betas) to recover unconditional alphas. In this case,

alphas are clustered around the zero line. Only four of the 73 alphas are significantly greater

than zero, and even these are small in magnitude compared to the distribution of average

anomaly returns. Lastly, for comparison, the right-hand figure reports time series averages of

conditional alphas from the four-factor IPCA specification (i.e, averages of period-by-period

residuals from the main conditional IPCA model). Figure 1 supports the conclusion that,

not only are IPCA factors close to conditionally multivariate mean-variance efficient, they

appear to be unconditionally efficient as well.

4.5.2 Factor Tangency Portfolios

Second, we analyze out-of-sample unconditional Sharpe ratios for IPCA factors.22 We report

univariate annualized Sharpe ratios to describe unconditional efficiency of individual factors,

and we report the ex ante unconditional tangency portfolio Sharpe ratio for a group of factors

to describe multivariate efficiency. We calculate out-of-sample factor returns following the

20The performance of xt portfolios is broadly comparable to anomaly portfolios studied in the literature.
For example, within the dataset of 41 anomaly portfolios posted by Novy-Marx in conjunction with Novy-
Marx and Velikov (2015), the mean and median Sharpe ratios during the same time period are 0.47 and
0.57, respectively, with one having a Sharpe ratio over 1.50.

21We report the (Γα = 0) K = 4 specification rather than including plots for all specifications due to
space constraints. This analysis helps assess IPCA factor efficiency, and K = 4 is the point at which both
the in-sample and out-of-sample predictive R2 peak for the Γα = 0 model. Other values of K ≥ 1 produce
similar results.

22Kozak, Nagel, and Santosh (forthcoming) emphasize that higher-order principal components of
“anomaly” portfolios tend to suffer from in-sample overfit and generate unreasonably high in-sample Sharpe
ratios. In light of this, we focus our analysis on out-of-sample IPCA factor returns.
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Table V
Out-of-Sample Factor Portfolio Sharpe Ratios

Note. The table reports out-of-sample annualized Sharpe ratios for individual factors (“univariate”) and
for the mean-variance efficient portfolio of factors in each model (“tangency”).

K
1 2 3 4 5 6

Panel A: IPCA
Univariate 0.48 0.17 0.69 1.25 1.31 0.79
Tangency 0.48 0.50 2.22 2.55 3.54 3.60

Panel B: Observable Factors
Univariate 0.46 0.33 0.41 0.46 0.62 0.51
Tangency 0.46 0.51 0.78 1.01 1.29 1.37

same recursive estimation approach from Section 4.3. The tangency portfolio return for a

set of factors is also constructed on a purely out-of-sample basis by using the mean and

covariance matrix of estimated factors through t and tracking the post-formation t + 1

return.23

Out-of-sample IPCA Sharpe ratios are shown in Panel A of Table V. The Kth column reports

the univariate Sharpe ratio for factor K as well as the tangency Sharpe ratio based on factors

1 through K. For comparison, we report Sharpe ratios of observable factor models in Panel

B.24 The first IPCA factor produces a Sharpe ratio of 0.48, versus 0.46 for the market over

the same out-of-sample period.25 The fourth IPCA factor has an individual out-of-sample

Sharpe ratio of 1.25, and boosts the Sharpe ratio for the four-factor tangency portfolio to

2.55. Adding additional factors increases the tangency Sharpe ratio further, reaching as

high as 3.60 for K = 6. The out-of-sample Sharpe ratios of IPCA factors exceed those

of observable factor models such as the FFC6 model, which itself reaches an impressive

tangency Sharpe ratio of 1.37.

The high unconditional Sharpe ratio statistics in Panel A of Table V provide a succinct

summary of the fact that IPCA captures extensive comovement among assets while success-

23We scale the tangency weights each period by targeting 1% monthly portfolio volatility based on historical
estimates.

24A difference between IPCA and observable factors is that observable factors are pre-constructed on an
out-of-sample basis. We construct observable factor tangency portfolios using historical mean and covariance
estimates, following the same approach as for IPCA.

25The second half of our sample, which corresponds to our out-of-sample evaluation period, was an espe-
cially good period for the market in terms of Sharpe ratio. In the full post-1964 sample, the market Sharpe
ratio is 0.37.
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Table VI
IPCA Performance for Large versus Small Stocks

Note. Panel A and B report in-sample and out-of-sample total and predictive R2 for subsamples of large
and small stocks. We evaluate fits within each subsample using the same parameters (estimated from the
unified sample of all stocks). All estimates use the restricted (Γα = 0) IPCA specification.

K
1 2 3 4 5 6

Panel A: Large Stocks
In-Sample Total R2 24.1 25.9 28.7 30.0 30.8 31.6

Pred. R2 0.88 1.43 1.59 1.70 1.72 1.71

Out-of-Sample Total R2 22.4 25.3 26.4 27.1 28.1 28.8
Pred. R2 0.84 0.65 0.71 0.70 0.59 0.57

Panel B: Small Stocks
In-Sample Total R2 12.8 14.6 15.9 16.6 17.1 17.3

Pred. R2 0.33 1.69 1.73 1.86 1.85 1.85

Out-of-Sample Total R2 12.0 13.1 14.0 14.6 15.0 15.2
Pred. R2 0.21 0.23 0.52 0.58 0.59 0.60

fully aligning their factor loadings with differences in average returns. These results are not

a statement about implementability of the factor tangency portfolio as a trading strategy.

The analysis of Table V is designed to describe the mean-variance efficiency of IPCA fac-

tors irrespective of practical frictions such as trading costs, and in doing so is consistent

with prior literature on testing factor models, all of which test models with returns gross of

transaction costs. From a trading perspective, the tangency portfolio that we estimate has

high turnover, implying high implementation costs. This is unsurprising given that, as we

show in Section 4.8, the IPCA model is driven to a significant extent by fast-moving char-

acteristics like momentum and short-term reversal. Table V raises an interesting question

for follow-on research: How can IPCA be used for developing practical strategies to exploit

the mean-variance tradeoff that it identifies? And, relatedly, how may IPCA be adapted to

incorporate net-of-costs returns into its notion of factor efficiency?

4.6 Large Versus Small Stocks

Returns of large and small stocks tend to exhibit different behavior in terms of their covari-

ances, liquidity, and expected returns. In particular, the fact that small stocks are much

more volatile than large stocks raises a question of whether the high explained variation
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Table VII
IPCA Cross-Validation for Large Versus Small Stocks

Note. The table reports total and predictive R2 for large and small stock subsamples using parameters
estimated separately in each subsample. Rows correspond to the sample from which parameters are estimated
and columns represent the sample in which fits are evaluated. In particular, when row and column labels
differ, we are using fits in one sample (e.g., small stocks) to cross-validate the reliability of parameters
estimated in the other sample (e.g., large stocks). All estimates use the four-factor restricted (Γα = 0) IPCA
specification.

Fit Sample
Estimation Total R2 Predictive R2

Sample Large Small Large Small

Large 32.1 11.4 1.72 1.55
Small 24.3 16.9 1.49 1.97

from the IPCA model occurs through an especially good description of small stock behavior

at the expense of large stocks. To better understand the role of large and small stocks in

IPCA fits, Table VI breaks out model R2’s for each group. These results are not based

on separate model re-estimation for the two groups, which would mechanically allow IPCA

to fit both subsamples but with potentially different parameters. Instead, these fits hold

the model parameters fixed at their estimates from the unified sample, and we recalculate

corresponding R2’s among each subsample.

We define the “large” group as the 1,000 stocks with the highest market capitalization each

month, and “small” as all remaining stocks. Overall, the performance of IPCA is broadly

similar for large and small stocks, and similar to our earlier results for the unified sample. If

anything, IPCA offers an especially accurate description of large stock variation, with total

R2’s exceeding 25% both in-sample and out-of-sample.

Next, to investigate the stability of model estimates for the two groups, we re-estimate the

K = 4 IPCA model for large and small stocks separately. When IPCA is estimated using

large stocks alone, the fits are strikingly similar to those from the unified sample. The 30.0%

total R2 among large stocks from Table VI increases slightly to 32.1% when the model is

re-optimized on the large stock subsample, and the 1.7% predictive R2 from the unified

estimation is unchanged when estimated from large stocks only. The same pattern holds

for small stocks. The total R2 from unified sample estimates and small-only estimates are

16.6% and 16.9%, respectively, and the predictive R2’s are 1.9% and 2.0%.

Perhaps more impressively, when we cross-validate the fits by computing R2’s in one group

using ft and Γβ parameters estimated from the other group, fits suffer only mildly. When
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Table VIII
Out-of-sample Tangency Sharpe Ratios, Large Versus Small Stocks

Note. The table repeats the analysis of Table V for large and small stocks using parameters estimated
separately in each subsample.

K
1 2 3 4 5 6

Large 0.53 0.43 1.24 2.64 2.95 2.87
Small 0.43 0.56 1.85 2.05 2.90 3.23

we use large stock parameter estimates to fit small stocks, the small stock total R2 drops

to 11.4%, and the predictive R2 drops to 1.6%. Likewise, when small stock parameters are

used to fit large stocks, the total R2 is 24.3% and the predictive R2 is 1.5%. These cross-

validated R2’s represent a further out-of-sample evaluation of the IPCA model: None of the

information in small stock data enters directly into the large stock estimates, and vice versa

(there are only indirect spillovers due to cross-correlation between large and small stocks).

Like our other out-of-sample tests, the large/small sample split demonstrates remarkable

stability of IPCA model fits.

Finally, Table VIII reports Sharpe ratios for out-of-sample tangency portfolios constructed

from IPCA factors estimated separately from the large and small stock subsamples. Large

stock Sharpe ratios remain high, though are somewhat muted compared to the unified sam-

ple. In both size categories, the overall Sharpe ratio patterns are quantitatively similar to

estimates from the unified sample, suggesting that small stocks are not the sole drivers of

baseline IPCA tangency results in Table V.

4.7 Annual Returns

Our analysis has thus far focused on the one-month return horizon. As an extension and

robustness assessment, we re-analyze the IPCA model using annual stock returns. For many

investors, the annual frequency represents a more realistic investment horizon. And, because

our empirical analysis works with data at the individual stock level, it is possible that monthly

return patterns identified by IPCA in part capture short lived fluctuations among illiquid

individual stocks, and these effects are less influential at the annual frequency.

The basic structure of this analysis is unchanged from above with the exception that the

left-hand-side return is aggregated over months t+ 1 through t+ 12. Time t characteristics

now describe conditional loadings on annual factor returns from month t+ 1 through t+ 12.
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Table IX
Annual Returns

Note. The table repeats the analysis of Table I using annual rather than monthly returns.

Test K
Assets Statistic 1 2 3 4 5 6

Panel A: In-sample
rt Total R2 21.3 25.5 27.5 28.4 29.0 29.4

Pred. R2 9.20 11.0 11.0 10.9 10.9 10.9

xt Total R2 83.6 92.9 96.5 97.9 98.6 98.9
Pred. R2 17.3 20.7 20.8 20.9 20.9 20.8

Panel B: Out-of-sample
rt Total R2 15.1 17.6 18.5 19.2 19.7 20.0

Pred. R2 2.85 3.16 3.44 3.33 3.14 3.09

xt Total R2 89.8 95.1 97.1 98.2 98.7 99.0
Pred. R2 18.6 19.3 20.0 20.2 18.3 18.4

Panel C: Asset Pricing Test
Wα p-value 0.60 70.3 49.4 86.9 77.4 47.2

Panel A of IX reports the in-sample fits from re-estimating the restricted (Γα = 0) model

with annual returns. For individual stocks and K = 4, the total R2 rises from 19.5% monthly

to 28.4% with annual returns, and the predictive R2 rises from 1.8% to 10.9%, respectively.

Among characteristic-managed portfolios, the total R2 rises from 97.7% to 97.9% and the

predictive R2 rises from 3.0% to 20.9%. These improvements are only partially due to

re-estimating the model. Even if we hold parameter values fixed from the monthly data

estimates of Table I, the total R2 is 17.9% and 64.2% for rt and xt, respectively, and the

predictive R2’s are 8.2% and 19.9%, respectively.

Panel B reports out-of-sample fits from the annual model. Out-of-sample fits somewhat at-

tenuate at the individual stock level. The out-of-sample total R2 is 19.2% and the predictive

R2 is 3.3%. In contrast, portfolio-level R2’s are essentially unchanged from their in-sample

values. Panel C assesses improvement in fit for the (Γα 6= 0) via the Wα statistic of Section

3.1. We cannot reject the null hypothesis that Γα = 0 as long as K > 1.26

The primary conclusion from Table IX is that IPCA continues to provide an excellent de-

26Our analysis of annual returns uses overlapping monthly data. This overlap is accounted for via block
bootstrap in our p-value calculation.
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Table X
Individual Characteristic Contribution

Note. The table reports the contribution of each individual characteristic to overall model fit, defined as the
reduction in total R2 from setting all Γβ elements pertaining to that characteristic to zero (in the restricted
IPCA specification with K = 4). ∗∗ and ∗ denote that a variable significantly improves the model at the 1%
and 5% levels, respectively.

size 2.18 ** a2me 0.13 e2p 0.03

mom 12 2 1.71 ** s2p 0.12 c 0.03

mom 1 0 0.83 ** pcm 0.10 d2a 0.02

mom 12 7 0.69 * fc2y 0.08 dpi2a 0.02

beta 0.65 ** roe 0.08 q 0.02

rel high 0.61 ** roa 0.08 free cf 0.02

ol 0.49 sga2m 0.07 rna 0.01

at 0.44 * suv 0.07 investment 0.01

cto 0.39 mom 36 13 0.06 * prof 0.01

idio vol 0.21 pm 0.05 lev 0.01

lturnover 0.16 beme 0.03 oa 0.01

spread mean 0.14 ato 0.03 noa 0.01

scription of risk and compensation among annual returns. Its conditional factor loadings

successfully explain cross-sectional differences in expected returns with alphas that are small

and insignificant. This suggests that our monthly findings are unlikely to be dominated by

illiquidity or other sources of very short-lived predictability.

4.8 Which Characteristics Matter?

Our statistical framework allows us to address questions about the incremental contribution

of characteristics to help address Cochrane (2011)’s quotation in our preface. We test the

statistical significance of an individual characteristic while simultaneously controlling for all

other characteristics. Each characteristic enters the beta specification through two rows of

the Γβ matrix: one row corresponding to the average level of the characteristic and the other

to deviations around this level. A characteristic is irrelevant to the asset pricing model if all

Γβ elements in these two rows are zero. Our tests of characteristic l’s significance are based

on the Wβ statistic, described in Section 3.3, that measures the distance of these two Γβ

rows from zero.

Table X reports the contribution to overall model fit due to each characteristic. We define

this contribution as the reduction in total R2 from setting all Γβ elements pertaining to that
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Table XI
IPCA Fits Excluding Insignificant Instruments

Note. IPCA percentage R2 at the individual stock level including only the eight characteristics from Table
X that are significant at the 5% level.

K

1 2 3 4 5 6

Total R2 Γα = 0 14.8 16.5 18.1 18.9 19.4 19.6

Γα 6= 0 16.1 17.7 18.7 19.2 19.5 19.6

Pred. R2 Γα = 0 0.41 0.62 1.50 1.63 1.63 1.62

Γα 6= 0 1.67 1.66 1.66 1.66 1.65 1.65

characteristic to zero while holding the remaining model estimates fixed. ∗∗ and ∗ denote

that a variable significantly contributes to the model at the 1% and 5% levels, respectively.

Of the 36 characteristics in our sample, only five are significant at the 1% level: market beta,

short-term reversal, size, momentum (the 12 2 version), and trailing 52-week high. Three

more (long-term reversal, 12 7 momentum, and total assets), are significant at the 5% level.

Two characteristics stand out in the magnitude of their model contribution. These are size

and momentum (12 2), with each contributing roughly 2% to the restricted model’s total

R2.

The insignificance of so many characteristics begs the question of whether the small subset

of significant characteristics produces a factor model with similar explanatory power to the

36 characteristics dataset. Table XI repeats the IPCA model fit analysis of Table I but

instead uses only the eight characteristics that are significant at the 5% level. The eight-

characteristic model performs very similarly to the model with all 36 characteristics. For

example, with K = 4, the total R2 in the Γα = 0 model is 18.9% with eight characteristics

versus 19.4% with 36 characteristics, and the predictive R2 is 1.6% versus 1.8%.

The results of Table I show that characteristics align with expected returns through their

association with risk exposures rather than alphas. Additionally, Table XI suggests that

the success of IPCA is obtainable using only a few characteristics, with the others being

statistically irrelevant for the model’s fit.

We gauge stability of this set of selected characteristics in Table XII by conducting the same

characteristic tests in a number of alternative settings. First, holding the specification fixed

(restricted IPCA with K = 4), we re-estimate the model separately for large and small stocks
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Table XII
Characteristic Significance Comparison

Note. Significance levels for individual characteristic contribution to overall model fit in various subsamples
and model specifications. “Baseline” refers to the restricted IPCA specification with K = 4 using the full
sample of monthly returns. Also reported are results from the large and small stock subsamples, using annual
returns, and from the K = 3 and K = 5 specifications. ∗∗ and ∗ denote variable significance at the 1% and
5% levels, respectively.

Baseline Large Small Annual K = 3 K = 5

size ** * ** ** * **

mom 12 2 ** * ** ** * **

mom 1 0 ** ** ** ** ** **

mom 12 7 * * * * *

beta ** ** ** ** ** **

rel high ** ** ** ** ** **

ol * ** *

at * * * **

cto *

idio vol

lturnover * **

spread mean

a2me

s2p

pcm

fc2y

roe

roa *

sga2m

suv *

mom 36 13 * *

pm *

beme

ato

e2p

c *

d2a *

dpi2a *

q

free cf *

rna

investment *

prof

lev

oa

noa
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Figure 2: Parameter Stability

Note. Panel A plots Γβ parameter estimates element-wise from the small stock sample against those from
the large stock sample. Panel B likewise compares estimates from annual and monthly returns. All estimates
use the four-factor restricted (Γα = 0) IPCA specification.
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and report characteristic significance in each subsample. The large and small stock results

disagree on only four of the 36 characteristics in terms of statistical statistical significance

at the 5% level. Of the eight characteristics that are significant in the unified sample, seven

are also significant in both the large and small stock samples. Annual return tests agree on

six of the eight significant characteristics from the baseline monthly tests. Finally, when we

alter the specification from the K = 4 baseline to either K = 3 or K = 5, the tests again

agree on six of the eight significant characteristics.

Next, in Figure 2, Panel A plots Γβ parameter estimates element-wise from the small stock

sample against those from the large stock sample. Each characteristic appears in eight

elements of Γβ, as it enters into the specification of each loading twice (once via c̄i and once

via ci,t − c̄i). The correlation of Γβ elements across large and small stock estimates is 40%.

Panel B plots Γβ estimates from monthly returns to those from annual returns. In this case,

the correlation in parameter estimates between the two return frequencies is 59%. In both

panels, estimates cluster around the 45-degree line, and no characteristic shows a systematic

difference in its parameter values between the two samples.

In summary, Tables XI and XII and Figure 2 demonstrate a high degree of stability in

characteristics’ influence on factor loadings across subsamples, data frequencies, and model

specifications.

4.9 Other Robustness

Appendix C reports a number of additional empirical analyses. We summarize them here

and refer interested readers to the appendix for further detail.

Our definition of zi,t splits each characteristic into two instruments: its mean and its time

series deviation from the mean. In Appendix C.1, we analyze the relative contribution of

average characteristic levels (c̄i) versus time series fluctuations around those levels (ci,t− c̄i).
We find that, for the purposes of describing asset riskiness (total R2), the unconditional

levels of characteristics c̄i are nearly as informative as our main specification and there is

little incremental contribution from ci,t − c̄i. In contrast, predictive R2 results show that

the pure temporal variation in characteristics (ci,t − c̄i) is the most important component

for describing risk compensation. Overall, Appendix C.1 indicate that the data significantly

prefer a dynamic factor model over a static one, and the variation in characteristics across

assets and over time contribute differently (and both significantly) to the specification of

betas.
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In our main analysis, we use rank-transformed characteristics to limit the undue impact of

outliers on our estimation. In Appendix C.2, we demonstrate the robustness of our findings

to alternative characteristic transformations. The first normalizes each characteristic by its

cross-sectional standard deviation period-by-period. This removes fluctuations in the scale

of characteristics over time, while preserving differences in their relative magnitudes across

stocks, and is thus a less invasive transformation than ranking. We also report results using

raw characteristics with no functional transformation or outlier mitigation. The resulting

fits in terms of total R2 are nearly identical to our main analysis, while the predictive R2 is

slightly higher than in our main analysis.

As a third standardization approach, we cross-sectionally orthonormalize characteristics each

period, so that Z ′tZt = IL for all t. This standardization has a special property that the

IPCA model becomes directly calculable via singular value decomposition with no need for

numerical optimization, just like PCA. Appendix C.2 derives this property and shows that,

with orthonormal characteristics, model fits are qualitatively similar but slightly weaker than

our main IPCA results.

In Appendix C.3, we investigate the similarity between the IPCA factors and other commonly

studied factors in the literature, including the FFC6 factors and 15 anomaly portfolios returns

studied by Novy-Marx and Velikov (2015). We report pairwise and multiple correlations

among IPCA factors and factors from prior literature. The excess market has the highest

multiple correlation (93%) with the six IPCA factors, followed by idiosyncratic volatility

factor (87%) followed by failure probability (84%). Among the FFC6 factors, the momentum

has the highest IPCA multiple correlation (78%). We also calculate multiple correlations in

the other direction, i.e. regression each IPCA factor on all 21 portfolios. The leading (highest

variance) IPCA factor has a surprisingly low multiple correlation of 68% with previously

studied factors, indicating that a substantial fraction of it’s variation (more than 50% in

terms of R2) is unspanned by the 21 factor portfolios that we study. The remaining IPCA

factor have multiple correlations with the 21 factors ranging from 75% to 89%.

The absence of book-to-market from the list of significant characteristics is surprising given

its prominence in the empirical asset pricing literature. A possible explanation is that our

sample includes financial stocks along with non-financials, and book-to-market ratios may

be incomparable across these two groups. Appendix C.4 assesses the robustness of our

results to excluding financial stocks (SIC codes 6000–6999). We find that financial stocks

are not responsible for our findings regarding book-to-market. Γβ estimates from the sample

of all stocks are 95% correlated with those from the non-financial stock sample. Total and

predictive R2’s are nearly identical when restricting our analysis to non-financials, and book-
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to-market remains statistically insignificant in the non-financials sample.

5 Conclusion

Our primary conclusions are three-fold. First, by estimating latent factors as opposed to

relying on pre-specified observable factors, we find a low dimension factor model that is

successfully describes riskiness of stock returns (by explaining realized return variation) and

risk compensation (by explaining cross section differences in average returns). We show

that there are no significant anomaly intercepts associated with a large collection stock

characteristics, and instead show that the differences in average returns across stocks align

with differences in exposures to a few common factors.

Second, our factor model outperforms leading observable factor models, such as the Fama-

French five-factor model, in delivering small pricing errors. This is true in-sample and out-

of-sample. Our factors also achieve a higher level of out-of-sample mean-variance efficiency

than alternative models.

Third, only a small subset of the stock characteristics in our sample are responsible for

IPCA’s empirical success. 80% of the characteristics in our sample are statistically irrelevant

for describing returns. Our tests conclude that the 20% of characteristics that significantly

contribute to our model do so by better identifying dynamic latent factor loadings, and show

no statistical evidence of generating anomaly alphas.

The key to isolating a successful factor model is incorporating information from stock char-

acteristics into the estimation of factor loadings. In our asset pricing model, risk loadings

are depend on observable asset characteristics. We propose a new method, instrumental

principal components analysis (IPCA), which treats characteristics as instrumental variables

for estimating dynamic loadings on latent factors. The estimator is as easy to work with as

standard PCA while allowing the researcher to bring information beyond just returns into

estimation of factors and betas.

We introduce a set of statistical asset pricing tests that offer a new research protocol for

evaluating hypotheses about patterns in asset returns. When researchers encounter a new

anomaly characteristic, they should evaluate its significance in a multivariate setting against

the large body of previously studied characteristics via IPCA. In doing so, the researcher

can draw inferences regarding the incremental explanatory power of the candidate charac-

teristic after controlling for the wide gamut of previously proposed predictors. And, if the
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characteristic does contribute significantly to the return model, a researcher can then test

whether it contributes as a risk factor loading or as an anomaly alpha. Thus, the researcher

need no longer ask the narrow question, “Is my proposed characteristic/return association

explained by a specific set of pre-specified factors,” and instead can ask “Does there exist

any set of factors that explains the observed characteristic/return pattern?”

Finally, our model has exciting an practical benefit. It allows investors and managers to

easily assess a firm’s cost of capital without relying on the obviously misspecified CAPM

beta or other factor loadings that may be infeasible to estimate with time series regression.

Instead, IPCA prescribes a simple cost of capital calculation as a function of the asset’s

observable characteristics and estimated model parameters. The essence of IPCA is to

describe the riskiness and commensurate expected return of an asset by viewing it as an

evolving collection of its defining characteristics. It estimates a set of universal parameters,

Γβ, that map characteristics into factor loadings and thus into expected returns. These

parameters do not depend on time or the asset in question, so once they are estimated from

a group of representative assets, they can be used to extrapolate conditional expected returns

for other assets whose characteristics are available even if a long history of returns is not.
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Internet Appendix

A Estimation via Alternating Least Squares

This appendix describes our ALS approach to optimizing IPCA objective function (5). To

initialize the algorithm, we choose a starting guess for Γβ as the left eigenvectors correspond-

ing to the leading K eigenvalues of the characteristic-managed portfolio second moment

matrix,
∑

t xtx
′
t. As described in Section 2, this initial guess, which amounts to the static

loading matrix estimate from applying PCA to the xt dataset, is a close approximation to

the exact solution of (5) as long as Z ′tZt is not too volatile. Initializing the optimization with

this guess ensures that the algorithm converges very quickly (typically within 10 iterations,

taking roughly 0.25 seconds on a standard desktop computer).

Given the initial guess for Γβ, we evaluate the least squares regression corresponding to first-

order condition (6) for all t. Then, given the resulting solutions ft’s, we evaluate the least

squares regression corresponding to first-order condition (7). We iterate between evaluations

of (6) and (7) until convergence, defined as the point at which the maximum absolute change

in any element of Γβ or ft (for all t) is smaller than 10−6.

B Bootstrap Monte Carlo Analysis

This appendix investigates the finite sample behavior of our test for the null hypothesis that

Γα = 0. Our analysis focuses on assessing the size of the test (rejection rates under the null)

and power of the test (rejection rates under the alternative).

We simulate data according to the following general model:

rt = Zt−1Γακ+ (Zt−1Γβ + νt)Ft + ηt.

We use cross sections sizes (N) of 500, 5000, or 25000 assets with monthly observation count

(T ) of 100 or 1000. We set number of factors (K) to 3 or 5 factors, and consider instrument

set sizes (L) of 10 or 20.

We draw factor realizations ft as a K × 1 vector of standard normals. We draw Γβ as a

random orthonormal matrix. To do this, we draw an L×K matrix of normals, M , and set

Γβ = MM−1
C for MC the Cholesky of M ′M . We draw Zt as an N × L matrix of standard

52



Table A.1
Size and Power of Γα = 0 Test

Note. Simulated rejection probabilities of a 5%-level test. Rejection rates in the κ = 0 column describe the
size of the test. Rejection rates in the κ = κ1, κ2, and κ3 columns describe the power of the test.

Wild Non-wild

N T K L 0 κ1 κ2 κ3 0 κ1 κ2 κ3

500 100 3 10 3.4 5.4 32.0 75.0 4.4 5.4 11.3 70.0

500 100 5 20 5.6 6.6 30.2 81.4 5.0 4.4 7.4 68.4

5000 100 3 10 4.6 6.2 27.6 93.4 4.0 5.8 6.6 93.4

5000 100 5 20 4.2 5.2 15.8 82.4 3.2 2.8 5.8 86.8

5000 1000 3 10 4.2 18.0 24.8 75.0 4.6 11.2 21.0 71.8

5000 1000 5 20 3.4 19.8 50.6 90.4 3.4 15.0 32.6 87.8

25000 100 3 10 2.6 7.2 16.0 44.8 2.2 5.6 14.8 38.0

25000 100 5 20 3.6 7.4 15.6 98.6 2.2 6.8 14.6 44.2

25000 1000 3 10 4.4 66.2 78.4 95.8 3.0 54.6 80.6 99.2

25000 1000 5 20 5.0 77.0 93.2 99.8 4.6 76.4 95.2 100.0

Average 4.1 21.9 38.4 83.7 3.7 18.8 29.0 76.0

normals. We allow betas to possess a purely unobservable component, νt, which is an N×K
array of independent normals with the variance parameter chosen such that 50% of the

variation of βt−1 ≡ Zt−1Γβ + νt is due to νt.

Idiosyncratic returns, ηt, are drawn as a N × 1 array of normals with time-varying volatility.

In particular, the conditional variance ηt is log-normally distributed with its own variance

chosen such that on average 15% of return variance is systematic and 85% is idiosyncratic.

By incorporating heteroskedasticity akin to that in the data, we can assess the usefulness of

the wild bootstrap in conducting inference.

Γα is a random normal vector that is orthogonal to Γβ. In particular, we draw a L×1 vector

of normals, Y , and set Γα = (IL−Γβ(Γ′βΓβ)−1Γ′β)Y κ, where κ controls the distance from the

null. When κ = 0 the model embodies the null hypothesis that Γα = 0. For κ > 0, data is

generated under the alternative. We consider three values of κ > 0 such that when κ = κx,

Zt−1Γακx drives about x× 0.25% of the variation in returns.

In every simulated data set, we calculate the Wα statistic and perform the bootstrap proce-

dure of Section 3.1 to arrive at a p-value. We also consider a variation on our test that uses

53



a standard rather than wild bootstrap. We conduct 1000 simulations with 500 bootstraps

for each simulation. Table A.1 reports the results.

In all cases, the test maintains appropriate size when data are generated under the null.

Rejection rates based on a 5% significance level never fall below 2.2% or rise above 5.6%.

The power of the test to reject the null when data are generated under the alternative also

behaves well. Rejection rates increase steadily with κ and with sample size. Finally, we

find that the wild bootstrap indeed improves inference, both in terms of size and power,

compared to the standard bootstrap.

C Additional Empirical Results

C.1 Static or Dynamic Loadings?

Our definition of zi,t splits each characteristic into two instruments: its mean and its time

series deviation from the mean. We next analyze the relative contribution of these two

components to the return factor model. In addition to our main specification in which

zi,t = (c̄′i, c
′
i,t − c̄′i)′, we consider three nested variations of the IPCA model. The first sets

instruments equal the total characteristic value, zi,t = ci,t. This is equivalent to imposing

that the Γβ coefficients corresponding to c̄i and ci,t − c̄i are equal, and helps answer the

question, “Do the level and variation in characteristics contribute different information to

factor loadings?” If this specification performs as well as our main specification, then level

and variation enter βi,t equally and there is no need to split them.

The second specification sets instruments equal to the mean characteristic value, zi,t = c̄i.

This is equivalent to setting Γβ coefficients on to ci,t − c̄i equal to zero. By testing this

against our main specification we address the question, “Is a static factor model sufficient

for describing returns?,” in which case the benefits of characteristics shown in our preceding

results arise from their ability to better differentiate loadings across assets rather than over

time. The third specification asks the complementary question, “Is time series variation in

characteristics the primary contributor to IPCA success?” In this case we set instruments

equal to the deviation value only, zi,t = ci,t − c̄i, and fix coefficients on c̄i to zero.

Because these comparisons can be formulated as restrictions on rows of Γβ, the model com-

parison test in Section 3.3 can be used to conduct formal statistical inference for whether

our main split-characteristic specification significantly improves over each of the three nested
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Table A.2
Static Versus Dynamic Loadings

Note. Percentage R2 from IPCA specifications based on either total characteristics (“c”), average charac-
teristic levels (“c̄”), time series deviations from average levels (“c− c̄”), or our baseline specification in which
levels and deviations are allowed to enter with difference coefficients (“c̄, c− c̄”).

Total R2 Predictive R2

K c c̄ c− c̄ c̄, c− c̄ c c̄ c− c̄ c̄, c− c̄
1 14.8 14.4 13.3 15.1 0.35 0.28 0.52 0.44

2 16.4 16.1 15.0 17.0 0.34 0.44 1.04 1.64

3 17.4 16.8 15.9 18.5 0.42 0.60 1.25 1.70

4 18.0 17.4 16.4 19.4 0.42 0.88 1.25 1.83

5 18.6 17.8 16.7 19.9 0.69 0.88 1.24 1.82

6 18.9 18.0 17.0 20.3 0.68 0.89 1.25 1.82

variations.27

Table A.2 reports model fits for each specification. In terms of total R2, the nested sub-

specification that is closest to our main specification for K = 4 is that using the total

characteristic, zi,t = ci,t. It produces a total R2 of 18.0%, versus 19.4% in the main model.

However, for the purposes of describing asset riskiness, even the unconditional levels of

characteristics c̄i are nearly as informative as our main specification.

In contrast, the predictive R2 results show that temporal variation around the mean is

the most important characteristic component for describing risk compensation. Conditional

expected return estimates from time series variation alone describe 1.3% of total return

variance, versus 1.8% from the main split-characteristic specification and 0.9% for the c̄i

specification. Lastly, the statistical test rejects all three nested variations in favor of the

more general split-characteristic specification with p-values below 1%.28 This is true for all

K. In summary, the data significantly prefer a dynamic factor model over a static one, and

the variation in characteristics across assets and over time contribute differently (and both

significantly) to the specification of betas.

27Goyal (2012) notes that “In practice, one almost always employs firm characteristics that vary over
time. There are relatively few analytical results in the literature for the case dealing with time-varying
characteristics.” The tests we describe in this section provide a means of investigating the role of time-
varying characteristics in a fully formulated statistical setting.

28We omit percentage p-values from the table because as they all are zero to two decimal places.
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Table A.3
Other Characteristic Transformations

Note. This table repeats the analysis of Panel A in Table I using characteristics that are cross-sectionally
volatility-scaled each period (Panel A), untransformed (Panel B), or cross-sectionally orthonormalized each
period (Panel C).

K
1 2 3 4 5 6

Panel A: Volatility-scaled
Total R2 15.2 17.6 19.4 20.2 20.8 21.1
Pred. R2 0.53 2.10 2.17 2.26 2.27 2.26

Panel B: Raw
Total R2 15.6 17.9 19.5 20.4 21.0 21.4
Pred. R2 0.58 2.22 2.29 2.27 2.32 2.17

Panel C: Orthonormal
Total R2 14.6 16.4 17.9 18.8 19.3 19.6
Pred. R2 0.46 0.85 1.52 1.59 1.60 1.60

C.2 Alternative Characteristic Transformations

In our main analysis, we use rank-transformed characteristics to limit the undue impact of

outliers on our estimation. We now demonstrate the robustness of our findings to alternative

characteristic transformations. The first normalizes each characteristic by its cross-sectional

standard deviation period-by-period. This removes fluctuations in the scale of characteristics

over time, while preserving differences in their relative magnitudes across stocks, and is thus

a less invasive transformation than ranking. We also report results using raw characteristics

with no functional transformation or outlier mitigation. The IPCA fits for these approaches

are shown in Panel A and B of Table A.3, respectively. The fits in terms of total R2 are

nearly identical to our main analysis, while the predictive R2 is slightly lower with ranked

characteristics (roughly 1.9%, versus 2.1%–2.3% for volatility-scaled and raw characteristics

when K > 1).

C.2.1 Orthonormal Characteristics: An Exact Analytical Estimator

As a third standardization approach, we cross-sectionally orthonormalize characteristics each

period, so that Z ′tZt = IL for all t. A convenient feature of this normalization is that the

IPCA estimator of Γβ becomes directly calculable via singular value decomposition with no

need for numerical optimization.
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This result follows from the concentrated IPCA objective described in equation (8) of Section

2. When instruments are orthonormal period-by-period, (8) reduces to

max
Γβ

tr

(
T−1∑
t=1

(
Γ′βΓβ

)−1
Γ′βZ

′
trt+1r

′
t+1ZtΓβ

)
. (16)

That is, the objective function collapses to a sum of homogeneous Rayleigh quotients. As a

result, the K leading eigenvectors of
∑

t Z
′
trt+1r

′
t+1Zt satisfy the maximization problem and

thus estimate Γβ, a solution well known from the PCA literature.

More specifically, we derive the algebraic solution for Γβ via the following eigenvalue decom-

position:

USU ′ =
∑
t

Z ′trt+1r
′
t+1Zt,

The IPCA estimator of Γβ is

Γ̂β = UK

where the columns of U are arranged in decreasing eigenvalue order and UK denotes the first

K columns of U . The factor estimates are likewise analytical, and simplify to

f̂t+1 = Γ̂′β(Z ′trt+1).

Once can directly impose characteristic orthonormality in the data. In particular, given

some matrix of “raw” instruments Z̃t, we construct orthonormal instruments Zt using the

Gram-Schmidt process. This uses regression to sequentially orthogonalize instruments in the

cross section each period, then cross-sectionally volatility-standardizes the residuals. This

orthogonalization is not invariant to the ordering of characteristics. As a result, our tests of

individual characteristics can be influenced by the order of the instruments. We choose an

instrument ordering on economic grounds. In particular, characteristics are arranged within

zi,t according to the date that the proposed characteristic effect was published. Thus market

beta is ordered first, size second, and so forth.

We report IPCA fits for orthonormalized instruments in Panel C of Table A.3. Model fits are

qualitatively similar, though slightly weaker, compared to our main IPCA results, generate

total R2’s of nearly 20%. Predictive R2’s reach 1.6% and handily outperform observable

factor models in this dimension.
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Table A.4
Correlation with Observable Factors

Note. Pairwise and multiple correlations in percent. The first six columns report pairwise correlations
between each of the six IPCA factors (listed in the corresponding column) and each of the previously proposed

portfolios (rows). The last column reports the absolute multiple correlation (
√
R2) from a regression of each

portfolio on the six IPCA factors. The last column reports the absolute multiple correlation of each IPCA
factor with the 21 portfolios.

Portolio f1 f2 f3 f4 f5 f6
√
R2

Mkt-RF 24.3 −2.8 −39.0 59.4 −59.8 2.9 93.4
SMB 43.6 −47.2 −43.4 17.8 −29.2 −7.0 74.7
HML −6.7 2.1 46.9 −13.5 −4.6 −50.9 70.9
RMW −23.0 45.3 16.4 3.9 17.5 −21.7 56.9
CMA −2.2 −0.4 33.7 −27.2 8.1 −37.9 58.5
MOM 2.3 34.1 −54.8 −42.2 15.2 1.9 77.8

Net Issuance −19.2 22.4 29.5 −13.7 13.6 −25.7 49.6
Ret. Book Equity −29.8 57.2 4.7 −18.7 24.9 −9.9 66.3
Failure Prob. −34.9 63.4 −7.0 −38.3 40.3 −2.5 83.8
ValMomProf 15.4 2.7 −38.7 −25.9 22.6 −12.0 53.8
ValMom 3.8 13.5 −20.0 −38.2 3.6 −24.9 51.6
Idios. Volatility −39.8 53.3 35.3 −28.6 42.1 −26.5 87.0
Momentum −3.3 38.6 −45.9 −39.9 17.8 0.5 73.4
PEAD SUE −8.8 36.2 −30.7 −26.0 5.2 15.1 54.5
PEAD CAR −8.9 21.4 −21.0 −25.3 5.4 8.7 39.2
Ind. Mom. −16.4 8.0 −6.2 −25.7 9.7 −0.4 33.5
Ind. Rel. Reversal 20.4 −24.2 14.9 39.9 −27.4 8.6 58.0
High Freq. Combo 2.6 −5.9 −6.7 3.4 −14.2 3.2 18.3
Short-run Reversal 18.9 −19.6 11.1 38.0 −20.8 6.1 50.8
Seasonality 8.4 1.5 −4.8 3.4 −6.1 5.4 13.5
IRR (Low vol.) 11.2 −16.8 0.0 23.1 −23.4 0.3 37.1
√
R2 All Ptfs. 55.1 75.4 84.4 76.5 72.2 68.9

C.3 Comparison with Factors in Prior Literature

Table A.4 reports pairwise and multiple correlations between the estimated factors in our

restricted K = 6 IPCA specification and 21 portfolios from prior literature, including the

FFC6 factors and the 15 anomaly portfolios from Novy-Marx and Velikov (2015). The first

six columns report pairwise correlations between factors listed in the corresponding column

and row. The last column reports the absolute multiple correlation (
√
R2) from a regression

of each portfolios on the six IPCA factors. The last column reports the absolute multiple

correlation of each IPCA factor with the 21 portfolios.
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Figure A.1: Parameter Stability

Note. The figure plots Γβ parameter estimates element-wise from the all stock sample against those from the
sample excluding financials (SIC codes 6000–6999) in the four-factor restricted (Γα = 0) IPCA specification.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
All Firms

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

N
on

-F
in

an
ci

al
s

beta
e2p
beme
q
mom-36-13
a2me
mom-1-0
size
cto
oa
roe
mom-12-2
lturnover
noa
rel-high
idio-vol
ato
dpi2a
investment
pm
rna
suv
roa
free-cf
ol
c
mom-12-7
spread-mean
at
lev
prof
s2p
sga2m
d2a
fc2y
pcm

45 o

Corr. = 95%

C.4 Exclusion of Financial Stocks

This appendix assesses the robustness of our results to excluding financial stocks, defined

as those having SIC codes 6000–6999. Figure A.1 compares Γβ estimates from the sample

including all stocks (financial and non-financials) to the sample excluding financials.

Given the insignificance of book-to-market ratios in our main analysis, and given the stark

differences in book-to-market for financial and non-financial firms, we are particularly inter-

ested in how the role of book-to-market ratios for IPCA factor loadings in the non-financial

sample might differ from that for the financial sample. When we conduct significance tests

in the non-financials sample, book-to-market remains statistically insignificant. In the four-

factor restricted (Γα = 0) IPCA specification, the non-financial total and predictive R2’s are

19.6% and 1.8%, essentially unchanged from the R2’s in our baseline sample that includes

financials.
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