Staying at Zero with Affine Processes An Application to Term Structure Modelling

Alain MONFORT^{1,2} Fulvio PEGORARO^{1,2} Jean-Paul RENNE² Guillaume ROUSSELLET^{1,2,3}

$^{1}CREST$

²Banque de France

³Dauphine University

Volatility Institute 7th Annual Conference

All the views presented here are those of the authors and should not be associated with those of the Banque de France.

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix
Carlas	1.5					
Conter	Its					
1 In	troduction					
2 T	he ARG ₀ proces					
۲	A mixture of a	ffine distribu	utions			
٠	Properties and	extensions				
3 T	he NATSM					
٠	Short-rate spec	ification an	d the affin	e framework		
٠	Advantages of	an affine fra	amework			
(4) E	stimation					
٠	State-space for	mulation				
۰	Estimation resu	ılts				
5 A	ssessing lift-off	dates				
6 C	onclusion					
7 A	ppendix					

Several of the major central banks now face the ZLB

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix
Stylize	d facts to r	natch				

- The short-term nominal rate can stay at the ZLB for several periods.
- In the meantime, longer-term yields can show substantial fluctuations [JGB yields from June 1995 to May 2014]

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix
Our 71	R model	a nrimer				

\longrightarrow We introduce a new affine process:

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix
What v	we do in th	is paper				

- We derive affine non-negative processes staying at 0 (ARG₀ processes) to build a Term Structure Model which is:
 - providing positive yields for all maturities;
 - consistent with the ZLB with a short-rate experiencing prolonged periods at 0 while long-term rates still fluctuates;
 - affine: thus closed-form formulas for bond-pricing and lift-off probabilities are available.
- Empirical assessment on JGB yields (June 1995 to May 2014). Good performance of our model in terms of:
 - fitting yield levels and conditional variances;
 - calculating Risk-Neutral and Historical lift-off probabilities.

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix
Related	literature					

- Term structure models at the ZLB: Black (1995), Ichiue & Ueno (2007), Kim & Singleton (2012), Krippner (2012), Renne (2012), Kim & Priebsch (2013), Wu & Xia (2013), Bauer & Rudebusch (2013), Christensen & Rudebusch (2013).
- <u>Conditional volatilities of yields</u>: Almeida *et al.* (2011), Bikbov & Chernov (2011), Filipovic, Larsson & Trolle (2013), Creal & Wu (2014), Christensen *et al.* (2014).
- Affine and Autoregressive Gamma processes: Darolles *et al.* (2006), Gourieroux & Jasiak (2006), Dai, Le & Singleton (2010), Creal & Wu (2013)
- Lift-off probabilities: Bauer & Rudebusch (2013), Swanson & Williams (2013)

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix
Conten	ıts					

- 2 The ARG₀ process
 - A mixture of affine distributions
 - Properties and extensions

3 The NATSM

- Short-rate specification and the affine framework
- Advantages of an affine framework

4 Estimation

- State-space formulation
- Estimation results
- 5 Assessing lift-off dates

6 Conclusion

Appendix

Introduction The ARG₀ process The NATSM Estimation Assessing lift-off dates Conclusion Appendix

Defining the Gamma-Zero distribution

We construct a new distribution in two steps:

- $Z \sim \mathcal{P}(\lambda) \Longrightarrow Z(\omega) \in \{0, 1, 2, \ldots\}$ and $\mathbb{P}(Z = 0) = \exp(-\lambda)$.
- We define $X|Z \sim \gamma_Z(\mu)$, which implies:

If Z = 0, X is a dirac point mass at 0.

2 If Z > 0, X is gamma-distributed (continuous on \mathbb{R}^+).

Definition

The non-negative r.v. $X\sim\gamma_{0}(\lambda,\mu)$, $\lambda>0$ and $\mu>0$, if

$$X \,|\, Z \sim \gamma_Z(\mu)$$
 with $Z \sim \mathcal{P}(\lambda)$

$$\Rightarrow \qquad \mathbb{P}(X=0) = \mathbb{P}(Z=0) = \exp(-\lambda).$$

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates □□□	Conclusion	Appendix		
A mixture of affine distributions								
A mixt	ure distribu	ition						

In other words, $X \sim \gamma_0(\lambda, \mu)$ if its (complicated) p.d.f. is:

$$f_X(x; \lambda, \mu) = \sum_{z=1}^{+\infty} \left[\frac{\exp(-x/\mu) x^{z-1}}{(z-1)! \, \mu^z} \times \frac{\exp(-\lambda) \lambda^z}{z!} \right] \mathbb{1}_{\{x>0\}} + \exp(-\lambda) \mathbb{1}_{\{x=0\}}$$

However, simple Laplace transform:

$$\varphi_X(u; \lambda, \mu) := \mathbb{E}\left[\exp(uX)\right] = \exp\left[\lambda \frac{u\mu}{(1-u\mu)}\right] \quad \text{for} \quad u < \frac{1}{\mu}.$$

 \implies Exponential-affine in λ .

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix		
A mixture of affine distributions								
A mixt	ure distribu	ition						

In other words, $X \sim \gamma_0(\lambda, \mu)$ if its (complicated) p.d.f. is:

$$f_X(x; \lambda, \mu) = \sum_{z=1}^{+\infty} \left[\frac{\exp(-x/\mu) x^{z-1}}{(z-1)! \, \mu^z} \times \frac{\exp(-\lambda) \lambda^z}{z!} \right] \mathbb{1}_{\{x>0\}} + \exp(-\lambda) \mathbb{1}_{\{x=0\}}$$

However, simple Laplace transform:

$$\varphi_X(u; \lambda, \mu) := \mathbb{E}\left[\exp(uX)\right] = \exp\left[\lambda \frac{u\mu}{(1-u\mu)}\right] \quad \text{for} \quad u < \frac{1}{\mu}$$

 \implies Exponential-affine in λ .

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix		
A mixture of affine distributions								
A mixt	ure distribu	ition						

In other words, $X \sim \gamma_0(\lambda, \mu)$ if its (complicated) p.d.f. is:

$$f_X(x; \lambda, \mu) = \sum_{z=1}^{+\infty} \left[\frac{\exp(-x/\mu) x^{z-1}}{(z-1)! \, \mu^z} \times \frac{\exp(-\lambda) \lambda^z}{z!} \right] \mathbb{1}_{\{x>0\}} + \exp(-\lambda) \mathbb{1}_{\{x=0\}}$$

However, simple Laplace transform:

$$\varphi_X(u; \lambda, \mu) := \mathbb{E}\left[\exp(uX)\right] = \exp\left[\lambda \frac{u\mu}{(1-u\mu)}\right] \quad \text{for} \quad u < \frac{1}{\mu}$$

 \implies Exponential-affine in λ .

Introduction The ARG₀ process The NATSM Estimation Assessing lift-off dates Conclusion Appendix A mixture of affine distributions

Introducing dynamics: the ARG₀ process

Main goal: Build a dynamic affine process with zero point mass.

Definition

 (X_t) is a ARG₀ (α, β, μ) if $(X_{t+1}|\underline{X_t})$ is Gamma-zero distributed:

$$(X_{t+1}|\underline{X_t}) \sim \gamma_0(\alpha + \beta X_t, \mu) \quad ext{for} \quad \alpha \geq 0, \ \mu > 0, \ \beta > 0$$
 .

Again, simple conditional LT, exponential-affine in X_t :

$$\begin{aligned} \varphi_{X,t}(u;\,\alpha,\beta,\mu) &:= & \mathbb{E}_t\left[\exp(uX_{t+1})\right] \\ &= & \exp\left[\frac{u\mu}{1-u\mu}(\alpha+\beta\,X_t)\right], \quad \text{for} \quad u < \frac{1}{\mu}. \end{aligned}$$

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix
A mixture of a	ffine distributions					
Summ	arv					

J

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix
Properties and	extensions					
	<u> </u>					

Interesting features and properties

Key properties:

- Non-negative and affine process
- Staying at zero with probability:

$$\mathbb{P}(X_{t+1} = 0 | X_t = 0) = \exp(-\alpha) \neq 0.$$

 $\Box \ \alpha \neq \mathbf{0} \Longrightarrow$ zero is not absorbing.

□ The probability is TV in the multivariate setting.

• Affine first two conditional moments.

Multivariate case

A multivariate VARG process can be obtained easily stacking together conditionally independent ARG processes.

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix
Conter	its					

- 1 Introduction
 - 2 The ARG₀ process
 - A mixture of affine distributions
 - Properties and extensions
- 3 The NATSM
 - Short-rate specification and the affine framework
 - Advantages of an affine framework
- 4 Estimation
 - State-space formulation
 - Estimation results
- 5 Assessing lift-off dates
- 6 Conclusion
 - Appendix

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates □□□	Conclusion	Appendix			
Short-rate specification and the affine framework									
Risk-neutral dynamics									

The state of the economy is defined by a *n*-dimensional vector X_t.
 These factors follow a VARG process under Q.

 $VARG_{\nu}$ processes

 X_t follows a VARG₀($\alpha^{\mathbb{Q}}, \beta^{\mathbb{Q}}, \mu^{\mathbb{Q}}$) if, $\forall t, \forall i$:

•
$$Z_{i,t+1}|X_t \sim \mathcal{P}(\alpha_i^{\mathbb{Q}} + \beta_i^{\mathbb{Q}'}X_t).$$

- $X_{i,t+1}|Z_{i,t+1} \sim \gamma_{Z_{i,t+1}}(\mu_i^{\mathbb{Q}})$ cond. indep across *i*.
- Each $X_{i,t}$ has a zero point mass.
- X_t has closed-form affine first two moments.

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix			
Short-rate specification and the affine framework									
Short-r	rate specific	ration							

- The vector of factors X_t is split into two: $X_t = (X_t^{(1)'}, X_t^{(2)'})'$
- The following structure is imposed:

$$\begin{pmatrix} X_t^{(1)} \\ X_t^{(2)} \end{pmatrix} = \text{constant} + \begin{pmatrix} \beta_{11}^{\mathbb{Q}} & \beta_{12}^{\mathbb{Q}} \\ 0 & \beta_{22}^{\mathbb{Q}} \end{pmatrix} \begin{pmatrix} X_{t-1}^{(1)} \\ X_{t-1}^{(2)} \end{pmatrix} + \xi_t^{\mathbb{Q}}$$

• The short-term rate r_t is given by: $r_t = \delta_1' X_t^{(1)}$

Key Properties

• r_t has a zero point mass.

•
$$X_t^{(2)}$$
 appears in \mathbb{Q} -expectations of future r_t .
 \implies In the ZLB, $X_t^{(1)} = 0$ but long-term yields move with $X_t^{(2)}$

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix			
Short-rate specification and the affine framework									
Dricing	Eormulas								
I HUIIg	, i orniulas								

The model belongs to the class of ATSM:

• Yields are affine in the factors for all maturities:

$$R_t(h) = -\frac{1}{h}(A_h'X_t + B_h) = \overline{A}_h'X_t + \overline{B}_h.$$

• Recursive closed-form loadings formulas.

Conditional volatilities: time-varying and maturity dependent.

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix			
Short-rate specification and the affine framework									
How to	treat it								

• Conditional variance of yields:

 $\mathbb{V}_t^{\mathbb{P}}[R_{t+1}(h)]$

$$= \overline{A}'_h \mathbb{V}^{\mathbb{P}}_t(X_{t+1})\overline{A}_h$$

$$= \overline{A}_{h}' \left\{ \operatorname{diag} \left[\mu^{\mathbb{P}} \odot \mu^{\mathbb{P}} \odot \left(2\alpha^{\mathbb{P}} + 2\beta^{\mathbb{P}'} \frac{X_{t}}{t} \right) \right] \right\} \overline{A}_{h}$$

• Time-varying and maturity-dependent.

Introduction The ARG₀ process The NATSM Estimation Assessing lift-off dates Conclusion Appendix Advantages of an affine framework

Advantages of an affine framework

NATSM properties

- Yields $R_t(h)$ are non-negative;
- Long-term yields can move while $r_t = 0$ for several periods;
- Unconditional first two moments are available in closed-form;
- Conditional first two moments of yields are affine in X_t ;
- Yields forecasts are explicitly affine in X_t ;

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix		
Conten	its							
1 In	troduction							
2 TI	he ARG ₀ proces							
 A mixture of affine distributions 								
۲	Properties and	extensions						
3 TI	he NATSM							
۲	Short-rate spec	ification an	d the affine	e framework				
۲	Advantages of	an affine fra	amework					
4 Es	stimation							
۰	State-space for	mulation						
۰	Estimation resu	ults						
5 As	ssessing lift-off	dates						

- 6 Conclusion7 Appendix

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix			
State-space formulation									
Observ	Observable variables								

State vector $Y_t = (R'_t, V'_t, S'_t)'$ affine in X_t :

- *R_t*: yield levels (6 maturities);
- V_t : 2- and 10-y yield conditional (EGARCH) variance;
- St: SPF for 3-m and 1-y ahead 10-y yield;

•
$$\dim(X_t^{(1)}) = 1$$
, $\dim(X_t^{(2)}) = 3$ and $\nu = 0$;

Estimation technique

Affine \mathbb{P} -dynamics + affine observable variables.

 \implies Linear Kalman-filter-based QML.

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix
Estimation resu	lts					

Filtered factors

Factor loadings of yields and conditional variances

(a) Factor loadings of yields

Introduction The ARG₀ process The NATSM Estimation Assessing lift-off dates Conclusion Appendix Estimation results

Fit of Conditional Variances and SPFs

24 / 28

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix
Estimation resu	lts					

Fit of Yields

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix
Conter	its					
	n a la arta					
U In	troduction					
2 T	he ARG ₀ proces					
•	A mixture of a	ffine distribu	utions			
•	Properties and	extensions				
3 т	he NATSM					
•	Short-rate spec	ification an	d the affine	e framework		
•	Advantages of	an affine fra	amework			
(4) Es	stimation					
•	State-space for	mulation				
•	Estimation resu	ults				
5 A	ssessing lift-off	dates				
6 C	onclusion					
	nnendiv					

Lift-off probability dates under \mathbb{P} and \mathbb{Q}

We calculate the following probabilities:

- $\mathbb{P}(r_{t+k} = 0 \mid \underline{X_t})$ and $\mathbb{Q}(r_{t+k} = 0 \mid \underline{X_t})$;
- $\mathbb{P}(r_{t+k} < 25 \text{ bps.} | \underline{X_t}) \text{ and } \mathbb{Q}(r_{t+k} < 25 \text{ bps.} | \underline{X_t}).$

Useful formula

If $z \in \mathbb{R}^+$ and $\varphi_z(u)$ its Laplace transform.

$$\mathbb{P}(z=0)=\lim_{u\to-\infty}\varphi_z(u)\,.$$

Next two plots:

- Time-series dimension: t varies (k = 2yrs and 5yrs).
- Horizon dimension: k varies (t = 11/30/07 and 05/30/14).

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix

Horizon dimension of probabilities

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix			
Conter	nts								
n In	troduction								
2 T	he ARG ₀ proces								
•	A mixture of a	ffine distribu	utions						
•	 Properties and extensions 								
3 т	he NATSM								
٠	Short-rate spec	ification an	d the affine	e framework					
۰	Advantages of	an affine fra	amework						
(4) E	stimation								
۰	State-space for	mulation							
۰	Estimation resu	ılts							
5 A	ssessing lift-off	dates							
6 C	onclusion								
7 A	ppendix								

We have derived **affine non-negative processes staying at 0** and built an affine term-structure model (**NATSM**) gathering:

- a short-rate consistent with the ZLB experiencing periods at 0 while long-run rates still fluctuates;
- closed-form formulas for bond-pricing and lift-off probabilities.

An empirical assessment showed performance of our model for:

- fitting yield levels and conditional variances;
- calculating risk-neutral and historical lift-off probabilities.

Further research: Empirical comparison of NATSMs, derivatives pricing.

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix

Thank you for your attention.

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix
Conte	nts					
	and the state					
2 7	The ARG ₀ proces					
•	• A mixture of af	fine distribu	utions			
•	Properties and	extensions				
3 7	The NATSM					
0	Short-rate spec	ification an	d the affine	e framework		
0	Advantages of	an affine fra	amework			
(4) E	Estimation					
0	State-space for	mulation				
•	Estimation resu	ilts				
5 A	Assessing lift-off o	dates				
6	Conclusion					
7 A	Appendix					

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix

• The loadings recursions are given by:

$$R_{t}(h) = -\frac{1}{h}(A'_{h}X_{t} + B_{h})$$

$$A_{h} = -\delta + \beta^{\mathbb{Q}} \left(\frac{A_{h-1} \odot \mu^{\mathbb{Q}}}{1 - A_{h-1} \odot \mu^{\mathbb{Q}}}\right)$$

$$B_{h} = B_{h-1} + \alpha^{\mathbb{Q}'} \left(\frac{A_{h-1} \odot \mu^{\mathbb{Q}}}{1 - A_{h-1} \odot \mu^{\mathbb{Q}}}\right)$$

 \bullet \odot is the element-wise product.

▶ back

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates □□□	Conclusion	Appendix
The hi	storical dvn	amics				

• The SDF is exp-affine with market price of risk vector θ :

$$\frac{d\mathbb{P}_{t,t+1}}{d\mathbb{Q}_{t,t+1}} = \exp\left[\theta' X_{t+1} - \psi_t^{\mathbb{Q}}(\theta)\right]$$

Change of measure property

 X_t follows a VARG_{ν}($\alpha^{\mathbb{P}}, \beta^{\mathbb{P}}, \mu^{\mathbb{P}}$) process under the historical measure \mathbb{P} .

$$\alpha_j^{\mathbb{P}} = \frac{\alpha_j^{\mathbb{Q}}}{1 - \theta_j \, \mu_j^{\mathbb{Q}}} \,, \qquad \beta_j^{\mathbb{P}} = \frac{1}{1 - \theta_j \, \mu_j^{\mathbb{Q}}} \, \beta_j^{\mathbb{Q}} \,, \qquad \mu_j^{\mathbb{P}} = \frac{\mu_j^{\mathbb{Q}}}{1 - \theta_j \, \mu_j^{\mathbb{Q}}} \,.$$

Rk: ν is the same under both measures.

▶ back

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix

	ℙ-parameters			Q-para	meters
	Estimates	Std.		Estimates	Std.
α_4	3.2455	0.1118		3.2347	0.1113
$\beta_{1,1}$	0.9663	0.0078		0.9794	0.0042
$\beta_{2,2}$	0.9978	0.0005		0.9957	0.0006
$\beta_{3,3}$	0.9486	0.0044		0.9705	0.0023
$\beta_{4,4}$	0.9967	0.0005		0.9933	0.0003
$\beta_{2,1}$	0.0308	0.0041		0.0308	0.0041
$\beta_{3,2}$	0.1094	0.0059		0.1120	0.0061
$\beta_{4,3}$	$3.88 \cdot 10^{-4}$	$2.28 \cdot 10^{-5}$		$3.87 \cdot 10^{-4}$	$2.27 \cdot 10^{-5}$
μ_1	1	-		1.0135	0.0040
μ_2	1	-		0.9980	0.0005
μ_3	1	-		1.0231	0.0023
μ_4	1	-		0.9967	0.0003
		Other P	arameter	s	
δ_1	0.0030	0.0003			
θ_1	-0.0133	0.0039	θ_2	0.0020	0.0005
θ_3	-0.0226	0.0022	θ_4	0.0033	0.0003
σ_R	0.0407	0.0003			
σ_V	$3 \cdot 10^{-3}$	_	σ_{S}	0.15	_

Table : Parameter estimates

Introduction The ARG₀ process The NATSM Estimation Assessing lift-off dates Conclusion Appendix Univariate case: lift-offs formulas

• $Z \in \mathbb{R}^+$ and $\varphi_Z(u)$ its Laplace transform.

$$\mathbb{P}_{Z}\{0\} = \lim_{u\to-\infty}\varphi_{Z}(u).$$

• Lift-off probabilities: $(X_t) \sim \text{ARG}_0(\alpha, \beta, \mu)$ and $\varphi_{t,h}(u_1, \dots, u_h)$ its multi-horizon conditional Laplace transform.

•
$$\mathbb{P}(X_{t+h} = 0 \mid X_t) = \lim_{u \to -\infty} \varphi_{t,h}(0, \dots, 0, u)$$

• $\mathbb{P}[X_{t+1} = 0, \dots, X_{t+h} = 0 \mid X_t] = \lim_{u \to -\infty} \varphi_{t,h}(u, \dots, u)$
= $\exp(-\alpha h - \beta X_t)$,
• $\mathbb{P}[X_{t+1} = 0, \dots, X_{t+h} = 0, X_{t+h+1} > 0 \mid X_t)]$
= $\exp[-\alpha h - \beta X_t] [1 - \exp(-\alpha)]$, $h > 1$.

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix
Multiva	ariate Case					

• $Z \in \mathbb{R}^n_+$ and $\varphi_Z(u_1, \ldots, u_n)$ its Laplace transform.

$$\mathbb{P}_{Z}\{0,\ldots,0\} = \lim_{u\to-\infty}\varphi_{Z}(u,\ldots,u).$$

• Notations: Multi-horizon conditional LT.

$$\varphi_{t,k}^{\mathbb{P}}(u_1,\ldots,u_k) = \mathbb{E}^{\mathbb{P}}\left[\exp\left(u_1^{'}X_{t+1}+\ldots+u_k^{'}X_{t+k}\right) \middle| X_t\right]$$
$$= \exp\left[\mathcal{A}_k^{'}X_t+\mathcal{B}_k\right]$$
$$\varphi_{R,t,k}^{(h)\mathbb{P}}(v_1,\ldots,v_k) = \mathbb{E}\left[\exp\left(v_1\,R_{t+1}(h)+\ldots+v_k\,R_{t+k}(h)\right) \middle| X_t\right]$$

Introduction	The ARG ₀ process	The NATSM	Estimation	Assessing lift-off dates	Conclusion	Appendix
Lift-off	S					

•
$$\mathbb{P}[r_{t+k} = 0 \mid X_t] = \lim_{u \to -\infty} \varphi_{R,t,k}^{(1)\mathbb{P}}(0, \dots, 0, u)$$

• $\mathbb{P}[r_{t+1} = 0, \dots, r_{t+k} = 0 \mid X_t]$
 $= \lim_{u \to -\infty} \varphi_{R,t,k}^{(1)\mathbb{P}}(u, \dots, u) = p_{r,t,k} \quad (say)$
• $\mathbb{P}[r_{t+1} = 0, \dots, r_{t+k-1} = 0, r_{t+k} > 0 \mid X_t] = p_{r,t,k-1} - p_{r,t,k}$
• $\mathbb{P}\left[v' R_{t+1}^{(t+k)}(h) > \lambda \mid X_t\right]$
 $= \frac{1}{2} + \frac{1}{\pi} \int_0^{+\infty} \frac{Im\left[\varphi_{R,t,k}^{(h)\mathbb{P}}(i \lor x) \exp(-i \lambda x)\right]}{x} dx$